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INTRODUCTION TO SHOCK WAVES AND SHOCK WAVE RESEARCH
William W. Anderson

I. INTRODUCTION

M-9 and a number of other organizations at LANL and elsewhere study materials in
dynamic processes. Often, this is described as “shock wave research,” but in reality is
broader than is implied by that term. Most of our work is focused on dynamic
compression and associated phenomena, but you will find a wide variety of things we do
that, while related, are not simple compression of materials, but involve a much richer
variety of phenomena. This tutorial will introduce some of the underlying physics
involved in this work, some of the more common types of phenomena we study, and
common techniques. However, the list will not be exhaustive by any means.

Fundamental physical constants.

Most of the material discussed in these notes does not require use of the fundamental
physical constants. However, some discussions do have a few of these constants in them
and, although the values of the constants are not generally important to the discussions in
the notes, they are important for the actual application of the material. Hence, Table I-1
gives the current accepted values of those constants that appear in these notes. A full
listing of the fundamental physical constants and their accepted values can be found at
http://physics.nist.gov/cuu/Constants/index.html.

Notation.

These notes use notation that is fairly standard in shock wave research in the US.
However, some variations exist, even in the US, depending on the field from which a
research is coming. There can also be differences in notation that depend on the
nationality of the researcher. Such differences in notation can a problem in many areas of
research that cut across disciplines. The notation in this handout comes from the
geosciences, which is traditionally the biggest non-defense user of shock wave
techniques. There will likely be instances where the notation used here differs from what
you may have seen in your own fields of study. The important point to remember is that
you should be sure you understand the meaning of symbols used any time you are
reading published literature or lecture notes such as these. Some of the more common
confusing notations are given in Table I-2. The specific notation used in these notes is
given in Table I-3.

Table I-1 Fundamental Physical Constants

Quantity Symbol Value Unit:
Speed of Light in Vacuum c 299492458 ms™
Planck Constant h 6.62606957x10™" Js
Boltzmann Constant k 1.30806488x102° JK?
Molar Gas Constant R 8.3144621 Jmol* K™




Table 1-2-Confusing Notation.

Quantity

Symbols used here

Other common symbols

Pressure

Internal energy

Bulk modulus

W ©

-

Compressibility

Shock wave speed

C}T?\‘ ™
=S

Sound or elastic wave speed

Specific heat

Young’s modulus

Shear modulus

Helmholtz free energy

Gibbs free energy
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parameter
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Lattice Griineisen parameter
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VVolume thermal expansion
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Linear thermal expansion coefficient

Q
=

Molar mass

=
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Organization.

These notes are organized into three major subject areas—Materials and Material
Behavior, Waves and Shock Waves, and Shock Wave Research Techniques. Depending
on your background, you will likely have already seen some of this material before, but

much of it will be new.

Table 1-3-Symbols and Units.

Quantity Symbol Commonly Used Units
Density P kg/m®, g/cm®
Pressure P Pa, GPa, kbar
Stress o Pa, GPa, kbar
Isentropic and isothermal bulk modulus Ks, Kt Pa, GPa, kbar
Pressure derivative of Ks and Ky Ks’, Kt’
Isobaric and isochoric specific heat Cp, Cv | J/kgK
Volume thermal expansion coefficient a K™
Linear thermal expansion coefficient oL K?
Thermodynamic Griineisen parameter y
Specific internal energy E J/kg
Specific enthalpy H J/kg
Specific Gibbs free energy G J/kg
Specific Helmholtz free energy F J/kg
Shock wave speed U, U km/s, m/s




Particle speed Up, U km/s, m/s
Eulerian longitudinal sound speed Ci km/s, m/s
Lagrangian longitudinal sound speed ‘¢, km/s, m/s
Eulerian bulk sound speed Ch km/s, m/s
Lagrangian bulk sound speed “cp km/s, m/s
Eulerian shear sound speed Cs km/s, m/s
Hugoniot intercept Co km/s, m/s
Hugoniot slope S

