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Introduction	

In	the	classical	rate	theory	for	void	swelling,	vacancies	and	self-interstitials	are	produced	
by	radiation	in	equal	numbers,	and	in	addition,	thermal	vacancies	are	also	generated	at	the	
sinks,	primarily	at	edge	dislocations,	at	voids,	and	at	grain	boundaries.	In	contrast,	due	to	
the	high	formation	energy	of	self-interstitials	for	normal	metals	and	alloys,	their	thermal	
generation	is	negligible,	as	pointed	out	by	Bullough	and	Perrin	[1].	However,	recent	DFT	
calculations	of	the	formation	energy	of	self-interstitial	atoms	in	bcc	metals	[2,3]	have	
revealed	that	the	sum	of	formation	and	migration	energies	for	self-interstitials	atoms	(SIA)	
is	of	the	same	order	of	magnitude	as	for	vacancies.	This	is	illustrated	in	Fig.	1	that	shows	
the	ratio	of	the	activation	energies	for	thermal	generation	of	SIA	and	vacancies.	For	fcc	
metals,	this	ratio	is	around	three,	but	for	bcc	metals	it	is	around	1.5.		Reviewing	theoretical	
predictions	of	point	defect	properties	in	δ-Pu	[4],	this	ratio	could	possibly	be	less	than	one.	
As	a	result,	thermal	generation	of	SIA	in	bcc	metals	and	in	plutonium	must	be	taken	into	
considerations	when	modeling	the	growth	of	voids	and	of	helium	bubbles,	and	the	classical	
rate	theory	(CRT)	for	void	and	bubble	swelling	must	be	extended	to	a	generalized	rate	
theory	(GRT).	

	

	

	

	

	

	

	

	

	

	

	

Fig.1.	Ratio	of	SIA	formation	plus	migration	energy	divided	by	self-diffusion	energy	
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Structural	materials	contain	elements	that	transmute	to	radioactive	species	when	exposed	
to	neutrons	in	nuclear	reactors,	and	they	may	subsequently	decay	by	emission	of	an	α-
particle.	The	helium	atom	produced	by	the	radioactive	decay	also	generates	additional	
radiation-induced	defects,	and	becomes	then	trapped	in	one	vacancy,	diffuses	with	it	until	
captured	by	voids	and	bubbles,	or	until	it	recombines	with	a	SIA.	When	the	latter	happens,	
the	helium	atom	is	promoted	to	an	interstitial	site,	and	it	diffuses	as	an	interstitial	impurity	
at	a	much	faster	rate	than	the	substitutional	helium	in	a	vacancy.	It	either	becomes	
captured	at	voids	or	bubbles,	or	it	finds	another	empty	vacancy	and	converts	back	to	a	
substitutional	helium.	The	end	result	is	that	helium	acquires	an	effective	diffusion	
coefficient	that	determines	the	net	capture	at	voids	or	bubbles,	but	it	will	be	shown	that	it	
needs	not	be	specified	in	the	GRT.	

In	δ-Pu,	the	formation	energy	for	SIA	is	so	low	that	an	interstitial	helium	is	unstable	and	
will	create	spontaneously	a	Frenkel	pair,	namely	a	SIA	and	a	vacancy	that	it	occupies.		

As	a	result,	a	generalized	rate	theory	(GRT)	is	needed	for	δ-Pu	that	includes	three	species	
produced	by	radiation	and	being	captured	at	sinks,	namely	self-interstitials,	mono-
vacancies,	and	vacancies	containing	a	helium	atom,	and	two	of	these	species,	namely	self-
interstitials	and	vacancies,	can	also	be	re-emitted	by	the	sinks	via	thermal	activation.	

Derivation	of	Generalized	Rate	Theory	

Let	G	represent	the	total	generation	rate	of	vacancies	and	self-interstitials	in	collision	
cascades,	and	assign	fG	as	the	fraction	of	G	that	escapes	cascades	as	migrating	defects.	Then	
the	radiation-induced	generation	rates	of	self-interstitials,	of	vacancies,	and	of	helium	are	
fG,	(f-1/n)G,	and	G/n,	respectively.	Here,	n	is	the	number	of	displacements	of	atoms	
generated	by	one	a-decay.	Appendix	A	provides	details	on	how	to	compute	both	G	and	n.	
Kubota	[5]	has	carried	out	molecular	dynamics	simulations	of	20	keV	collision	cascades	in	
Pu-Ga	alloys	at	600	K	and	found	a	small	surviving	fraction	of	only	about	50	pairs	of	
vacancies	and	self-interstitials	that	indicates	that	f	=	0.1.	At	lower	temperatures,	however,	f	
could	be	larger,	and	a	value	of	f	=	0.2	will	be	adopted	for	our	calculations.	

