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What are Verification and Validation (V&V)? 

Code Verification (not covered in this talk) 

– As time and space discretizations are refined subject to appropriate 

constraints, do computed results converge to exact analytic 

solutions at the rate of the formal order of the mathematical 

discretization scheme?  
 

“Solution” or “Calculation” Verification 

– In applying the model to real problems, determine the empirical 

rate of convergence with appropriate discretization refinement, and 

from this estimate the solution error and uncertainty thereof. 
 

Model Validation  

– How well do model results match reality for relevant quantities 

of interest?  

– Is the model “good enough” for defined use purposes of the 

model (e.g., specific design, analysis, or decision-making 

purposes)? 2 



this 

• Shortened version of fall 2011 3hr. class: 
 

                      Advanced Topics in Model Validation 
 

• Introduce concepts, issues, lessons from recent and ongoing 
activities and developments in UQ and V&V pertaining to: 
– Experiments 
– Mod/Sim 

 
• Caveat – one particular view of things 

 

– UQ and V&V methods are still being actively researched, developed, 
debated, and refined in the experimental, V&V, and M&S communities 

 

– The “Real Space” model validation approach presented here is  
one particular approach among many, and is still under development  
—still evolving 
 

• developed over many years, based on many diverse experiences with 
industrial scale applications 

About this talk… 

Best Estimate Predictions + Uncertainty 
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this 

• Introduce the “Real Space” approach to model validation 
 

+ some considerations underlying it 

 

• Survey some model V&V/UQ applications at Sandia  

and present an in-depth case study from a recent  

thermal-mechanical application 

Outline 
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MOTIVATION for Model Validation 

As an example, consider a finite-element model of a device or system 

• Let all model inputs like material properties and boundary conditions be crisp 

values 

• All these crisp inputs will have some amount of error 

– even if all model inputs are actually measured, measurement error will exist 

– majority of inputs for material properties and model parameters typically come 

from catalogued values determined elsewhere, under different conditions  

• Model-form error will also exist – all model conceptions are simplified abstractions 

of reality; no conception is exact 

• The numerous errors in the model (each hopefully “small”) add to an unknown 

discrepancy between model predictions and “reality” 

      Hypothesis tests for whether the model is different from the data are improperly 

posed, skewed toward rejecting the more reasonable alternative hypothesis that a 

difference between model and reality exists  
 

Model Validation  

– How well do model results match reality for relevant quantities of interest?  

– Is the model “good enough” for defined use purposes of the model? (e.g., 

specific design, analysis, or decision-making purposes) 
5 



this 

Observation: a model that is “Consistent” 

with the Data is Not Necessarily Accurate 

or Adequate 

Example:  

measured material 

property data as a 

function of temperature 

Total uncertainty 

associated with set 

of measurements 

(our best perception 

of where reality lies) 

• The solid black line is a Least-Squares best-fit regression line through the data 
 

• Regression line not an accurate model for material prop. value vs. temperature 
 

– Some validation paradigms would categorize the model as “consistent” with the data 

and therefore would accept it ( poses “Model User’s Risk”) 
 

– model too precise, not representative of real property variability 

• Under-predicted uncertainty could lead to trouble in downstream uses of model 
 

– model better characterized as: “not fully consistent” or “not inconsistent” with data 
  

• Also demonstrates why popular validation criterion of “means matching” (does 

mean of sim. = mean of data?) is not an effective test for model accuracy  6 



 

• Answer: it depends pivotally on the nature of the uncertainty 

represented by the PDFs 

– Perfect model if the PDFs represent populations of results 

from a stochastic system tested multiple times w/ no other 

uncer. in the tests (aleatory uncertainty only) 

– Model likely has error if the PDFs represent only epistemic 

uncertainty (lack of knowledge) regarding the response of a 

non-stochastic system 

The Significance of Aleatory vs. Epistemic 

uncertainty in model validation 

sim. experim. 

