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The major part of this presentation reports the results of the Nonlinear Mechanics and Dynamics Summer 
Research Institute (NOMAD) at Sandia National Laboratories in Albuquerque, New Mexico, 2015



Motivation

 Joints: today

 Source of nonlinearity

 Source of uncertainty

 No predictive models available so far

 Joints: future

 Major source of damping in many applications

 Intentional use of joints to 

• Increase efficiency and life fatigue

• Decrease wear

• Reduce mass

 The study

 Assume a predictive joint model

 Assess a minimal model including the joint

 Optimize the dynamic response using joint parameters

design liability

design parameter
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The model

harmonic forcing

structure stiffness k

different joint locations



The joint

 Single slider,  LuGre formulation

 Continuous representation

 Exponential transition from stick to slip ( micro-slip element)

 𝜇k = 1

 Solver

 Numerical continuation techniques (time-domain)

 Continuation of the periodic solution (nonlinear FRF)

 Limiting cases:

 𝝁𝑵 → 𝟎: 𝑊diss → 0, 𝐹fric → 0 joint inactive, linear system

 𝝁𝑵 → ∞: 𝑊diss → 0, 𝑢rel → 0 adding the spring 𝑘t in parallel, linear system

 𝒌𝐭 → 𝟎: 𝑊diss → 0 joint inactive

 𝒌𝐭 → ∞: pure sliding, no elastic response

 Goal: find the 𝑵− 𝒌𝐭 combination that most effectively decreases the vibration level 

𝑢rel



Dimensionless parameters

 Goal: study of qualitative dynamic behaviour

Introduction of dimensionless parameters

 𝛼 =
𝑘t

𝑘
(stiffness ratio)

 𝛽 =
𝜇k𝑁

𝐴
(force ratio) 

 Receptance 𝑅𝑖 =
𝑥𝑖

𝐴
, 𝑖 = 1,… , 4

 Optimization

 Reduce vibration level of structure

 Procedure: minimize a scalar cost value

 Merging of receptances

 𝑅 = max
𝑖
(𝑅𝑖)



Parameter study on α, joint location a

 frequency shift of modes

 decrease of peak amplitudes as the system gets stiffer

 only 2nd and 4th mode affected

normalization



Parameter study on β, joint location a

 linear limits representing 𝛽 → 0 and 𝛽 → ∞

 lowest peak amplitude in between the linear limits

  what is the best combination of α and β
to reduce the 2nd peak amplitude?

𝛽 → ∞

𝛽 → 0
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The optimization problem

 Cost function:

 Merged receptance  𝑅 within frequency interval 𝑓l, 𝑓u
at peak of 2nd mode

𝜓 =  𝑅peak 2 ∈ [𝑓l, 𝑓u]

 Optimization problem:

 Compute peak amplitude for parameter vector [𝛼, 𝛽]T

 Minimize peak amplitude by tuning of parameter vector

 𝐩 = min
𝐩
(𝜓(𝐩)) ∈ 𝐩min, 𝐩max , 𝐩 = [𝛼, 𝛽]T

 Optimization algorithm:

 MATLAB built-in fmincon

 Sequential quadratic programming algorithm (sqp)

 Computation of nonlinear receptances for every proposed parameter set



Optimization: results

 strong shift of modes  constraint on mode shift(max. 2%)

 two generic optimization strategies

 Increase of joint stiffness

 Decrease of normal load

 decrease of 2nd peak amplitude by 63.8%



Work consideration

 2 phases of optimization:

 Minimize the energy fed into the system

 Maximize the dissipation in the joint



Optimization: ‘ground configuration’

 Strong sensitivity to joint stiffness

 Reduction of peak amplitude by 77.3% w.r.t. stick response



Work consideration

 Every mode affected

 Increase of system response for every 
mode

 Major optimization strategy:

 Minimization of the energy fed into 
the system

 Minimal impact of dissipation in joint 
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Conclusion

 Results

 Optimization of a given structure by tuning joint parameters

 Significant improvement of dynamic response possible 

 Potential of joint design

 Deep understanding of the optimization mechanisms and physics behind

• Stiffness introduced should not be neglected

 Challenges

 Assess more than one joint in the structure  multiple minima

 Apply procedure to more complex structures

 Generate implications for new joints in terms of geometry and loading

 Need for predictive models
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