The	rates	of	adsorption	as	well	as	of	re-emission	are	proportional	to	the	respective	sink	
strength;	the	sink	strength	for	edge	dislocations	is	defined	as	

	 sd =
2π ρd
ℓn[Rd / rd ]

	 	 	 	 	 	 	 	 (1)	

where	ρd	is	the	dislocation	density,	 rd ≈ 2b 	is	the	dislocation	core	radius,	and	

	

€ 

2Rd = 2 / π ρd 	 	 	 	 	 	 	 	 (2)	

is	the	average	separation	distance	between	dislocations.	The	sink	strength	for	bubbles	with	
an	average	radius	Rb	is	given	by	

	

€ 

sb = 4π Rbnb 	 	 	 	 	 	 	 	 	 (3)	
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where	nb	is	the	number	of	bubbles	per	unit	volume.	

During	the	almost	constant	α-decay	and	perpetual	defect	generation,	average	
concentrations	of	Ci,	Cv,	and	CHe	for	self-interstitials,	vacancies,	and	helium	atoms,	
respectively,	are	established	within	the	crystalline	metal,	and	balanced	by	the	losses	to	
sinks.	For	this	quasi-steady-state,	the	rate	equations	are	

f G −κ DiCiDvCv − (Zd
i sd + Zb

i sb )DiCi +Di (Zd
i sdCi

d + Zb
i sbCi

b ) = 0 	 	 (4)	

( f −1/ n)G −κDvCvDiCi − (Zd
vsd + Zb

vsb )DvCv +Dv (Zd
vsdCv

d + Zb
vsbCv

b ) = 0 		 (5)	

	 G / n− Zb
Hesb DHeCHe = 0 	 	 	 	 	 	 	 (6)	

Eq.	(6)	reflect	the	fact	that	helium	becomes	absorbed	by	bubbles	only,	and	once	in	bubbles,	
will	not	be	re-emitted	into	the	surrounding	crystal,	because	the	activation	energy	for	such	a	
process	is	too	large.	The	rate	of	helium	arrival	at	the	bubbles,	the	second	term,	is	simply	
equal	to	the	rate	of	helium	generation,	and	this	is	the	reason	why	the	effective	helium	
diffusion	coefficient,	DHe	,	need	not	be	specified.	

The	rate	equations	(4)	and	(5)	are	coupled	by	the	recombination	rate,	the	second	term,	
with	the	recombination	coefficient	given	by	[6]	

	 κ ≈
32π
a0
2

1
Dv

+
1
Di

"

#
$

%

&
' 	 	 	 	 	 	 	 	 (7)	

where	a0	is	the	lattice	parameter.	The	second	terms	in	eqs.	(4)	and	(5)	represent	the	loss	of	
self-interstitials	and	vacancies	to	the	sinks,	while	the	third	terms	are	the	respective	thermal	
production	terms.	These	terms	are	determined	by	local	thermodynamic	conditions	at	the	
sinks	and	are	given	below.	Hence,	the	two	unknown	quantities,	henceforth	abbreviated	by		

	 φi = DiCi and φv = DvCv ,	 	 	 	 	 	 	 (8)	

are	the	positive	solutions	of	eqs.	(4)	and	(5).	In	order	to	present	these	solutions	in	a	
compact	form,	we	introduce	several	abbreviations.	

The	total	sink	strengths	for	interstitial	and	vacancy	absorption	are	

	 σ i = Zd
i sd + Zb

i sb and σ v = Zd
vsd + Zb

vsb ,	 	 	 	 	 (9)	

while	for	thermal	re-emission	they	are	

	 Ψ i = Di (Zd
i sdCi

d + Zb
i sbCi

b ) /σ i and Ψ v = Dv (Zd
vsdCv

d + Zb
vsbCv

b ) /σ v ,	 (10)	

respectively.	With	these	abbreviations,	the	positive	solutions	can	be	expressed	as	
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σ i φi =
Wi −σ iσ v

2κ
+
1
2
Ψ i −Ψ v( )+ G

2n
	 	 	 	 	 	 (11)	

σ v φv =
Wv −σ iσ v

2κ
+
1
2
Ψ v −Ψ i( )− G

2n
	 	 	 	 	 (12)	

where	

Wi = 4κσ iσ v ( f G +Ψ i )+ (κG / n−σ iσ v +κΨ i −κΨ v )
2 	 	 	 (13)	

	 Wv = 4κσ iσ v ( f G −G / n+Ψ v )+ (κG / n+σ iσ v +κΨ i −κΨ v )
2 	 	 (14)	

The	bubble	swelling	rate	can	now	be	computed	as	the	difference	in	arrival	rates	of	
vacancies	and	interstitials	at	bubbles,	plus	the	re-emission	rate	of	self-interstitials	minus	
the	re-emission	rate	of	vacancies	from	bubbles,	and	finally	plus	the	rate	of	helium	atoms	
arriving	at	bubbles.	