Hugoniot quadratic coefficient q s/km, s/m
Strain €

Specific entropy S J/kgK
Temperature T K

Molar mass 7 kg/mol
Specific volume Y m°/kg

Mass flux j kg/m®s
Atomic or molar fraction X

Mass fraction m

Mass m kg

Heat Q J

Work W J

First and second Lamé constants A Pa, GPa, kbar
Frequency v Hz, st
Wavelength A m

Spectral emissivity €

Planck Function LI ImZsrt, WmSsr’
Electrical potential Vv V

Current | A

Magnetic Field B Gauss
Acoustic impedance z kg m?s™
Shear modulus G Pa, GPa, kbar
Number N

Positions X, Y, Z m
Displacements u, Vv, w m

Length L m

Elastic constant C Pa, GPa, kbar
Young’s modulus Y Pa, GPa, kbar
Poisson’s ration v

Force F, F N
Acceleration a m/s”

Time t S

Parameters for Birch-Murnaghan Eqn. &, &

Interatomic Potential 17 J
Compression n

Rotation (in strain tensor) @ radians




Function (in wave description) F

Variables (in wave description) &n
Displacement 7 m
Velocity (in discussions of electromagnetics) \ m/s
Isothermal and isentropic Anderson- o7, Js
Grineisen parameter

(GInyoInV)r q
Polytropic exponent y




I1. MATERIALS AND MATERIAL BEHAVIOR

Everything we deal with on a daily basis—the air we breathe, the chair we sit on, our
own body, is made up of matter, with a variety of forms nebulously called materials.
Everything about these materials and how they behave are controlled by their properties,
which, for our purposes, can be lumped into the headings of thermodynamic, mechanical,
and transport properties. Most of shock wave research is involved with probing material
properties. Shock wave studies are also affected by those properties.

Thermodynamics.

Thermodynamics deals with the relationship between work and heat and the
consequences for variables such as temperature, pressure, internal energy, and volume,
known as thermodynamic potentials. These variables may be either intensive, meaning
the value doesn’t depend on how much material is present, i.e., can’t be expressed in
terms of “so much per unit of mass”, or extensive, which does depend on the amount of
material present. The fundamentally intensive quantities are pressure (P) and
temperature (T). Volume, energy, and other variables are extensive, but are usually
recast into intensive properties by dividing them by the mass of material. Intensive
quantities that are derived in this way are known as specific quantities. Thus, the
intensive form of volume is the specific volume. In practice, with the notable exception
of the volume, the word *“specific” is almost never used because it is very rare to actually
use extensive properties in calculations.

It is important to remember that thermodynamics is concerned with bulk behavior of
materials. When dealing with individual molecules or atoms, the concepts of pressure,
temperature, and so on break down and are not strictly applicable. Thermodynamics in
physics is often called statistical mechanics or statistical thermodynamics, from the
concept that a statistical average of the behavior of a large enough ensemble of atoms is
what shows up in the macroscopic world as thermodynamics.

Now, consider a block of your favorite substance (Figure 11-1). That block has some
volume (an extensive property), related to the amount of the substance and the density
(an intensive property). What, other than adding more of the substance, might we do to
change the volume? The most obvious is that we can apply pressure—i.e., squeeze the
block. Pressure is the natural driving force for changing the volume. However, applying
pressure and compressing the block also affects other variables. The action of pressure to
compress the volume is a form of work—the force due to pressure acts on the boundaries
of the block to move them, and work is force applied through a distance. The units of
work are energy—you are adding energy to the block when you compress it.

One can also transfer energy into (or out of) the block. In classical thermodynamics
discussions, the transfer is always discussed as if it were by transfer of heat through
conduction, but this can also encompass deposition of electromagnetic radiation, or
change in energy through flow of electrical current with attendant ohmic dissipation. The
net result is the same—the deposited energy (eventually) ends up as thermal energy—
manifested as the microscopic motion of the atoms.
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Figure I11-1. Energy may be added to an object by (a) performing work in compression, (b) allowing
diffusion of heat into the object, and (c) deposition of thermal radiation.

The First and Second Laws of Thermodynamics.