Given this uncertainty, is this model prediction perfect 

or likely biased? 
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this 

• Both types of uncertainty are significant in many (most?) validation 

problems 
 

• Real Space model validation framework is built to address this 

– segregated representation and propagation of aleatory and 

epistemic uncertainties  

– modified “Probability Box” representation of Ferson & Ginzburg 

Treatment of Aleatory and Epistemic Uncertainties 

Aleatory 
uncertainty 

Epistemic 
uncertainty 

Aleatory 
uncertainty 
Epistemic 
uncertainty 

experiments simulations 
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this 

• Real Space approach is a hybrid (in this regard) of other 

developed frameworks: 
 

– ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer  

• geared for validation of non-stochastic systems 

• no aleatory-epistemic segregation  

• equivalent to Real Space for non-stoch. sys. and probabilistic UQ 
 

– ASME V&V10 2012 Supplement for V&V in Computational Solid 

Mechanics 

• uses Ferson & Oberkampf validation metric (CDF mismatch)  

• built for validation of stochastic systems 

• segregates aleatory and epistemic uncertainties (Probability Box) 

• incurs risk of “Type X” validation error by ignoring some important 

sources of epistemic uncertainty in experiments that ASME VV20 

and Real Space include  

Treatment of Aleatory and Epistemic Uncertainties 

in model validation 

9 



this 

• Real Space method has a different comparison approach and 

validation metric for comparing experimental vs. simulation results 

 

• Compares percentiles of response (experimental vs. simulation) 

instead of assessing at a whole-distribution level 

 

• Provides a more granular look at how the model is doing 

 

• Enables validation assessment of models to be used in the analysis 

of upper and/or lower performance and safety margins 

  

• Doesn’t cost extra for the finer granularity, just requires a different 

way of processing the experimental and simulation results   

 

Other Differentiating Features  

of the Real Space methodology 

10 



this 

• Explicitly accounts for epistemic uncertainty arising 

from small sample sizes (limited numbers of replicate 

tests) in experimental characterization of mtls., systems 

– a dominant or significant uncertainty in many cases 
 

• The RS framework has demonstrated protocols for  

treatment of the following representations of 

uncertainty, individually and in combination: 

– Interval  

– Distributional (probability density functions, PDFs)  

– Discrete (non-parametric)  

• e.g. discrete turbulence model forms and 

discrete stress-strain curves (data) 

Other Differentiating Features  

of the Real Space methodology 
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this 

  From sparse data use 0.90/0.95 

tolerance intervals to define a 

central 95th percentile range of a 

Normal distribution that has 

approx. 90% odds that its central 95 

percentile range contains the 95 

percentile range of the true PDF 
 

 
 

A Key Element of the Real Space validation 

methodology is the use of classical statistical 

Tolerance Intervals to deal with Sparse Data 
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Tolerance Intervals significantly reduce the 

complexity and expense of adequately representing, 

propagating, and aggregating Aleatory + Epistemic 

uncertainties due to Sparse Data 
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 5 methods 

assessed on  

21 test problems 
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See this report for 
more observations, 
considerations,  and 
philosophy underlying 
the Real Space model 
validation approach 
and comparison to 
other validation 
approaches 

14 



Funding Source: ASC abnormal thermal-

mechanical 

 

Project Description and Challenge 

Perform V&V assessment of a high-temperature  

stainless steel elastic-plastic constitutive model 

tested in heated pipes pressurized to failure. 

