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Abstract

The range of values of scalar fields in turbulent flows is bounded by their boundary values,
for passive scalars, and by a combination of boundary values, reaction rates, phase changes,
etc., for active scalars. The current investigation focuses on the local conservation of passive
scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe
the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts,
this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The
present study characterizes passive-scalar excursions in LES of a shear flow and examines meth-
ods for diagnosis and mitigation of the problem. The analysis of scalar-excursion statistics
provides support of the main hypothesis of the current study that unphysical scalar excursions
in LES result from dispersive errors of the convection-term discretization where the subgrid-scale
model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In
the LES runs three parameters are varied: the discretization of the convection terms, the SGS
model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of
non-dissipative schemes is increased, but the improvement rate decreases with increasing order
of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient
Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are signifi-
cantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with
the stretched-vortex model. The maximum excursion and volume fraction of excursions outside
boundary values show opposite trends with respect to resolution. The maximum unphysical ex-
cursions increase as resolution increases, whereas the volume fraction decreases. The reason for
the increase in the maximum excursion is statistical and traceable to the number of grid points
(sample size), which increases with resolution. In contrast, the volume fraction of unphysical
excursions decreases with resolution because the SGS models explored perform better at higher
grid resolution.

1 Introduction

The range of values of scalar fields in turbulent flows is typically bounded by their boundary values,
for passive scalars, and the combination of boundary values, reaction rates, phase changes, etc., for
active scalars. The transport and conservation of mass-fraction fields Y, (x,t) are governed by the
general species-transport equation for each of the « = 1,...,n species (e.g., Dimotakis, 2005),
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where u;(x,t) is the local (mass-averaged) flow velocity field, v,; is the a-species diffusion velocity
in the local u-frame, and w, is the local a-species net production rate (chemical, nuclear, biolog-
ical, phase-change, etc.). If species-concentration gradients contribute the dominant diffusive-flux
component, we may write, to lowest order,
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where D, is the local multicomponent a-species diffusivity. If we also assume, for the purposes
of illustration, that fluid density can be treated as uniform and that there are no local species
production/consumption rates, the species-transport equations simplify to the familiar (Fickian)
species-conservation equations, i.e.,
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In a situation where we may approximate scalar transport in terms of a mixture-fraction field,
Z(x,t), such as in shear-layer mixing of simple fluids in uniform-density flow, in which Z represents
the fraction of, say, high-speed fluid, and only binary diffusion is active with a uniform diffusion
coefficient, D, (3) simplifies further to,
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Equation (5) has a convective (Lagrangian) operator on the left-hand side. Absent diffusion, i.e.,
if D = 0, the left-hand side simply transports to the flow interior mixture-fraction (scalar) values
provided by the boundary/inflow conditions. In the shear-layer example, the resulting scalar field
would intersperse values of Z = 1, corresponding to fluid originating in the high-speed stream, and
Z = 0, corresponding to fluid originating from the low-speed stream, and no intermediate values
would be encountered.

For D > 0, the right-hand side in (5) is a local averaging operator and can only produce values
at (x,t) that are intermediate to bounding values in its periphery. As a consequence, in the presence
of diffusion, however small, the mixture-fraction scalar field is bounded throughout the domain and,
in our shear-layer example, limited to a span of values,

0< Z(x,t) < 1. (6)

There are many consequences of this boundedness constraint (e.g., Dimotakis and Miller, 1990)
whose discussion is beyond the scope of the present paper. The scalar boundedness property (6) is
independent of the velocity field and holds for any velocity field u; in (4). Moreover, the bounded-
ness property holds in any ng4-dimensional space, where ng is the number of spatial dimensions.

More complicated situations can arise in which local-acceleration effects on mixtures of fluids
with different molar masses can induce segregation (unmixing) that can give rise to legitimate ex-
cursions outside the bounds of (6). Multi-species and differential-diffusion effects can also introduce
additional complications (Dimotakis, 2005). Such effects are ignored in the present study for the
purposes of illustrating the fundamental issues that arise even in the simplest cases.



Returning to simple flows, numerical simulation should respect the fundamental conservation
laws, i.e., mass and momentum conservation for incompressible flows, and physical attributes of the
flow fields, such as the scalar boundedness property. When the continuous versions of the equations
of motion are discretized on a numerical grid, careful considerations must be made for the discrete
system to preserve the conservation and other properties of the continuous operators (see §2.2).

The deviation of the discrete solution from the exact solution of the continuous system can be
described by the general term of “model error.” Model error can be divided in two broad categories:
(7) discretization errors that can include truncation, dispersion, aliasing, and artificial numerical-
dissipation errors, and (iz) physical-model errors, such as those arising from inaccurate modeling of
the fluid dynamics, the transport of various quantities, and turbulence by a subgrid-scale closure.

The importance and contribution of these two model error types varies in different approaches.
For instance, in direct numerical simulation (DNS), the discretization error dominates, whereas
in Reynolds-averaged Navier-Stokes (RANS) formulations model-error is mostly attributable to
turbulence parameterization schemes. In large-eddy simulation (LES), because a wide range of
motions is resolved and a strong interaction between resolved and SGS dynamics takes place, there
is a significant interplay between the two error types. Previous studies (Ghosal, 1996; Vreman
et al., 1996; Kravchenko and Moin, 1997; Fedioun et al., 2001; Chow and Moin, 2003; Geurts, 2009)
investigated model error in LES pertaining to predictions of the velocity field.

The present study addresses model error in LES of scalar transport and mixing. Specifically,
we focus on the local conservation of scalar concentration fields and the ability of LES to observe
the boundedness of the scalar concentration, as diagnosed by unphysical excursions outside the
limits on the (local and global) boundary surfaces. In practice, this fundamental constraint is often
violated with scalar excursions exhibiting under- and over-shoots in their values, i.e., Z < 0 and
Z > 1, respectively, that are unphysical, even though for a well-designed method, overall scalars,
such as mole or mass fractions, may be globally conserved. This common numerical artifact may
not be diagnosed and is not often reported, and only few characterizations are available (Cook
et al., 2004; Matheou et al., 2010; Mattner, 2011).

The goal of the current investigation is to characterize passive-scalar excursions in LES and ex-
amine methods for diagnosis and mitigation of the problem. The scalar conservation and bounded-
ness in LES is discussed in § 2.1 and a working hypothesis is presented in §2.2. To help characterize
scalar excursions a specific shear flow is considered and the investigation includes the three main
parameters in LES: the subgrid-scale (SGS) model, convection discretization, and grid resolution.
Two SGS models are used: the constant-coefficient Smagorinsky (1963) and the stretched-vortex
model (Misra and Pullin, 1997; Pullin, 2000; Voelkl et al., 2000). Several convection schemes
with diverse properties are used, including a spectral method, (non-dissipative) fully conservative
schemes of various orders, a linear (dissipative) upwinding scheme, and a (dissipative) flux-limited
monotone discretization. Two types of diagnostics for scalar excursions are defined in § 3. Scalar
excursion statistics are presented in §4, followed by discussion and conclusions.

2 Large-eddy simulation

2.1 Governing equations

In most turbulent flows encountered in nature and in engineering applications, the mixture fraction
in (4) exhibits a large range of spatial and temporal fluctuations. The same holds for the compo-



nents of the velocity field, thus a direct integration of the governing equations is impractical for
current computing capabilities. Large-eddy simulation is a modeling methodology that tackles this
problem by limiting the range of spatial (and temporal) scales that are explicitly computed. This
is formally achieved by applying a spatial filter. ¢(x,t) denotes the filtered variable. Presently,
the computational domain is triply periodic (without any solid boundaries) and the grid spacing is
uniform and isotropic, thus anisotropic filter effects or commutation errors are excluded.

The LES equations for mass, momentum and a passive scalar for an incompressible (constant
density) fluid are:
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We have replaced the scalar diffusivity D with the ratio of momentum diffusivity v and the Schmidt
number Sc = v/D. Because of the non-linearity of the equations of motion, the filtering operation
results in two additional terms, the SGS tensor 7;; = Wu; — ;Ui ~ u;u; in the momentum equation
and the SGS flux 0; = v, Z — ;2 ~ W in the scalar-transport equation. These terms represent
the effects of the unresolved, i.e., subgrid scale, dynamics on the evolution of the resolved (i;, Z)
variables. The functional forms and properties of the SGS terms are discussed in §2.4.

