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Generalized Rate Theory for Void and Bubble Swelling and its
Application to Plutonium Metal Alloys

W.G. Wolfer and P.G. Allen, Lawrence Livermore National Laboratory, Livermore CA

Introduction

In the classical rate theory for void swelling, vacancies and self-interstitials are produced
by radiation in equal numbers, and in addition, thermal vacancies are also generated at the
sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to
the high formation energy of self-interstitials for normal metals and alloys, their thermal
generation is negligible, as pointed out by Bullough and Perrin [1]. However, recent DFT
calculations of the formation energy of self-interstitial atoms in bcc metals [2,3] have
revealed that the sum of formation and migration energies for self-interstitials atoms (SIA)
is of the same order of magnitude as for vacancies. This is illustrated in Fig. 1 that shows
the ratio of the activation energies for thermal generation of SIA and vacancies. For fcc
metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical
predictions of point defect properties in 8-Pu [4], this ratio could possibly be less than one.
As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into
considerations when modeling the growth of voids and of helium bubbles, and the classical
rate theory (CRT) for void and bubble swelling must be extended to a generalized rate
theory (GRT).

Activation energy ratio

Ag AL Au Cu Ni Fe Mo Nb V W Cr Ta d-Pu

Metal

Fig.1. Ratio of SIA formation plus migration energy divided by self-diffusion energy
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Structural materials contain elements that transmute to radioactive species when exposed
to neutrons in nuclear reactors, and they may subsequently decay by emission of an a-
particle. The helium atom produced by the radioactive decay also generates additional
radiation-induced defects, and becomes then trapped in one vacancy, diffuses with it until
captured by voids and bubbles, or until it recombines with a SIA. When the latter happens,
the helium atom is promoted to an interstitial site, and it diffuses as an interstitial impurity
at a much faster rate than the substitutional helium in a vacancy. It either becomes
captured at voids or bubbles, or it finds another empty vacancy and converts back to a
substitutional helium. The end result is that helium acquires an effective diffusion
coefficient that determines the net capture at voids or bubbles, but it will be shown that it
needs not be specified in the GRT.

In 8-Pu, the formation energy for SIA is so low that an interstitial helium is unstable and
will create spontaneously a Frenkel pair, namely a SIA and a vacancy that it occupies.

As aresult, a generalized rate theory (GRT) is needed for 8-Pu that includes three species
produced by radiation and being captured at sinks, namely self-interstitials, mono-
vacancies, and vacancies containing a helium atom, and two of these species, namely self-
interstitials and vacancies, can also be re-emitted by the sinks via thermal activation.

Derivation of Generalized Rate Theory

Let G represent the total generation rate of vacancies and self-interstitials in collision
cascades, and assign fG as the fraction of G that escapes cascades as migrating defects. Then
the radiation-induced generation rates of self-interstitials, of vacancies, and of helium are
fG, (f-1/n)G, and G/n, respectively. Here, n is the number of displacements of atoms
generated by one a-decay. Appendix A provides details on how to compute both G and n.
Kubota [5] has carried out molecular dynamics simulations of 20 keV collision cascades in
Pu-Ga alloys at 600 K and found a small surviving fraction of only about 50 pairs of
vacancies and self-interstitials that indicates that f = 0.1. At lower temperatures, however, f
could be larger, and a value of f = 0.2 will be adopted for our calculations.

The rates of adsorption as well as of re-emission are proportional to the respective sink
strength; the sink strength for edge dislocations is defined as

sym b (M
(n[R, /1]

where pq is the dislocation density, r,=2b is the dislocation core radius, and
2R, =2/~ p, (2)

is the average separation distance between dislocations. The sink strength for bubbles with
an average radius Ry is given by

s, =4m R, n, (3)
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where ny is the number of bubbles per unit volume.

