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SUMMARY

A new method for the solution of the non-linear equations forming the core of constitutive model integration
is proposed. Specifically, the trust-region method that has been developed in the numerical optimization
community is successfully modified for use in the implicit integration of elastic-plastic models. To this
end, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally
challenging constitutive models. The theory and implementation are presented, discussed, and compared
to other common integration schemes. Multiple boundary value problems are studied and used to verify
the proposed algorithm and demonstrate the enabling capabilities of this approach over more common
methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through
these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a
traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line
search augmented scheme. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the phenomenological theory of plasticity has matured in recent decades, the corresponding
models being proposed have grown increasingly complex. For instance, non-quadratic yield surfaces
like those put forth by Hosford [1], the classical anisotropic form of Hill [2], and more recent
models that are both non-quadratic and anisotropic (i.e. Barlat and coworkers [3, 4], Karafillis
and Boyce [5], and Cazacu and colleagues [6, 7]) have all been developed and implemented.
The additional capabilities provided by such models have been useful in the analysis of sheet
metal forming [8, 9, 10] and inflation/burst of tubes [11, 12, 13] in which accurately capturing
the anisotropic plastic flow is essential.

Similar to the aforementioned plasticity models, structural analyses and corresponding
simulations have also grown in terms of complexity and size. In turn, there is an increasing focus
on the efficient implicit integration of both the global finite element problem and local stress
updating procedure. With respect to the latter constitutive problem, the fully implicit closest point
projection (CPP) and semi-implicit convex cutting plane (CCP) return mapping algorithms (RMAs)
popularized by Simo, Ortiz, and coworkers [14, 15, 16, 17, 18, 19] have been extensively explored.
Such implementations have been pursued for a wide variety of phenomenological constitutive
models incorporating a large series of physics and flow rules (e.g. [20, 21, 22, 23, 24, 25]). A
different approach has been taken by Yoon et al. [26, 27, 8], who have proposed a return mapping
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2 B. T. LESTER AND W. M. SCHERZINGER

scheme based on the control of a potential residual. In all of these cases, the Newton-Raphson
method is used to solve the non-linear equations forming the core of the stress updating approaches.

Unlike the radial return approaches common with J2 plasticity, pure Newton-Raphson solvers are
not guaranteed to converge for more complex models. Comprehensive studies by Pérez-Foguet and
Armero [28] and Scherzinger [29] have extensively explored this issue for a variety of models and
demonstrated the insufficiency of a Newton-Raphson solver under many conditions. For implicit
global solvers, the ability of the constitutive routine to converge under any input deformation is
important to avoid costly cutbacks to the global timestep. This is especially true for non-linear,
large-deformation finite element codes like Sierra/SM [30, 31, 32] that utilize an iterative global
solver and therefore may see a wider range of trial deformations during the solution process.

To improve the convergence properties, a variety of modifications to the underlying algorithms
have been proposed. One of the more common approaches is to break up large input deformations
into a series of smaller loadings and sequentially solve the subloadings until the intended
total deformation is achieved. Although more common with explicit integration schemes, these
substepping approaches have been adopted by Yoon and colleagues [26, 27, 8], Seifert et al. [33, 34],
and Rabahallah and coworkers [35] for a wide variety of constitutive models. Such methods,
however, mitigate some of the advantages of a fully implicit scheme and introduce additional
complexity to the ensuing implementation. An alternative to this has been the adoption of more
complex numerical schemes to ensure convergence – notably line search methods. Early works like
those of Dutko et al. [36] observed improvements in adding an additional line search step while
more recent efforts such as those by Seifert and coworkers [37], Pérez-Foguet and Armero [28],
and Scherzinger [29] have all extensively explored and demonstrated these benefits. For instance,
Scherzinger noted convergence of the line search augmented CPP method for any trial stresses
whose effective measure was less than or equal to 30 times that of yield for both the Hosford and
Barlat models [29] – far exceeding the performance of a pure Newton-Raphson solver.

These previous efforts (substepping and line search schemes) have focused on modifying or
augmenting the Newton-Rapshon solver to improve robustness. Given the developments in non-
linear optimization and numerical methods since the early efforts of Simo, Ortiz, Hughes, and
others, an alternative approach to consider is the utilization of a new solver scheme with the
CPP-RMA problem. One such possibility are trust-region based methods [38]. At their core, these
algorithms search for updated solution variables minimizing an objective function within a trusted
solution variable domain. Although primarily studied for general optimization problems [39, 40, 41,
42, 43], trust-region methods have been successfully adopted in structural design optimization [44]
and flow control [45] applications. A previous effort by Shterenlikht and Alexander [46] attempted
to use open-source implementations of both Levenberg-Marquardt and dogleg trust-region methods
to integrate the Gurson-Tvergaard-Needleman (GTN) model. In their investigation, the former
approach showed promise while severe issues with scaling were encountered with the latter leading
to substantial convergence difficulty.

In this work, the possibility of using a tailored trust-region approach for the CPP-RMA problem
to integrate elastic-plastic constitutive models is explored. Specifically, the numerical formulation
of a Hosford plasticity model using a trust-region solution method is developed and implemented.
A series of boundary value problems are then investigated to demonstrate the capabilities of this
novel methodology and investigate the performance characteristics (especially convergence) in
comparison to established Newton-Raphson and line search augmented approaches. To this end,
this work is organized as follows. Section 2 describes the elastic-plastic model and its numerical
implementation. Both the theoretical formulation and some basic discussion of the three solution
methods – Newton-Raphson (NR), line search augmented Newton-Raphson (LS-NR), and the
trust-region approach (TR) – is presented along with details of the trust-region implementation.
Numerical results and discussion are presented in Section 3 while concluding remarks are given in
Section 4.
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 3

2. TRUST-REGION IMPLEMENTATION OF ELASTIC-PLASTIC MODELS

To investigate trust-region based constitutive model integration, a numerical implementation of the
Hosford model [1] is developed. This selection is made as it is a relatively simple form (only two
parameters and isotropic) while still being able to induce substantial curvature in the yield surface. It
is noted that the algorithm is presented in a sufficiently general fashion so that it is easily adaptable
for use with other yield surfaces or isotropic hardening laws†. The theoretical model is presented in
the next section while the numerical implementation is presented in Section 2.2.

