
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The DHARMA Approach to Asynchronous

Many-Task Programming

David S. Hollman, Jeremiah J. Wilke, Nicole
Slattengren, Hemanth Kolla, Francesco
Rizzi, Keita Teranishi, Janine C. Bennett (PI),
Robert L. Clay (PM)

PSAAP-West

January 28, 2016

SAND2016-0930C

What are core requirements for next-generation
applications?

 An abstraction layer between applications and the runtime
system/physical architecture

 An implementation of a software stack that supports this
abstraction layer

 Community best practices and eventual standards for this
abstraction layer

2

What are core requirements for next-generation
applications?

 An abstraction layer between applications and the runtime
system/physical architecture

 An implementation of a software stack that supports this
abstraction layer

 Community best practices and eventual standards for this
abstraction layer

3

The DHARMA project at Sandia performs AMT
runtime system R&D to address these core application

requirements

Asynchronous Many-Task (AMT) runtimes address key
performance challenges posed by future architectures

 Performance challenges:

 Utilizing whole machine
requires more parallelism

 Managing deep memory
hierarchies requires flexible
staging of data/assigning work

 Handling dynamic workloads
requires flexible task scheduling

 Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

 Many-Task: Chunks of work of ``correct’’ granularity that can be
flexibly assigned to different memory/execution spaces

Image courtesy of www.cal-design.org

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability

 Does this runtime enable efficient
expression of our workloads?

 Performance

 How performant is this runtime for our
workloads on current platforms?

 How well suited is this runtime to
address exascale challenges?

 Mutability

 What is the ease of adopting this
runtime and modifying it to suit our
needs?

Lessons learned from study led to application-driven
programming model specification co-design effort

6

 Data, task, and pipeline parallelism can be expressed in
different ways
 Explicit parallelism vs apparently sequential semantics

 Arbitrary data structures vs strong data model

 Runtime vs user-level control

 New language vs embedded in C/C++

 Model should enhance performance, productivity, resilience
 Applications should not be (much) more difficult to write than MPI

 Make difficult things more tractable, e.g. load balancing fault-tolerance

 Design space tradeoffs need further assessment prior to
committing to a single runtime
 Across variety of applications and architectures

 Further research required in some aspects of runtime (e.g., resource
management)

What do we mean by “application-driven co-design of a
programming model specification”?

 Runtimes can be decomposed into a specification and
implementation
 The specification is formal documentation that

 Provides abstractions for expressing what an application does
(i.e., the programming model)

 Can express correctness requirements

 Can express performance requirements

 The implementation maps specification requirements onto
specific operations/events

 We are co-designing an AMT programming model
specification with application and runtime developers
 Meet our application requirements

 Generate the runtime requirements

DHARMA software stack separates policy and
mechanism

Expression of policy enables runtime freedom to make
complex performance-oriented decisions

Design Intent:

 Applications specify policy
 Enable rapid development

of correct implementation

 Applications can specify
mechanism
 Enable improvement

towards performant
implementation

The separation of policy and mechanism facilitates
exploration of runtime design space

 AMT software stack working
group at Sandia

 DHARMA

 Kokkos

 Data Warehouse/Kelpie

 Resource allocation and
management

 Qthreads

 Initial implementation of stack
this year leveraging Charm++

 Working with community to
explore alternative stack
implementations

 OCR, REALM
10

Sample Sandia Software Stack

Application requirements shape the initial
programming model specification

 Application controls initial problem decomposition and
distribution

 Runtime should support

 Efficient SPMD launch and coordination semantics

 Collectives

 Basic checkpoint/restart fault recovery supported

 Replay of tasks for ease of debugging

 Application-specific data structures/layouts

 Expression of all forms of parallelism (data, pipeline, task)

 Embed in C++

The DHARMA programming model specification is a set
of parallel semantics embedded in C++ syntax

 Declarative, not procedural imperative

 Coordination semantics replace explicit send/recv

 Enqueue work to be performed instead of explicitly
(imperatively) doing work immediately or blocking

 As much as possible, preserve sequential semantics to
simplify reasoning about code correctness

 Use standard C++ constructs (e.g., reference-counted
pointers) to manage parallelism

 Do not need to know C++11 to code
 Works with gcc >= 4.7, clang >= 3.5

The DHARMA project has three closely-coupled key
activities

 Co-design AMT programming model specification
 Gather application requirements for programming model/runtime

 Assess what runtime requires programming model/application to express

 Implement specification

 Leverage existing efforts

 Encourage vendor involvement

 Work with community to define best practices and eventual
standards for AMT
 Collaborating with Tim Mattson’s team at Intel on DHARMA programming

model specification

 Recurring engagement with Charm++, OCR, Legion teams

Let us know if you are interested in collaborating in any of these areas!