During the almost constant a-decay and perpetual defect generation, average
concentrations of C;, Cy, and Cye for self-interstitials, vacancies, and helium atoms,
respectively, are established within the crystalline metal, and balanced by the losses to
sinks. For this quasi-steady-state, the rate equations are
fG-xDCD,C,~(Z\s,+Z,s,)D.C,+D,(Z.s,C +Z;s5,C))=0 (4)

(f-1/nG-xD,C,DC,~(Z)s,+Z,s,)D,C,+D,(Z)s,C +Z)s,C)=0  (5)
G/n-2)s,D,,C,, =0 (6)

Eq. (6) reflect the fact that helium becomes absorbed by bubbles only, and once in bubbles,
will not be re-emitted into the surrounding crystal, because the activation energy for such a
process is too large. The rate of helium arrival at the bubbles, the second term, is simply
equal to the rate of helium generation, and this is the reason why the effective helium
diffusion coefficient, Due , need not be specified.

The rate equations (4) and (5) are coupled by the recombination rate, the second term,
with the recombination coefficient given by [6]

k=21 1 (7)
a, \D, D,

where ag is the lattice parameter. The second terms in eqgs. (4) and (5) represent the loss of
self-interstitials and vacancies to the sinks, while the third terms are the respective thermal
production terms. These terms are determined by local thermodynamic conditions at the
sinks and are given below. Hence, the two unknown quantities, henceforth abbreviated by

¢i = DiCi and ¢v = Dva’ (8)

are the positive solutions of egs. (4) and (5). In order to present these solutions in a
compact form, we introduce several abbreviations.

The total sink strengths for interstitial and vacancy absorption are

o,=Zs,+7Z,s, and o,=Z)s,+Z)s,, 9)
while for thermal re-emission they are

V. =D(Zs,Cl+Zs,C)/ o, and W, =D/(Z)5,C!+Z)s,C’)l0o,, (10)

respectively. With these abbreviations, the positive solutions can be expressed as
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W-o00, 1 G
o¢p="i"Tt"r 4 (WP P )4 — 11
l¢1 2K_ 2( i v) 2]’1 ( )
W-o0.0, |1 G
o ¢ =—r iy (P @) 12
v¢v 2K_ 2( v 1) 2]’1 ( )
where
W, = \J4k0,0,(fG+W )+ (kG In-0,0,+KkW¥, - kW)’ (13)
W, =\4k0,0,(fG-G /n+W )+ (kG In+0,0,+KkW¥, kW)’ (14)

The bubble swelling rate can now be computed as the difference in arrival rates of
vacancies and interstitials at bubbles, plus the re-emission rate of self-interstitials minus
the re-emission rate of vacancies from bubbles, and finally plus the rate of helium atoms
arriving at bubbles.

This swelling rate then is

ds dR v b i b

— = SR—=5,{Z,(9, - D.C)) - Z,(9, - DC)}+G (15)
Before it can be integrated to obtain the combined void and bubble swelling, sink bias
factors and thermal re-emission rates must be defined.

Sink Bias Factors

The elastic interaction of the migrating defects with the internal stress fields of dislocations
and bubbles influences their diffusion. This elastic interaction is dependent on the
relaxation volume of the defect. For vacancies, its relaxation volume is the reduction of the
vacant lattice site due to the inward relaxation of the surrounding atoms, and for normal
fcc metals it is typically about -0.2 Q, where Q is the volume per atom. For SIA, its
relaxation volume is determined by the outward displacement of surrounding atoms, and
in the case of Ni and stainless steels, it produces a relaxation volume of 1.8 Q2. As a result,
SIA are preferentially migrating to dislocations. This preference is quantified by an
interstitial bias factor for dislocation Z;4 >1.

The theory for evaluating bias factors for dislocations has been reviewed by Wolfer [7]. For
edge dislocations, the bias factor is given in terms of the modified Bessel functions Ko and Io
as:

Ko (" IR) K ;" Ir)|

Z T’Vrel =£nR /r
o(LV7) = tnRy ) L IR) I,y /')

(16)

where the capture radius of the dislocation is defined as
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A+v)b u|V"™
6x(1-v) kT

cap _
=

(17)

and p and v are the shear modulus and Poisson's ratio, respectively, and b is the Burgers
vector. A bias factor for a void or a bubble with radius Ry, is due to the image interaction
between the migrating defect and the cavity surface, given by:

U™(r,R,)= (18)