2.1. Hosford Plasticity Model

Like many other elastic-plastic models, an additive split in the strain tensor is assumed such that,

εij = εe
ij + ε

p
ij (1)

where εij , εe
ij , and εp

ij are the total, elastic, and plastic strain tensors, respectively. The symmetric
Cauchy stress, σij , is given as,

σij = Cijklεe
kl = Cijkl

(
εkl − εp

kl

)
, (2)

with Cijkl being the fourth order elastic stiffness tensor (assumed isotropic). This leads to a stress
rate equation‡ of the form,

σ̇ij = Cijkl
(
ε̇kl − ε̇p

kl

)
. (3)

Assuming an associative flow rule the rate of plastic strain, ε̇pij , can be written as

ε̇
p
ij = γ̇

∂f

∂σij
, (4)

where γ̇ is the plastic consistency multiplier and f is the yield function describing the domain of
elastic deformation. The plastic multiplier is found through consistency relations resulting from the
traditional Kuhn-Tucker conditions,

γ̇ ≥ 0; γ̇f = 0; f ≤ 0. (5)

Bearing this in mind, the response of the model is largely dictated by the yield surface and
hardening rule considered. In this case, the yield function is given by

f (σij , ε̄
p) = φ (σij)− σy (ε̄p) (6)

where σy is the yield stress, ε̄p is the isotropic hardening variable (equivalent plastic strain) and φ is
the Hosford effective stress [1] defined as

φ (σij) =

[
|σ1 − σ2|a + |σ2 − σ3|a + |σ1 − σ3|a

2

]1/a
, (7)

with σi being the principal stresses and a the fitting exponent (1 ≤ a ≤ ∞) giving the model its
non-quadratic nature. In the developed algorithm, the numerical routine put forth by Scherzinger
and Dohrmann [49] is used to determine the principal stresses. Linear hardening of the form,

σy (ε̄p) = σ0
y +Kε̄p, (8)

†Kinematic hardening is not treated in this work although the authors see no reason that would preclude an extension to
such models.
‡As the focus of this effort is on numerical methods for solving local constitutive relations, discussions towards objective
stress rates are neglected. For details and discussions of such issues, the reader is referred to [47, 48, 23, 33].
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4 B. T. LESTER AND W. M. SCHERZINGER

is considered in which σ0
y is a constant initial yield stress and K the hardening modulus.

Additionally, for this study it is assumed that the loadings are isothermal and temperature
dependence is neglected. Details of this model, notably the derivatives of the effective stress, may
be found in the previous work of Scherzinger [29].

2.2. Numerical Implementation

Regardless of numerical solution scheme (NR, LS-NR, or TR), the underlying non-linear stress
updating problem is the same. Specifically, to numerically integrate the hypoelastic constitutive
response posed in Section 2.1, an elastic predictor-inelastic corrector scheme based on operator
splitting [14] is adopted. By assuming the given loading increment does not lead to inelastic
deformation, an elastic trial stress, σtr

ij , is computed as,

σtr
ij = σ

(n)
ij + Cijkldε(n+1)

kl (9)

with the superscripts “ (n) ” and “ (n+ 1) ” referring to variables at those load steps and dεij
is the total strain increment. The validity of the elastic step may be determined by computing
f tr = f

(
σtrij , ε̄

p(n)
)
. If f tr < 0, the elastic step is valid and the state variables are updated (σ(n+1)

ij =

σtr
ij , ε̄

p(n+1) = ε̄p(n)). The much more interesting plastic loading case occurs when f tr > 0.
The solution to the inelastic correction is associated with the constrained optimization problem

corresponding to maximum dissipation – see [36, 19, 50, 51, 25] for discussions on the
thermodynamics. During the inelastic correction, the solution is found by iteratively refining the
state variables and returning to the yield surface. For implicit methods like the CPP approach
pursued here, this process is performed by enforcing the consistency relation and the plastic strain
flow rule on the material state at t = tn+1. Mathematically, these two conditions are given in residual
form as

r
(n+1)
I

(
x
(n+1)
I

)
=

{
r
ε(n+1)
ij

rf(n+1)

}
=


−dεp(n+1)

ij + dγ(n+1) ∂φ

∂σ
(n+1)
ij

f
(
σ
(n+1)
ij , dγ(n+1)

)
 =

{
0
0

}
, (10)

where xI are the solution variables that may be written as,

x
(n+1)
I =

[
σ
(n+1)
ij

dγ(n+1)

]
. (11)

The first residual, rεij , is associated with the flow rule while the second, rf , is the consistency
condition.§

The non-linear problem posed by rI = 0 is solved numerically by iterating until convergence has
been achieved. In this work, a merit function of the form,

ψ (xI) =
1

2
D1
JKrK (xI)D

1
JLrL (xI) (12)

in which D1
IJ is a constant, diagonal matrix taking the form,

D1
IJ =

[
cεIijkl 0ij

0ij cf

]
, (13)

where Iijkl is the fourth order identity tensor, is used to assess convergence. Specifically, the square
root of the merit function (

√
ψ) is used as the convergence criteria. Essentially, these constants are

§In what follows, capital subscript indices will be used to refer to elements of larger matrices and vectors that may be
either scalar or tensor. Traditional summation conventions over an abbreviated interval (I = 1, 2) will be used to indicate
operations between these larger matrix and vector objects while lower case indices shall be reserved for individual tensor
components.
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 5

introduced as weights to appropriately scale the contributions of the different components of the
residual. From Eqn. 10 it is noted that in the residual and solution variable vectors, both strain and
stress quantities are evident. Depending on the units being used, the difference in the values of the
variables can be many orders of magnitude, highlighting the necessity of appropriately normalizing
the problem. Importantly, regardless of the the values of cε and cf the minimum is achieved at
rεij = rf = 0. By setting the constants to be one, D1

IJ reduces to the identity matrix and the more
traditional merit function of the form ψ = (1/2) rIrI is recovered. Trust-region methods, however,
are more susceptible to scaling issues as experienced by Shterenlikht and Alexander [46]. In the
remainder of this work, an equal weight, stress-normalization is introduced by setting cε = E/σ0

y

and cf = 1/σ0
y such that the merit function may be written as,

ψ (rI) =
1

2

((
E

σ0
y

)2

rεijr
ε
ij +

(
rf

σ0
y

)2
)
. (14)

The impact of this scaling on the algorithm performance is explored in Section 3.3.
To begin the inelastic correction process, the state variable values at the k = 0 iteration are

initialized to those of the trial state and dεp(k=0)
ij = dγ(k=0) = 0.¶ For all three numerical solution

schemes considered here, the solution variables are iteratively updated via

x
(k+1)
I = x

(k)
I + α(k)p

(k)
I , (15)

where α(k) and p(k)I are the step size and vector, respectively, and pI =
[
pσij , p

γ
]T

with pσij = ∆σij
and pγ = ∆γ. The three approaches (NR, LS-NR, and TR) differ in how the step size, α(k), and step
vector, p(k)I are determined.

In the simplest and most-common approach (NR), the step size is fixed (α(k) = 1) and the step
vector, pNR(k)

I , takes the classical form of,

p
NR(k)
I = −

(
J (k)

)−1
IJ
r
(k)
J (16)

with JIJ being the Jacobian defined as JIJ = ∂rI
∂xJ

. Given the residuals in Eqn. 10, the Jacobian is

JIJ =

 (Lijkl)
−1 ∂φ

∂σij
∂φ

∂σij
−∂σy
∂ε̄p

 , (17)

where Lijkl is given by,

Lijkl =

(
C−1ijkl + dγ

∂2φ

∂σij∂σkl

)−1
. (18)

Line search approaches vary from NR and other methods by selecting a step direction (in this
case, the NR direction) and then finding a step size minimizing the merit function in the domain
α(k) = (0, 1]. This constraint serves to enforce that each iteration reduces the merit function. As an
exact minimum can be expensive to compute, an approximate minimum is found by a quadratic
approximation. In practice, the utilization of a LS approach is fairly straight-forward as it only
requires an additional step to find α(k). For details of the implemented LS-NR scheme for the
Hosford model, see the work of Scherzinger [29].