This	swelling	rate	then	is	

dS
dt

= sbR
dR
dt

= sb Zb
v (φv −DvCv

b )− Zb
i (φi −DiCi

b ){ }+G / n 	 	 	 (15)	

Before	it	can	be	integrated	to	obtain	the	combined	void	and	bubble	swelling,	sink	bias	
factors	and	thermal	re-emission	rates	must	be	defined.	

Sink	Bias	Factors	

The	elastic	interaction	of	the	migrating	defects	with	the	internal	stress	fields	of	dislocations	
and	bubbles	influences	their	diffusion.	This	elastic	interaction	is	dependent	on	the	
relaxation	volume	of	the	defect.	For	vacancies,	its	relaxation	volume	is	the	reduction	of	the	
vacant	lattice	site	due	to	the	inward	relaxation	of	the	surrounding	atoms,	and	for	normal	
fcc	metals	it	is	typically	about	-0.2 Ω, where	Ω is	the	volume	per	atom.	For	SIA,	its	
relaxation	volume	is	determined	by	the	outward	displacement	of	surrounding	atoms,	and	
in	the	case	of	Ni	and	stainless	steels,	it	produces	a	relaxation	volume	of	1.8	Ω.	As	a	result,	
SIA	are	preferentially	migrating	to	dislocations.	This	preference	is	quantified	by	an	
interstitial	bias	factor	for	dislocation	Zid	>1.	

The	theory	for	evaluating	bias	factors	for	dislocations	has	been	reviewed	by	Wolfer	[7].	For	
edge	dislocations,	the	bias	factor	is	given	in	terms	of	the	modified	Bessel	functions	K0	and	I0	
as:	

Zd (T,V
rel ) = ℓn(Rd / rd )

K0 (rd
cap / Rd )

I0 (rd
cap / Rd )

−
K0 (rd

cap / rd )
I0 (rd

cap / rd )
"

#
$

%

&
'

−1

	 	 (16)	

where	the	capture	radius	of	the	dislocation	is	defined	as	
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rd
cap =

(1+ν )b
6π (1−ν )

µ V rel

kT
	 	 	 	 	 (17)	

and	µ and ν are	the	shear	modulus	and	Poisson's	ratio,	respectively,	and	b	is	the	Burgers	
vector.		A	bias	factor	for	a	void	or	a	bubble	with	radius	Rb	is	due	to	the	image	interaction	
between	the	migrating	defect	and	the	cavity	surface,	given	by:	

Uim (r,Rb ) = −
(1+ν )2µ (V rel )2

36π (1−ν ) Rb
3

n(n−1)(2n−1)(2n+1)
n2 + (1− 2ν )n+1−ν

Rb
r

"

#
$

%

&
'
2n+2

n=2

∞

∑ 	 	 (18)	

where	r	is	the	distance	between	the	cavity	center	and	the	defect.	To	obtain	the	bias	factor	

	 Zb(T,V
rel,Rb ) = exp[Uim (r,Rb ) / kT ] d(Rb / r)0

1
∫"#$

%
&'
−1

	 	 	 	 (19)	

requires	a	numerical	integration.	Suhr	and	Wolfer	[8]	have	developed	an	approximation	for	
the	infinite	sum	in	eq.(18)	that	greatly	facilitates	this	numerical	integration.	The	numerical	
results	can	be	represented	using	a	capture	coefficient	of	

	 θ(T,V rel ) = (1+ν )2

36π (1−ν )
µ(V rel )2

ΩkT
	 	 	 	 	 	 (20)	

as							 Zb(T,V
rel,Rb ) ≈1+1.0921θ

0.54314 Rb
−0.88727θ −0.021069

	 	 	 	 (21)	

	

We	evaluate	the	bias	factors	for	nickel	as	it	exhibits	void	swelling	behavior	similar	to	
austenitic	stainless	steels	for	which	extensive	neutron	radiation	damage	results	exist.			In	
addition,	experimental	values	are	available	for	the	relaxation	volume	of	self-interstitials,	
namelyVi

rel =1.8	Ω, and	the	one	for	vacancies,Vv
rel =	0.2	Ω.   