_(1+V)2,LL(V”I)2 = n(n—-12n-1)2n+1) (&)mﬁ»z

36x(1-v)R, & n*+(1-2v)n+1-v \ r

where r is the distance between the cavity center and the defect. To obtain the bias factor
-1
Z,(T,V*,R,)= [ ) 0' explU" (r,R,)/kT1d(R, /r)] (19)

requires a numerical integration. Suhr and Wolfer [8] have developed an approximation for
the infinite sum in eq.(18) that greatly facilitates this numerical integration. The numerical
results can be represented using a capture coefficient of

A+v)? w(V"™)’

H(T,Vrel) =
36x(1-v) QT

(20)

as  Z,(T,V™ R,)=~1+109219314 R 08727077 21)

We evaluate the bias factors for nickel as it exhibits void swelling behavior similar to
austenitic stainless steels for which extensive neutron radiation damage results exist. In
addition, experimental values are available for the relaxation volume of self-interstitials,
namely V,."” =1.8 Q, and the one for vacancies, Vv"d =0.2 Q.

Shear modulus and Poisson's ratio for Ni are u = 94.6 GPa and v = 0.287, respectively, and
the Burgers vector is b = 0.249 nm. For a temperature of T = 723 K, bias factors are
obtained as shown in Fig. 2.
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Bias factor

Void or bubble radius, R/b

Figure 2. Bias factors of Ni for edge dislocations, Zq, and for voids or bubbles, Zy, as a
function of their radii.

As shown in Fig. 2, the interstitial bias factor for voids or bubbles with diameters less than
2.5 nm is larger than the interstitial bias factor for edge dislocations. Bias-driven void
growth in nickel is possible only for voids or bubbles with diameters larger than 2.5 nm.

To provide an example of the bias factors for 8-Pu (b = 0.33 nm), we select two possible
values for the relaxation volumes, namely V“=0.6 Q and V' =-0.73 Q, and a temperature
of T =350 K. As seen in Fig. 3, the bias factors for self-interstitials and for vacancies are

nearly the same, but vacancies are now attracted more to dislocations. This reversal
implies that void swelling would not occur in d-Pu. But even if other possible values are

selected more favorable to void swelling, i.e. V' >|V/“|, it must be mentioned that void

swelling depends on the net bias and on the ratio of sink strengths for voids and
dislocations.
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Figure 3. Bias factors of d-Pu for edge dislocations, Z4, and for voids or bubbles, Zy, .

Thermodynamic Equilibrium Concentrations at Voids and Bubbles

The thermal re-emission rates of vacancies and of SIA from sinks are defined in egs. (10),
and they in turn depend on local thermodynamic equilibrium concentrations. Let us first
consider the case of vacancies in local thermodynamic equilibrium with bubbles having a
radius of Ry and filled with helium to a pressure of p. One then evaluates the change in
Gibbs free energy when one vacancy is emitted from the bubble to the surrounding crystal

lattice. This change is
AG =-E! +TS! + AF, - pQw - kT (nC}, (22)

Here, E/ and S/ are the vacancy formation energy and entropy, respectively, AF;is the

change in surface free energy, -pQw is the work performed by the gas, and the last term is
the change in configurational entropy. The number nj, of host metal atoms missing in the
bubble is given by

%”RZ =n,Q, (23)
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so the change in the surface free energy can be written as

AFy(n,) = Fy(n, +1)= Fy(n,) = (4m) " 3Q)" [(n, + ) = ) | y, = %Q (24)

b

where v is the specific surface energy. The final result is the well-known capillary
approximation for n, >> 1 leading to the surface tension 2yo/Ry . But as the derivation
shows, the surface tension is not a mechanical force, but a thermodynamic or
configurational force. For small bubbles, the capillary approximation will be avoided and
the correct free energy change will be used instead. The correction factor w for the work
performed by the gas is also required for small bubbles only as shown in Appendix B.

The local vacancy concentration in thermodynamic equilibrium with the bubble is now
obtained when AG =0 as

AF, - pQw
C) =C;f exp| ———— 25
v==04y P[ T } (25)
The thermal vacancy concentration in the solid without bubbles or voids is
Ceq Cd / Sf 26
o =C) =exp|———+—
‘ Pl (26)

In analogous fashion one can derive the concentration of SIA in thermal equilibrium with a
bubble. However, since AFs(np) = Fs(np-1) - Fs(np) and the gas is now further compressed
when a surface atom is removed to create one SIA, there is a change in sign, and

C} =C"exp [%} (27)
with
f f
c =t =exp(—f—}+%) (28)

being the equilibrium concentration of SIA in the solid without voids or bubbles.