There are a few important observations regarding the LES system (7). In the present discussion,
the filtering procedure is purely formal, i.e., it is used to derive the governing equations, and in
the actual LES run, the turbulence model, 7;; and o3, in (7) ensures that all flow scales remain
sufficiently resolved on the computational grid. Accordingly, the role of the SGS terms is purely
dissipative in the mean. Although some SGS models allow for backscatter, in the present study
we only consider forward scatter (dissipation) for simplicity. The presence of backscatter does
not change the arguments and conclusions of the present study. The boundedness of the scalar
transport equation must also be preserved in the filtered scalar evolution equation, i.e.,

0<Z<1. (8)

Finally, we note that the LES flow field always exhibits significant fluctuations near the grid
scale. In other words, it is “rough,” in contrast with a smooth flow field that is the result of a DNS.
This is because LES fields are always unresolved in the DNS sense and made “artificially” smooth
by the (implicit) LES filter.

2.2 Convection scheme characteristics, dispersive oscillations, and the Gibbs
phenomenon

In LES, the interaction between resolved and subgrid-scale dynamics is significant and it is ex-
pected that both resolved transport and the SGS model will impact scalar-excursion characteris-
tics. Several studies indicate the importance of the convection term discretization on turbulence
characteristics in LES (e.g., Horiuti, 1987; Mittal and Moin, 1997; Morinishi et al., 1998; Hill and
Pullin, 2004). Presently, we consider another quality metric: passive-scalar boundedness.



Several numerical (discrete) approximations of the continuous momentum and scalar convection
terms, with diverse properties, are used in the current investigation. The schemes differ in their
(artificial) numerical dissipation and can be split into dissipative and non-dissipative, and in their
resolving power. The resolving power is the range of wavenumbers that is accurately resolved by a
given derivative approximation. Five finite-difference schemes and a spectral method are examined
and compared.

The non-dissipative schemes are the family of fully conservative approximations of Morinishi
et al. (1998). The second-, fourth- and sixth-order schemes are currently used. Their dispersion
relations and modified phase speeds are plotted in fig. 1 where the increase in resolving power can
be seen as the order of approximation increases. A measure of the resolving power is the number of
grid points per wavelength (PPW) required for an error of < 1% in phase speed (e.g., Lomax et al.,
2003). The second-order scheme requires 26 PPW, the fourth-order 8 PPW, and the sixth-order
5.5 PPW. The increase in the accurately approximated bandwidth becomes progressively smaller
as the order of accuracy increases.

All finite-difference discretizations used in the current study are conservative, i.e., the global
amount of momentum and scalar can only change because of the boundary conditions. In addition
to conservation of the global mean, the Morinishi et al. (1998) schemes conserve kinetic energy
and scalar variance, which was shown to be beneficial for turbulent flow simulations. More details
and verification of the conservation properties are documented in Appendix A. While the spec-
tral method is not formally conservative, the lack of conservation is compensated by its spectral
accuracy.

The main characteristic of the finite-difference schemes of interest in this study is that discrete
solutions are dispersive, even for non-dispersive partial differential equations, such as the one-
dimensional convection of substance ¢ with unit velocity, that is instructive to consider, i.e.,
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For instance, fig. 2 shows the numerical solution of (9) with a rectangular pulse initial condition.
The initial condition is regularized by applying an 11-point discrete Gaussian filter, resulting in a
maximum product of curvature times Ax of 0.57. Accordingly, the initial condition and solution
are continuous. The domain is periodic in [0,1]. Three convection schemes are used, the second-
and fourth-order schemes of Morinishi et al. (1998) and an additional scheme with a modified
dispersion relation. For the modified scheme, the interpolation weights of Morinish et al. (1998, eq.
101), are replaced by 1 = 1.4 and By = 1 — 1, instead of 5, = 9/8. This results in a convection
scheme that is second-order accurate with a seven-point stencil and a modified phase speed that is
larger than the exact one for small wavenumbers (see fig. 1). This modified second-order scheme
qualitatively resembles the tuned centered difference schemes for compressible flow of Hill and
Pullin (2004). However, the present modified scheme is used only to illustrate aspects of dispersion
errors discussed below and should not be used in a LES.

Because the numerical solution is not well-resolved, all schemes exhibit dispersive oscillations
near the gradients of ¢. Dispersive oscillations develop on opposite sides of the gradients for the
standard and modified schemes because of the change in the sign of the phase error. The same
behavior is observed for the non-linear LES equations, as discussed in § 5.

The spurious oscillatory behavior of the numerical solution of (9) in fig. 2 is sometimes mis-
interpreted as a Gibbs oscillation (e.g., Sengupta et al., 2004). The Gibbs phenomenon concerns
local-value function construction based on its Fourier expansion. In contrast, in finite-difference
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Figure 1: Modified wavenumber, £*, and numerical (modified) phase speed, o*, for the fully con-

servative second-, fourth- and sixth-order finite-difference schemes.

An additional second-order

scheme with a modified dispersion relation (labeled “mod 2nd”) is also used to illustrate the effects

different phase speed errors.
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Figure 2: Numerical solutions to the one-dimensional linear convection equation with three con-
vection schemes: second- and fourth-order fully conservative (left panel) and the modified second
order. Dispersive oscillations develop near the solution gradients but the location of the oscillations
(upwind or downwind of the gradient) depends on the numerical phase speed. Lines are as in fig. 1.
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Figure 3: Numerical solution (blue line) to the one-dimensional linear convection equation using
a spectral approximation for the spatial derivative. Black line is the exact solution. Even though
the spectral approximation is non-dispersive, small Gibbs under- and over-shoots are discernible
because of the truncated approximation. Note the different character of the Gibbs oscillation with
respect to dispersive oscillations in finite-difference approximations shown in fig. 2.

dispersive oscillations the expansion basis is different, i.e., polynomials instead of trigonometric
functions, resulting in a different oscillatory behavior. This is illustrated in fig. 3, where (9) is
numerically integrated by computing the spatial derivative spectrally. Because of insufficient res-
olution, i.e., a truncated Fourier representation, small over-and under-shoots develop. Unlike the
dispersive oscillation in fig. 2, the Gibbs oscillation is symmetric.

Similar to the under- and over-shoots of the numerical solution of (9) in fig. 2, dispersion errors
can cause erroneous scalar excursions in LES. In spite of the expectation (8) that the LES scalar
field is bounded by its boundary values, in practice, this constraint is violated (e.g., Cook et al.,
2004; Glaze, 2006; Matheou et al., 2010; Mattner, 2011; Subbareddy et al., 2014; Kartha et al.,
2015). The relation between dispersive errors and boundedness for scalar conservation laws is
addressed in numerous studies (e.g., Zhang and Shu, 2010; Verma et al., 2014), especially in the
areas of gas dynamics (weak solutions of the compressible Euler equations), (e.g., Smolarkiewicz
and Szmelter, 2009) and Reynolds Averaged Navier—Stokes (RANS) models (e.g., Williamson and
Rasch, 1989; Shchepetkin and McWilliams, 1998; Smolarkiewicz and Szmelter, 2005; Nadukandi
et al., 2010).

In contrast, references to the relation of dispersive errors and scalar boundedness in LES are
rare (Glaze, 2006; Matheou et al., 2011). In addition, in LES, the SGS model provides a strong
dissipation mechanism, which should ensure that flow fields remain adequately smooth. Typically
LES numerical integrations do not require any additional or artificial dissipation mechanism for
stabilization when a physical SGS model is used.