We don’t have time to go into a lengthy discussion of the laws of thermodynamics,
but a brief introduction is in order. From the foregoing, we see that the energy of the
block (the “system”) can be changed by performing work and/or by transferring heat. The
energy in this case is usually called the internal energy, E. The First Law of
Thermodynamics states that the change in the internal energy of a system is equal to the
work done on the system plus the heat added to the system, or

dE = dW +dQ, (I.1)

where W is work and Q is heat.

Now, consider a heat engine, which takes heat from one reservoir to another reservoir
and uses the heat to do work. The basic concept of the Second Law of Thermodynamics
is that a heat engine can do no work if the two reservoirs are the same temperature and
that heat will not spontaneously flow from one reservoir to a second that is at the same or
higher temperature. Effectively, the second law states that in a reversible process, the
work done is exactly equal to the difference between the heat removed from the hotter
reservoir and the heat added to the cooler reservoir.

Now, let’s delve a little deeper into the second law. In the case of a reversible heat
engine, the French engineer Sadi Carnot came to the conclusion that the efficiency of
such an engine was independent of the design of the engine. Hence, conclusions drawn
from the behavior of one example of an “ideal” engine apply to all ideal engines. Now,
let’s consider a perfect gas. Such a gas obeys the relation

P=—" (11.2)

where N is the number of molecules, k is a constant of proportionality (Boltzmann’s
constant), and V here is the extensive volume. The fundamental property of a perfect gas
is that its molecules are infinitesimal and therefore never interact with one another. This
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Figure 11-2. The Carnot cycle.

has the interesting consequence that the internal energy explicitly depends on the
temperature and nothing else. To see what this means for an ideal heat engine, consider
the cycle of expansion and compression shown in figure 11-2. Starting at point a, the gas
expands, doing work on its surroundings

Vy

w =IPdV, (11.3)

V,

a

but the expansion takes place at a constant temperature T,, so that amount of heat Q,
removed from a reservoir is Q, = W and, from the above expressions,

b

leijTl‘i/l: Nlelnx—b. (11.4)

a
a

Now, if we cause the gas to expand further to V, but without any addition or removal of
heat, the ideal gas must come to a different temperature given by

TV, =TV, (1.5)
where the quantity yas used here is called the polytropic exponent. Some work has been

done, but with no heat transfer, so the energy and temperature have now changed. Now,
we isothermally compress the gas, with the heat given up being



Q, = NKT, In\\;—d. (11.6)

C

Finally, let’s compress adiabatically (no heat transfer) back to V.:
TV =TV, ™. (1.7)

This complete cycle is known as the Carnot cycle, and shows that the heat changes and
temperatures involved in completing the cycle are related by

Q.2 (118)

Tl TZ
Note that, in any case where the system is not ideal—i.e., not reversible, the foregoing
expression will be an inequality and the amount of work done will be less than the net
heat gained by the system.

A vital concept that was alluded to above, but we now state, is that the
thermodynamic state of a material, i.e., the particular pressure-temperature condition
(along with the phase), is ideally independent of the path taken to arrive at that state.
Hence, when doing a calculation of a change from one set of conditions to another, you
can use whatever paths make the problem easiest to calculate. This is why the efficiency
of an ideal heat engine is independent of the details of the engine.

Thermodynamic Temperature and Entropy.
The discussion above gives us the opportunity to develop a thermodynamic definition
of temperature, where temperature is proportional to heat added:

Q=ST. (11.9)

Note that we have introduced a new quantity: the entropy, S. This quantity, as expected,

is a constant only in a reversible system. It turns out that the change in S is always

positive in any irreversible system. Since the universe is not reversible, this is why the

second law of thermodynamics is often cast into the expression that the total entropy of

the universe is increasing. More rigorously, the total entropy of any closed system (i.e.,

one that has no communication with the remainder of the universe) cannot decrease.
Now, let’s cast the above into differential form:

_dQ
ds =—=. (11.10)

If we now combine this with the differential form for work, -PdV, then the first law of
thermodynamics becomes

dE =TdS - PdV . (11.11)
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(11.12)
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Thus E is a function of S and V, so we say that S and V are the natural variables of E.
Using the internal energy as a starting point, a set of thermodynamic potentials, all with
units of energy but having different natural variables, can be defined. These are given in
Table I1-1.