Shear	modulus	and	Poisson's	ratio	for	Ni	are	µ	=	94.6	GPa	and	ν	=	0.287,	respectively,	and	
the	Burgers	vector	is	b	=	0.249	nm.	For	a	temperature	of	T	=	723	K,	bias	factors	are	
obtained	as	shown	in	Fig.	2.	
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Figure	2.		Bias	factors	of	Ni	for	edge	dislocations,	Zd,	and	for	voids	or	bubbles,	Zb,	as	a	
function	of	their	radii.	

	

As	shown	in	Fig.	2,	the	interstitial	bias	factor	for	voids	or	bubbles	with	diameters	less	than	
2.5	nm	is	larger	than	the	interstitial	bias	factor	for	edge	dislocations.	Bias-driven	void	
growth	in	nickel	is	possible	only	for	voids	or	bubbles	with	diameters	larger	than	2.5	nm.	

To	provide	an	example	of	the	bias	factors	for	δ-Pu	(b	=	0.33	nm),	we	select	two	possible	
values	for	the	relaxation	volumes,	namely	Vi

rel =	0.6	Ω and	Vv
rel =	-0.73	Ω, and	a	temperature	

of	T	=	350	K.	As	seen	in	Fig.	3	,	the	bias	factors	for	self-interstitials	and	for	vacancies	are	
nearly	the	same,	but	vacancies	are	now	attracted	more	to	dislocations.	This	reversal	
implies	that	void	swelling	would	not	occur	in	d-Pu.	But	even	if	other	possible	values	are	
selected	more	favorable	to	void	swelling,	i.e.	Vi

rel >|Vv
rel | , it	must	be	mentioned	that	void	

swelling	depends	on	the	net	bias	and	on	the	ratio	of	sink	strengths	for	voids	and	
dislocations.	
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Figure	3.	Bias	factors	of	d-Pu	for	edge	dislocations,	Zd	,	and	for	voids	or	bubbles,	Zb	.	

	

Thermodynamic	Equilibrium	Concentrations	at	Voids	and	Bubbles	

The	thermal	re-emission	rates	of	vacancies	and	of	SIA	from	sinks	are	defined	in	eqs.	(10),	
and	they	in	turn	depend	on	local	thermodynamic	equilibrium	concentrations.	Let	us	first	
consider	the	case	of	vacancies	in	local	thermodynamic	equilibrium	with	bubbles	having	a	
radius	of		Rb	and	filled	with	helium	to	a	pressure	of	p.	One	then	evaluates	the	change	in	
Gibbs	free	energy	when	one	vacancy	is	emitted	from	the	bubble	to	the	surrounding	crystal	
lattice.	This	change	is	

ΔG = −Ev
f +TSv

f +ΔFS − pΩw− kT ℓnCV
b 	 	 	 	 	 (22)	

Here,	Ev
f  and Sv

f 	are	the	vacancy	formation	energy	and	entropy,	respectively,	ΔFS is	the	
change	in	surface	free	energy,	-pΩw is	the	work	performed	by	the	gas,	and	the	last	term	is	
the	change	in	configurational	entropy.	The	number	nb	of	host	metal	atoms	missing	in	the	
bubble	is	given	by	

	 4π
3 Rb

3 = nbΩ ,		 	 	 	 	 	 	 	 (23)	
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so	the	change	in	the	surface	free	energy	can	be	written	as	

	 ΔFS (nb ) = FS (nb +1)−FS (nb ) = (4π )
1/3(3Ω)2/3 (nb +1)

2/3 − nb
2/3$% &' γ0 ≅

2γ0
Rb

Ω 	 (24)	

where	γ0	is	the	specific	surface	energy.	The	final	result	is	the	well-known	capillary	
approximation	for	nb	>>	1	leading	to	the	surface	tension	2γ0/Rb	.	But	as	the	derivation	
shows,	the	surface	tension	is	not	a	mechanical	force,	but	a	thermodynamic	or	
configurational	force.	For	small	bubbles,	the	capillary	approximation	will	be	avoided	and	
the	correct	free	energy	change	will	be	used	instead.	The	correction	factor	w	for	the	work	
performed	by	the	gas	is	also	required	for	small	bubbles	only	as	shown	in	Appendix	B.	