Models and Simulations 

• Frank Dempsey –PI (1526) 

• Jerry Wellman (retired) 

Pipe Bomb simulations and experiments 

“Pipe Bomb” V&V/UQ Case Study  

V.Romero 12/2/2013 

Experiments  

• Bonnie Antoun (8256) 

• Kevin Connelly (8256) 

 

V&V/UQ Methodology and Analysis 

• Vicente Romero (1544) 
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• Here: multiple Stress-Strain Curves of material variability in 

calibration of constitutive model 
 

• QASPR: similar issues in electronics modeling 
–calibrations to experimental response curves yield discrete 
parameter sets considered non-interpolable in between 
 

   

   
multiple Stress-

Strain Curves of 

material response 

from specimens in 

cylinder tension 

tests at various 

temperatures 

cylinder 

Tension-test 

specimens 

Material Characterization: 
Aleatory and Epistemic uncertainties from Sparse 

Samples of Discrete Random Functions 

17 



Cylinder Material Specimen 

Tension Test at 800C 

Extensometer 

w/Alumina 

Rods 

TC #1 

TC #2 

TC on high 

temp coupler 

18 



Quasi-Static Thermal-Elastic-Plastic 
Stainless Steel Constitutive Model 

Inversion Procedure to extract Cauchy-Stress/Logarithmic-Strain 
from Experimental Stress-Strain Curves (Adagio) 

19 



“Eliminate” Mesh and Solver Effects 
in modeling necking/failure in material characterization tests 

 

Negligible discretization sensitivity 
established for portion of material curves 
traversed in pipe bomb calculations. 
Explored 21 perturbations of:  
• Element size & aspect ratios 
• Solver parameters 

(including Hourglass treatment options) 20 

http://en.wikipedia.org/wiki/File:Al_tensile_test.jpg


Generate synthetic ±2σ uncertainty bounds 

from 6 discrete stress-strain curves 
 

 • Room Temperature Data – 25C 

Original data and  

data interpolated onto 

standard increments  

of 0.02 strain 

Mean ± 2σ (µ ± 2σ) 

curves calculated 

from interpolated data 

(σ = 1 standard deviation) 

µ ± 2σ curves from  

True Strain-Stress 

space mapped to 

Engr. Stress-Strain 

for sanity check 

 
 

--worked OK for this case and for data at some other temperatures  

UQ – Characterize Material Strength Variability from 

Small # of Stress-Strain Curves – a False Start 

21 



Generation of synthetic ±2σ uncertainty bounds 

from 3 discrete stress-strain curves 

–didn’t work for this case or for data at some other temperatures 

• 800C data 

Wellman 

further smoothed 

Cubic Interpolation  

“bubbling” and 

 “curve crossing” problems 

raw data 

Cub. Interp. & truncated try with linear interp. 

22 
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Parameterize input 

variability, then propagate 

represented variability 

Instead of this…  Do this…  

Input, xi  

response 

value 

Model  function 

propagated  

Tolerance 

Interval 

 

Propagate realizations of input  

variability, then form Tol Intvl.  

on realizations of response  

Input, xi  

response 

value 

Model  function 

Tolerance 

Interval on 

results of 

propagated 

input 

samples 

 

Another way… 



Predicted Variability of Pipe-Bomb Failure Pressures 
due to Variability of Material Stress-Strain Curves 
(Each curve  a run of isothermal pipe bomb model) 

Case T_max P_max (psi) dt (sec) 
EQPS_max

* Status # Procs cpu-hrs res Adaptive 

try3-rt 20 1484.5 1.60E-11 0.601 192 0.368 1.00E-06 feti 

try4-rt 20 1482.8 9.00E-13 0.571 192 0.308 1.00E-06 feti 

try5-rt 20 1485.2 9.00E-13 0.575 high 192 0.324 1.00E-06 feti 

try6-rt 20 1485 9.00E-13 0.549   192 0.348 1.00E-06 feti 

try39-rt 20 1483.9 9.00E-13 0.587 192 0.402 1.00E-06 feti 

try40-rt 20 1474.8 9.00E-13 0.555 Low 192 0.309 1.00E-06 feti 

    