Only the internal energy has a simple physical meaning, but all of these quantities
have vital practical importance. In particular, the two free energies will be seen more as
we go through this course. The best way to illustrate F and G is to mention some of their
unique properties and how they are used. The most important consideration in F is that,
in any constant temperature (isothermal) process, the change in F is the reversible work.
More practically, when doing theoretical calculations of thermodynamic processes, the
simplest independent variables to work in are V and T, which are the natural variables of
F. Typically, when a physicist mentions “free energy” without reference to which one, it
is the Helmholtz free energy being discussed.

The Gibbs free energy has P and T as its natural variables. Since these are the most
easily controlled quantities in typical experiments, particularly in benchtop chemistry
(where P is usually constant and T is easily controlled), G is particularly important in
chemistry. Hence, when a chemist mentions a “free energy” without specifying which
one, it is almost always the Gibbs free energy that is being discussed. A particularly
important feature of G is that, in any system at equilibrium, i.e., in a state where the net
thermodynamic driving force is zero, the value of G is minimized for the given
combination of Pand T.

(11.13)

Table 11-1. Thermodynamic Energies.

Name and Relationship to | Differential Form Derivatives
Symbol E

Internal Energy E=E dE =TdS - PdV an T (a ) __p
E s ), N )
Enthalpy H=E+PV dH =TdS +VdP ﬁj T [ﬁ) _v
H as =] ap S
Helmholtz Free F=E-TS dF =-3dT —-PdV | (oF ) _ S oF) P
Energy a_TV__ a_vT__
F

Gibbs Free G=H-TS dG =-SdT +VdP oG oG
Energy =E+PV-TS aT =-3S P =V
G P T
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Figure 11-3. Example of taking different paths to calculate the same change.

In terms of thermodynamic variables, the specific state achieved is independent of the
path taken, as noted before during the discussion of the reversible heat engine. Hence,
getting to a given P-T condition could be done by any number of processes (figure 11-3),
including isobaric, then isothermal; or isothermal, then isobaric; or isentropic, then
isobaric, or isentropic, then isochoric (constant density or volume), etc. Most important
is that, to keep the calculations tractable, we will always choose to hold one natural
variable constant, while changing the other, then holding the other constant, while
changing the first. That way, the calculations involve single derivatives for any given
segment of the path. All the different properties of a material that relate the
thermodynamic variables are defined (by necessity) as a given property when holding
some variable constant.

The Equation of State.

The relationship between given thermodynamic quantities for a specific material can
be described by a mathematical expression (or set of expressions) called the equation of
state, or EOS. There are many EOS expressions in use and all are approximations,
although often quite good ones. Most are empirical. The EOS has material-specific
numerical parameters that quantify the thermodynamic derivatives. The most important
of these usually involve descriptions of the bulk modulus (either isothermal, K., or

isentropic, K,), the specific heat (either isobaric, C, or isochoric, C, ), and the volume
thermal expansion coefficient, a. These quantities are derivatives of the thermodynamic
potentials and their definitions are given in Table I1-2.

Along with the density, the quantities in Table I1-2 are combined in a derived
parameter that is used almost constantly in practice, the thermodynamic Griineisen
parameter, .

10



Table 11-2. Common Thermodynamic Derivatives.

Quantity Symbol Constant Defining Formula
Isothermal Bulk Modulus Kr Temperature apP
Kr=-V <—>
aVl)y
Isentropic Bulk Modulus Ks Entropy opP
KS = _V <_)
V)
Isochoric Specific Heat Cv Specific Volume . = (B_E)
Y= \oT/,
Isobaric Specific Heat Cp Pressure 0H
Cp = (—)
0T /p
Volume Thermal Expansion a Pressure 10V
Coefficient “=v (ﬁ) .
75\/(@j _ak;y _aKs (11.14)
ok ) pC,  pCp

The advantage of this particular quantity is that it allows calculations to be done without
explicitly including temperature, which is usually not known in shock wave experiments.
Most EOS formulations in use are partial equations of state in that they do not contain all
of the expressions required to fully constrain all of the thermodynamic potentials.
Usually, the most important unconstrained quantity is the temperature. The most
common EQOS forms used in shock wave work consist of a reference compression curve
and an expression to describe thermal deviations from that curve.