The helium pressure within small bubbles can reach high values that approach the phase
transition to solid helium. Accurate equations of state for both gas and solid helium are
presented in Appendix B and have been used in the prediction for bubble swelling in aged
plutonium to be described in the next section.
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Bubble and Void Swelling in Neutron Irradiated Steel

The numerical solution of the rate equations 4, 5 and 6, and the subsequent integration of
the swelling rate equation 15 is accomplished with a GRT code using Mathematica. As a
validation, the GRT code has been applied first to predict void swelling in a pure ternary
alloy of Fe, Ni, and Cr (same composition as in austenitic steels but without carbon and
minor constituents) under fast neutron irradiation of 21 dpa/year. Samples of these pure
ternary alloys were irradiated in the FFTF and subsequently examined by TEM to

determine void swelling [105].

Irradiation conditions and physical parameters are listed in Table 1.

Table 1. Properties for Ni and pure stainless steels irradiated in FFTF

Lattice parameter

Shear modulus

Poison’s ratio

Displacement rate

Fraction released from cascades
Irradiation temperature
Dislocation density

Void density

Vacancy formation energy
Vacancy migration energy
Vacancy diffusion pre-factor
Vacancy relaxation volume
SIA formation energy

SIA migration energy

SIA diffusion pre-factor

SIA relaxation volume

0.352 nm
91.3 GPa
0.276

21 dpa/year
f=0.7

773 K

1015 m—Z
1021 m—3
1.79 eV
1.07 eV
9.2-10-5m?s
-0.2Q

3.72 eV
0.15eV
10-"m?2 s-1
1.8 Q

The void nucleation period in these pure ternary alloys is about 6 dpa, and the predicted
void growth gives then rise to void swelling as shown by the dashed curve in Fig. 4.
Measured void swelling determined by TEM observations [9] are also shown for two
samples that were irradiated at displacement rates of 16.4 and 30.3 dpa/year. The
agreement with the theoretical prediction carried out at the intermediate dose rate of 21

dpa/year is satisfactory.



LLNL-TR-678288

Bubble Swelling in Delta Phase Plutonium

For the prediction of combined void and bubble swelling in gallium-stabilized plutonium
we select as the starting point the TEM results of Schwartz et al. for a 42 year-old
plutonium sample. Correcting the measured TEM image diameters upwards by 20% and
assuming an actual bubble density somewhat higher than what is visible, all the helium
produced can be accommodated in a bubble volume fraction of 0.05% and at a helium
density of 2.5 He/Vac. To reach this state requires that the bubbles had to grow by thermal
emission of SIA with a SIA formation energy of 1.25 eV and a SIA migration energy of 0.15
eV. Other materials parameters used to predict swelling beyond 42 years are listed in
Table 2.

80 [ T 17T I T 17T I T 17T I T 17T I T 17T I T 17T I T 17T I T 17T ]
70 :_ -=-e--Void swelling in SS @ 21 dpalyr o'_:
L v FFTF @ 16.4 dpalyr P
- A FFTF @ 30.3 dpalyr ! .
[ —e— Bubble swelling in Pu @ 0.1 dpalyr ’ ]
60 - ’ —
- ' -
L / i
. s ]
50 s —
oS I s ]
g') C +’ Pure ]
= 40 |- ,/ stainless steel .
o . Pid ]
3 L ’ i
(/2] L ’ i
30 ’ —
L ’ ]
- ' -
- ' -
L 4
/ i
20 _— g 'I —_
L 'l A i
. .7 ]
10 ’ _
i L ]
[ a8 5-Pu ]
04 "l o1 ot 0 lor—r—T—@tr O+ T OO T OT TP, ]
0 10 20 30 40 50 60 70 80

Displacement damage, dpa

Figure 4. Void swelling observed and predicted (dashed line) in pure ternary stainless
steel samples irradiated in FFTF compared to predicted swelling for 42 year-old Ga-
stabilized 6-Pu.
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Table 2. Parameters for aged delta plutonium

Lattice parameter 0.4637 nm
Shear modulus 17.3 GPa
Poisson’s ratio 0.2605
Displacement rate 0.081 dpa/year
Fractional release from cascades f=0.2
Irradiation temperature 308K
Dislocation density 1013 m~-2
Bubble density 21023 m-3
Vacancy formation energy 0.75 eV
Vacancy migration energy 0.70 eV

Vacancy diffusion pre-factor

45-10-4m?2s-!