try14-100 100 1227.1 1.00E-11 0.586 High 192 0.441 1.00E-06 feti 

try15-100 100 1208.7 9.00E-13 0.528 Low 192 0.546 1.00E-06 feti 

try16-100 100 1225.3 9.00E-13 0.561 192 0.31 1.00E-06 feti 

try36-100 100 1226.3 8.60E-12 0.559 192 0.335 1.00E-06 feti 

try37-100 100 1222.9 1.60E-08 0.549 192 0.284 1.00E-06 feti 

    

try11-200 200 1102.1 1.70E-09 0.529 High 192 0.335 1.00E-06 feti 

try12-200 200 1085.8 9.00E-13 0.426 192 2.62 1.00E-06 feti 

try13-200 200 1088.6 1.30E-06 0.469 192 2.26 1.00E-06 feti 

try34-200 200 1089.9 9.00E-13 0.442 192 0.453 1.00E-06 feti 

try35-200 200 1081.7 9.00E-13 0.402 Low 192 0.342 1.00E-06 feti 

    

try17-400 400 1010.3 1.00E-12 0.394 192 0.393 1.00E-06 feti 

try18-400 400 1007.2 1.00E-12 0.386 192 0.325 1.00E-06 feti 

try19-400 400 1005.7 3.00E-09 0.432 192 0.312 1.00E-06 feti 

try32-400 400 1001.9 1.00E-12 0.373 Low 192 2.479 1.00E-06 feti 

try33-400 400 1014 1.00E-12 0.384 High 192 0.369 1.00E-06 feti 

    

try22-600 600 869.2 1.00E-12 0.409 Low 192 0.361 1.00E-06 feti 

try23-600 600 880.1 4.00E-07 0.49 192 2.54 1.00E-06 feti 

try24-600 600 884.7 1.20E-09 0.523 High 192 0.359 1.00E-06 feti 

    

try25-700 700 705.1 1.00E-12 0.617 High 192 0.431 1.00E-06 feti 

try26-700 700 694.8 1.00E-12 0.605 Low 192 0.431 1.00E-06 feti 

try27-700 700 695.5 1.00E-12 0.606 192 0.443 1.00E-06 feti 

    

try29-800 800 448 3.50E-11 0.501 192 0.476 1.00E-06 feti 

try30-800 800 440.8 1.00E-12 0.632 Low 192 0.431 1.00E-06 feti 

try31-800 800 448.8 1.00E-12 0.645 High 192 0.414 1.00E-06 feti 

Sparse-Data Tolerance Intervals 

Discrete Random Functions  

representing material variability 



Key Assumption 

for Computational UQ Feasibility 

 

Assume material strength is strongly correlated over temperature,  

e.g., 

Red curves = high strength (HS) σ-ε curve set over temperatures 

600C 700C 800C 

Green curves = medium strength (MS) set over temperatures 

Blue curves = low strength (LS) set over temperatures 



Economical Parameterization of TIs 

via High & Low Strength Material Curves 

 

• Tolerance Intervals are constructed  

from multiple stress-strain curves  

• But TIs can be parameterized by 2 s-s curves 

for only 2 Val./UQ sims. w/ full-geom. model 
 

 
 



Pipe Response Simulation Difficulty: 

creep up to a physical instability point 

weeks 

days 

Magnified 

• Pipe wall failure is indicated when the 

quasi-static calculations reach a physical 

instability point 

– when the internal pressure exceeds the 

material’s resisting force no static equilibrium 

is attainable and no inertia terms to stabilize 

the calculation through breakup 

• large sensitivity to mesh and solver settings 

• excessive run times 

• highly distorting elements 

 

runaway 

response 



this 

 

• Test Problem: 

– Ring internally loaded to failure (plain strain) 

– Two types of loading: 

• displacement controlled ─ radial displacement loading 

• load controlled ─ internal pressurization 

  

Calculation Instability marking 

Structural Failure confirmed for analytic 

“nearby problem” by Bill Scherzinger (1524) 

Pressure Loading failure point. 