The Murnaghan equation.

The simplest reference curve formulation that can reasonably describe the
compression of a material over an extended pressure range is the Murnaghan equation,
which has a bulk modulus that changes linearly with pressure:

K=K, +KP. (11.15)

Given the definition of K, this leads to the following expressions:

K=K, [ﬁ] , (11.16)
Po

P=P, +K—2K£J —1] . (1.17)
K™\ oo

11




The Birch-Murnaghan Equation.

The main shortcoming of the Murnaghan equation is that K is a more complicated
function than can be expressed by a linear expression in P. An expression that attempts
to give a more realistic description of the compression behavior is the Birch-Murnaghan
equation:

3 75 2 2 1Y
P=EKO(X —X )[1+§1—§1x +& (% -1) } (11.18)
where
13
X:(ﬁj , (11.19)
Lo
3 '
5122(4_K), (11.20)
and

B ks 3 143

§2:§K0K”+§K’(K’—7)+ (11.21)

Where K’ and K" are the first and second pressure derivatives of the bulk modulus. For
an isothermal reference curve at 0 K, (11.18) corresponds to an interatomic potential of

the form
gD(T)Z—A(Ej _,_B(Ej +C(Ej el (1.22)
r r r

For the special case of & and higher order coefficients equal to zero, this corresponds

to coefficients in eq. (11.22) of all terms but the first two being zero. A nonzero value of
&, corresponds to a nonzero value of C in (11.22) and the expression can be carried to

higher order, though very seldom past the terms specifically given in (11.18). The Birch-
Murnaghan EOS is an example of a finite strain model. As such, it is nominally
formulated specifically as an isotherm. However, except that the relevant interatomic
potential no longer is described by (11.22), there is no prohibition against using (11.18) to
describe an isentrope. This expression is probably the most commonly used reference
curve model in the earth sciences. Equation (I1.18) is commonly referred to as the fourth-
order Birch-Murnaghan EOS (BMEOS). In this version, it is explicitly assumed that the
higher derivatives of K have values that make coefficients of higher order terms than
those in (11.18) equal to zero. If £, is equal to zero, then (11.18) is known as the third-

order BMEOS. For certain specific applications, the BMEOS is particularly useful.

12



Because of this fact, | will go ahead and give you the PdV integral solution corresponding

to (11.18):
V,
' 9 ¥ x* 1 X xt 1
-| Pdv=2vK )| - m || =
_‘- 2" {(5”)(4 2+4J 51(6 4+12j

Vo

(11.23)

Choice of Reference Curve.

The decision of whether to use an isotherm or an isentrope as the reference curve
depends on whether you are working with the internal energy E or the Helmholtz free
energy F. For theoretical EOS work, the most common approach is to use F, which then
causes one to use an isothermal reference curve. However, we will find that internal
energy is particularly easy to deal with when considering shock wave experiments, in
which case one would use the isentrope. It should be noted that K_ is not equal to K, and,

in fact, the two are related by the expression

K. C,

— =—F=1+ayT. (11.24)
K: C,
The Mie-Griineisen equation.

To calculate states off the reference curve, the transformation is usually done by an
isochoric (i.e., constant density or constant volume) internal energy change (if you are

working in F, the transformation to E is made using the definition in Table I1-1, then the
energy changed, then the transformation back to F). Recalling eq. (11.14), we can get

oP
[E)V =py. (11.25)

This is the basis of a partial EOS known as the Mie-Grlneisen EOS, which in its most
general form states

" dp
E,-E =VJ — , (constant V). (11.26)
Y

R

In the vast majority of studies, yis assumed to explicitly depend only on p, so that (11.26)
reduces to the simple expression:

E,-E,=—'—(P,-R). (11.27)

13



The most common assumption is that y can be described by

—_— (VKO)” , (11.28)

