SAND2016- 0930C

The DHARMA Approach to Asynchronous

Many-Task Programming

David S. Hollman, Jeremiah J. Wilke, Nicole
Slattengren, Hemanth Kolla, Francesco
Rizzi, Keita Teranishi, Janine C. Bennett (Pl),
Robert L. Clay (PM)

PSAAP-West
January 28, 2016

! U.S. DEPARTMENT OF /ﬂ'f. ' ‘-b(},’\q‘
ENERGY #VY 5

AY
Nuclear Security Administ

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

What are core requirements for next-generation) i,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer

What are core requirements for next-generation) e,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer

runtime system R&D to address these core application
requirements

Asynchronous Many-Task (AMT) runtimes address key s
performance challenges posed by future architectures

National _
Laboratories

(Low Capacity, High Bandwidth)

= Performance challenges:

Y
3D Stacked (High Capacity,

= Utilizing whole machine o Banduey
requires more parallelism

Managing deep memory
hierarchies requires flexible
staging of data/assigning work

COMPUTER

Handling dynamic workloads -
requires erxibIe task scheduling Image courtesy of www.cal-design.org P LABORATORY

Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

Many-Task: Chunks of work of “"correct” granularity that can be
flexibly assigned to different memory/execution spaces

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

Sandia
National
Laboratories

Broad survey of many AMT runtime systems | RS

Deep dive on Charm++, Legion, Uintah
Programmability

= Does this runtime enable efficient
expression of our workloads?

Performance

= How performant is this runtime for our
workloads on current platforms?

= How well suited is this runtime to
address exascale challenges?

Mutability

= What is the ease of adopting this
runtime and modifying it to suit our
needs?

SANDIA REPORT
SAND2015-8312

Unlimited Release
Printed September 2015

ASC ATDM Level 2 Milestone #5325:
Asynchronous Many-Task Runtime System
Analysis and Assessment for Next
Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),

Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

Ryan Grant, 8i Hammond, Stephen Olivier (Performance Analysis)

Sandia National Laboratories

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm+)
University of llinois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)
Stanford University

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

Pat McCormick and Samuel Gutierrez (Tools)
Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)
Lawrence Livermore National Laboratory

Approved for public release; further dissemination uniimited.

@ Sandia National Laboratories

Lessons learned from study led to application-driven San
programming model specification co-design effort

National _
Laboratories

Data, task, and pipeline parallelism can be expressed in
different ways

= Explicit parallelism vs apparently sequential semantics

= Arbitrary data structures vs strong data model

= Runtime vs user-level control

= New language vs embedded in C/C++

Model should enhance performance, productivity, resilience
= Applications should not be (much) more difficult to write than MPI
= Make difficult things more tractable, e.g. load balancing fault-tolerance

Design space tradeoffs need further assessment prior to
committing to a single runtime
= Across variety of applications and architectures

= Further research required in some aspects of runtime (e.g., resource
management)

What do we mean by “application-driven co-design of a ;) s
programming model specification”?

National _
Laboratories

= Runtimes can be decomposed into a specification and
implementation
= The specification is formal documentation that

= Provides abstractions for expressing what an application does
(i.e., the programming model)

= Can express correctness requirements
= Can express performance requirements
= The implementation maps specification requirements onto
specific operations/events
= We are co-designing an AMT programming model
specification with application and runtime developers

= Meet our application requirements
= Generate the runtime requirements

DHARMA software stack separates policy and Sande
mechanism

Applications

National _
Laboratories

Higher Level
Abstractions

DHARMA Programming Model
Specification

DHARMA Portability Layer Policy to Mechanism
Translation Layer
Mechanism

Runtime Implementation Layer

OS/Hardware

Expression of policy enables runtime freedom to make sanda
complex performance-oriented decisions

Laboratories

Design Intent:

. . . . Applications DSL Higher Level
= Applications specify policy

1) Express the problem into tasks and

= Enable rapid development d5Taldependancias

. . 2) Express which data can be copied/
Of correct Im p I ementation migrated to create more parallelism
3) Express which tasks should be co-
located to preserve locality

1) ldentify communication operations

" App||cat|0ns can SpeCIfy required for scheduling

. 2) Identify synchronization requirements to Policy to Mechanism
mecC h anism ensure correct task ordering Translation Layer
3) Identify memory/execution spaces that
maximize a task’s concurrency/locality

= Enable improvement
towards performant 1) Handle events Mechanism

2) Move data around system Implementation Layer

i m p | eme ntati on 3) Resource allocation and arbitration

OS/Hardware

The separation of policy and mechanism facilitates sanda
exploration of runtime design space

Laboratories

= AMT software stack working
group at Sandia

Electromagnetic
D HARMA Reentry Plasma
Embedded Matrix

Kokkos
. Mesh Solver Higher Level
Data Warehouse/Kelpie Sacado) || oy | (SRR Libraries | NSNS

Sample Sandia Software Stack

Resource allocation and
management

Qt h reads Kokkos Portability DHARMA Portability Policy to Mechanism
Layer Layer Translation Layer

= |nitial implementation of stack

th iS yea r Ieve ragi ng Ch arm++ Abstract Machine Model Resource Allocator
Mechanism
CUDA Pthreads Qthreads Kelpie Implementation Layer

= Working with community to
OpenMP NSSI Charm++

explore alternative stack
mplementations

= OCR, REALM

Application requirements shape the initial
programming model specification

= Application controls initial problem decomposition and
distribution

= Runtime should support

Efficient SPMD launch and coordination semantics

Collectives

Basic checkpoint/restart fault recovery supported

Replay of tasks for ease of debugging

Application-specific data structures/layouts

Expression of all forms of parallelism (data, pipeline, task)
= Embed in C++

Sandia
National
Laboratories

The DHARMA programming model specification is a set Sanda
of parallel semantics embedded in C++ syntax

Laboratories

Declarative, not procedural imperative

Coordination semantics replace explicit send/recv

Enqueue work to be performed instead of explicitly
(imperatively) doing work immediately or blocking

As much as possible, preserve sequential semantics to
simplify reasoning about code correctness

Use standard C++ constructs (e.g., reference-counted
pointers) to manage parallelism

Do not need to know C++11 to code
= Works with gcc >=4.7, clang >= 3.5

The DHARMA project has three closely-coupled key Sanda
activities

Laboratories

= Co-design AMT programming model specification

= Gather application requirements for programming model/runtime

= Assess what runtime requires programming model/application to express
= |mplement specification

= Leverage existing efforts

= Encourage vendor involvement

= Work with community to define best practices and eventual
standards for AMT

= Collaborating with Tim Mattson’s team at Intel on DHARMA programming
model specification

= Recurring engagement with Charm++, OCR, Legion teams

Let us know if you are interested in collaborating in any of these areas!