The preceding arguments lead to the hypothesis for the cause of scalar excursions in large-eddy
simulations: Unphysical scalar excursions result from dispersive oscillations of the convection-term



discretization at times and locations where the subgrid-scale model provides insufficient dissipation
to produce a sufficiently smooth scalar field. According to this hypothesis, unphysical excursion
locations need not correspond to locations of the highest scalar gradients, in contrast to numerical
solutions of systems that can support discontinuities such as the Euler or Burgers’ equations. In §4
we provide evidence in support of this hypothesis. In addition to the question of what causes the
excursions, we also investigate the extent of the problem, define metrics for excursion diagnosis,
and discuss implications for SGS modeling.

The problem of unphysical excursions is often managed by introducing numerical dissipation.
Thus, in the present LES runs, two dissipative finite-difference schemes are also assessed, the
Quadratic Upstream Interpolation for Convective Kinematics (QUICK, Leonard, 1979) and a flux-
limited monotone scheme with the monotonized central (MC) limiter (Van Leer, 1977). QUICK
is a linear upwinding scheme that is dissipative but does not guarantee monotonicity of convected
fields, while the MC-limited scheme is dissipative and monotonicity preserving.

For all finite-difference simulations, momentum convection is always non-dissipative. Dissipative
schemes are only used for scalar convection. For instance, for runs that are labeled “fourth-order”,
the momentum and scalar convection is fourth-order fully conservative; for runs that are labeled
“monotone” the momentum convection is fourth-order fully conservative and the scalar convection
is approximated with the flux-limited monotone scheme.

The main emphasis of the LES results and discussion is on the finite-difference approximations
because they are most commonly used in applications. For reference, a spectral (Rogallo, 1981)
method is also used because it represents the highest-order numerical approximation for a given
grid. Table 1 summarizes the convection schemes examined and compared.

In addition to the Eulerian finite-differences schemes presently employed, depending on the
application, several alternative types of convection schemes have been proposed to maintain scalar
boundedness, including, semi-Lagrangian formulations (e.g., Purnell, 1976; Staniforth and Coté,
1991), particle methods (e.g., Monaghan, 1988; Yoon et al., 1999), and weighted essentially non-
oscillatory (WENO) schemes (Liu et al., 1994; Jiang and Shu, 1996). Further discussion of the
various numerical techniques and references can be found, for instance, in Toro (1999) and LeVeque

Table 1: Summary of convection schemes. The columns correspond to the legend of the scalar con-
vection scheme used in fig. 10, the scalar and momentum convection schemes, and the corresponding
convection-scheme references.

Symbol Scalar ‘ Momentum Comments and reference
2 2nd order, fully conservative
4 4th order, fully conservative Non-dissipative; Morinishi et al. (1998)
6 6th order, fully conservative
Q QUICK Ath order Linear unwinding, somewhat dissipative;

Leonard (1979)
Highest order of approximation;
Chung and Matheou (2012)

Monotonicity preserving, most dissipative;
Van Leer (1977)

S Spectral

M MC flux-limited | 4th order




(2002).

2.3 Flow-field resolution

We briefly comment on the definition of grid resolution used in this work. Grid resolution is
currently measured by the number of physical space grid points IV or, equivalently, the grid spacing,
Az = L/N, where L is the computational domain length. For instance, simulations labeled N = 256
correspond to a 2563 grid. Although this is a straightforward and commonly used measure, it is
not necessarily the most relevant in comparisons involving different numerical schemes. This is
because resolving power varies between different numerical approximations (e.g., see fig. 1). Thus,
one could choose to vary grid resolution to keep the effective flow resolution constant. Another
parameter is computational cost, which is a key consideration in practical applications. There are
significant differences in the computational cost between the various numerical schemes. Therefore,
another option is to keep the computational cost constant and vary grid-resolution accordingly.

2.4 Subgrid-scale models

The SGS model plays an important role in controlling the quality of the LES prediction. Unphysical
scalar excursions are expected to exhibit a strong dependence on the SGS model and its param-
eters. Two SGS models are considered here, the constant-coefficient Smagorinsky (1963) and the
stretched-vortex model (Misra and Pullin, 1997; Pullin, 2000; Voelkl et al., 2000). The two SGS
models differ in their formulation and complexity.

2.4.1 Smagorinsky

The Smagorinsky model relies on an eddy-diffusivity closure. The SGS stress tensor and scalar flux
are given by

i = —21.Sij, (10a)
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where S;; = (9u;/0z; + 0u;/0x;)/2, is the resolved-scale rate-of-strain tensor, Sc; = 0.33 is the
model turbulent Schmidt number, and

Vg = A2(25ij§ij)l/2 (11)

is the model turbulent viscosity, A = CiAx is the characteristic SGS eddy length scale, which
is related to the uniform grid spacing Axz by the Smagorinsky constant Cs. Two values of Cj
are used in the present runs: Cs = 0.18 and 0.23. The former value is exact for homogeneous
isotropic turbulence (e.g., Lesieur and Metais, 1996), while the latter is commonly used in LES of
atmospheric flows (e.g., Beare et al., 2006; Matheou et al., 2011).



2.4.2 Stretched-vortex model

The stretched-vortex model relies on turbulence flow physics concepts, considering the turbulent
region as an ensemble of vortex filaments with their own dynamical statistics. The forms of the
SGS stress and scalar flux are

Tij = (0ij — ei€f) K, (12a)

J
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where K is the SGS turbulent kinetic energy (TKE), A is the filter-cutoff width, also identified as
the SGS eddy length scale, 97/ Oz is the resolved scalar gradient, and e} is the unit vector aligned
with the SGS vortex. The basic form of the model, Eq. (12), originates from the expression for the
SGS stress tensor in a homogeneous anisotropic turbulent flow consisting of a collection of straight
axisymmetric vortex structures (Pullin and Saffman, 1994; Pullin, 2000).

Typically, a single orientation for SGS vortical structures is used for each grid cell. The most
often used orientation alignment is with the most extensional eigenvector, es, of the resolved strain-
rate tensor, S’Z-j (Voelkl et al., 2000; Pantano et al., 2008), which is also employed in this study.

The SGS turbulent kinetic energy, K, is determined by integrating the modeled unresolved
kinetic energy spectrum, E(k), i.e.,

K= /ﬁ JRACLE (13)

associated with such an SGS field of stretched vortices. Even though (13) implies a sharp cutoff
spectral filter, the LES filtering operation is formal and never employed; it merely indicates that
scales smaller than A are to be treated as subgrid and modeled, regardless of whether or not they
are resolvable by the grid. Two values of A are currently used, A = Az (which is typically used)
and A = 2Az, see also discussion in Chung and Matheou (2014) regarding the effects of variable
cutoff scale on flow statistics and convergence.

The vortical structures are Lundgren (1982) spiral vortices with a three-dimensional energy

spectrum given by
E(k; Ay) = Koe?2k™2/3 exp[— k22, (14)

where A, = [20/(3]S,|)] (Pullin, 2000), Ky is the Kolmogorov prefactor, ¢ the local cell-averaged
dissipation rate, v the kinematic viscosity of the fluid, and

S, = —(52']' — 6?63)6@2/8217) (15)

is the strain aligned in the ensemble SGS vortex axis.

The final step in determining the expressions for the subgrid terms is to estimate the product
Koe?/3. This provides closure and determines the value of the subgrid kinetic energy using the
local, resolved-scale, second-order velocity structure function F(r;x) (Metais and Lesieur, 1992;
Voelkl et al., 2000),

(16)
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where

A= 4/ §5/3 (1 - ﬁ) ds ~ 1.90695. (17)
0 S
A local seven-point discrete approximation to a spherical average is used to estimate Fb,
_ 18
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where
(6u); = i(x + Awy) — wi(x), (19)

is the velocity difference of the component u; in the direction z; at x. This allows the SGS terms
to be estimated dynamically using only local instantaneous resolved fields without any temporal or
spatial averages.

All operations needed to evaluate the SGS terms are local in space and time, and the model is
dynamic with no free parameters.

2.5 Kinetic energy and scalar dissipation rates

The Smagorinsky and stretched-vortex are equilibrium models, i.e., assume an approximate
balance between turbulent production and dissipation within the volume of the grid cell and time
step interval. Thus, the SGS kinetic energy and scalar variance dissipation rates can be estimated
by,

g = —Tijsij, (20)
and y
Eyz = —O'j%j, (21)

respectively. In a high Reynolds number flow, the resolved-scale dissipation rates are negligible and
the SGS dissipation rates (20) and (21) are presently identified with the total dissipation.