It should be noted that there are other parameters that are also called Griineisen
parameters. Most of these are related in some way to the thermodynamic parameter. In
particular, there are the so-called mode Grilineisen parameters, which describe the
frequency shift of vibrational modes in a lattice, the lattice Griineisen parameter, which
describes the phonon contribution to the thermodynamic value, and the electronic
Grineisen parameter, which is related to the electronic energy in a metal. Of these, the
lattice value is most closely associated with the thermodynamic value and, in fact, the
two should be the same for insulators in the harmonic approximation. The lattice value,
in turn, is related to the appropriate average of the mode parameters. Mode Griineisen
parameters in the harmonic approximation exhibit the behavior in (11.28), and the lattice
parameter does so well above the Debye temperature, which is why (11.28) is often a
reasonable behavior to assume. That said, the thermodynamic parameter includes all the
warts, such as anharmonicity, that isn’t captured by the harmonic approximation. Thus,
for almost everything, the reality is more complicated. The reason that the expression in
(11.28) is so widely used is the simple fact that, except where it can be calculated using
(11.14), the thermodynamic Gruneisen parameter is poorly constrained by most types of
data. We will see later that, in the case of shock wave compression, yenters the
computation only inside an integral, eq. (11.26), and so can only be constrained as an
average over P at a given density. Another important point that is often overlooked is
that, when constraining a complete EOS, the behavior of y cannot be defined
independently of the specific heat.

The shock wave EOS.

For many high-pressure applications, a particularly simple EOS is the shock wave
EOS, which is simply the algebraic expression of the relationship between the speed, Us,
of a shock wave and the material speed behind the shock wave, u,. We will discuss
shock wave and this relationship, known as the Hugoniot curve, in detail later. For now,
we will simply state the way this is used as an EOS. For many materials, the Us'“p

relationship is linear:

U,=C,+su, . (11.29)

It turns out that, taking the zero-pressure density, po,, the pressure, P ,, compressed state
density, p,,, and specific internal energy (relative to the initial state), E , can be easily
calculated as

P, = pU.u (11.30)

sUp !

14



U
=, 11.31
U —u (11.31)

S p

Pu = Po

E, =lu (11.32)

2
p o

N -

Typically, the Mie-Griineisen EOS is used to calculate states away from the Hugoniot
curve described in these equations.

A complete EOS: The (augmented) Vinet EOS.

There is one complete EOS that is gaining currency in the high pressure research
community. It is known variously as the universal, Rose, or Vinet equation of state. Its
functional form is purely empirical, but it does quite well at describing the behaviors of
many materials, over a much wider range of pressure than with the Murnaghan or Birch-
Murnaghan equations. Originally, the Vinet EOS was a partial EOS, but its originators
later incorporated an explicit temperature dependence which, with a specific heat, makes
it a complete EOS. As it now exists, this EOS is expressed by

P(T,V) = %go)(l— X )exp[ 7,(To) (1= X ) ]+ o (T Ko (T) (T =T,) . (11.33)

13
(v
X = Vo(To)j , (11.34)
3[( oK
17,(To) = 5_[8_Pj0 (To) —1} : (11.35)

where the subscript 0 refers to a reference condition. Note that (11.33) is shown as an
approximation. The actual definition of the reference isotherm (the first term) is
somewhat more subtle, but is well approximated in practice by the expression shown.

Phase Changes.

When we discussed the Gibbs free energy, G, we noted that this quantity is
minimized by a system at equilibrium. One of the consequences of this fact is that the
stable phase of a material will always be the one with the lowest value of G. This being
the case, an interesting problem arises. Although we can calculate changes in E, G, F,
and H, we haven’t said anything about their absolute values. In fact, in practice, the
absolute value of E for some material phase at some set of conditions is arbitrary.
However, once the value has been set at some reference condition for the stable phase at
that condition, this constrains the values of all phases at all conditions. Usually, the
reference value of E is simply set to zero at the reference condition for the most
commonly considered phase (usually whatever phase happens to be stable at 1 bar and
298 K). Then, energies of transition from this reference condition and phase are given to
the reference conditions of each independent phase.