Vacancy relaxation volume -0.7 Q

SIA formation energy 1.25eV

SIA migration energy 0.15eV

SIA diffusion pre-factor 10-"m? s-1
SIA relaxation volume 1.4 Q

For the following GRT predictions, relaxation volumes of Vsia = 1.4 Q and Vyac =-0.7 Q are
selected; in principle this should provide a sufficiently strong bias for preferential capture
of SIA at dislocations and preferential capture of vacancies at bubbles. However, the GRT
prediction displayed in Fig. 5 reveal that bias-driven swelling makes only a small
contribution, namely the dotted curve, to the combined swelling shown as the solid curve.
The dashed curve gives bubble swelling if the helium density had stayed at 2.5 He /Vac.
Because of the bias-driven contribution, the helium density in the bubbles declines to a
value of 2.415 He/Vac at an age of 1000 years or at 76 dpa.
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Figure 5. Predicted continuation of bubble swelling for a 42 year-old Ga-stabilized 6-Pu,
and the contributions from helium-driven and bias-driven processes.

The dramatic difference between bubble swelling in 8-Pu and void swelling in regular fcc
metals is mainly due to the overwhelmingly high bubble density in 6-Pu, 21023 m-3,
compared to the void density of 102! m3 in irradiated stainless steels. The abundance of
helium bubbles in 6-Pu as sinks for radiation-produced defects, in comparison to
dislocation sinks, prevents any significant net bias to ever develop, regardless of the
magnitude of the relaxation volumes for SIA and vacancies. As a result, the only available
process for bubble growth under continuing helium production is the thermally activated
emission of SIA from bubbles. The low formation energy of SIA in 6-Pu makes this a viable
process, otherwise the helium pressure within bubbles would have to rise to about 3
He/Vac to induce emission of prismatic dislocation loops. However, no prismatic loops
near bubbles have been found in TEM observations of aged §-Pu.
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Appendix A: Rates of Displacements and Helium Production

Weapons-grade plutonium contains several isotopes, and each isotope produces slightly
different a-decay energies and partitions it to kinetic energies of helium and actinide
daughter products. In turn, the kinetic energies are dissipated into an electronic and a
nuclear stopping power, and the latter produces the collision cascades containing the
Frenkel pairs. The combined numbers of Frenkel pairs from the collision cascades of the
helium and the actinide daughter products is referred to as the number of displacements
per atom (dpa) per a-decay. Table A1 contains the list of the main Pu isotopes, their initial
atomic fractions Nx in weapons-grade plutonium, their half-lives tx, the a-decay energies,
and the dpa/decay, nx .

Table A1.

Isotope Fraction Half-live (years) Decay energy (MeV) dpa/decay
Pu 238 0.0002 87.7 5.580 2726

Pu 239 0.936 24110 5.236 2572

Pu 240 0.059 6563 5.243 2569

Am 241 0.00044 432.7 5.571 2700

The rate of helium generation, expressed in atomic fractions per year, is given by

Gu(t)=n(2) ), N—Xexp(—ti) (A1)

Multiplying each term with the corresponding Nx produces the formula for the generation
rate of Frenkel pairs, again in atomic fractions per year:

G(D)=tn2) Y % exp(-ti) (A2)

The number of Frenkel pairs produced per a-decay is then

n(t)=G(1)/ G, (1) (A3)
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and it is shown in Fig. A1. As can be seen, it is not quite a constant, but it decreases only by
about 0.35 % over 500 years.