Unlike line search methods that directly investigate the merit function, trust-region based schemes
instead construct a local approximation via a model problem,m(k) (pI), and find the step vector that

¶In the remainder of this section, it shall be assumed that unless specifically noted the variable values correspond to
those at the “ (n+ 1) ” timestep and “(k)” and “(k + 1)” superscripts are to denote the previous and current correction
iterations. Furthermore, the term increment shall be reserved for use with the global time/loadstep while iteration shall
be used to describe the inelastic correction process.
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6 B. T. LESTER AND W. M. SCHERZINGER

minimizes the model problem. As this representation is only an approximation of the actual non-
linear problem, the step vector is only found in the space sufficiently close to the current solution
that can be trusted (hence the name). This domain is defined to be the region in solution variable
space within a ball of radius ∆(k) (||p(k)I || ≤ ∆(k)). The size of this trust-region is then updated
depending on the improvement (or lack thereof) of a guess step vector. Limiting the solution space
serves to highlight a key distinction between line search and trust-region methods. Namely, the latter
first picks a step size and then finds the step vector. [38]

In the current study, a quadratic approximation of the form [38],

m(k) (pI) = Ψ(k) + g
(k)
I pI +

1

2
pIB

(k)
IJ pJ , (19)

is used for the model problem where Ψ(k) is the function to be minimized, g(k)I is the gradient of
Ψ(k) (∇Ψ

(k)
I ), and B(k)

IJ is an approximation of the Hessian (∇2Ψ
(k)
IJ ). When Ψ(k) is an unweighted

form of Eqn. 12 (cε = cf = 1), these terms are commonly written as,

Ψ(k) =
1

2
r
(k)
I r

(k)
I ; g

(k)
I = J

(k)
JI r

(k)
J ; B

(k)
IJ = J

(k)
LI J

(k)
LJ . (20)

Schematically, this method is illustrated in Fig. 1 in which a simplified case of J2 plasticity with
no hardening is treated. In this case, contours corresponding to a representative model problem,
m(k), (whose chosen form is selected for demonstration purposes) are presented alongside the yield
surface and initial and final stress states. Two circles of radii ∆1 and ∆2 corresponding to different
domains along with their minimization vectors, p1I and p2I , are also presented. In this realization, the
contributions of the effective plastic strain on the trust-region size, ∆(k), are neglected for clarity of
presentation. Importantly, as is observed from Fig. 1, it is noted that by changing the trust-region
radius from ∆1 to ∆2 not only changes the magnitude of the step direction vectors (p1I and p2I ) but
also the direction highlighting the impact of this parameter. Successive iterations adjust the size of
the trust-region based on measures of improvement and algorithmic rules. A corresponding refined
model problem is also produced that is then minimized over the next iteration. Through this iterative
process, the material state converges on the correct solution.

As mentioned earlier, variable scaling may substantially affect convergence for the non-linear
problem corresponding to constitutive model integration and needs to be handled appropriately.
One common way to deal with this is to introduce the scaling ahead of time and develop a modified
model problem, m̃(k), that is of the general form given in Eqn. 19 [38]. In this way, the contributions
of the different solution variables equally contribute and all of the developments towards solving the
problems posed by Eqns. 19 and 20 can be leveraged.

To come up with the scaled model problem, m̃(k), two areas need to be addressed. The first has
already been discussed in this section – the merit function. Specifically, the merit function serves as
the function to be minimized such that ψ(k) plays the role of Ψ(k) in the scaled problem. The second
scaling issue that needs to be addressed is associated with the differences in the solution variables
and is manifest in the step vector, p(k)I . A similar approach to that of the merit function is used and
a scaled step vector, p̃(k)I , is introduced such that,

p̃
(k)
I = D2

IJp
(k)
J , (21)

with D2
IJ taking the form,

D2
IJ =

[
bσIijkl 0ij

0ij bγ

]
. (22)

A scaled trust-region magnitude, ∆̃(k), is also introduced such that ||p̃(k)I || ≤ ∆̃(k). For these
scalings, a stress normalization is again used such that bσ = 1 and bγ = 2µ. By using ψ(k) as the
merit function and using Eqn. 21 to write the scaled model problem, m̃(k), in terms of the scaled
step vector produces an expression of the form,
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 7

Figure 1. Schematic representation of the TR correction approach. A J2 yield surface (solid black line) is
marked along with an initial and final stress state (red stars). Dotted black lines correspond to the contours of
a representative model problem, m(k). Two different trust-region domains (and their radii, ∆1,2) are marked

along with the corresponding step direction vector, p1,2I .

m̃(k) (p̃I) = ψ(k) + g̃
(k)
I p̃I +

1

2
p̃IB̃

(k)
IJ p̃J , (23)

where the introduction of p̃I leads to the following relation for the gradient,

g̃
(k)
I = D1

LKr
(k)
K D1

LJJ
(k)
JN

(
D2
)−1
NI

, (24)

and Hessian,

B̃
(k)
IJ =

(
D2
)−1
IL
D1
MKJ

(k)
KND

1
MAJ

(k)
AL

(
D2
)−1
NJ

, (25)

terms, respectively. More convienent forms of these expressions may be written,

g̃kI =

[
(cε)

2

bσ
r
ε(k)
kl L −1klij +

(
cf
)2

bσ
rf(k)

∂φ

∂σ
(k)
ij

,
(cε)

2

bγ
r
ε(k)
ij

∂φ

σ
(k)
ij

−
(
cf
)2

bγ
rf(k)

∂σy
∂ε̄p(k)

]T
, (26)

and,

B̃kIJ =


(
cε

bσ

)2

L −1ijrsL
−1
rskl +

(
cf

bσ

)2
∂φ

∂σ
(k)
ij

∂φ

∂σ
(k)
kl

,
(cε)

2

bσbγ
L −1ijrs

∂φ

∂σ
(k)
rs

−
(
cf
)2

bσbγ
∂σy
∂ε̄p(k)

∂φ

∂σ
(k)
ij

(cε)
2

bσbγ
L −1klrs

∂φ

∂σ
(k)
rs

−
(
cf
)2

bσbγ
∂σy
∂ε̄p(k)

∂φ

∂σ
(k)
kl

,

(
cε

bγ

)2
∂φ

∂σ
(k)
rs

∂φ

∂σ
(k)
rs

+

(
cf

bγ

)2
∂σy
∂ε̄p(k)

∂σy
∂ε̄p(k)

 .
(27)
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8 B. T. LESTER AND W. M. SCHERZINGER

Given the scaled model problem, a method to find the desired scaled step vector is needed. The
established dogleg method is utilized for this purpose and will be briefly reviewed here. For details
and more extensive discussion, please see the text of Nocedal and Wright [38].

In order to iteratively update the solution vector, an initial, ∆̃0, and maximum, ∆̄, trust-region
radius must first be defined. To this end, it is noted that the proposed algorithm is an incremental
constitutive formulation. Therefore, it is expected that (i) the corrected stress tensor must lie between
the trial stress and the previously converged stress and (ii) the maximum possible plastic strain
increment would be the total strain increment. Therefore, the maximum trust-region radius, ∆̄, is
set to,

∆̄ = bσ
√

(σtri − σni ) (σtri − σni ) + bγdε̄, (28)

where σtri and σni are the principal components of the corresponding stress states and

dε̄ =

√
2

3
dεn+1
ij dεn+1

ij . (29)

The initial trust-region radius is selected as ∆̃0 = ∆̄. Importantly, this selection ensures that if a
single step solution exists it may be found.