The	local	vacancy	concentration	in	thermodynamic	equilibrium	with	the	bubble	is	now	
obtained	when	ΔG	=	0	as	

	 CV
b =CV

eq exp ΔFS − pΩw
kT

$

%&
'

()
	 	 	 	 	 	 	 (25)	

The	thermal	vacancy	concentration	in	the	solid	without	bubbles	or	voids	is	

	 Cv
eq =Cv

d = exp −
Ev

f

kT
+
Sv
f

k
"

#
$

%

&
' 	 	 	 	 	 	 	 (26)	

In	analogous	fashion	one	can	derive	the	concentration	of	SIA	in	thermal	equilibrium	with	a	
bubble.	However,	since	ΔFS(nb)	=	FS(nb-1)	–	FS(nb)	and	the	gas	is	now	further	compressed	
when	a	surface	atom	is	removed	to	create	one	SIA,	there	is	a	change	in	sign,	and	

	 Ci
b =Ci

eq exp pΩw−ΔFS
kT

$

%&
'

()
	 	 	 	 	 	 	 (27)	

with	 		

	 Ci
eq =Ci

d = exp −
Ei

f

kT
+
Si
f

k
"

#
$

%

&
' 	 	 	 	 	 	 	 (28)	

being	the	equilibrium	concentration	of	SIA	in	the	solid	without	voids	or	bubbles.	

The	helium	pressure	within	small	bubbles	can	reach	high	values	that	approach	the	phase	
transition	to	solid	helium.	Accurate	equations	of	state	for	both	gas	and	solid	helium	are	
presented	in	Appendix	B	and	have	been	used	in	the	prediction	for	bubble	swelling	in	aged	
plutonium	to	be	described	in	the	next	section.	
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Bubble	and	Void	Swelling	in	Neutron	Irradiated	Steel	

The	numerical	solution	of	the	rate	equations	4,	5	and	6,	and	the	subsequent	integration	of	
the	swelling	rate	equation	15	is	accomplished	with	a	GRT	code	using	Mathematica.	As	a	
validation,	the	GRT	code	has	been	applied	first	to	predict	void	swelling	in	a	pure	ternary	
alloy	of	Fe,	Ni,	and	Cr	(same	composition	as	in	austenitic	steels	but	without	carbon	and	
minor	constituents)	under	fast	neutron	irradiation	of	21	dpa/year.	Samples	of	these	pure	
ternary	alloys	were	irradiated	in	the	FFTF	and	subsequently	examined	by	TEM	to	
determine	void	swelling	[105].		

Irradiation	conditions	and	physical	parameters	are	listed	in	Table	1.	

	

					Table	1.	Properties	for	Ni	and	pure	stainless	steels	irradiated	in	FFTF	
	

Lattice	parameter	 	 	 0.352	nm	
Shear	modulus	 	 	 91.3	GPa	
Poison’s	ratio		 	 	 0.276	
Displacement	rate	 	 	 21	dpa/year	
Fraction	released	from	cascades	 f	=	0.7	
Irradiation	temperature	 	 773	K	
Dislocation	density	 	 	 1015	m	–	2	
Void	density	 	 	 	 1021	m	–	3	
Vacancy	formation	energy	 	 1.79	eV	
Vacancy	migration	energy	 	 1.07	eV	
Vacancy	diffusion	pre-factor	 9.2	.	10	–	5	m2	s	-1	
Vacancy	relaxation	volume	 	 -0.2	Ω 
SIA	formation	energy	 	 3.72	eV	
SIA	migration	energy	 	 0.15	eV	
SIA	diffusion	pre-factor	 	 10	–	7	m2		s	-1	
SIA	relaxation	volume	 	 1.8	Ω 

	

The	void	nucleation	period	in	these	pure	ternary	alloys	is	about	6	dpa,	and	the	predicted	
void	growth	gives	then	rise	to	void	swelling	as	shown	by	the	dashed	curve	in	Fig.	4.	
Measured	void	swelling	determined	by	TEM	observations	[9]	are	also	shown	for	two	
samples	that	were	irradiated	at	displacement	rates	of	16.4	and	30.3	dpa/year.	The	
agreement	with	the	theoretical	prediction	carried	out	at	the	intermediate	dose	rate	of	21	
dpa/year	is	satisfactory.	
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Bubble	Swelling	in	Delta	Phase	Plutonium	

For	the	prediction	of	combined	void	and	bubble	swelling	in	gallium-stabilized	plutonium	
we	select	as	the	starting	point	the	TEM	results	of	Schwartz	et	al.	for	a	42	year-old	
plutonium	sample.	Correcting	the	measured	TEM	image	diameters	upwards	by	20%	and	
assuming	an	actual	bubble	density	somewhat	higher	than	what	is	visible,	all	the	helium	
produced	can	be	accommodated	in	a	bubble	volume	fraction	of		0.05%	and	at	a	helium	
density	of	2.5	He/Vac.	To	reach	this	state	requires	that	the	bubbles	had	to	grow	by	thermal	
emission	of	SIA	with	a	SIA	formation	energy	of	1.25	eV	and	a	SIA	migration	energy	of	0.15	
eV.			Other	materials	parameters	used	to	predict	swelling	beyond	42	years	are	listed	in	
Table	2.	