FEM solution follows same path 

up to max load, where sim. fails 

by non-convergence 

L
o

a
d

 (
M

p
a

) 
 

Displacement (cm) 

Displacement Controlled  

FEM and Analytical solutions 

continue past max load 
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Solver Accuracy and Speed Assessment for 

Accurate Curve “Strength” Rankings 

Test & 
temperature 
cases 

CG 10
-6

 

Failure psi 
(CPU time*) 

FETI-CG 10
-4

 

Failure psi 
(CPU time*) 

FETI-CG 10
-5

 

Failure psi 
(CPU time*) 

FETI-CG 10
-6

 

Failure psi 
(CPU time*) 

     

try26-700C 704.0 (40.30) 702.0 (20.3) 703.8 (5.87) 703.7 (5.24) 

try27-700C 704.9 (40.29) 704.1 (19.1) 704.2 (5.28) 704.2 (6.21) 
     

try3-20C 1485.9 (21.1) 1490.70 (12.1) 1484.5 (7.8) 1484.5 (9.78) 

try6-20C 1486.3 (15.2) 1487.20 (4.6) 1485.0 (2.9) 1485.0 (4.39) 

try5-20C 1486.4 (16.0) 1492.60 (41.3) 1485.2 (20.7) 1485.2 (8.26) 

     

* CPU times reported in Adagio output file via global output variable 

cpu_time. CG and FETI sims. were run on 192 processors of Red Sky  

 

• Results effectively 

unchanged when solver 

tolerance is changed 

from 10-5 to 10-6 (for 4tt 

mesh).  

• CPU time not >> for 10-6 

• Use 10-6 for production 

calcs.  

• Various hourglass treatments also 

investigated 
 

• verified to not have significant effect  

on predicted failure pressures 



Models used for UQ 

Mesh convergence 

 ¼ symmetry 

Solver parameters study 

Isothermal - 1/8 symmetry 

Coupled Self Check mapping 

PB# 1 Nearby problem 

Used ¼ symmetry 

Validation to Experiments – Full symmetry 

1tt 2tt 

4tt 6tt 

32K 276K 

2.2M 7.5M 
316K 317K 

High-Low materials study 

Isothermal - 1/8 symmetry 

200K 
4tt 

4tt 

200K 
4tt 

1tt-83K 

2tt-570K 

4tt-4M 

1tt-170K 

2tt-1.5M 

4tt-11.6M 

No contact contact More contact 

1tt-42K 

2tt-285K 

4tt-2M 

4tt 



Pipe Bomb Calculation Verification 
Mesh Refinement Studies 



Calculation Verification 
Mesh Study Results 

• Coarsest 3 meshes => 1.8 empirical order of 

convergence 

• estimate for numerical solution uncertainty:  

± 21psi = ± 2.5% of Pfail on 4tt mesh 

6tt mesh potential 

finished result 

(failure pressure, 

psi)  

potential empirical 

order of 

convergence 

RE estimates of  

potential grid-converged 

failure pressure results 

(psi) 

837 
0.73 729 

845 1.15 796 

855 1.87 838 

865 3.1 861 



Aim for at least 4 suitably refined meshes 
Example of divergent behavior between coarse-
group and fine-group meshes….Keep Refining! 

 
• In this case we see completely different behavior from 

coarse meshes (1-3) and fine meshes (4-5). 

Displacement/velocity histories (15.25 ft/s). 

Plate Puncture 



BEWARE! — Some formulations aren’t meant to 
converge with continued mesh refinement 

• fire CFD with BVG RANS turbulence model 

(spatial filtering below a certain length scale) 

• fixed spatial filtering length scale not 

consistent with continued grid refinement 

Coarse Fine Medium 

Nonphysical 

split fire mode 



Coupled Thermo-Mechanical modeling 

to Design Experiments & Thermocouple Locations 

to Reconstruct Temperature Field 

Model  

• Pipe radiatively heated by plate 

• Convection neglected 

• Viewfactors change as pipe 

bulges toward plate at hot spot 

 

