
LA-UR-17-20814
Approved for public release; distribution is unlimited.

Title: (U) An Analytic Examination of Piezoelectric Ejecta Mass Measurements

Author(s): Tregillis, Ian Lee

Intended for: Proceedings of the 2016 Nuclear Explosives Code Design Conference
(NECDC), held Oct. 17-21, 2016 at Lawrence Livermore National
Laboratory in Livermore, CA, USA.

Issued: 2017-02-02



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



NECDC 2016 LA-UR-YY-ZZZZZ

(U) An Analytic Examination of Piezoelectric Ejecta Mass
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I. L. Tregillis1
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Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Ongoing efforts to validate a Richtmyer-Meshkov instability (RMI) based ejecta source model [1,
2, 3] in LANL ASC codes use ejecta areal masses derived from piezoelectric sensor data [4, 5,
6]. However, the standard technique for inferring masses from sensor voltages implicitly assumes
instantaneous ejecta creation [7], which is not a feature of the RMI source model. To investigate
the impact of this discrepancy, we define separate “areal mass functions” (AMFs) at the source and
sensor in terms of typically unknown distribution functions for the ejecta particles, and derive an
analytic relationship between them. Then, for the case of single-shock ejection into vacuum, we use
the AMFs to compare the analytic (or “true”) accumulated mass at the sensor with the value that
would be inferred from piezoelectric voltage measurements. We confirm the inferred mass is correct
when creation is instantaneous, and furthermore prove that when creation is not instantaneous, the
inferred values will always overestimate the true mass. Finally, we derive an upper bound for
the error imposed on a perfect system by the assumption of instantaneous ejecta creation. When
applied to shots in the published literature, this bound is frequently less than several percent. Errors
exceeding 15% may require velocities or timescales at odds with experimental observations.

1 Introduction

We consider the problem of measuring the areal mass of an ejecta cloud through the use of a
piezoelectric sensor, specifically in the situation where ejecta production is the result of a single
shock, and where all transport between the source and sensor occurs in vacuum. This analysis does
not apply to double-shock experiments, nor to cases where the ejecta are transported through a
gaseous medium. The present treatment assumes negligible deceleration of the free surface during
an extended ejecta creation interval, although the situation may differ in the case of an unsupported
shock.

We begin in Section 2 by defining the problem geometry and establishing several fundamental
relationships. Then we derive the fundamental equation governing coordinate transformations
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between the source (i.e., free-surface) and sensor (i.e., laboratory) rest frames. This enables us to
derive expressions for both the analytic (“true”) and measured (“inferred”) accumulated ejecta
mass at the sensor, for any given analytic function describing the time- and velocity-dependent
areal mass at the source. In Section 3, we use these results to derive a general expression for the
error, χ. This leads to a simple upper bound on the error percentage imposed (on a perfect system)
by the assumption of instantaneous ejecta creation. This bound arises strictly from kinematic
considerations; it does not rely upon assumptions about the velocity or size distributions of the
ejecta particles.

Finally, in Section 4, we apply this general result to eight shots from the published literature.

2 Definitions and derivations

We begin by introducing all definitions, conventions, and derivations used throughout this analysis.

2.1 Kinematics

All definitions are derived from the problem geometry depicted in Fig. 1.

Figure 1: Cartoon depiction of the problem geometry. The dashed line (black)
represents the initial (unperturbed) free surface at the shock breakout time, t0. The
solid line (blue) represents the free surface at the creation time (tc) for a given
particle of interest, which is born with velocity w relative to the free surface. The
free surface is assumed to undergo instantaneous acceleration to constant
velocity ufs at the instant of shock breakout. The known initial distance from the
unperturbed free surface to the piezoelectric sensor (with collecting area A) is h.
(All calculations in this treatment assume a uniformly accelerated free surface.)
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Let us define the shock breakout time (t0), the time of ejecta particle creation (tc), and the time of
particle arrival at the sensor (t). Our convention is that velocities measured relative to the free
surface are denoted w, and that velocities measured relative to the motionless sensor (i.e., in the lab
frame) are denoted u. The free surface velocity in the lab frame is ufs (assumed constant in this
treatment). A particle with velocity w relative to the free surface has velocity u = w + ufs relative
to the sensor. We define all times and velocities to be positive, and only consider times prior to the
arrival of the free surface at the sensor.