																						

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.		Void	swelling	observed	and	predicted	(dashed	line)	in	pure	ternary	stainless	
steel	samples	irradiated	in	FFTF	compared	to	predicted	swelling	for	42	year-old	Ga-
stabilized	δ-Pu.		

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Ni and pure SS data

Void swelling in SS @ 21 dpa/yr
FFTF @ 16.4 dpa/yr
FFTF @ 30.3 dpa/yr
Bubble swelling in Pu @ 0.1 dpa/yr

Sw
el

lin
g,

 %

Displacement damage, dpa

       Pure
stainless steel

δ - Pu



      LLNL-TR-678288	

	

											 	 Table	2.	Parameters	for	aged	delta	plutonium		

	 	 Lattice	parameter	 	 	 0.4637	nm	

	 	 Shear	modulus	 	 	 17.3	GPa	

	 	 Poisson’s	ratio	 	 	 0.2605	

	 	 Displacement	rate	 	 	 0.081	dpa/year	

	 	 Fractional	release	from	cascades	 f	=	0.2	

	 	 Irradiation	temperature	 	 308	K	

	 Dislocation	density	 	 	 1013	m	–	2	

Bubble	density	 	 	 2	.1023	m	–	3	

Vacancy	formation	energy	 	 0.75	eV	

Vacancy	migration	energy	 	 0.70	eV	

Vacancy	diffusion	pre-factor	 4.5	.	10	–	4	m2	s	-1	

Vacancy	relaxation	volume	 	 -0.7	Ω 

SIA	formation	energy	 	 1.25	eV	

SIA	migration	energy	 	 0.15	eV	

SIA	diffusion	pre-factor	 	 10	–	7	m2		s	-1	

SIA	relaxation	volume	 	 1.4	Ω 

For	the	following	GRT	predictions,	relaxation	volumes	of		VSIA	=	1.4	Ω and	VVAC	=	-0.7	Ω are	
selected;	in	principle	this	should	provide	a	sufficiently	strong	bias	for	preferential	capture	
of	SIA	at	dislocations	and	preferential	capture	of	vacancies	at	bubbles.	However,	the	GRT	
prediction	displayed	in	Fig.	5	reveal	that	bias-driven	swelling	makes	only	a	small	
contribution,	namely	the	dotted	curve,	to	the	combined	swelling	shown	as	the	solid	curve.	
The	dashed	curve	gives	bubble	swelling	if	the	helium	density	had	stayed	at	2.5	He/Vac.	
Because	of	the	bias-driven	contribution,	the	helium	density	in	the	bubbles	declines	to	a	
value	of	2.415	He/Vac	at	an	age	of	1000	years	or	at	76	dpa.		
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Figure	5.	Predicted	continuation	of	bubble	swelling	for	a	42	year-old	Ga-stabilized	δ-Pu,	
and	the	contributions	from	helium-driven	and	bias-driven	processes.		

The	dramatic	difference	between	bubble	swelling	in	δ-Pu	and	void	swelling	in	regular	fcc	
metals	is	mainly	due	to	the	overwhelmingly	high	bubble	density	in	δ-Pu	,	2.1023	m-3,	
compared	to	the	void	density	of	1021	m-3	in	irradiated	stainless	steels.	The	abundance	of	
helium	bubbles	in	δ-Pu	as	sinks	for	radiation-produced	defects,	in	comparison	to	
dislocation	sinks,	prevents	any	significant	net	bias	to	ever	develop,	regardless	of	the	
magnitude	of	the	relaxation	volumes	for	SIA	and	vacancies.	As	a	result,	the	only	available	
process	for	bubble	growth	under	continuing	helium	production	is	the	thermally	activated	
emission	of	SIA	from	bubbles.	The	low	formation	energy	of	SIA	in	δ-Pu	makes	this	a	viable	
process,	otherwise	the	helium	pressure	within	bubbles	would	have	to	rise	to	about	3	
He/Vac	to	induce	emission	of	prismatic	dislocation	loops.	However,	no	prismatic	loops	
near	bubbles	have	been	found	in	TEM	observations	of	aged	δ-Pu.	