         Side view, top half of pipe 

Front view, 

¼ symmetry 

 
 

 
 

 

(drawing and TC locations not to scale) 

 
Z



3

4
5 6

8 9 10 11

1 2

7

12 13

14

15 16

 
 

 

 

 

6 

 

1 

7 

15 

18 18 18 

17 17 17 

Experiment Design 

Quantities 

• Size & location of plate 

relative to pipe 

• # of thermocouples and 

locations to adequately 

reproduce temperature 

field on pipe surface 

• in conjunction with 

design of interpolation 

method 

Temperature Contours 

Thermocouples 

(23 total, front  

& back) 

8 Linear to Cubic  

interpolation 

patches (C0 

continuous) 



TC Temperature Field 
Mapping/Interpolation Error 

Exact Temperature Field 

Front view, 3390sec. 

Interp. Temperature Field  
Front view, 3386 sec. 

Exact Temperature Field, 
Back view, 3390sec. 

Interp. Temp. Field  
Back view,3386sec. 

front view back view  Difference (error) Plots 

• temperature interpolation 

error is characterized and 

corrected for validation 

predictions 

• a ~4% (35 PSI) error in 

predicted failure pressure if 

not corrected for interp. error 

TCs 

 

Front view Back view 
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Bias Correction of TC Temperatures for 

Contact Resistance and Fin Effects  

+1% 

+0.5% 

+0.5% 

0% 

-4.2% 

P 
T 

P 

Temperature Field 

Back view 

Temperature Field 

Front view 

-1.7% 

-2% 
-3.2% 

-0.9% 

-0.6% 

-1.7% 

-0.9% 

-0.6% 

0% 
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Simulation UQ Rollup 

38 



Tolerance Intervals/Normal PDFs on previous slide  

by Scaling of Failure Pressure Variability 

via Max, Min material strength curves 
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Processing of Experimental Failure Pressures 

40 



Normalized Failure Pressures 

accounting for Experimental Uncertainties 
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Spreadsheet propagation of Experimental Uncertainties  
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Systematic uncertainties correlated  

with uncers. in same columns of the 

spreadsheets of the other 3 experiments  

42 

• Normalize experimental results to the same reference input conditions 

for “Apples-to-Apples” comparisons 

random and 

systematic 

uncertainties 

of experimental 

inputs & 

outputs 



UQ Rollup for Experiments 

Uncertainty of 0.025 & 0.975 percentiles of Failure Pressure 
• these %iles combine uncertainties in both mean & variance of response  

43 



Comparison of Processed 

Experimental and Simulation Percentiles 

Normal 
(µ=805, σ=66) 

Normal 
(µ=768, σ=706) 

Net simulation 

uncertainty  

Net experimental 

uncertainty  

44 



Lower Percentile of Predicted Failure Pressure is 

NonConservative for Intended Model Use 

45 



this 

• “Real Space” Validation metrics were presented that: 
– separate aleatory and epistemic uncertainties 

– are relatively straightforward to interpret  

– are especially relevant for assessing models/quantities to be used in 

the analysis of performance and safety margins (QMU) 

 

• The Real Space validation methodology presented is 

versatile and practical, geared for: 
– Very expensive computational models (minimal # of simulations) 

– Quantification and economical management of model discretization 

effects 

– Rollup of various types, sources, and representations of uncertainty 

– Sparse experimental data 

– Multiple replicate experiments 

– Stochastic phenomena and models  

 
 
 

 

Remarks 
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QASPR - radiation-damaged 

devices and circuits 

 model calibration & validation 

 

 

 

 

 Temperature response of weapon 

components   

 stronglinks 

 weaklinks 

 

neutrons 

x-rays 

-rays 

Device effects 

(transistor, diode, 

etc.) and  

circuit effects 

radiation 

damage 

Real Space Framework has evolved from 

working many diverse and challenging 

applications 
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Validation/Conditioning of Foam Thermal 