Figure 2. Illustration of the dogleg approximation to find p1I as a combination of the Cauchy point, pcI and
full step vectors, pjI .

To iteratively update the scaled step vector, p̃(k)I , and scaled trust-region radius, ∆̃(k), the
aforementioned dogleg method is used. This approach is schematically represented in Fig. 2.
Specifically, the dogleg method utilizes two scaled step vectors – the Cauchy point, p̃cI , and full step,
p̃jI – and finds the point running between them that lies closest to the edge of the trust-region. The
former corresponds to the solution of the linear constrained (in terms of solution step magnitude)
problem while the latter is the minimizer of the unconstrained quadratic model problem, Eqn. 23,
and is essentially a scaled Newton-Raphson step. These vectors are given as,
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 9

p̃
c(k)
I = −τ (k)

(
∆̃(k)

||g̃(k)I ||

)
g̃
(k)
I , (30)

with τ (k) being,

τ (k) = min

[
1,

||g̃(k)I ||3

∆̃(k)g̃
(k)
I B̃

(k)
IJ g̃

(k)
J

]
, (31)

and

p̃
j(k)
I = −

(
B̃(k)

)−1
IJ
g̃
(k)
J . (32)

If the Cauchy point, p̃c(k)I , lies on the boundary of the trust-region it is accepted as the minimizing
step vector. When this condition is not satisfied, a vector running from the current material state
(stress state in Fig. 2) to a point lying along the path connecting the Cauchy point and the full step
with a magnitude of ∆̃(k) is searched for. If the full step lies within the trust-region it is used. This
process is given by Eqn. 33,

if ||p̃c(k)I || = ∆̃(k)

p̃
(k)
I = p̃

c(k)
I

else (33)

p̃
(k)
I = p̃

c(k)
I + τ

(
p̃
j(k)
I − p̃c(k)I

)
,

with τ being between (0, 1]. To find τ , a simple bisection algorithm is employed in this effort in lieu
of more complex approaches that have been adopted (i.e. conjugate gradient).

To update the trust-region radius, a measure of the iterative improvement is first determined.
Specifically, ρ(k) is defined as the actual improvement over expected and is given as,

ρ(k) =
ψ
(
x
(k)
I

)
− ψ

(
x
(k)
I + p

(k)
I

)
m̃(k) (0)− m̃(k)

(
p̃
(k)
I

) , (34)

and it can be noted that m̃(k) (0) = ψ(k). The updated scaled trust-region radius, ∆̃(k+1), is
determined based on this improvement measure. If substantial improvement is noted, the radius
is increased. On the other hand, when unacceptable gains are made the trusted region is reduced in
size. The update process is given as,

if ρ(k) <
1

4

∆̃(k+1) =
1

4
||p̃(k)I ||,

else

if ρ(k) >
3

4
and ||p̃(k)I || = ∆̃(k)

∆̃(k+1) = 2∆̃(k) (35)
else

∆̃(k+1) = 2||p̃(k)I ||

∆̃(k+1) = min
(

∆̃(k+1), ∆̄
)
.
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10 B. T. LESTER AND W. M. SCHERZINGER

At this stage, an additional check is performed to ensure that the updated solution vector is actually
an improvement. Specifically, if ρ(k) is above a threshold value, ρ(k) > η = 0.1, the solution is
considered to be an acceptable improvement. If not, the updated guess is unacceptable and rejected.
These conditions for these checks are,

if ρ(k) > η

Accept Solution x(k+1)
I = x

(k)
I + p

(k)
I ,

else (36)

Reject Solution x(k+1)
I = x

(k)
I ,

Force (k + 1) iteration to use the Cauchy step: p̃(k+1)
I = p̃

c(k+1)
I .

Note, the updating procedures in Eqns. 35 and 36 largely follow those in Algorithm 11.5 of [38].
Two key differences are evident in the proposed schemes versus that of [38]. The first being
that in the event of a rejected step, the subsequent iteration is forced to take a Cauchy step.
This is analogous to non-linear conjugate gradient algorithms taking a steepest descent step when
unacceptable orthogonality is observed. Furthermore, under acceptable conditions the trust-region
radius scales with the step vector magnitude (∆̃k+1 = 2||p̃kI ||). These changes were found during
algorithm development to improve convergence under numerically challenging conditions and as
such are utilized here.

3. RESULTS

To investigate the performance of the the model presented in Section 2, it was implemented in
the non-linear, quasistatics finite element code Sierra/SM [30, 31, 32]. First, a series of boundary
value problems are considered in Section 3.1 to both verify the proposed algorithm and demonstrate
its capabilities. The robustness and algorithmic performance are then extensively explored in
Section 3.2. In both these cases, the proposed implementation will be compared to those of both
a standard NR and a LS-NR algorithm. Finally, in Section 3.3, the impact of the scaling terms in
Eqns. 13 and 22 will be explored. For these studies, properties representative of an elastic-plastic
metal will be used (E = 200 GPa, ν = 0.3, σ0

y = 200 MPa).

3.1. Verification Problems

A series of global boundary value problems are solved in this section using the three considered
algorithms to verify the TR approach. Previous studies have emphasized the importance of using
consistent (algorithmic) over continuum tangent moduli to maintain the desired rates of convergence
at the global level [52, 53]. For the cases studied here, the linearization and differentiation of
the plastic flow residual and constitutive equation is the same across the proposed algorithms.
The differences between them is associated with the numerical approach to solve the non-linear
problem (Eqn. 10) posed by these relations. Therefore, the consistent tangent moduli are the same.
Regardless, the Sierra/SM FE code being used to solve the current problems does not require an
analytical tangent modulus from the implemented constitutive routines [32] and as such it is not
presented. Importantly, these considerations mean that the specification of the tangent modulus
does not affect the relative performance of the three schemes studied here. For these verification
problems, linear hardening with K = 20 GPa will be considered along with a yield exponent of
a = 8 that is common for FCC metals [54].

3.1.1. Biaxially Loaded Plate The capabilities of the TR numerical implementation developed in
this work are now explored. For these investigations, a thin sheet (1× 0.5× 0.01 mm length (L) by
width (W ) by thickness (t)) comprised of nine linear hexahedron elements is considered. A set of
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 11

six biaxial loadings corresponding to tension, compression, and various mixed conditions as shown
in Fig. 3a are imposed along the indicated edges in Fig. 3b and analyzed. Eighth-symmetry, plane
stress conditions are assumed for the remaining boundaries and fifty load steps are used for each
analysis. The in-plane stress and strain results are presented below in Fig. 4 for the NR, LS-NR, and
TR solution methods.
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u
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Case 1
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(a) Considered Loading Paths

ê1

ê2

ê3

uapp
1

uapp
2

(b) Schematic Boundary Value Problem

Figure 3. Considered (a) loading paths and (b) boundary value problem for the biaxially loaded plate tests

Excellent agreement between the three different implementations is noted in the six responses of
Fig. 4. The maximum relative differences of any of the algorithms was on the order of 1× 10−3%
although the error was primarily zero. In this way, the capability of the proposed trust-region model
through a variety of simple loading paths is demonstrated. With respect to the speed of the different
approaches, Table I presents the relative wallclock time of the different methods to those of the
NR approach. This baseline is selected as it represents the most common implicit implementation
and the relative cost of going to these more complex methodologies can be ascertained. Each case
is run on a single processor of the same dedicated machine to minimize any variability and take
just under a second. During plastic loading, two correction iterations are typically needed for each
implementation. As can be seen from Table I utilization of the LS-NR or TR methods comes at only
a modest cost. For the LS-NR approach, the additional time is less than 4% in all cases. The TR
algorithm is typically slower than LS-NR approach but the overall increase in time is still less than
7%.