2585 T T T T T T T T T T T T T T | T T T T |

2580

2575

Frenkel pairs per decay

2570 L e PR e PR e PR e PR e L
0 100 200 300 400 500

Age, years

Fig. A1. The change of the Frenkel pair production per decay with time.
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Appendix B:
The Equations of State for Helium in the Solid and Fluid Phases

The density of helium in bubbles found in aged metal tritides ranges from about 0.07 to
0.25 mol/cm3. At ambient temperatures, the helium pressure in the very small bubbles
(diameter of 1nm or less) reaches about 10 GPa, which is close to the phase transition
between fluid and solid helium. It is therefore necessary to utilize equations of state for
both the fluid and the solid states.

A matching set of equations of state (EOS) had been developed earlier by Wolfer et al.
(1984, 1988) based on the available experimental data tabulated by McCarty (1973). At the
time, however, no data were available close to the region of phase transition from fluid to
solid. In the meantime, such data have been obtained and published (Polian et al., 1983;
Mao et al., 1988; Loubeyre et al., 1993).

Examination of these data at T=300 K has shown that the solid EOS agrees well with the
newer data, and a minor adjustment of some parameters in the fluid EOS leads to a new,
excellent fit. This is shown in Figure B1.

100 —rr

------- P solid Wolfer, GPa
—— - P gas Wolfer, PGa /
P solid Hemley, GPa X

P gas Hemley, GPa f
10 | ;3’ __

300 K

o X

Pressure, GPa
~

o1 L

0.01 0.1 1

Density, mol/cc

Fig. B1. Helium pressure at 300 K versus density for fluid and solid phases
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The new EOS for helium is given in terms of the compressibility factor

2w, T)=10"—E_ B1
(u.T) RT (B1)
where m is the helium density in mol/cm3, p is the pressure in units of GPa, and R = 8.314
J/mol/K is the gas constant. The compressibility factors for both the fluid and the solid

hases, z; and zs, are expressed as power series in the density as
g

2(u,T) = Co(T) + C,(T) (100 ) + C,(T) (100 w)* + Co(T) (100 )’ (B2)

with the following temperature dependent coefficients. For the fluid phase,

0.04

C3(T)=(T /1300)
C5(T)=5.83/(T +14)"*

(B3)
CH(T) = log,,[(T +42) /086(5)0]
0.69(T +42)"~
C5(T)=0.86/(T +70)"*
and for the solid phase,
C)(T)=-3.89+6.59 (T /100)-1.15 (T /100)* +0.0546 (T /100)
C!(T)=-0.523-0.439 (T /1000)+1.77 (T /1000)* -=1.39 (T /1000) (B4)

C;(T)=0.101-0.291(T /1000)+0.301 (T /1000)* - 0.1045 (T /1000)
C;(T)=0
The intersection of the two compressibility factors, i.e. when z (u,,.T,) = z,(u,.T,,), defines

approximately melt densities and melt temperatures. However, it neglects a small density
difference between the fluid and solid phase, or a small density range over which mixtures
of the two phases coexists. Accepting this minor inaccuracy, the following correlation is

obtained:

~0.0269 T°*° +1.953-107 T***  mol | cm® B5
ILLm m m

For many uses, including ours here, it is of advantage to express the compressibility factor

as a function of pressure and temperature. The following empirical correlation has been
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developed for the compressibility factor of fluid helium in the temperature range of 200 K <

T< 700 K:

z,(p.T) =1+ Z(T) p*™ (B6)
with

Z(T)=-0.12713+874.84/T (B7)
and

E(T)=0.82818-12.375/T+715.17/T" (B8)

In the relationship (B6), the fluid pressure is given in units of GPa. Within the pressure
range of 0.5 GPa to 10 GPa, the compressibility factor obtained from (B6) deviates from the
more exact result (B2) by no more than 4 %.

Using the expression (B2) for z; and zs, one can obtain the compressibilities and their
inverse, namely the bulk moduli. They are shown for T = 300 K in Fig. B2.

1000 , ,

Bulk Modulus, fluid, GPa
Bulk Modulus, solid, GPa

100

T=300K

© 10 b— — — — _ _ _ _ _ _ _ __ ___f |
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s |- - - - _
=
@ 0.1 i
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Density, mol/cc

Fig. B2. Bulk modulus for liquid and solid helium at T = 300 K.
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