

Synthetic screening of electrolytes for Li-Air batteries

R.E. Jones, F.S. Gittleson, D.K. Ward, M.E. Foster, M.R. Anstey
Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
rjones@sandia.gov

Submitted to: 8th International Conference on Multiscale Materials Modeling,
Symposium B, Materials Design: where condensed-matter physics and big-data informatics meet
9-14 October 2016, Dijon, France

Abstract

There is increasing interest in designing and manufacturing high-performance batteries for a wide variety of applications; however, finding the best electro-chemical system and configuration is a challenging task given all the possibilities. In particular, choosing an electrolyte optimal for a given battery configuration and chemistry is a daunting and crucial task in and of itself. We propose a computational approach to electrolyte screening and selection for a Li-air battery. Li-air batteries are particularly attractive for mobile and transportation applications given their high theoretical volumetric and gravimetric energy densities, which in part is due to using environmental oxygen. Through a combination of techniques, starting with *ab initio* calculations to provide fundamental parameters, to molecular dynamics which, in turn, provides transport coefficients to a full-scale model battery, we can predict battery performance. Predictions using these techniques spanning many spatio-temporal scales are compared with a limited set of cyclic voltammetry experiments for validation before applying the process to a wide range of solvent, salt and other permutations to select the best candidates for intensive development. The concept of computational screening for battery development is not novel, *e.g.* the work the Ceder group, but here we focus on identifying ideal electrolytes for Li-air batteries where the diffusion of dissolved Li ions and molecular oxygen have been identified as power performance metrics.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.