Transport Model at Elevated Temperatures  

(thermal conductivity with radiation enhancement term) 

Experiments 

FE Thermal Model: 

• Conduction, 

• Convection 

• Radiation  

insulation board 

decomposed foam 

char matrix 

24 thermocouples 

on and inside canister 

quartz heating lamps 

pointed 

low-thermal-contact 

holding posts 

Simulations 

Applied 

heating 

foam 

mock 

component 

Bayesian calibration 

48 



 Validation of Propellant Fire Models 

 
 

 

 

 

 PCAP project 

 heat  foam decomp.  internal pressurization  container- 

deformation  eventual failure at lid welds 

 

 

Applications worked… 

stress  
at welds 
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Calorimeter 

Response  

at location 10  

Validation of Fire CFD sims. 

• Validate fire CFD simulations of radiative and convective heating 

of a weapon-like calorimeter in wind-driven fire.  

Air 

Inlet 

Enclosure 

Fuel 

Exhaust 

 

 

Cross-Wind Test Facility (XTF)  
CFD mesh 

interior of 

cone calorimeter 

movie 

Sandia Thermal Test Complex 

wind 

fans 

Exp.7 

Exp.6 

Prediction 

range 

w/uncer. 

1252 K 

1565 K 

te
m

p
e

ra
tu

re
 

50 



this 

• Model validation is somewhat complex  -- philosophically, 

conceptually, and procedurally 

 

• Many different conceptions, approaches, and frameworks exist 

and the area is still rapidly evolving 

 
 

• The Real Space validation approach has been developed and 

implemented on a number of diverse and challenging Sandia 

applications, subject to pragmatic cost and resource constraints 

in industrial-scale applications 

 

• …but is itself still evolving and is just one option among several 

validation approaches that 1544 is evaluating under various 

problem characteristics and project needs & constraints 

 

Closing Remarks 
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Backup Slides 
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this 

Real Space vs. Transform Space  

Representations of Model Discrepancy 

 

Real Space representation 
• reveals different prediction 

  risks in the two cases above 

ASME V&V20 Sub- 

tractive Diff. Metric 
• same result both  

  cases; no indication 

  of differing risk 

Roy/Oberk. Area Metric 

• same area value both  
  cases; risk-indifferent 

integrated discrepancy 
area = A0 in both cases   

exper. 

response 

value 

sim. experim. 

{Diff.} = {Sim.} – {Exper.}  

exper. sim. 
sim. 

 

• The transform-space validation 

metrics below have non-unique 

mappings from real space to 

transform space 
 

• This can hide prediction risk and 

undermine metric use for 

extrapolation 

 

Consider two  

cases where relative 

uncertainties in 

experiment and 

simulation results 

are very different 

case 1 case 2 

case 1 case 2 53 



mock 

component 

foam 
this 

Concept of “Traveling” and “Non-Traveling” 

portions of the Experiment Model 

(E Model) 


 connectivity to Downstream predictions 

       (extrapolation, incl. hierarchical modeling) 

• E.g., E model (at right) is the 
model that participates in the 
val. or calibration activity 
 

• Foam behavioral model 
(vaporization & altered heat 
transfer) is object of val. or cal.: 

– is the only traveling portion 
of E model 
 

• Everything else in E model does 
not travel to downstream use: 

– canister, vents, and slug 

– BC models of heating loads 
and radiative and convective 
cooling 

Uncertainties are treated in the 

Framework according to whether 

they are affiliated with traveling or 

non-traveling aspects of E model  

Applied 

heating 
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exper. sim. exper. sim. exper. 

sim. 