For a particle created (i.e., ejected from the free surface) at time tc with relative velocity w, the
arrival time at the sensor, t, will be given by

t (w, tc) = tc +
h− ufs (tc − t0)

w + ufs
=

wtc + (h + ufst0)
w + ufs

. (1)

This is simply the creation time plus the transit time from the free surface location at time tc to the
static pin location; ufs(tc − t0) is the distance traveled by the free surface between the shock
breakout and particle creation times. (Notice that when tc = t0 (i.e., when the ejecta particle is
created at the instant of shock breakout) the arrival time is the creation time plus the time of flight;
when tc = t0 = 0, the arrival time is simply the time of flight.) From this we can obtain the
creation time, tc, required for a particle with relative velocity w to arrive at the sensor at time t:

tc (w, t) =
(w + ufs) t− (h + ufst0)

w
. (2)

Both t (w, tc) and tc (w, t) can be converted to functions of lab-frame velocity, u, via the
substitution w = u− ufs. The lab-frame velocity required such that a particle created at time tc
arrives at the sensor at a specified time t is straightforward:

u (tc, t) =
h− ufs (tc − t0)

t− tc
(3)

from which we obtain the associated relative velocity:

w (tc, t) ≡ u (tc, t)− ufs =
h− ufs (tc − t0)

t− tc
− ufs =

h− ufs (t− t0)
t− tc

. (4)

Note that Eqns. 1 and 2 imply that for a fixed velocity, w,

dt

dtc
=

(
w

w + ufs

)
=

(
u− ufs

u

)
(5)

dtc
dt

=
(

w + ufs

w

)
=

(
u

u− ufs

)
. (6)

Consider particles of a fixed relative velocity w, emitted continuously during a creation interval
∆tc. Their arrival interval at the sensor, ∆t, will be shorter than ∆tc because the free surface
approaches the sensor during the emission interval, meaning particles emitted later in the interval
travel a shorter distance at the same velocity than particles emitter earlier in the interval. Thus
∆tc > ∆t for a fixed velocity.
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2.2 Distribution functions and areal mass functions

Microphysics at the free surface determines, either explicitly or implicitly, a distribution function
for the ejecta particles. In particular, we define

fc (m,w, tc) dm dw dtc (7)

to be the number of ejecta particles created during the time interval [tc, tc + dtc] with mass in the
range [m,m + dm] and relative velocity in the range [w,w + dw]. Then it follows∫∫∫

fc (m,w, tc) dm dw dtc = Nt (8)

where Nt is the total number of ejecta particles created at the free surface, and thus

fc =
dN (m,w, tc)
dm dw dtc

(9)

where N (m,w, tc) is the number of ejecta particles created at time tc with mass m and relative
velocity w. The units of fc must be

[
mass−1 · velocity−1 · time−1

]
or

[
mass−1 · length−1

]
.

The total ejecta mass is given by∫∫∫
mfc (m,w, tc) dm dw dtc = Mt (10)

so ∫
mfc (m,w, tc) dm =

dM

dw dtc
(11)

where M (w, tc) is the ejecta mass created at time tc with relative velocity w.

We can now define the areal mass function for particles of relative velocity w created at the time tc:

mc (w, tc) ≡
1
A

∫
mfc (m,w, tc) dm. (12)

The units of mc are
[
mass · area−1 · velocity−1 · time−1

]
or

[
mass · volume−1

]
.

Similar reasoning may be applied to the distribution function, fa, of particles arriving at the
piezoelectric sensor in the lab frame. In that fashion we obtain the areal mass function for particles
of lab-frame velocity u arriving (collected) at time t:

ma (u, t) ≡ 1
A

∫
mfa (m,u, t) dm. (13)

The lab-frame areal mass function ma has the same units as mc.

Because mc is determined by microphysics of ejecta production at the free surface, it is defined in
the rest frame of the free surface. Alternatively, because ma is determined by the distribution of
ejecta particles arriving at the sensor, it is most sensible to define that function in the lab frame.

Note furthermore that specific knowledge of the distribution functions fc and fa is unnecessary for
our purposes. It is sufficient to know the areal mass functions can be related to the microphysics of
ejecta production via the (possibly unknown) distribution functions.
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2.3 Relationship between ma and mc

Our goal is to investigate how reliably quantities inferred from sensor measurements reflect the
true (analytic) situation. To do that, we must first derive a relationship between ma and mc.