Case NR LS-NR TR
1 1.000 1.026 1.066
2 1.000 1.024 1.038
3 1.000 1.006 1.014
4 1.000 1.039 1.025
5 1.000 1.021 1.005
6 1.000 1.009 1.038

Table I. Relative (to the NR method) computational times for NR, LS-NR, and TR methods through the the
six loading paths in Fig. 3a.

3.1.2. Rod in Combined Tension and Shear The previous study focused on a relatively simple
geometry of limited size. To further test the capabilities of this implementation, the problem of a rod
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(b) Case 2 Loading Path
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(c) Case 3 Loading Path
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(d) Case 4 Loading Path
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(e) Case 5 Loading Path
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(f) Case 6 Loading Path

Figure 4. Stress-strain responses in the 11 and 22 directions for the six loading cases presented in Fig. 3a as
determined by the NR, LS-NR, and TR methods.

subject to tension and shear previously tackled by Shterenlikht and Alexander [46] is considered.
This specific problem is investigated for two reasons. First, as pointed out by Shterenlikht and
Alexander, such a loading results in a variety of local loading paths in the considered domain testing
a wide set of responses. Secondly, in their study severe scaling issues prevented the simulations
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 13

using the dogleg method from completing [46]‖. Although in that case the GTN constitutive model
was used, consideration of this problem tests the ability of the extra scaling terms to address this
issue and provides a challenge for the proposed implementation.

The rod in question is taken to be 100 mm long (L = 100 mm) with a circular cross section
of radius 20 mm. All degrees of freedom along the top edge (x3 = L) are fixed (u1 = u2 =
u3 = 0) while the bottom (x3 = 0) is constrained to remain planar (u3 = 0). To load the rod, a
horizontal displacement of uapp1 = 50 mm is applied along the bottom, x3 = 0, face. Schematically,
these conditions are presented in Fig. 5a. Two additional points (pt. A = (−r/2, 0, 0) and pt.
B = (r/2, 0, 0)) are indicated for subsequent analysis with the origin being at the center of the
bottom face. For these simulations a fixed number of loading increments (200) is used and no global
timestep cutbacks are allowed to better enable direct comparisons between the various results.

(a) Mesh and boundary conditions (b) Final deformed configuration as determined by the TR
method. The contours correspond to the magnitude of the

displacement vector.

Figure 5. Summary of rod under combined tension and shear loadings: (a) Boundary conditions and mesh
and (b) Final result

Results of the analyses are given in Figs. 5b and 6 and good agreement is noted between the
various numerical implementations. Specifically, Fig. 5b shows the final, deformed configuration
at the end of the loading as determined by the TR method highlighting the ability of the studied
implementation to handle large deformations. An essentially identical result is also obtained for
the LS-NR approach. Additionally, Fig. 6a presents the effective von Mises stress at pts. A and
B, respectively, at different applied displacements. No measurable difference is found at either
point between the LS-NR and TR methods at any applied loading further verifying the proposed
implementations. Agreement is also observed with the NR method through about the first 60% of
the simulation. At this point, the NR approach fails to converge. This comparison demonstrates the
capability of the proposed algorithm to handle previously difficult BVPs.

To consider the relative performance and speed of the algorithms in these cases, the average
(over the entire model) number of correction iterations needed at each point of the loading path
is determined and plotted in Fig. 6b. In these cases, the average number of iterations is plotted

‖In their study [46], the Levenberg-Marquardt approach was able to successfully analyze this problem. However, as the
dogleg algorithm they discuss more closely resembles the current method, the performance of that approach is of more
concern for motivation and comparison purposes.
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14 B. T. LESTER AND W. M. SCHERZINGER

in lieu of the maximum to better assess the overall performance of the algorithms rather than
extremum cases. As can be seen in the results of Fig. 6b identical responses are noted for the LS-
NR and TR implementations. Both of these approaches require fewer correction iterations than the
more standard NR – highlighting additional benefits for these methodologies in terms of reducing
computational cost.

As fixed time incrementation is used in these simulations, it is possible that the selected timestep
sizes may influence performance of the various algorithms. To investigate this possibility, a second
set of simulations utilizing only 100 loading increments are performed and the results presented in
Fig. 6b. As expected, a slightly higher average number of correction iterations is required versus the
200 increment case. The same trends in comparing the three methods are also observed in this case
highlighting the improved performance of the LS-NR and TR methods over the more traditional
NR case. With respect to speed, no appropriate comparison is available between the NR and other
methods due to lack of convergence in the former. In comparing the LS-NR and TR results, it is
noted that the TR cases had 3.6% and 2.5% higher wallclock times than than the LS-NR approach for
the 100 and 200 increment analyses, respectively. Although slightly more expensive, these timings
again show comparable speed performance between the two implementations.

(a) Effective von Mises stress at pt. A and B, respectively. (b) Element averaged inelastic correction iterations
required utilizing different load incrementation.

Figure 6. Results of rod tension/shear problem: (a) von Mises effective stress and (b) required correction
iterations over loading as determined by the NR, LS-NR, and TR methods

3.2. Numerical Robustness

With the capabilities of the trust-region implementation verified through different boundary value
problems, the next issue to consider is that of the robustness of the proposed algorithm. To that end,
the methodology of Scherzinger [29] is adopted. Through this approach, a series of trial stress states
are determined and used as input to the considered algorithm. The number of iterations needed to
converge (or lack there of) is recorded. The considered initial stress states scan the π-plane between
the initial yield surface and a surface whose equivalent effective stress is 30 times that of yield
(φ = 30σ0

y). Although quite large, 30σ0
y is selected as strain increments may be produced during

inelastic deformation resulting in quite substantial trial stresses. Given that local convergence failure
can lead to global time step cutbacks and potentially noticeable time costs, robustness under large
trial stresses is desired. Additionally, in global FE implementations using a preconditioned conjugate
gradient solver (like Sierra/SM [30, 32]) substantial variation in a displacement (strain) guess may
be observed further necessitating robustness at seemingly excessive trial stress states. Sampling in
this fashion results in over 95,000 trial stress states whose numerical response is considered.