• “Real Space” – involves no subtractive difference of simulation and experiment 

results, or other transform discrepancy measures 

• Simple intuitive criterion for a provisional indication of model adequacy 

 

Real Space Accuracy/Discrepancy measure 

and “Zero-order” Model Adequacy Criterion 

 This case meets “Zero-order” conditions 

for model adequacy  

• model prediction bounds experimental 

uncertainty bar (as the best available 

evidence of where “reality” lies) 

• If the data/model relationship remains 

consistent in extrapolation (the hope in 

all modeling), the predictions will bound 

reality in the extrapolation conditions 

Reality lying w/in the predictions is what a 

designer or decision maker wants* 

*assuming non-excessive (acceptable) sim. uncer. 

range as assessed by propagation to system level 

Greater prediction risk in above cases 

– much of reality lies outside the model 

predictions 

– If data/model relationship remains 

consistent in extrapolation then 

much of reality will lie outside predictions  
 

 Adequacy in any of the 3 cases shown above can 

be assessed more definitively if can propagate 

errors to system level & assess whether errors 

are acceptably small (jointly, for all lower-level 

validation results considered together) 

– Requires system-level model & parametric map 

to “traveling model” at validation setting 
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• In hierarchical validation projects 
difficulties exist with Top-Down 
parsing of acceptable error 
tolerances to the various 
submodeling activities (difficult 
inverse problem + non-uniqueness) 
 

• In “isolated” phenominological 
model development & validation 
work, e.g.  turbulence or 
constitutive model development at 
a university, there is no project-
level accuracy requirement in the 
first place (to parse downward) 
 

• Potential constraint violation of pre- 
specified accuracy requirements: 
 

 Experimental uncer. sets limit on the 
validation accuracy (and any assoc. 
rqmts.) that can be achieved by a model 

 

– this limit not known until after the 
experiments performed and processed 

 bottom line: not a viable approach 

Thorny Issue of Pre-Specified Accuracy 

Requirements for Model Adequacy 
(paradigm of ASME V&V-10 Computational Solid Mech., & many others) 

System-Level risk analysis — 

Weapon in a Fire 

Multiple underlying submodels: 

Fire model for heat load BCs 

   + 
Heat Transfer models (mult. modes) 

   +  

Mtl. behavior & transformation models 
  + 

Component response & failure models 

            +…+…+… 56 



this 

Real Space 
(reveals differing 

sim. & exper. trends) 

ASME V&V20 Sub- 

tractive Diff. Metric 
(no extrap. support 

claimed) 

Roy/Oberk. Area Metric 

{Diff} = {Sim} – {Exper}  

Input, xi  

response 

value 

Input, xi  

Input, xi  
Input, xi  

Input, xi  

Input, xi  

(said to support extrap. 
-- but area metric hides 
model trend errors) 

circumstance 1 

circumstance 2 

response 

value 

integrated discrepancy 
area = A0 in both cases   

integrated discrepancy 
area = A* in both cases   

sim. experim. 

{Diff} = {Sim} – {Exper}  

Real Space vs. Transform Space  

—Support for Extrapolation 
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this 

Subtraction Metric prevents proper handling 

of some types of Random Variability 

in a population of repeat experiments 

 

 

Real Space approach 
 works; no model 

    error indicated 

 

ASME V&V20 Sub- 

tractive Diff. Metric 
• exaggerates  

  uncertainty re. model bias 

Roy/Oberk. Area Metric 

 works; no model  
    error indicated 

response 

value 

sim. 

experim. 

{Diff} = {Sim} – {Exper}  

exper. sim. 

 

• Conditions: no measurement errors in 

the experiments; and “large” # of tests 

• Observed response variability is due to 

unit-to-unit stochastic variability of the 

tested systems 

• and/or due to variability of experimental 

input conditions 

• variability sources independently 

characterized for simulations, and play 

out consistently in experims. 

E.g., let simulated 

stochastic variability 

of system exactly 

equal variability of 

real system tested 

many times 

PDF should have zero width for exact 
experim. / sim. variability match above 
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this 

• The Real Space validation approach is the featured approach in: 
 

Joint Army/Navy/NASA/Air Force (JANNAF) 

Guide to V&V, UQ, and Simulation Credibility in Continuum 

Physics Applications 
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