	

	 	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80

from 42 to 1000

Total Bubble Swelling %
He contribution, %
Bias contribution, %

B
ub

bl
e 

sw
el

lin
g,

 %

Displacement damage, dpa

He - only

Bias - only



      LLNL-TR-678288	

References	

1.	R.	Bullough,	R.C.	Perrin,	“Theory	of	void	formation	and	growth	in	irradiated	materials”,	
Proc.	Of	the	1971	Internat.	Conf.	on	Radiation-Induced	Voids	in	metals,	eds.	J.W.	Corbett,	
L.C.	Ianniello,	CONF-71061,	pp.	769-797	

2.	P.M.	Derlet,	D.	Nguyen-Manh,	S.L.	Dudarev,	Phys.	Rev.	B76	(2007)	054107	

3.	S.L.	Dudarev,	Density	Functional	Theory	Models	for	Radiation	Damage,	Annu.	Rev.	Mater.	
Res.	43	(2013)	35-61	

4.	W.G.	Wolfer,	P.G.	Allen,	“Review	of	Calculations	on	Point	Defect	Properties	in	Delta-Pu”,	
LLNL-TR-676992,	Sept.	8,	2015	

5.	A.	Kubota,	“Understanding	the	Atomic-Scale	Aspects	of	Radiation	Damage	and	Aging	in	
Pu	and	Pu/Ga	Alloys	through	Computer	Simulations”,	LBNL	seminar,	Dec.	13,	2006	

6.	W.G.	Wolfer,	A.	Si-Ahmed,	J.	Nucl.	Mater.	99	(1981)	117	

7.	W.G.	Wolfer,	J.	Computer-Aided	Mater.	Des.	14	(2007)	403	

8.	M.P.	Surh,	W.G.	Wolfer,	J.	Computer-Aided	Mater.	Des.	14	(2007)	419	

9.	T.	Okita,	W.	G.	Wolfer,	J.	Nucl.	Mater.	327,	130-139	(2004)	

	

	 	



      LLNL-TR-678288	

Appendix	A:	Rates	of	Displacements	and	Helium	Production	

	

Weapons-grade	plutonium	contains	several	isotopes,	and	each	isotope	produces	slightly	
different	a-decay	energies	and	partitions	it	to	kinetic	energies	of	helium	and	actinide	
daughter	products.	In	turn,	the	kinetic	energies	are	dissipated	into	an	electronic	and	a	
nuclear	stopping	power,	and	the	latter	produces	the	collision	cascades	containing	the	
Frenkel	pairs.	The	combined	numbers	of	Frenkel	pairs	from	the	collision	cascades	of	the	
helium	and	the	actinide	daughter	products	is	referred	to	as	the	number	of	displacements	
per	atom	(dpa)	per	a-decay.	Table	A1	contains	the	list	of	the	main	Pu	isotopes,	their	initial	
atomic	fractions	NX	in	weapons-grade	plutonium,	their	half-lives	tX	,	the	a-decay	energies,	
and	the	dpa/decay,	nX	.	

	

Table	A1.	

Isotope		 	Fraction	 Half-live	(years)						Decay	energy	(MeV)			dpa/decay	

Pu	238	 0.0002		 								87.7	 	 5.580	 	 	 2726	

Pu	239	 0.936	 	 24110		 	 5.236	 	 	 2572	

Pu	240	 0.059	 	 			6563		 	 5.243	 	 	 2569	

Am	241	 0.00044	 						432.7	 	 5.571	 	 	 2700	

	

The	rate	of	helium	generation,	expressed	in	atomic	fractions	per	year,	is	given	by	

	 	 GHe(t) = ℓn(2)
NX

tX
exp −

t
tX

"

#
$

%

&
'

X=238

241

∑ 		 	 	 	 	 (A1)		

Multiplying	each	term	with	the	corresponding	NX	produces	the	formula	for	the	generation	
rate	of	Frenkel	pairs,	again	in	atomic	fractions	per	year:	

G(t) = ℓn(2) NX nX
tX

exp −
t
tX

"

#
$

%

&
'

X=238

241

∑ 	 	 	 	 	 (A2)	

The	number	of	Frenkel	pairs	produced	per	a-decay	is	then	

	 	 n(t) =G(t) /GHe(t) 	 	 	 	 	 	 	 (A3)	
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and	it	is	shown	in	Fig.	A1.	As	can	be	seen,	it	is	not	quite	a	constant,	but	it	decreases	only	by	
about	0.35	%	over	500	years.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	A1.	The	change	of	the	Frenkel	pair	production	per	decay	with	time.	
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Appendix	B:		

The	Equations	of	State	for	Helium	in	the	Solid	and	Fluid	Phases	

The	density	of	helium	in	bubbles	found	in	aged	metal	tritides	ranges	from	about	0.07	to	
0.25	mol/cm3.	At	ambient	temperatures,	the	helium	pressure	in	the	very	small	bubbles	
(diameter	of	1nm	or	less)	reaches	about	10	GPa,	which	is	close	to	the	phase	transition	
between	fluid	and	solid	helium.	It	is	therefore	necessary	to	utilize	equations	of	state	for	
both	the	fluid	and	the	solid	states.		