In general, the stretched-vortex model allows for backscatter. However, for vortex alignment
with the most extensional eigenvector of the resolved rate of strain tensor in a divergence-free flow
the model becomes purely dissipative. Substituting the expression of the stress tensor in (20):

e=—5;K + M\se;e; K, (22)

where A3 > 0 is the eigenvalue corresponding to es. The first term of (22) is zero because of (7a)
and the second is positive definite, thus € > 0. The same holds for the Smagorinsky model since
€= 2l/tSijSij > 0.

2.6 Numerical integration

The finite-difference code integrates (7) on an Arakawa C (staggered) grid (Harlow and Welch,
1965; Arakawa and Lamb, 1977). An exact Poisson solver using discrete Fourier transforms is used
to compute the modified pressure, p/, in (7b), and satisfy incompressibility (Schumann, 1985). The
semi-discrete system of equations is advanced in time using the third-order Runge—Kutta of Spalart
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et al. (1991). For all cases, second-order centered differences are used to approximate the spatial
derivatives of the resolved viscous terms and SGS model. The LES code was successfully used
in several previous studies (Matheou et al., 2011; Inoue et al., 2014; Matheou and Chung, 2014;
Matheou and Bowman, 2016) and has been rigorously tested and validated.

The spectral code is identical to the one used in Chung and Matheou (2012). Spatial derivatives
are computed spectrally and nonlinear terms are evaluated in physical space and then transformed
to Fourier space to advance the Fourier coefficients of the velocity and scalar fields in time. The
integrating factor is used for the integration of the resolved-scale viscous terms. The same Runge—
Kutta method as in the finite-difference code is used for time-marching. The 2/3 rule (Orszag,
1971) is used for dealiasing, which implies that for a physical grid of length N, there are N/2 + 1
independent Fourier coefficients, of which the 2/3 are dealiased.

2.7 Flow configuration, and initial and boundary conditions

Scalar excursions are studied in a temporally evolving shear flow. The flow configuration chosen is
simple enough for a fundamental study but, at the same time, exhibits local characteristics observed
in more complex flows. We consider an infinite stack of vertical layers with period L = 47 m, a
spatially alternating initial velocity field of u = 41 ms™!, and initial freestream scalar values
Z = 0,1 (fig. 4). The computational domain is a cube with sides of length L with triply periodic
boundary conditions. The flow is within the applicability of the incompressible numerical method
used in this discussion, while achieving a high Reynolds number. Domain periodicity precludes any
effects of discrete boundary conditions, or commutation errors from affecting the results.

The streamwise, cross-stream, and transverse directions and components are denoted by (z,y, z)
and (u,v,w), respectively. The initial condition for the velocity field is

ui(t =0,z,y,2) = u, + 9p'/Ox; (23)

where p’ is the Lagrange multiplier that imposes the incompressibility constraint on the initial
velocity field, and

W (t=0,2,y,2) = f(2) +a(2)(sindx cosy + ry(z,y,2)) (24a)
V' (t=0,2,y,2) = a(z)(cos 8x siny + r,(z,vy, 2)) (24b)
w'(t =0,2,y,2) = a(z)(sin 2z cos 4y + 1, (z,y, 2)), (24c¢)

where 7 is a random number in [—0.5,0.5],
f(2) = tanh(40 modulo(z, 47) — 27) — tanh (40 modulo(z, 47) — 47) — tanh (40 modulo(z, 47)), (25)

and
a(z) = 0.1exp[—100(modulo(z + m, 27) — 7)?]. (26)

The initial condition for the passive scalar is
Z(t=0,z,y,2) = (1+ f(2))/2. (27)

The initial field is chosen to excite both spanwise and streamwise instabilities, such that the resulting
shear layers acquire significant three-dimensional structure. A visualization of the development of

12



1.0 1.0

-075

I 0.50

-0.25

lD.D

-075

. 0.50

-0.25

lDD

1.0
-0.75
0.50

[0.25
0.0

Figure 4: Evolution of the passive scalar field. Z = 1 (red) fluid moves from left to right, u =
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the shear instabilities is shown in fig. 4. The top plane of the computational domain corresponds
to a middle plane of the mixing zone.

For the current simulations, the Schmidt number is set to unity, approximating gas-phase dif-
fusion, and v = 1 x 107° m?s~!.

Figure 4 shows the flow evolution, including the initial development of the Kelvin—Helmholtz
instability, the transition to fully-developed turbulence and the amalgamation of the large-scale
structures to a three-dimensional mixing zone. The flow attains a Reynolds number based on the
width, &, of the mixing zone of about 5 x 10°, well in excess of the mixing transition threshold

(Dimotakis, 2000). The mixing zone width, J, is defined as the 1% thickness, i.e. 0.01 < (Z) < 0.99.
Angle brackets (o) denote a horizontal average.

3 Passive scalar excursions

Two types of diagnostic metrics of invalid scalar values are considered: global excursions that violate
the scalar boundary values and a local constraint. The two diagnostics have different properties
and implications for LES but also exhibit some overlap. Accordingly, the naming of the two types
of metrics is intended primarily for distinguishing between the two.

3.1 Global or persistent excursions

The definition of a global (unphysical) excursion is straightforward: any scalar value outside the
bounds of the initial and boundary conditions. In the present LES runs, any value Z < 0 or Z > 1
is a global (unphysical) excursion. Because this type of excursion or model error is defined with
respect to a global attribute and holds for all times, it can be characterized as a global or persistent
error. That is, a value of Z = —0.1, which can correspond to a species mixing ratio, is invalid at any
location (global) at any time (persistent). Global excursions are the most significant source of error
since they are unphysical and must be specially treated when used as input for physical processes,
for instance, thermodynamic and reaction-rate calculations. Therefore, most of the results in the
present discussion pertain to global excursions.

3.2 Local or internal excursions

If erroneous scalar values that violate global bounds can be created during the numerical integration,
we may expect that the same process can yield erroneous values even inside the range 0 < Z < 1
that cannot be detected by the previous global criterion. These excursions are local or internal in
character, since they occur in the mixed fluid (internal) and for their identification the local flow
field must be considered.

In order to define a local excursion, the scalar transport equation is integrated in time from an
initial state, ¢, for a time interval At,

t+At aZ t+At 8u 7 t+At 82Z
—dt J t=D ——=dt. 2
|G| Gasn [ e )

2

The value of Z at t + At depends on contributions to Z; from convection and diffusion,

t+At ou. 7 t+At aZZ
Z =7, — IZdt+D ——dt. 29
t+AL t /t oz, + /t axf (29)
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In the limit of vanishing positive diffusivity, D — 0T, the sign of the diffusive term determines the
relation of Zy Ay with respect to the inviscid limit. Thus, the local constraint of the Eulerian 7 is

t+AL 822 t+At ou:7
Z — Zy — 2 = ZAtinv-
([ o [t

(2

This constraint is local in space and time, and it is a result of the requirement that only local
mixing/diffusion of Z is allowed. That is, it requires that local Z values be on the “convex side”
of the inviscid limit. Accordingly, referring to dispersive oscillations of fig. 2, only half of the
oscillation pattern violates the local excursion criterion, since the rest is on the “convex side” of
the inviscid limit. Both global and local criteria diagnose unphysical scalar excursions and not all
sources of error in LES.

To diagnose (30) in LES, the convection term must be computed sufficiently accurately for an
interval At, which requires performing an inviscid integration. A more-accurate inviscid integration
for the scalar is performed on a finer grid. In the present runs, we utilize a refinement factor of 4,
Azgne = Ax/4, for diagnostic purposes. At time ¢, the velocity and scalar fields are interpolated
on the fine grid using trilinear interpolation, which preserves total mass. The scalar equation on
the fine grid is then integrated for time At using the current fine-grid-interpolated velocity field at
each sub-step of the Runge-Kutta. This process results in the RHS of (30), Zainv. The constraint
(30) is then evaluated by comparing the co-located Zayny on the fine grid and Z on the original
coarse LES grid. No averaging is performed from fine to coarse grids, because this would result in
diffusion of the fine-grid Z and invalidate the inviscid nature of the integration that is required.