We assume all ejecta particles created at the free surface eventually arrive at the sensor, and that
the motion is collinear so that the relevant area does not change. (See [7] for a full description of
the assumptions underlying the piezoelectric sensor analysis.) Thus a particle arriving at the
detector at time t with lab-frame velocity u must have been created at the free surface with relative
velocity w = u− ufs at time tc (u− ufs, t). We therefore expect

ma (u, t) ∝ mc

[
u− ufs, tc (u− ufs, t)

]
.

Mass conservation implies

ma (u, t) du dt = mc (w, tc) dw dtc

or

ma (u, t) =
dw

du

dtc
dt

mc (w, tc) =
(

w + ufs

w

)
mc (w, tc) ,

from which we obtain the fundamental equation relating the source (mc) and sensor (ma) areal
mass functions:

ma (u, t) =
(

u

u− ufs

)
mc

[
u− ufs,

ut− (h + ufst0)
u− ufs

]
. (14)

Eqn. 14 can be confirmed by computing the total ejecta mass created at the free surface and
collected at the sensor. Conservation of mass requires

A

∫ ∞

0

∫ ∞

0
mc (w, tc) dw dtc = A

∫ ∞

0

∫ ∞

0
ma (u, t) du dt.

Applying Eqn. 14 and the substitutions

x = u− ufs y =
ut− (h + ufst0)

u− ufs

to the right-hand expression (the total mass collected at the sensor) yields

A

∫ ∞

0

∫ ∞

0

(
u

u− ufs

)
mc

[
u− ufs,

ut− (h + ufst0)
u− ufs

]
du dt

= A

∫ ∞

−ufs

∫ ∞

−
h+ufst0
u−ufs

(
x + ufs

x

)
mc (x, y)

(
x

x + ufs

)
dxdy.

Because the problem is defined such that all velocities and times are positive, mc (x, y) = 0 for
both x < 0 and y < 0. Thus the right-hand expression becomes

A

∫ ∞

0

∫ ∞

0
mc (x, y) dxdy

which is exactly equivalent to the left-hand expression (the total mass ejected by the free surface).
This demonstates that mass is conserved.

Thus, Eqn. 14 is the correct relationship between the areal mass functions at the source and sensor.
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2.4 Pressure and accumulated areal mass

We can now write expressions for the time-dependent pressures on the free surface and the sensor,
and for the time-dependent accumulated areal mass at the sensor, given an areal mass function at
the source.

The pressure on the free surface is equivalent to the recoil momentum flux. This is simply

Pc (tc) =
∫ ∞

0
mc (w, tc) w dw. (15)

Similarly, the pressure on the sensor is given by

P (t) =
∫ ∞

0
ma (u, t) u du =

∫ ∞

0

(
u2

u− ufs

)
mc

[
u− ufs,

ut− (h + ufst0)
u− ufs

]
du. (16)

The analytic (“true”) mass per unit area accumulated at the sensor is clearly

mt(t) =
∫ t

0
dt′

∫ ∞

0
ma

(
u, t′

)
du (17)

(note this becomes the total accumulated mass as t→∞). We choose this form for simplicity,
although clearly mt(t) = 0 for 0 < t < ta0 where ta0 is the earliest particle arrival time at the
sensor; likewise, of course, ma(u, t) = 0 for u ≤ ufs.

Meanwhile, and as derived in [7] by assuming all ejecta particles are created at the instant of shock
breakout, the accumulated ejecta mass per unit area inferred from the piezoelectric sensor
measurement is

mi(t) =
∫ t

0

(
t′ − t0

h

)
P

(
t′
)

dt′ =
1
h

∫ t

0
dt′

∫ ∞

0
ma(u, t′) u (t′ − t0) du (18)

where P (t) is the pressure measured by the sensor, i.e., Eqn. 16. The preceding observation
regarding the integration limits applies here, as well: we choose this form for simplicity, although
both lower limits of integration could be increased to positive values without changing the
evaluation.

Eqns. 15 - 18 embody everything we need to examine the piezoelectric mass measurement
procedure analytically for any test problem defined by a known source areal mass function
mc(w, tc). It is worth noting, however, that this treatment also enables us to compute an analytic
expression for the time-dependent voltage at the pin. As explained in [7], the pin voltage is given
by

V (t) = A R S
dP

dt
(19)

where P (t) is again given by Eqn. 16, R is the terminating resistance of the circuit, and S is the
piezoelectric sensitivity.

