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What are core requirements for next-generation ) i,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer




What are core requirements for next-generation ) e,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer

runtime system R&D to address these core application
requirements




Asynchronous Many-Task (AMT) runtimes address key s
performance challenges posed by future architectures
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(Low Capacity, High Bandwidth)

= Performance challenges:

Y
3D Stacked (High Capacity,

= Utilizing whole machine o Banduey
requires more parallelism

Managing deep memory
hierarchies requires flexible
staging of data/assigning work

COMPUTER

Handling dynamic workloads -
requires erxibIe task scheduling Image courtesy of www.cal-design.org P LABORATORY

Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

Many-Task: Chunks of work of “"correct” granularity that can be
flexibly assigned to different memory/execution spaces




Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap
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Broad survey of many AMT runtime systems | RS

Deep dive on Charm++, Legion, Uintah
Programmability

= Does this runtime enable efficient
expression of our workloads?

Performance

= How performant is this runtime for our
workloads on current platforms?

= How well suited is this runtime to
address exascale challenges?

Mutability

= What is the ease of adopting this
runtime and modifying it to suit our
needs?
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Lessons learned from study led to application-driven San
programming model specification co-design effort
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Data, task, and pipeline parallelism can be expressed in
different ways

= Explicit parallelism vs apparently sequential semantics

= Arbitrary data structures vs strong data model

= Runtime vs user-level control

= New language vs embedded in C/C++

Model should enhance performance, productivity, resilience
= Applications should not be (much) more difficult to write than MPI
= Make difficult things more tractable, e.g. load balancing fault-tolerance

Design space tradeoffs need further assessment prior to
committing to a single runtime
= Across variety of applications and architectures

= Further research required in some aspects of runtime (e.g., resource
management)



What do we mean by “application-driven co-design of a ;) s
programming model specification”?

National _
Laboratories

= Runtimes can be decomposed into a specification and
implementation
= The specification is formal documentation that

= Provides abstractions for expressing what an application does
(i.e., the programming model)

= Can express correctness requirements
= Can express performance requirements
= The implementation maps specification requirements onto
specific operations/events
= We are co-designing an AMT programming model
specification with application and runtime developers

= Meet our application requirements
= Generate the runtime requirements




DHARMA software stack separates policy and Sande
mechanism

Applications
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Higher Level
Abstractions

DHARMA Programming Model
Specification

DHARMA Portability Layer Policy to Mechanism
Translation Layer
Mechanism

Runtime Implementation Layer

OS/Hardware




Expression of policy enables runtime freedom to make sanda
complex performance-oriented decisions
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Design Intent:

. . . . Applications DSL Higher Level
= Applications specify policy

1) Express the problem into tasks and

= Enable rapid development d5Taldependancias

. . 2) Express which data can be copied/
Of correct Im p I ementation migrated to create more parallelism
3) Express which tasks should be co-
located to preserve locality

1) ldentify communication operations

" App||cat|0ns can SpeCIfy required for scheduling

. 2) Identify synchronization requirements to Policy to Mechanism
mecC h anism ensure correct task ordering Translation Layer
3) Identify memory/execution spaces that
maximize a task’s concurrency/locality

= Enable improvement
towards performant 1) Handle events Mechanism

2) Move data around system Implementation Layer

i m p | eme ntati on 3) Resource allocation and arbitration

OS/Hardware




The separation of policy and mechanism facilitates sanda
exploration of runtime design space
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= AMT software stack working
group at Sandia

Electromagnetic
D HARMA Reentry Plasma
Embedded Matrix

Kokkos
. Mesh Solver Higher Level
Data Warehouse/Kelpie Sacado) || oy | (SRR Libraries | NSNS

Sample Sandia Software Stack

Resource allocation and
management

Qt h reads Kokkos Portability DHARMA Portability Policy to Mechanism
Layer Layer Translation Layer

= |nitial implementation of stack

th iS yea r Ieve ragi ng Ch arm++ Abstract Machine Model Resource Allocator
Mechanism
CUDA Pthreads Qthreads Kelpie Implementation Layer

= Working with community to
OpenMP NSSI Charm++

explore alternative stack
mplementations

= OCR, REALM




Application requirements shape the initial
programming model specification

= Application controls initial problem decomposition and
distribution

= Runtime should support

Efficient SPMD launch and coordination semantics

Collectives

Basic checkpoint/restart fault recovery supported

Replay of tasks for ease of debugging

Application-specific data structures/layouts

Expression of all forms of parallelism (data, pipeline, task)
= Embed in C++
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The DHARMA programming model specification is a set Sanda
of parallel semantics embedded in C++ syntax
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Declarative, not procedural imperative

Coordination semantics replace explicit send/recv

Enqueue work to be performed instead of explicitly
(imperatively) doing work immediately or blocking

As much as possible, preserve sequential semantics to
simplify reasoning about code correctness

Use standard C++ constructs (e.g., reference-counted
pointers) to manage parallelism

Do not need to know C++11 to code
= Works with gcc >=4.7, clang >= 3.5




The DHARMA project has three closely-coupled key Sanda
activities
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= Co-design AMT programming model specification

= Gather application requirements for programming model/runtime

= Assess what runtime requires programming model/application to express
= |mplement specification

= Leverage existing efforts

= Encourage vendor involvement

= Work with community to define best practices and eventual
standards for AMT

= Collaborating with Tim Mattson’s team at Intel on DHARMA programming
model specification

= Recurring engagement with Charm++, OCR, Legion teams

Let us know if you are interested in collaborating in any of these areas!