First, three different yield exponents are considered (a = 6, 8, and 100) that sequentially increase
the curvature of the yield surface. The former values are commonly used for BCC and FCC

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 15

metals, respectively [54], while the latter a = 100 case approximates the Tresca yield surface and
its numerically problematic corners. Trivial cases of a = 2 and 4 corresponding to a von Mises
yield surface are neglected as the results show a uniform, single step return mapping procedure
as is expected for a radial-return. For these studies, perfect plasticity (K = 0) is considered as
Scherzinger [29] indicated hardening had little impact on algorithmic performance. For the TR
algorithm, one correction must be made for usage in this analysis. Specifically, as no strain
increment or previous material state is given a modification is needed for ∆̄ in Eqn. 28. Therefore,
following the motivations discussed regarding Eqn. 28, it is noted (i) the trial stress, not total strain
increment, is used as input to the constitutive model (ii) with K = 0 the effective stress measure of
the solution stress will be equal to the yield value and (iii) the total strain increment corresponds to
the elastic strain of the trial stress state. Therefore, for this study, the modified maximum trust-region
radius is written as,

∆̄ = bσ
√(

φ
(
σtrij
)
− σ0

y

) (
φ
(
σtrij
)
− σ0

y

)
+ bγ

√
2

3
C−1ijklσtrklC

−1
ijmnσ

tr
mn. (37)

The convergence maps for the case of yield exponents a = 6, 8, and 100 are presented in Fig. 7.
These maps present the number of correction iterations needed to achieve convergence at a given
trial stress space with the results projected onto the deviatoric π-plane. Lighter colors denote fewer
correction iterations and points marked in red do not converge by the 40th iteration.

Importantly, between the three convergence maps in Fig. 7 it is observed that the TR algorithm
converges for almost every case by the 40th iteration. In fact, all considered trial stresses for the
a = 6 and 8 cases do converge by the specified iteration. A few (< 1%), isolated points may be
found in the a = 100 Tresca-like case that do not converge by the 40th iteration . Furthermore, as
expected the three maps exhibit a six-fold symmetry that is anticipated for the isotropic yield surface.
Additionally, it can clearly be seen that as the exponent and corresponding curvature increases so do
the number of required iterations. The a = 6 cases shows a fairly uniform light coloration indicating
relatively easy convergence for most cases – even at substantial trial stresses. At the higher a = 8
value, some more computational difficulty arises in domains closer to the higher curvature areas.
In the limit case of a = 100 a generally more expensive convergence may be observed. A more
diffuse map is noted but a clear trend of increased correction iterations nearest the corners is evident.
Additionally, the cases that do not converge by the 40th seem to occur at the edges of these domains.

To more extensively compare the results presented in Fig. 7, cumulative distributions of the total
percentage of sampled cases that have successfully converged by a given correction iteration are
presented in Fig. 8. Although the convergence maps for the NR and LS-NR cases are not presented in
this work (see Scherzinger [29]), their responses were calculated and the corresponding cumulative
convergence distributions are also presented in Fig. 8. It should be noted that given the sampling
used to generate Fig. 7, the current distributions do not correspond to that expected during a typical
boundary value problem.

From the results of Fig. 8, a number of important observations regarding the convergence
characteristics of the three methods may be discerned. First, in all three cases, the response of
the different methods through the first four correction iterations is quite similar. At this point,
the converged cases of the LS-NR approach increase at a quicker rate than the other two cases.
Eventually, for all three exponents, the TR implementation has a higher percentage of converged
trial stresses the LS-NR. As the exponent increases the percentage of converged case at which
the TR algorithm has a higher cumulative convergence decreases. At this stage, the number of
cases converging per iteration decreases and both the LS-NR and TR method approach complete
convergence (100% cumulative convergence). The NR implementation, however, cannot achieve
complete convergence and fewer cases converge with larger exponents. Importantly, for all of the
considered yield surfaces the LS-NR and TR method always converge. In the a = 100 case this
does not always occur by the 40th iteration, but it does occur within 60. These problematic trial
stresses represent much less than 1% of the tested cases. To summarize the capabilities of the
different numerical schemes, the number of iterations needed to achieve complete, 100% cumulative
convergence are given in Table II. As would be expected, increase in the curvature of the yield
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(a) a = 6 (b) a = 8

(c) a = 100

Figure 7. Convergence maps for the TR algorithm giving the number of correction iterations needed at a trial
stress state in deviatoric space to achieve convergence. Three Hosford yield surface with different exponents,
a, are considered. The same scale is used for all figures and points that do not converge within 40 iterations

are marked red.

surface (reflected in higher values of a) leads to more iterations required to achieve complete
convergence.

a NR LS-NR TR
6 - 11 12
8 - 24 16

100 - 45 52
Table II. Number of iterations required to achieve complete, 100% cumulative convergence for different

Hosford yield exponents (a) for the NR, LS-NR, and TR approaches.

Based on these results, the TR performance is clearly superior to the NR method in terms of
robustness. With respect to the LS-NR method, such a distinction is less clear. Figure 9 explores
such a comparison by presenting the iteration difference between the two approaches. Specifically,
in Fig. 9a a π-plane map in which the iteration change in going to the TR approach from that of the
LS-NR is plotted for the a = 8 case. Put another way, the iteration change is equal to the iterations
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Figure 8. Cumulative convergence distributions of NR, LS-NR, and TR methods for three different Hosford
yield surface exponents, a. Considered cases come from sampling the π-plane at locations whose scalar

effective stresses are σy < φ
(
σtrij
)
≤ 30σy .

needed for the TR method minus those of the LS-NR approach. As such, trial stress states in red
indicate regions in which the TR algorithm requires more correction iterations than the LS-NR and
blue indicates areas in which the TR approach requires fewer correction iterations and therefore
exhibits superior performance. Regions in green denote cases in which the TR required at least
ten fewer correction iterations. In terms of extremes, the proposed TR scheme required eighteen
fewer or ten addition correction iterations versus the LS-NR. From the results of Fig. 9, it may
be observed that the two algorithms show nearly identical convergence behaviors in domains with
smaller effective stress measures. At trial stresses with larger effective stresses, substantial gains
(in terms of needed iterations) may be obtained by using the TR method in some shear dominated
domains. Figure 9b expands on this by presenting the average change in correction iterations for
a given effective stress measure for all three yield exponents. Averaging in this fashion sample
considers a variety of stress states (e.g. shear-dominated; uniaxial) and yields a representative metric
for a given stress level. From such an analysis, it is observed that at lower stress measures there is no
difference in required number of iterations. As the yield exponent a increases, however, the length of
this similarity decreases. For the smallest exponent considered, the LS-NR algorithm outperforms
(in terms of correction iterations) the TR at all effective stress levels. At the larger a = 8 value,
regions in which both TR and LS-NR algorithm exhibit superior performances are clearly observed.
When the curvature approaches that of Tresca (a = 100), large oscillations are seen in the iteration
differences. None the less, the trend of the response is that TR seems to perform better than the
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LS-NR at most effective stress levels. These results indicate the TR algorithm may hold promise for
more computationally challenging problems.
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Figure 9. Iteration change (iter(TR) − iter(LS-NR)) needed by the TR algorithm versus the LS-NR
approach: (a) π-plane map in which any trial stress state requiring 10 or more fewer iterations is colored
green while any case needing 10 or more additional iterations is shaded purple; (b) average number of
correction iterations needed for a given effective stress measure. The results correspond to the a = 8 Hosford

yield surface and two specific stress states in (a) are labelled (A) and (B) for later analysis.