2.5 Time-dependent ufs

Throughout, this treatment assumes the free-surface velocity to be constant. Here we comment
briefly on the situation u′fs(tc) 6= 0.
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In this case, the distance traveled by the free surface between times t0 and tc is

∆h =
∫ tc

t0

ufs(t′c) dt′c,

and thus

t (w, tc) = tc +
h−

∫ tc

t0

ufs(t′c) dt′c

w + ufs(tc)
. (20)

This leads to

dt

dtc
= 1−

ufs(tc)
w + ufs(tc)

− u′fs(tc) ·
h−

∫ tc

t0

ufs(t′c) dt′c[
w + ufs(tc)

]2

=
w

w + ufs(tc)
− u′fs(tc) ·

h−
∫ tc

t0

ufs(t′c) dt′c[
w + ufs(tc)

]2 . (21)

When ufs is constant, this reduces to Eqn. 1. When ufs is decreasing, ∆t increases relative to ∆tc,
which matches our expectations: it is the motion of the free surface which leads to the compressed
interval at the sensor relative to the source, so if the free surface becomes motionless, the source
and sensor intervals will become equivalent. Conversely, if ufs is increasing, then the arrival
interval relative to the creation interval will become even shorter than that obtained for the case of
a constant ufs.

Given a known ufs(tc), Eqn. 20 cannot be solved algebraically for tc. The entire treatment for this
scenario becomes nonalgebraic.

In situations where the free surface is driven by an unsupported shock (e.g., a Taylor wave), ufs

may indeed decrease during the ejecta creation period. However, the present formulation can still
be used to estimate the errors in the piezoelectric mass measurement (see Section 3) by computing
χ(t) (see Eqn. 22) for both ufs = ufs(t0) and ufs = min(ufs).

3 General expression for the error in the inferred areal mass, χ

It is straightforward to derive an expression for χ(t), the ratio of the inferred accumulated areal
mass to the true accumulated areal mass, for any areal mass function mc(w, tc).

Recall, from Eqn. 17, that the true accumulated areal mass at the sensor is

mt(t) =
∫ t

0
dt′

∫ ∞

0
ma(u, t′) du

while from Eqn. 18 the inferred accumulated areal mass at the sensor is

mi(t) =
∫ t

0

(
t′ − t0

h

)
P (t′) dt′ =

∫ t

0
dt′

(
t′ − t0

h

) ∫ ∞

0
ma(u, t′)u du

=
1
h

∫ t

0
dt′

∫ ∞

0
ma(u, t′) u t′ du,

7
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where for simplicity, and with no loss of generality, we have set t0 = 0. We now apply Eqn. 14 to
write these areal masses as functions of mc rather than ma. When t0 = 0, the true accumulated
areal mass becomes

mt(t) =
∫ t

0
dt′

∫ ∞

0

(
u

u− ufs

)
mc

(
u− ufs,

ut′ − h

u− ufs

)
du.

Let x ≡ u− ufs (which is clearly w, but to avoid confusion we simply define x as a variable with
units of velocity). Then

mt(t) =
∫ t

0
dt′

∫ ∞

−ufs

(
x + ufs

x

)
mc

[
x,

(x + ufs)t′ − h

x

]
dx.

Now let y ≡ (x+ufs)t
′−h

x . (Clearly, y = tc(w, t′). But as with x, we treat y merely as a convenient
substitution variable.) Note there is no problem with y diverging at x = 0: ejecta particles can only
arrive at the sensor when u > ufs =⇒ x > 0 (see Section 2.4 regarding the limits of integration).
Then

mt(t) =
∫ ∞

−ufs

dx

∫ (x+ufs)t−h

x

−h
x

(
x + ufs

x

)
mc(x, y)

(
x

x + ufs

)
dy

=
∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) dy

This expression makes sense. It’s the integral of the areal mass function at the source over the
creation interval that corresponds to the arrival interval ending at time t.

The inferred areal mass at the sensor is

mi(t) =
1
h

∫ t

0
dt′

∫ ∞

0

(
u

u− ufs

)
mc

(
u− ufs,

ut′ − h

u− ufs

)
u t′ du.

Let us apply the same substitution variables, x and y, from above. Now

ut′ = (x + ufs) ·
(

xy + h

x + ufs

)
= xy + h,

and thus

mi(t) =
1
h

∫ ∞

−ufs

dx

∫ (x+ufst)−h

x

−h
x

(
x + ufs

x

)
mc(x, y) (xy + h)

(
x

x + ufs

)
dy

=
1
h

∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y)(xy + h) dy

=
∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) dy +

1
h

∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) x y dy

= mt(t) +
1
h

∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) x y dy.