To diagnose local excursions using (30), the integration must be inviscid as noted above, which
implies a sufficiently small At and a sufficiently high refinement factor such that Zg,. is well-
resolved. As time progresses, Zgn. develops smaller scales because of the scalar-variance cascade.
In practice, up to 10 time steps for CFL = 1.2 of the fine grid were used without observing grid-scale
fluctuations on the fine grid. The results of §4 are for At equal to one time step of the fine grid.

Finally, we reiterate that the local criterion identifies unphysical excursions at time ¢ + At with
respect to the scalar field at ¢, whereas the global criterion identifies unphysical values that could
have been created at any previous time instance.

4 Results

4.1 Control for flow evolution

Before considering the statistics of scalar excursions, we examine the characteristics of the turbulent
flow field. The aim of the current simulations is to isolate the effects of numerics and SGS closure
with respect to unphysical scalar excursions, while keeping all other flow and simulation aspects
identical, so as to have a meaningful comparison of the scalar statistics for different schemes and
SGS models.

Figure 5 shows the evolution of the mixing zone width §. Figure 6 shows a higher-order statistic,
the vertical distribution of the resolved-scale scalar variance, (Z — (Z))?, at t = 20 s. Figures 7
and 8 show scalar dissipation rates. Figure 7 shows dissipation rates for N = 256, and Cs = 0.18
and 0.23 for the Smagorinsky model and A = Az for the stretched-vortex model. Figure 8 shows
scalar dissipation for three runs with fourth order convection and the stretched-vortex model for
two resolutions (N = 256 and 512) and two cutoff scales (A = Az and 2Ax). Figure 7 only shows
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Figure 5: Evolution of the mixing layer width for the different convection schemes and SGS models
for grid resolution N = 256. For the stretched-vortex model A = Ax, and for the Smagorinsky
model Cy = 0.18 is used.

the physical scalar dissipation (21) and does not include the numerical dissipation in the cases of
the QUICK and monotone schemes. For these convection schemes, the physical dissipation rate
in fig. 7 is less compared to the non-dissipative schemes since a significant fraction of the scalar
variance dissipation is furnished by the numerics in those cases.

All flow statistics show negligible differences between the finite-differences numerical schemes,
grid resolution, and SGS models. The results of the spectral LES using the stretched-vortex model
exhibit deviations from the finite difference schemes that are likely because of discretization effects
of the SGS terms and are not related to scalar excursions. For the finite differences schemes
most differences in figs. 57 are observed between the two SGS models. The Smagorinsky model
produces a somewhat wider mixing zone and larger scalar dissipation values. The differences in
fig. 6 are mostly attributable to turbulent flow variations and the lack of statistical convergence
with averaging that has been performed for only a single flow snapshot.

At first instance, the small differences in fig. 5 and 6 may be unexpected. However the differences
are small because, (a) momentum convection is always non-dissipative and the scalar is passive and,
(b) the flow is well-resolved, thus both SGS models perform well. The ratio of resolved to total
turbulent kinetic energy (TKE) can be used as a criterion for convergence, and for the coarsest
runs, N = 256, this ratio is always more than 90%, which is more than the proposed required 80%
(Pope, 2004; Matheou et al., 2010).

For Smagorinsky-type models, the grid-scale Reynolds number, Rea, = Aud/(v;), can be used
to assess grid-resolution and the adequacy of scale separation in the LES. The mean value of
the turbulent viscosity is estimated by (1) = CpAzq'/? (Moeng and Wyngaard, 1988), where
q = (u;u;)/2 is the resolved-scale TKE and Cj = C;l/ il /3 a dimensionless constant that relates
the Smagorinsky and dissipation constants (¢) = C.¢%?/Az, as originally proposed by Taylor
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Figure 6: Resolved-scale passive scalar variance at ¢ = 20 s for the different convection schemes
and SGS models. The grid resolution is N = 256. For the stretched-vortex model A = Az. Lines
are as in fig. 5.
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Figure 7: Normalized scalar dissipation rate at ¢ = 20 s for the different convection schemes and
SGS models. The grid resolution is N = 256. Only the physical scalar dissipation rate is shown,
i.e., without the contribution of the numerical dissipation. For the stretched-vortex model A = Ax.
Lines are as in fig. 5.
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Figure 8: Normalized scalar dissipation rate at ¢ = 20 s for two resolutions and cutoff scales for
runs with the stretched-vortex model. The fourth order convection scheme is used.

(1935). Using C. ~ 0.93 (Lilly, 1967) and the value of TKE in the mid plane of the shear layer,
q=0.09m?s72 Rea, = 4.3x10% > 1 for N = 256 and C; = 0.23, which is a relatively high value.
As implied by figs. 5 and 6, the TKE is the same for all LES runs.

The present numerical experiments are designed to produce statistically identical turbulent
flows such that scalar excursions can be studied while controlling for flow geometry, and it should
not be inferred from these results that controlling scalar excursions represents the sole criterion for
simulation fidelity, or that the numerical scheme and SGS model do not affect LES predictions.

4.2 Global-excursion statistics

Two types of global scalar excursion statistics are computed: the point-wise minimum and max-
imum of the passive scalar in the entire domain and the volume fraction of fluid with Z values
greater/lower than a given threshold value. Figure 9 shows examples of these statistics as a func-
tion of time for a run with the fourth-order scheme and the stretched-vortex model for N = 256

grid. The left panel of fig. 9 shows the magnitude of under- and over-shoots, i.e. —min(Z) and
max(Z) — 1. In the current study, we will refer to the magnitude of under- and over-shoots with
the term excursion, without making a distinction between unphysical under- and over-shoots. The
right panel shows the volume fraction of fluid that exceeds a 5% excursion (in absolute value), i.e.,
Z < 0.05 and Z > 1.05. Five excursion thresholds are explored, at 1, 2, 5, 10, and 20%.

To aid in the comparison of different schemes, scalar statistics are further reduced by averaging
in time and averaging the under- and over-shoots. This procedure produces a single value for each
statistic. Time averaging is performed between ¢ = 10-20 s, an interval chosen because the flow
is well developed with multi-scale turbulent structures, but with a significant fraction of fluid as
yet unmixed. The lowest row of fig. 4 shows the flow instances at the beginning and end of the
averaging interval. Scalar excursion averages are denoted by black horizontal lines in the panels of
fig. 9.

A three-dimensional parameter space is studied with variables of grid resolution, convection
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Figure 9: Time traces of global scalar excursion statistics with the fourth-order scheme, stretched-
vortex modgl and N = 256. The left panel shows the magnitude of under- and over-shoots (red),

i.e., —min(Z) and max(Z) — 1. The right panel shows the volume fraction of 5% excursions. That
is, the volume of fluid where Z > 1.05 (red) and Z < —0.05 (blue).

scheme, and SGS model type (which includes SGS model parameters). Overall, 37 LES runs were
carried out. Two grid resolutions N = 256 and 512 are mainly used. One run with the stretched-
vortex model is carried out at N = 1024 to investigate the distribution of scalar gradients on
resolution. A total of six scalar convection schemes are used. Their characteristics are documented
in §2.2. Two SGS models are used, the constant-coefficient Smagorinsky and stretched-vortex
model, and two sets of runs are carried out for each by varying a model parameter. Two values of
the Smagorinsky constant are used, Cs = 0.18 and 0.23; and two values of the cutoff scale A = Ax
and 2Ax are used for the stretched-vortex model.

For all finite-difference runs, momentum convection is non-dissipative (see Table 1) and the
fourth-order momentum convection scheme is used when QUICK and the MC flux-limited schemes
are used for the scalar. Because the initial condition is identical for all runs, simulations with the
fourth-order, QUICK, and monotone scalar convection schemes have the same velocity field.