To consider the convergence characteristics and response of the TR algorithm more closely, two
trial stresses are marked in Fig. 9a. The first, marked (A), corresponds to a trial stress state, σtr(A)

ij ,
with principal components σ1 = 1, 378 MPa, σ2 = −242 MPa, and σ3 = −1, 135 MPa and is one of
lower effective trial stress states showing a more than 10 iteration improvement in going to the TR
method. The second, marked (B), is for a trial stress state, σtr(B)

ij whose principal components are
σ1 = 2, 187 MPa, σ2 = −876 MPa, and σ3 = −1, 311 MPa and is selected for the opposite reason. In
this case, the TR implementation required six more iterations. Figures 10 and 12 explore the source
of these differences by presenting the return mapping (convergence) trajectories. These trajectories
start from the trial stress state (denoted as the “0” iteration) and plot the successive states that are
found during the return mapping process. In this way, the path taken during the inelastic correction
process may be visualized to compare and analyze the performance of the different algorithms.

In Fig. 10, the return mapping processes of the NR (10a), LS-NR (10b), and TR (10c) algorithms
with a trial stress of σtr(A)

ij are presented. Figure 11 gives the evolution of the merit function for
the LS-NR and TR approaches along with the scaled trust-region radius during inelastic correction.
From the results of these two figures, it is observed that the return path of the TR implementation
differs from the other two in the very first iteration. Specifically, the NR and LS-NR both take a
substantial step that brings the stress state much closer to the yield surface but overshoots in terms
of flow direction. This leads to a second step that attempts to correct the direction but again goes too
far. The LS-NR algorithm is eventually able to find the correct direction and descend to the yield
surface using a large number of step size cutbacks (see Scherzinger [29]). In Fig. 11, this manifests
as the set of iterations with only small changes to the merit function. As the NR approach cannot
cutback, it is unable to compensate and cannot converge. The TR approach, on the other-hand,
actually rejects this initial step and cuts back on the scaled TR radius as shown in Fig. 11. This
leads to a much smaller second correction iteration for the TR that does not overshoot the desired
flow direction. Subsequent steps then eventually find the correction direction and converge to the
solution in far fewer iterations than the LS-NR approach.

Figures 12 and 13 present the return mapping processes of the the algorithms and merit function
and scaled trust-region evolution, respectively, for the opposite case (σtr(B)

ij ) in which the LS-
NR (and NR) approaches outperform the TR. Initially, the return paths of the three methods are
similar to that discussed for Fig. 10. The LS-NR and NR both take large initial steps while the
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(a) NR (b) LS-NR

(c) TR

Figure 10. Inelastic correction process of the CPP-RMA problem solved by the (a) NR, (b) LS-NR, and
(c) TR algorithms with an initial trial stress of σtr(A)

ij . The marked points are used to indicate the current
correction iteration for select points. As the NR algorithm does not converge, only the first 20 iterations are

plotted.

TR implementation rejects the first, large step. Unlike the previous results, the second correction
for the LS-NR and NR algorithms finds the correct direction and quickly descend to the solution.
Similar to the previous case, the TR approach seeks to find the correct direction early and descend
to the correct solution. As indicated in Figs. 12c and 13, however, this requires multiple iterations
being rejected and TR radius cutbacks. This leads to more correction steps than the LS-NR and NR
approaches. Interestingly, the fact that in both these cases the TR seeks to stay so close to the correct
descent direction is likely indicative of the scaling introduced into the merit function.
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Figure 11. Merit function, ψ, and TR radius, ∆̃ evolution through the LS-NR and TR inelastic correction
process associated with an initial trial stress of σtr(A)

ij .

3.3. Impact of Scaling

Trust-region methods and the performance of corresponding algorithms are known to be sensitive
to scaling. Previously, two transformations were introduced – D1

IJ in Eqn. 13 and D2
IJ in Eqn. 22 –

to address scaling in the merit function and state variable increments, respectively. Up to this point,
these values have been fixed with limited motivation as to their selection. The impact of these terms
on the performance of TR algorithm has also not been determined or addressed. These issues are
investigated in this section. First, to consider the impact of the relative contrast of merit function
components, a modified weighting constant for the flow rule residual of the form cε = β

(
E/σ0

y

)
is

introduced with β being a constant. At this point, it is emphasized that β is neither a material model
nor algorithmic parameter. It is instead an artificial scaling variable introduced to study the effect
of the relative scaling of the two residual contributions. To determine the range of β, it is noted
that cε and cf differ by E whose magnitude is 2.0× 1011. Therefore, to consider the maximum
contrast between a scaled merit function and one utilizing both stress and strain terms, the range
10−11 ≤ β ≤ 100 will be explored. As such, the larger values of β correspond more closely to the
properly scaled cases studied throughout earlier sections of this work. Smaller artificial scalings
lead to more substantial deviations from what has been used and essentially serve to decrease the
contribution of the flow rule residual, rεij , in the merit function evaluation.

Figure 14 presents a summary of cumulative convergence distributions (like those in Fig. 8)
determined for 200 different values of β. Specifically, for each artificial scaling the necessary
number of iterations needed to first achieve at least cumulative convergences of 10%, 25%, 50%,
75%, and 100% are presented. If the specified threshold is not reached for a given value of β, it is not
plotted. The percentage of unconverged states (after 100 iterations) is also presented to highlight any
lack of convergence. As iterations occur only in discrete values, the actual cumulative convergence
at these points will not match the given limit value exactly. From the results in Fig. 14, it can
be observed that scaling and the relative contrast between the residual terms in the merit function
play a strong role in the performance of the TR algorithm. For instance, only properly scaled cases
(β >≈ 10−2) exhibit complete convergence while artificially scaled problems (β ≤ 10−3) converge
for less than 30% of the trial stress states and may be considered poorly scaled. As such, it can clearly
be seen that careful selection of normalization constants is necessary for the TR implementation.

To investigate the source of the strong scaling dependence of the proposed approach, Fig. 15
presents the return mapping process of a case with no artificial scaling, β = 100, and one with
moderate artificial scaling (β = 10−3). The trial stress state in this study corresponds to σ

tr(A)
ij
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(a) NR (b) LS-NR

(c) TR

Figure 12. Inelastic correction process of the CPP-RMA problem solved by the (a) NR, (b) LS-NR, and (c)
TR algorithms with an initial trial stress of σtr(B)

ij (MPa). The marked points indicate the current correction
iteration although for clarity not all points are labelled.

presented in Fig. 10. For the artificially scaled response, the first 100 iterations are presented while
the β = 100 response corresponds to the TR results previously presented and discussed in Fig. 10c.
In Fig. 15a, it can be observed that the the inappropriately scaled case (β = 10−3) initially takes
the large step bypassed by the correctly scaled case. This indicates the impact of the scaling on
the algorithm performance as this large step is now acceptable in terms of improvement in the
merit function. Subsequent iterations head straight to the yield surface albeit well away from the
appropriate location. Given the poor scaling of the problem, the successive correction steps are
unable to move away and instead oscillate around the surface ever so slowly heading towards
the correct solution (Fig. 15b). In this context, the decreased β leads to the consistency condition
contribution dominating the model problem underlying the TR approach. Therefore, unless the merit
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Figure 13. Merit function, ψ, and TR radius, ∆̃ through the LS-NR and TR inelastic correction process
associated with an initial trial stress of σtr(B)

ij .
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Figure 14. Influence of relative contrast between cε and cf on the convergence characteristics of the
proposed TR method. Results correspond to the necessary number of correction iterations to achieve the
specified cumulative convergence threshold as a function of the artificial scaling parameter, β, in which

cε = β
(
E/σ0y

)
.

function is properly scaled, the TR method cannot simultaneously satisfy the two conditions at the
heart of the inelastic correction problem.