We therefore find that for any given areal mass function at the source, mc(w, tc), the ratio of
inferred to true accumulated areal mass at the sensor is

mi(t)
mt(t)

≡ χ(t) = 1 +
1
h
·

∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) x y dy∫ ∞

0
dx

∫ tc(x,t)

0
mc(x, y) dy

8
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or

χ(t) = 1 +
1
h
·

∫ w1

w0

∫ tc(w,t)

0
w tc mc(w, tc) dtc dw∫ w1

w0

∫ tc(w,t)

0
mc(w, tc) dtc dw

where t0 = 0 for simplicity, tc(w, t) = (w+ufs)t−h
w , and we have denoted the minimum and

maximum relative velocities by w0 and w1, respectively. Note tc(w, tc) ≥ 0 =⇒ w ≥ h
t − ufs.

Finally, then, we have

χ(t) = 1 +
1
h
·

∫ w1

h
t
−ufs

∫ tc(w,t)

0
w tc mc(w, tc) dtc dw∫ w1

h
t
−ufs

∫ tc(w,t)

0
mc(w, tc) dtc dw

. (22)

For sufficiently large arrival times, t, (such as when evaluating the χ(t) at the end of the arrival
period) the lower bound on the velocity integral will fall below w0, at which point it can be
replaced with w0.

Note that Eqn. 22 is the error imposed on a perfect system by the assumption of instantaneous
ejecta creation. The overall error in the inferred mass will be higher in a real measurement, owing
to noise and other effects.

We have defined the problem such that mc ≥ 0, w ≥ 0, and tc ≥ 0. This means χ(t) ≥ 1 for all
arrival times t, which in turn means that for a perfect system the piezoelectric sensor analysis can
never underestimate the ejecta mass. By assuming all particles are launched instantaneously, the
piezo analysis implicitly interprets later-arriving particles as being slower but heavier to achieve
the same impulse. So the analysis skews toward larger ejecta masses later in the arrival period.

The error percentage, P , is

100
h
·

∫ w1

h
t
−ufs

∫ tc(w,t)

0
w tc mc(w, tc) dtc dw∫ w1

h
t
−ufs

∫ tc(w,t)

0
mc(w, tc) dtc dw

,

so for the error level to exceed P% requires

100
hP

·
∫ w1

h
t
−ufs

∫ tc(w,t)

0
w tc mc(w, tc) dtc dw >

∫ w1

h
t
−ufs

∫ tc(w,t)

0
mc(w, tc) dtc dw. (23)

Consider the quantity 100
hP wtc. If this were exactly unity over the entire integration domain, then

the left and right sides of Eqn. 23 would be identically equal. If this quantity were less than unity
over the entire integration domain, then the integrand of the left side would be less than the
integrand of the right side at every point in the domain. Because all quantities are nonnegative for
this problem, that would guarantee the quantity on the left is less than the quantity on the right.
Therefore, the inequality in Eqn 23 can only be satisfied if

100
hP

wtc > 1 or wtc >
hP

100

9
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over at least some portion of the integration domain (which is a function of t).

Each P value therefore defines a curve in the (w, tc) plane; this curve must intersect the integration
domain in order for the error percentage to exceed P%. (Intersection is a necessary but not
sufficient condition.) Clearly then, there is a maximum error percentage, Pmax, such that the
curves for P > Pmax never intersect the integration domain. A simple estimate for Pmax is

Pmax = max 100 · w
h
· tc

where the maximum is computed over the domain of integration. A straightforward value for this
bound uses the maximum ejecta relative velocity, w1, and the final creation time, tcf (or the
duration of the creation interval, tcf − t0, if t0 6= 0). (This is an estimate because particles of
velocity w1 might not be emitted at time tcf , if the velocity distribution defined by mc(w, tc) is
nonstationary.) Finally, then, the weakest upper bound on the error percentage is

Pmax = 100
w1tcf

h
. (24)

(Interestingly, this is the simplest first-order quantity that one might construct from dimensional
analysis and a consideration of how the error might be expected to scale with the pin distance and
creation time.) For experiments where h is known from the configuration and ufs and
uej ≡ u1 = w1 + ufs are measured, this sets an upper bound on the error as a function of the
creation interval.

