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It all started with…

Loss-DiVicenzo-like architecture

Kane-like architecture

[1] D. Loss and D. P. 
DiVincenzo, “Quantum 
computation with quantum 
dots,” Phys. Rev. A, vol. 57, 
no. 1, pp. 120–126, Jan. 
1998.
[2] www.wikipedia.org

[1] B. E. Kane, “A 
silicon-based nuclear 
spin quantum 
computer,” Nature, vol. 
393, no. 6681, pp. 133–
137, 1998.
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Yes, that’s 17 years ago!



Donors in isotopically-enriched 
silicon 28 have very good quantum 
coherence
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Electron spin 1/2: 
T2

* = 270 µs
T2, CPMG = 560 ms
Fprep/readout = 97%
Fcontrol = 99.6%

Nuclear spin 1/2: 
T2

* = 600 ms
T2, CPMG = 36.5 s
Fprep/readout = 99.995%
Fcontrol = 99.99%

[1] J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. 
Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello, “Storing quantum information for 30 
seconds in a nanoelectronic device,” Nat Nano 9, 986 (2014).



Quantum dots in silicon are highly 
tunable
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Electron spin 1/2: 
T2

* = 120 µs
T2, CPMG = 28 ms
Fprep/readout = 92%
Fcontrol = 99.59%

2-qubit gate:
F ~ 96%

[1] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. 
Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. 
Dzurak, “An addressable quantum dot qubit with fault- tolerant control-fidelity,” 
Nat Nano 9, 981 (2014).
[2] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. 
Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. 
S. Dzurak, “A two-qubit logic gate in silicon,” Nature advance online publication, 
(2015).



Coupling donor qubits directly
involves atomic-precision 
fabrication…
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[1] T. F. Watson, B. Weber, M. G. House, H. Büch, and M. Y. Simmons, “High-
fidelity rapid initialization and read-out of an electron spin via the single donor 
D− charge state,” Phys. Rev. Lett. 115, 166806 (2015).

Not yet mature technology 
(fails stochastically)

Final: 1D

Final: 0D



Coupling donor qubits involves quantum 
dots in many propositions…

Kane, 1998 Kane, 2000
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Pica, Lyon, 2015 Tosi, Morello, 2015

[1] B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature 393, 133 (1998).
[1] B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, 
Phys. Rev. B 61, 2961 (2000).

[1] G. Pica, B. W. Lovett, R. N. Bhatt, T. Schenkel, and S. A. Lyon, “Surface code architecture for donors and dots in 
silicon with imprecise and non-uniform qubit couplings,” ArXiv e-prints (2015), arXiv:1506.04913 [cond-mat.mes-hall] .

[1] G. Tosi, F. A. Mohiyaddin, S. B. Tenberg, R. Rahman, G. Klimeck, and A. Morello, 
“Silicon quantum processor with robust long-distance qubit couplings,” ArXiv e-prints 
(2015), arXiv:1509.08538 [cond- mat.mes-hall] .



New scheme: use donor contact hyperfine 
interaction to rotate the spin

Hybrid singlet-triplet qubit
For electron on donor:
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 Fast and stable rotation speed: 
Contact hyperfine interaction A/2 
= 57 MHz gives 9 ns π rotation.

 Compact design: No need for 
nuclear field bath, spin-orbit 
int. or micromagnet.

 Get a nuclear spin for free.

Advantages

S-T Hamiltonian:

Double QD-like system!



Singlet-triplet encoding
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Charge stability diagram

Double QD

Spin states for two electrons

m = 0

m = +1

m = -1



Singlet-triplet encoding
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Charge stability diagram

Double QD



Singlet-triplet encoding
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Charge stability diagram

Double QD
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Our silicon MOS nanostructure

Bloch sphere

Filled-shell valley configuration



Quantum dot-donor anti-crossing
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State preparation and readout
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State manipulation
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State manipulation
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Singlet-triplet rotations driven by a single 31P nucleus



Detuning dependence of exchange 
interaction
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Coherence time and charge noise
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Visibility decay Coherence time vs detuning

Charge-noise limited.
Possibly extended to > 10 µs



Summary
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Future work

Singlet-triplet qubit

 AC control

 Single-shot readout

 Address visibility

Exciting possibilities

 Coupling of donor-based ST 
qubits

 Nuclear spin readout (without 
electron spin resonance) 

 Nuclear spin qubit (with nuclear 
magnetic resonance)

 Coupling of donor qubits
(original Kane proposal)
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2 µm
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