The second potential source of scaling is associated with the state variables and is addressed via
selection of bσ and bγ . In all previous cases, bσ = 1 and bγ = 2µ which given the selected material
properties corresponds to a difference of roughly eleven orders of magnitude. To investigate this
effect, the cumulative convergence thresholds utilizing a plastic consistency scaling of bγ = β2µ
(with 10−11 ≤ β ≤ 100) are determined as a function of the artificial scaling parameter, β, and the
corresponding results are plotted in Fig. 16. In Fig. 16a, bγ is scaled independently of the merit
function to isolate the impact of the state variable terms.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 23

(a) Inelastic correction iterations projected onto the π-
plane

(b) Highly zoomed in view of the π-plane

Figure 15. Inelastic correction process of trust-region (TR) method using two different stress normalization
scalings for the a = 8 yield surface with an initial trial stress of σtrij = σ

tr(A)
ij (MPa). The results are

presented in terms of the artificial scaling parameters, β, where cε = β (E/σy).
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Figure 16. Influence of scaling the state variables on the convergence characteristics of the trust-region

method in terms of the artificial scaling parameter, β.

From the results of Fig. 16a, a moderate dependence on the scaling of bγ is observed. Specifically,
complete convergence is only achieved with scalings such that the consistency multiplier is still
roughly stress measured (bγ >≈ 0.2µ). However, when poorly scaled (β ≤ 10−3) the necessary
correction iterations to achieve the remaining convergence thresholds do not change and only
increase by one or two iterations versus their lowest values. Additionally, convergence is achieved
for more than 80% of the considered trial stress states regardless of the artificial scaling coefficient.
This response is in contrast to the impact of the merit function scaling (Fig. 14) in which a
pronounced effect is observed with β and very few cases are able to converge. Therefore, it is
reasonable to state that although appropriate scaling of the state variable coefficients is necessary
to achieved the desired robustness, the dependence is far less severe than on the merit function
constants.
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Given the disparity between the scaling dependence of the merit function and state variables,
one possibility to try and alleviate the convergence difficulties of the former is to scale both terms
together. This course is investigated in Fig. 16b and the corresponding results are observed to
much more closely follow the merit function scaling trends than those of bγ . Specifically, complete
convergence is only achieved when properly scaled (β >≈ 10−2) and limited convergence is seen
over the rest of the domain. Although similar to the results of Fig. 14 some differences may
be observed. Specifically, the 25% convergence threshold is achieved over a larger β range and
some limits (e.g. 100%) require fewer iterations. With respect to this latter point, no clear trend is
observed. In any case, these results serve as further evidence that inappropriate scaling in the merit
function leads to drastically reduced performance of the TR method. Additionally, scaling the state
variables in a similar fashion cannot rectify this issue.

4. CONCLUDING REMARKS

In this work, a novel method utilizing the TR method for the implicit integration of plasticity
models is presented. Unlike previous approaches, the non-linear equations forming the core of
stress updating procedure are not solved via the Newton-Raphson method thereby bypassing the
corresponding robustness issues and avoiding the use of substepping or line search techniques. The
proposed methodology was discussed in detail and implemented for a Hosford plasticity model.
Through a series of boundary value problems, the model response was verified against traditional
NR and LS-NR schemes with only a slight increase in computational cost. Importantly, by using
an algorithm tailored for constitutive model integration, the current implementation was able to
solve the problem of a rod loaded in tension and shear that could not be solved with just a
NR implementation and vexed a previous dogleg TR approach. The robustness of the proposed
algorithm was studied in detail and demonstrated to exhibit convergence characteristics similar to
that of the LS-NR method and far in excess of the NR performance when properly scaled. It was also
clearly shown that the scaling issues in the TR approach are substantial and the merit function and
state variable vector must be scaled to achieve the desired algorithmic performance. Of the two, the
merit function was shown to be more potent and the performance of the proposed implementation
quickly deteriorates without appropriate treatment.

Given the performance reported through this effort, the proposed routine detailed here represents
an exciting possibility towards improved constitutive integration schemes. To this end, the current
implementation is a first attempt at using TR methods that have been developed in the optimization
community for other purposes. Potential improvements via specialized model problem formulation
or alternatives to the dogleg method could increase efficiency and drive down cost. Additionally,
the possibilities of this approach to further improve on the performance for more challenging
models with anisotropy, alternative and/or coupled physics (i.e. damage or tight thermomechanical
coupling), and multisurface cases is enticing. Such investigations shall be pursued in future efforts.
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36. Dutko M, Perić D, Owen DRJ. Universal anisotropic yield criterion based on superquadric functional

representation: Part 1. algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and
Engineering 1993; 109:73–93.

37. Seifert T, Schmidt I. Line-search methods in general return mapping algorithms with application to porous
plasticity. International Journal for Numerical Methods in Engineering 2008; 73:1468–1495.

38. Nocedal J, Wright SJ. Numerical Optimization. 2 edn., Springer Series in Operations Research and Financial
Engineering, Springer Science+Businees Media: New York, NY, 2006.

39. Sorensen DC. Newton’s method with a model trust region modification. SIAM Journal of Numerical Analysis 1982;
19(2):409–426.

40. Powell MJD. On the global convergence of trust region algorithms for unconstrained minimization. Mathematical
Programming 1984; 29:297–303.

41. Gertz EM. A quasi-Newton trust-region method. Mathematical Programming 2004; 100:447–470, doi:
10.1007/s10107-004-0511-1.

42. Ye F, Liu H, Zhou S, Liu S. A smoothing trust-region Newton-CG method for minimax problem. Applied
Mathematics and Computation 2008; 199:581–589.

43. Gratton S, Sartenaer A, Toint PL. Recursive trust-region methods for multiscale nonlinear optimization. SIAM
Journal of Optimization 2008; 19(1):414–444.

44. Sunar M, Belegundu AD. Trust region methods for structural optimization using exact second order sensitivity.
International Journal for Numerical Methods in Engineering 1991; 32:275–293.

45. Bergmann M, Cordier L. Optimal control of the cylinder wake in the laminar regime by trust-region methods and
POD reduced-order models. Journal of Computational Physics 2008; 227:7813–7840.

46. Shterenlikht A, Alexander NA. Levenberg-Marquardt vs Powell’s dogleg method for Gurson-Tvergaard-Needleman
plasticity model. Computer Methods in Applied Mechanics and Engineering 2012; 237–240:1–9.

47. Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations arising in
large-deformation analysis. International Journal for Numerical Methods in Engineering 1980; 15(12):1862–1867.

48. Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer
Methods in Applied Mechanics and Engineering 1987; 62:305–320.

49. Scherzinger WM, Dohrmann CR. A robust algorithm for finding the eigenvalues and eigenvectors of 3x3 symmetric
matrices. Computer Methods in Applied Mechanics and Engineering 2008; 197:4007–4015.

50. Qidwai MA, Lagoudas DC. On thermomechanics and transformation surfaces of polycrystalline NiTi shape
memory alloy material. International Journal of Plasticity 2000; 16:1309–1343.
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