In accord with the hypothesis that scalar excursions are caused by dispersion errors of the spatial
derivative approximation, aspects of time integration and resolved-scale viscous terms are not
included in the parameter study. For completeness, these effects are investigated and documented
in the Appendices. Perhaps as expected, time-step size and resolved-scale viscous terms have no
effect on scalar excursions.

Figure 10 shows the global scalar excursion statistics for all LES runs. Several general observa-
tions can be made. Both the numerical scheme and SGS model have a significant influence on scalar
excursion statistics. The largest excursions are observed for the lowest-order convection scheme and
improve (become progressively smaller) as the order of accuracy is increased. QUICK appears to
further reduce excursions while the spectral code produces even smaller excursions. As expected,
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the monotone scheme preserves the boundedness of the passive scalar, essentially by construction.
This ranking of convection schemes holds when both the maximum excursion is considered and
for volume-fraction statistics. Runs with the stretched-vortex model produce larger small-scale
fluctuations because the SGS model is in the mean less dissipative than the Smagorinsky, fig. 7.

4.2.1 Resolving bandwidth and numerical dissipation

Global scalar excursions become smaller as the order of accuracy is increased. For all statistics
depicted in fig. 10, the rate of improvement decreases as the order of accuracy increases, consistently
with the improvement in bandwidth in fig. 1. The benefit of a higher-order non-dissipative scheme is
greater for larger excursions since the volume fraction of excursions over 5% decreases significantly
when the order of accuracy is increased from second to sixth. Considering the results of the spectral
code as a limiting case for the non-dissipative finite differences, we can infer that scalar excursions
do not converge to zero as the order of accuracy approaches a spectral approximation and that some
residual error should be expected. The spectral run exhibits small-amplitude oscillations from small
aliasing errors, similar to the Gibbs under- and over-shoots of fig. 3, and not from dispersion errors
since the approximation is non-dispersive. The spectral approximation error is very small and only
registers in the maximum excursion and volume fraction < 5% metrics.

4.2.2 Subgrid-scale model

Overall, the stretched-vortex model exhibits larger peak excursions and larger volume fractions
compared to the Smagorinsky. This is expected, since the Smagorinsky model is more dissipative
and produces smoother flow fields. In addition, the performance of the Smagorinsky model depends
on the choice of the constant. For instance, a reduction of the Smagorinsky model constant from
Cs = 0.23 to 0.18, which decreases the SGS model dissipation, results in excursion statistics similar
to those with the stretched-vortex model.

The greatest reduction in global excursions is achieved when A = 2Az in runs with the
stretched-vortex model. These runs have N = 512 grids. However, the effective resolution is
comparable to NV = 256. Although this entails a significant computational expense — a factor of 16
— for a similarly resolved flow range of scales, the global excursion error is significantly reduced with
a negligible volume fraction of > 5% for global excursions. Moreover, the non-dissipative fourth-
and sixth-order schemes perform better in this case than the dissipative QUICK scheme.

4.2.3 Grid resolution

Two main sets of runs are carried out using 256 (denoted as N = 256) and 5123 (N = 512)
grid points. The maximum excursion and volume fraction show opposite trends with respect
to resolution. Maximum excursions increase as resolution increases, whereas associated volume
fractions decrease. The reason for the increase in the maximum excursion is statistical and not
traceable to numerics or flow modeling. Because the maximum excursion considers the value of a
grid-wise point quantity, i.e., a voxel and not an average, it depends on the number of grid points,
i.e., the sample size. For the finer grid, the sample size increases 16-fold (8 times more grid points
and 2 times more time steps), therefore, the probability of a single higher extreme scalar value is
higher.

In contrast, the volume fraction of unphysical excursions decreases with resolution because the
SGS model performs better. Less energy (kinetic for the velocity field and scalar variance) remains
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Figure 10: Global scalar excursion statistics for the different convection schemes (abscissa). The
convection scheme symbols correspond to the order of accuracy of the fully conservative schemes,
‘Q’ corresponds to QUICK, ‘S’ to the spectral approximation and ‘M’ to the MC flux-limited
monotone scheme. Blue symbols correspond to N = 256, red to N = 512, and a single magenta
circle to N = 1024. In the legend key, ‘SMV Ax’ corresponds to runs with the stretched-vortex
SGS model with cutoff scale equal to the grid spacing, and ‘SMV 2Az’ to double the grid spacing.
Abbreviations SMG 0.18 and 0.23 correspond to runs with the Smagorinsky model with Cs = 0.18
and 0.23, respectively.
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unresolved as the grid becomes finer and the two models used here can better capture the SGS
flow and predict the space—time local dissipation to reduce dispersion errors leading to unphysical
excursions. However, as noted in §2.1, as resolution increases, and as long as the LES is far from
being a DNS, the flow field does not become “smoother” and any gain in accuracy of modeling is
because of expected improvements in SGS model performance. The SGS model improvement can be
a direct result of weaker SGS fluctuations without any gains in the fidelity of representation of the
unresolved turbulence. We use the expression “expected improvement” because not all SGS models
will necessarily statistically converge monotonically to fully resolved flow. As corroborated by the
current results, the stretched-vortex and Smagorinsky models perform better as grid resolution
is increased. Similarly to what is observed with the increase in order of accuracy, increases in
resolution have a greater impact on the largest excursions.

Figure 11 supports these arguments and shows the probability density function (p.d.f.) of
the normalized scalar gradient at three resolutions, N = 256, 512, and 1024, with the fourth-order
scheme and stretched-vortex model. The discrete approximation, A$Z/A%z; of the scalar gradient,
0Z/0x;, where o denotes the corresponding difference operator of order «, is multiplied by A%z;
to remove the dependence on grid size. That is, fig. 11 shows the p.d.f. of the scalar differences,
A%Z, in the entire domain in the ¢ = 10-20 s interval for each direction. Although scalar gradients
increase as grid resolution increases in the LES, the increase in resolution is slightly faster and the
grid-scale scalar differences decrease as resolution increases. However, because sample size increases
with resolution, the tails of the p.d.f. extend to higher absolute values of the scalar difference.

Even though the current results show that all LES solutions overall improve with increasing
resolution and the maximum and volume fraction of the excursion can be understood, it is trouble-
some that the maximum excursion increases with increasing resolution and exhibits values much
higher that the one-dimensional convection dispersive excursions (fig. 2). It is likely that some error
compounding is occurring particularly for the excursions that “wash out” in the free stream where
no active dissipation mechanism is present. Based on the present LES runs, we cannot conclude if
the maximum excursion increasing trend will reverse when the resolution is high enough to resolve
the turbulent flow, i.e., as LES approaches a DNS, or at a coarser resolution. Finally, we emphasize
that the maximum excursion metric is not a well-defined error metric in LES because it is based
on a single grid cell value and not a well-constructed flow statistic (Pope, 2004).

4.3 Local excursions

Figure 12 shows instantaneous slices from the run with the fourth-order fully conservative scheme,
stretched-vortex model, and N = 256. The magnitude of the scalar gradient [(0Z/0x;)?]'/? is
plotted along with contours of the 1% excursions in the left column panels. The nature of dispersive
oscillations is distinctly discernible in fig. 12. Oscillations occur in regions with diverse values of
the scalar gradient and do not preferentially correlate with the highest values. Animations of the
scalar gradient and excursions, similar the instantaneous images of fig. 12, were also studied to
examine if the excursions corresponding to smaller gradients in the instantaneous images had been
created by past larger gradients that were convected/diffused. Diffusion of scalar gradients with
persisting scalar excursions was not observed, likely because scalar excursions are short-lived with
time-scales comparable to grid-scale turbulent motions.