A	matching	set	of	equations	of	state	(EOS)	had	been	developed	earlier	by	Wolfer	et	al.	
(1984,	1988)	based	on	the	available	experimental	data	tabulated	by	McCarty	(1973).	At	the	
time,	however,	no	data	were	available	close	to	the	region	of	phase	transition	from	fluid	to	
solid.	In	the	meantime,	such	data	have	been	obtained	and	published	(Polian	et	al.,	1983;	
Mao	et	al.,	1988;	Loubeyre	et	al.,	1993).	

Examination	of	these	data	at	T=300	K	has	shown	that	the	solid	EOS	agrees	well	with	the	
newer	data,	and	a	minor	adjustment	of	some	parameters	in	the	fluid	EOS	leads	to	a	new,	
excellent	fit.	This	is	shown	in	Figure	B1.	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	B1.	Helium	pressure	at	300	K	versus	density	for	fluid	and	solid	phases	
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The	new	EOS	for	helium	is	given	in	terms	of	the	compressibility	factor	

	 	 	 z(µ,T ) =103 p
µ RT

	 	 	 	 	 	 (B1)	

where	m	is	the	helium	density	in	mol/cm3,	p	is	the	pressure	in	units	of	GPa,	and	R	=	8.314	

J/mol/K	is	the	gas	constant.	The	compressibility	factors	for	both	the	fluid	and	the	solid	

phases,	zg	and	zS,	are	expressed	as	power	series	in	the	density	as	

	 	 z(µ,T ) =C0 (T )+C1(T ) (100µ)+C2 (T ) (100µ)
2 +C3(T ) (100µ)

3 	 (B2)	

with	the	following	temperature	dependent	coefficients.	For	the	fluid	phase,	

C0
g(T ) = T /1300( )0.04

C1
g(T ) = 5.83 / (T +14)0.58

C2
g(T ) = log10[(T + 42) / 800]

0.69(T + 42)0.65

C3
g(T ) = 0.86 / (T + 70)1.44

	 	 	 	 	 	 (B3)	

and	for	the	solid	phase,	

C0
s (T ) = −3.89+ 6.59 (T /100)−1.15 (T /100)2 + 0.0546 (T /100)3

C1
s (T ) = −0.523− 0.439 (T /1000)+1.77 (T /1000)2 −1.39 (T /1000)3

C2
s (T ) = 0.101− 0.291(T /1000)+ 0.301(T /1000)2 − 0.1045 (T /1000)3

C3
s (T ) ≈ 0

	 	 (B4)	

The	intersection	of	the	two	compressibility	factors,	i.e.	when	 zg(µm,Tm ) = zS (µm,Tm ) ,	defines	

approximately	melt	densities	and	melt	temperatures.	However,	it	neglects	a	small	density	

difference	between	the	fluid	and	solid	phase,	or	a	small	density	range	over	which	mixtures	

of	the	two	phases	coexists.	Accepting	this	minor	inaccuracy,	the	following	correlation	is	

obtained:	

	 µm ≈ 0.0269 Tm
0.359 +1.953⋅10−7 Tm

1.903 mol / cm3 	 	 	 	 (B5)	

	

For	many	uses,	including	ours	here,	it	is	of	advantage	to	express	the	compressibility	factor	

as	a	function	of	pressure	and	temperature.	The	following	empirical	correlation	has	been	
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developed	for	the	compressibility	factor	of	fluid	helium	in	the	temperature	range	of	200	K	<	

T<	700	K:	

	 	 	 zg(p,T ) ≈1+ Z(T ) p
ζ (T ) 	 	 	 	 	 (B6)	

with	

	 	 	 Z(T ) = −0.12713+874.84 /T 		 	 	 	 (B7)	

and	

	 	 	 ζ (T ) = 0.82818−12.375 /T + 715.17 /T 2 	 	 	 (B8)	

In	the	relationship	(B6),	the	fluid	pressure	is	given	in	units	of	GPa.	Within	the	pressure	
range	of	0.5	GPa	to	10	GPa,	the	compressibility	factor	obtained	from	(B6)	deviates	from	the	
more	exact	result	(B2)	by	no	more	than	4	%.	

Using	the	expression	(B2)	for	zg	and	zs	,	one	can	obtain	the	compressibilities	and	their	
inverse,	namely	the	bulk	moduli.	They	are	shown	for	T	=	300	K	in	Fig.	B2.	

	

	

	

	

	

	

		

	

	

	

																								Fig.	B2.	Bulk	modulus	for	liquid	and	solid	helium	at	T	=	300	K.	
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