For a given arrival time, t, the integration domain is the region of the (w, tc) plane bounded by the
inequalities

h

t
− ufs ≤ w ≤ w1 0 ≤ tc ≤

(w + ufs)t− h

w
.

The portion of this domain where wtc > hP
100 is that part of the domain above the line tc = hP

100w .
This is represented schematically in Fig. 2, as is the contour for P = Pmax. In order for the
integration domain to contain points with wtc > hP

100 , the creation interval must extend to times

tc >
hP

100w1
.

As an example, the parameter values explored in Shot 6 of [4] yield h
w1
≈ 32.4 µs, meaning the

upper bound on the error will be approximately 3% unless the creation interval exceeds 1
microsecond (see Section 4).

3.1 Instantaneous creation

If all ejecta are created instantaneously at the moment of shock breakout, the areal mass function at
the source will have the form

mc(w, tc) = g(w)δ(tc − t0) = g(w)δ(tc)

when t0 = 0. Because mc = 0 for tc < 0, the lower limit of integration over tc in Eqn. 22 may be
extended to any negative value, thereby forcing the numerator to zero and yielding χ(t) = 1. This
confirms that the piezoelectric sensor analysis is guaranteed to give the correct result (again, for a
perfect system) when the creation is instantaneous.

10
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Figure 2: Cartoon depiction of the integration domain for computing χ(t). The
shaded red region is the domain of integration at time t. The green line represents
the boundary between wtc > hP

100 and wtc < hP
100 for a given error percentage, P . The

error cannot exceed P% unless the green line intersects the domain of integration,
as illustrated here (intersection is a necessary but not sufficient condition). The
blue line represents the (w, tc) contour for the largest possible P value, Pmax. Note
this cartoon makes no assertions about the areal mass function mc(w, tc), only its
domain of integration relevant for χ(t).

3.2 Stationary velocity distributions

If the ejecta velocity distribution is stationary, then the areal mass function at the source can be
written

mc(w, tc) = f(tc)g(w).

Then the second term of Eqn. 22 becomes

1
h
·

∫ w1

h
t
−ufs

w g(w) dw∫ w1

h
t
−ufs

g(w) dw

·

∫ tc(w,t)

0
tc f(tc) dtc∫ tc(w,t)

0
f(tc) dtc

.

When both upper limits of integration are < 1 in the units of the problem, each integral ratio must
be less than unity. A detailed study of analytic test problems with stationary velocity distributions
confirms that χ(t) ≈ 1 in many cases.

11
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3.3 Time-dependent ufs

When ufs is constant, the free surface velocity enters χ(t) only via the limits of integration in
Eqn. 22. If instead ufs is a function of tc, the resulting nonalgebraic formulation could be
considerably different. However, in that case, the true value of χ(t) may be expected to reside in
the range defined by evaluations of Eqn. 22 for the maximum and minimum values of ufs over the
ejecta creation period. From dimensional analysis, we expect Eqn. 24 to provide a decent estimate
of Pmax, even for this scenario.

4 Application to Published Shots

Table I lists Pmax values computed from Eqn. 24 for several shots found in the literature [4, 6].

Experiment 100 ns 500 ns 1.0 µs 1.5 µs 2.0 µs
[4] Shot 5 1.5 7.5 14.9 22.4 29.8
[4] Shot 6 0.3 1.5 3.1 4.6 6.2
[4] Shot 8 1.4 6.9 13.7 20.6 27.5

[4] Shot 10 0.2 1.1 2.3 3.4 4.5
[4] Shot 11 0.2 0.9 1.9 2.8 3.7
[4] Shot 12 0.3 1.6 3.1 4.7 6.2

[6] Target 11 0.2 1.2 2.3 3.5 4.7
[6] Target 12 0.4 1.9 3.9 5.8 7.8

Table I: Pmax values (%) as a function of tcf , for eight shots selected from the
literature. The w1 and h values are taken from the references, and tcf is treated as a
free parameter.

Pmax rarely exceeds 10% even when the ejecta creation interval, tcf , extends to 2 µs, a duration
greatly exceeding “conventional wisdom” of 100-200 ns. In all cases, the upper bound on the error
is less than 15% when creation persists for a full microsecond.

If the aggregate error in the voltage measurement were to exceed 5%, then in six of the eight cases
listed in Table I the piezoelectrically inferred ejecta mass values could not be used to reliably
distinguish between creation intervals of 100 ns and 1 µs.

This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under
contract DE-AC52-06NA25396.
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