Figure 13 shows two horizontal slices from a run identical to the one shown in fig. 12, but with
the modified second-order convection scheme (see §2.2). Similar to the dispersive oscillations in
fig. 2, the side of some of the oscillations and scalar excursions with respect to mixed-fluid patches
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Figure 12: The left column panels show the magnitude of the scalar gradient (orange shading) and
contours of scalar excursions at Z = —0.01 (blue) and Z = 1.01 (red) on three planes. The right
column panels show local excursions (orange contours) and the boundary of the mixed fluid (black
contour) at the same planes as the corresponding left panel. All planes are at t = 20 s of the run
with the fourth-order fully conservative scheme, stretched-vortex model and N = 256.
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Figure 13: Magnitude of the scalar gradient (orange shading) and contour of scalar excursions at
Z = —0.01 (blue) and Z = 1.01 (red) on two planes from the run with the modified dispersion
relation scheme, stretched-vortex model and N = 256. A comparison with the corresponding panels
of fig. 12 shows that some of the dispersive oscillations now occur upwind of the scalar gradient
similar to right panel of fig. 2.
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Figure 14: Volume fraction of local excursions in the mixed fluid versus the total volume of excur-
sions with respect to time. Two mixed-fluid thresholds are used, 0.1 < Z < 0.99 (red line) and
0.05 < Z < 0.95.
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Figure 15: Two dimensional frequency distributions of local excursion—scalar gradient pairs for 11
flow realization in ¢t = 1020 s for a run with N = 256, fourth order-convection and the stretched-
vortex model. Darker shades correspond to higher frequencies. Because the frequency values span
a large range of scales the contours are logarithmically spaced, i.e., log(h + 1), where h is the
frequency of occurrence of a given pair. The left panel shows the co-located pairs, whereas in the
right panel excursions are paired with the maximum scalar gradient magnitude in the surrounding
7 x T x7grid cells.

changes between figs. 12 and 13.

The panels of the right column of fig. 12 show the magnitude of the local excursions, max (0, Z —
ZAt,inv)- The local excursions are relatively small because they are excursions with respect to the
local flow field of the previous time step. Most local unphysical excursions occur in the mixed fluid,
are widespread, and mostly structureless. Figure 14 shows the volume fraction of local excursions
that occur in the mixed fluid versus the total volume of excursions with respect to time. Two
mixed-fluid thresholds are used, 0.1 < Z < 0.99 and 0.05 < Z < 0.95. Significantly, roughly 90%
of the volume of unphysical local excursions are internal excursions, i.e., they do not violate global
scalar boundedness constraints.

To help assess the relation between scalar gradient and local excursions, fig. 15 shows the
frequency distribution (i.e., the two-dimensional histogram) of the local excursion—scalar gradient
pairs for 11 flow realizations in the ¢t = 10-20 s interval, for a run with N = 256, fourth-order
convection and the stretched-vortex model. Because excursions (y-axis) are relatively rare, about
97% of the occurrences are accounted in the y = 0 bins in the histograms of fig. 15: the dark band
along the z-axis. The pairing/association of excursions to scalar gradient is done in two ways: using
co-located pairs (shown in the left panel of fig. 15) and by pairing each excursion value with the
maximum gradient magnitude in the surrounding 7 x 7 x 7 grid cells (right panel). This is to account
for the offset of the maximum dispersion error with respect to the local gradient, as shown in fig. 2,
which is usually 2-3 grid cells. The histograms in fig. 15 confirm the observation from fig. 12 that
excursions and scalar gradient magnitude are not well correlated. Even when accounting for non-
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Figure 16: Two dimensional frequency distributions of local excursion—scalar dissipation rate pairs
for 11 flow realization in t = 10-20 s for a run with N = 256, fourth order-convection and the
stretched-vortex model. Darker shades correspond to higher frequencies and contour levels are the
same as in fig. 15. Because the frequency values span a large range of scales the contours are
logarithmically spaced, i.e., log(h + 1), where h is the frequency of occurrence of a given pair. The
left panel shows the co-located pairs, whereas in the right panel excursions are paired with the
minimum scalar dissipation rate in the surrounding 7 x 7 x 7 grid cells.

colocation, maximum excursions tend to occur at intermediate values of scalar-gradient magnitude.
Moreover, for a given scalar excursion value, the gradient distribution is broad.

Figure 16 shows the frequency distribution of the local excursions and estimate of scalar dissi-
pation rate (21). Unlike the local excursion—scalar gradient pairs of fig. 15, a significant fraction
of local unphysical excursions occurs near grid points with low scalar dissipation values. There is
a very small fraction of grid points with negative dissipation rates but for most of these points no
excursions are observed (the contour scales in figs. 15 and 16 are logarithmic). The right panel of
fig. 16 shows pairs of scalar excursions with the minimum dissipation in the surrounding 7 x 7 x 7
grid cells (similar to the right panel of fig. 15). All grid cells with unphysical scalar excursions are
at a distance less than 4 grid cells from locations with nearly zero scalar dissipation rate.

5 Discussion

The analysis of scalar-excursion statistics supports the main hypothesis that unphysical scalar
excursions result from dispersive errors of the convection-term discretization at times and locations
where the subgrid-scale model provides insufficient dissipation to produce a sufficiently smooth
scalar field. This proposition has an important implication: dispersion errors (and consequently
unphysical scalar excursions) do not necessarily occur where scalar gradients are highest since
there can be instances where the SGS model supplies insufficient dissipation to smooth/regularize a
moderate gradient. We note that perhaps because of adaptations of the study of numerical methods

27



for the solution of differential equations (e.g., Euler or Burgers’ equations) for LES (turbulence)
modeling, it is commonly assumed that unphysical scalar excursions occur (in the vicinity) of the
highest scalar gradients. Our findings do not support this supposition.

In the current study, most of the analysis concerns passive scalar excursions in LES and com-
pares different simulation parameters — numerical scheme, SGS model, and resolution — with respect
to excursion statistics. However, scalar excursions are only one aspect of LES modeling and a suc-
cessful simulation should take into account more aspects of the flow to be predicted. In other words,
the results of fig. 10 may imply that a monotone scheme is the best choice. In practice, there is
a tradeoff between conflicting requirements. The monotone scheme introduces artificial numeri-
cal dissipation that can have deleterious effects on LES predictions (e.g., Matheou et al., 2011).
Alternatively, the fully conservative schemes have the desirable properties of preserving kinetic en-
ergy and scalar variance, which have been shown to benefit turbulence simulations (Morinishi et al.,
1998), but numerical solutions can exhibit unphysical scalar excursions. Linear upwinding schemes,
such as QUICK, present a tradeoff between no dissipation and non-linear monotonicity-preserving
schemes by allowing small excursions < 5% without introducing excessive numerical dissipation.

The impact of numerical dissipation on the turbulent flow can be quantified by examining the
scalar dissipation spectra. Figure 17 shows one-dimensional scalar spectra along the streamwise
direction on the shear layer mid plane. Numerical dissipation decreases scalar fluctuations at
high wavenumbers with differences of almost a decade in magnitude between the high-order non-
dissipative and monotone schemes. To better illustrate the effect of scalar-fluctuation dumping
at the highest wavenumbers both scalar, Ezz, and scalar-gradient, k2 Ezz, spectra are shown in
fig. 17. In the scalar spectra the integral of the area between dissipative and non-dissipative schemes
corresponds to the amount of scalar variance that is destroyed by numerical dissipation. The current
flow setup is designed to keep the flow nearly statistically identical for all runs. Differences between
different schemes can be larger in other applications. Overall, the impact of artificial dissipation
in LES is complex and its effects depend on the application and model details (e.g., Brown et al.,
2000; Meinke et al., 2002; Park et al., 2004), see also Sagaut (2006, p. 299) and references therein.

The distribution of local unphysical excursions (fig. 12) shows that the error is widespread. Even
though this may be disconcerting, it is not surprising. The current results for unphysical excursions
of passive scalar mixing in LES are consistent with error estimates for the velocity field (Ghosal,
1996). Similar to the analysis by Ghosal (1996) of LES errors for the velocity field, increasing
the order of accuracy (bandwidth) of a finite-difference scheme results in only a slow reduction of
differentiation error. In contrast, increasing the ratio of the cutoff scale to grid spacing, A/Az > 1,
while keeping A constant, is found to be an effective strategy to reduce unphysical scalar excursions
for non-dissipative convection schemes, even though computationally costly for a given (effective)
resolution. Again, this is qualitatively consistent with Ghosal’s (1996) estimate for the rate of error
reduction of (Az/A)~3/%. Note that for passive scalars any errors in the velocity field, including
dispersive oscillations of u;, do not affect the scalar boundedness property (6) because u; is merely
a coefficient in the linear equation for Z (4).

6 Conclusions

The current investigation characterizes unphysical passive-scalar excursions in large-eddy simula-
tions (LES), quantifies the numerical model error, and examines methods for diagnosis and as-
sessment of the problem. The analysis of scalar-excursion statistics shows that unphysical scalar
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excursions in LES result from dispersive oscillations of the convection-term discretization at times
and locations where the subgrid-scale model provides insufficient dissipation to produce a suffi-
ciently smooth scalar field.

Scalar excursions are studied in a triply periodic shear flow arranged in a vertically periodic
stack of mixing layers. In the LES runs, three parameters are varied: the discretization of the
convection terms, grid resolution, and SGS model type, including model parameters. Two types of
excursion diagnostics are studied: global excursions, which violate the boundary values of the scalar
transport equation; and local excursions, which violate local scalar bounds. Global excursions are
analyzed by considering the minimum and maximum in the entire computational domain and the
volume of fluid with scalar values exceeding an excursion threshold. Local excursions are primarily
used to obtain unphysical scalar-excursion information in the mixed fluid.

For a family of non-dissipative fully-conservative schemes (Morinishi et al., 1998), excursions
decrease as the order of accuracy of the numerical approximation increases. However, the improve-
ment rate decreases with increasing order of accuracy, and runs with a spectral code indicate that
scalar excursions need not converge to zero as the order of approximation approaches spectral.
A Quadratic Upstream Interpolation for Convective Kinematics (QUICK, Leonard, 1979), a lin-
ear upwinding scheme, results in smaller excursions than non-dissipative schemes. A flux-limited
monotone scheme is also assessed and, as expected, no scalar excursions are observed. However, in
addition to scalar excursions, other simulation aspects should be considered in a practical LES, with
the impact of numerical dissipation on the quality of flow prediction being only one. Scalar spec-
tra show damping of the high wavenumbers when numerical dissipation is introduced. Although
numerical dissipation is present in many computations, its effects and tradeoffs with respect to the
overall LES prediction fidelity of scalar mixing are complex and remain largely unexplored.

As expected, unphysical scalar-excursion statistics are found to strongly depend on the SGS
model and model parameters. Two SGS models were assessed, the stretched-vortex and constant-
coefficient Smagorinsky. When the characteristic SGS length scale is equal to the grid spacing,
the Smagorinsky model, which is more dissipative, results in smaller excursions, although the
magnitude of the excursions is strongly dependent on the model constant. The excursions are
significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs
with the stretched-vortex model, even though that requires a greater computational effort.

The maximum excursion and volume fraction show opposite trends with respect to resolution.
The maximum excursion increases as resolution increases, whereas the volume fraction decreases,
as might be expected because the number of grid points (sample size) increases with resolution. In
contrast, the volume fraction of the excursions decreases with resolution because the SGS models
perform better at higher grid resolutions.

The overall conclusion is that improvements in SGS models are required to address unphysical
scalar excursions. The causes that lead to insufficient SGS scalar dissipation are currently not well
understood. Moreover, it is not clear if the problem originates from the momentum SGS modeling
or only affects the scalar fields, implying a breakdown in assumptions that relate the turbulent
momentum and scalar fields. Even though the scalar excursion volumetric error is small, its nature
can lead to error compounding in LES involving active scalars. Higher order non-dissipative finite-
difference discretizations do not yield fast error reduction (but low-order discretizations produce
excessively high errors) and general dissipative schemes must be regarded as a blunt tool, since they
introduce artificial dissipation in locations where the SGS model may already provide the necessary
dissipation.
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A Time integration and conservation verification

Because scalar excursions resemble small-scale numerical instabilities, the verification of the Runge—
Kutta time integration method and the fully-conservative convection schemes is documented in
this appendix to exclude errors or instabilities in the numerics that can cause scalar excursions. A
verification of the implementation of the convection discretization and the conservation properties
can be carried out by tracking the evolution of the conserved quantities, uf and Z2, in a simulation
without any diffusive terms, i.e., a numerical integration of the incompressible Euler equations.
The u; and Z fields are initialized using random numbers and then u; is made divergence-free by
applying the Lagrange multiplier (23). The two conserved quantities are computed on the grid,

K= > wuli,j, k) +v(i,5, k) +w(i,j k) (31)
all(i,5,k)

and

V= > Z(ijk7 (32)

all(i,j,k)

the kinetic energy and scalar variance, respectively. The sum is over all velocity (or scalar to form
V) squared values at their locations on the grid without any interpolation (see, Morinishi et al.,

Table 2: Convergence rate of the kinetic energy (K.E.) and scalar variance conservation error with
respect to time step size for the three fully-conservative schemes.. The error decreases with the
expected rate of At3, the truncation error of the Runge-Kutta time integration.

10g2(En/En—1)
n At, CFL, 2nd order 4th order 6th order
K.E. Scalar K.E. Scalar K.E. Scalar
0.2 1.45 - -
0.1 0.72 2.6913 | 2.67943 | 2.62389 | 2.61074 | 2.5926 | 2.58051
0.05 0.36 | 3.09928 | 3.09524 | 3.08549 | 3.08028 | 3.0784 | 3.07427
0.025 0.18 | 2.99085 | 2.99034 | 2.98751 | 2.98709 | 2.98613 | 2.98574
0.0125 0.09 2.9797 | 2.97978 | 2.9787 | 2.97899 | 2.97845 | 2.97864
0.00625 | 0.04 | 3.00842 | 3.00833 | 3.00826 | 3.00817 | 3.00819 | 3.00813

SO W N~
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Figure 18: Effect of time step size on global excursion statistics. Time traces of scalar excursion
statistics with the fourth-order scheme, stretched-vortex model, and N = 256. Red lines correspond
to simulations with CFL = 1.4 and blue lines to an identical LES setup but with a smaller time
step, CFL = 0.1. The left panel shows the magnitude of global over-shoots. The right panel shows
the volume fraction of 5% excursions.

1998). The integration is performed with a constant time step At up to time 7'. Ideally, K and
V at t =0 and t = T should be equal. However, a very small amount of dissipation is introduced
by the time-marching method, since numerical stability requires that the amplitude of all modes
is unchanged or damped. Dissipation is proportional to the truncation error of the third-order
Runge-Kutta, in this case, ~ At3. Therefore, by performing several simulations with variable time
step At and computing the error, E(At) = K(t = 0) — K(t = T'), we expect the error to decrease
proportionally to the order of accuracy of the time-marching scheme. Table 2 shows the errors
for momentum and scalar for the three finite-difference schemes with respect to time-step size and
verifies that the convection schemes in the current implementation are fully conservative.

As an additional check, a pair of LES runs was carried out with different CFL numbers. The
N = 256 grid, with the fourth-order scheme and stretched-vortex model was ran at CFL = 1.4
and 0.1 (the Runge-Kutta CFL stability limit is v/3). Scalar-excursion statistics are compared in
fig. 18. The maximum global excursions are identical and the volume fraction of the 5% excursion
shows relatively small differences in the second half of the run, which are more likely the result of
somewhat different turbulent flow evolution rather than numerics.

B Viscous-term effects

The simulations attain a high Reynolds number flow in which almost all dissipation is provided by
the subgrid-scale model. Figure 19 confirms that the impact of resolved-scale diffusion is negligible,
since excursion statistics are identical for a pair of runs with and without the viscous term. The very
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Figure 19: Impact of the viscous term on global excursion statistics. Time traces of scalar excursion
statistics with the fourth-order scheme, stretched-vortex model, and N = 256. Red lines correspond
to simulations that include the viscous term and blue lines to an identical LES setup but without
the viscous term. The left panel shows the magnitude of global over-shoots. The right panel shows
the volume fraction of 5% excursions.

small effect of resolved-scale diffusion is discernible in the first third of the run where the excursions
and the volume fraction are somewhat smaller when the viscous term is active. Figure 19 provides
confidence in the correct implementation of the viscous term in the present LES.
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