15



The coexistence line, also called the phase boundary, between any two phases is
determined by the locus of states at which the values of G are equal for the two phases
being considered. Note that this boundary is a line. The number of degrees of freedom
in a thermodynamic system is the number of components minus the number of phases,
plus 2 (f = c- p + 2, called the Phase Rule). Thus, for a single component system
(practically speaking, a system with a single pure substance and no chemical reactions),
the boundary between two phases is a line in any chosen space. If three phases are
involved, there are no degrees of freedom and a unique point, called the triple point, is
constrained. Although equilibrium dictates that two phases can coexist only on the phase
boundary, real life is a little more complicated. There is also a Gibbs free energy of
mixing between two phases (or substances). For simple physical mixing of two phases of
the same substance, this quantity is given by

_RT

AG (x,Inx, +x,Inx,), (11.36)

where the quantities x are the mole fractions of the two phases. This expression assumes
mixing in the atomic limit and thus is really a lower bound (the value is always negative).
It is always minimized at equal proportions. The origin of this quantity is in the fact that
the entropy of a mixed system, being a measure of disorder, is higher than that of a pure
system. The entropy of mixing is simply the negative of the Gibbs energy of mixing
divided by the temperature. It should be noted that eq. (11.36) can be extended to an
arbitrary number of phases or substances simply by adding more terms in the parentheses.
Another complication in reality is that, sometimes, although a particular phase is at a
higher Gibbs energy than some other phase, the transformation is frustrated so there is no
path that can be followed in transforming from one to the other with the available energy.
In that case, the higher-energy phase is said to be metastable. The most common
example in everyday life is silica glass. Silica glass has a higher Gibbs energy than the
crystalline phase with the same composition. However, in order to drive a transition in a
short period of time, one would need to provide substantial energy by heating the glass.

Mechanical properties.

Now we will turn to a set of material behaviors and properties that are not
thermodynamic. Thermodynamic properties, by virtue of the path independence noted
earlier, are, in and of themselves, only state-dependent and are not sensitive to the path
taken to achieve that state. Now we will consider properties, some of which are
intimately tied to the thermodynamic properties, that can be affected by the history they
have seen.

Stress and strain.

In order to discuss mechanical properties, we must consider the concepts of stress and
strain. In the discussion of thermodynamics, we dealt extensively with pressure. If you
place a cube in a pressure vessel, surrounded by a fluid, and applied pressure, the force
per unit area seen by the cube is everywhere the same and everywhere directed inward
normal to the surface of the cube. What if you placed the cube in a vise so that two
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opposite faces were completely covered by the jaws of the vise? Now there is an
additional force applied over the area of those two surfaces, so that the total force per unit
area applied is not equal on all surfaces. This gets at the idea of stress.

Stress is the generalization of the force over area concept to the situation where both
the magnitude and the vector direction of the force per unit area may depend on the
orientation of the surface. Consider one surface of the cube and apply an arbitrary force
F to that surface. Force is a vector and has three orthogonal components, one of which
we can choose to be normal to the surface and two parallel to the surface, but orthogonal
to one another. Thus, there are both normal and tangential forces, which means there are
normal and tangential stresses.

Now consider our cube as a whole, with applied forces (and stresses) on each face
(figure 11-4). Any given stress component has a magnitude equal to the corresponding
force component divided by the area over which the force is applied. Conversely, the
force applied to a given surface area is equal to the stress multiplied by the area. The
total stress, containing all of these components, is a tensor:

6=|0, o, O, (11.37)

This tensor is a symmetric matrix, so that oxy = oyx. Now consider a randomly chosen
point in the cube, with some position (x,y,z) and displace it to a new position
(x+u,y+v,z+w), so that the displacement has components u, v, and w, corresponding to
the X, y, and z directions. Now, suppose an adjacent point starts at a position
(x+ox,y+ody,z+0z) and is displaced by u+odu, v+dv, w+oéw components. If the
displacements are infinitesimal, then the components can be written as

AZ

Oz

Oxz Z%

é——l O7x 1 I ; O'yy
I; > Oyx y

T

h
v

Figure 11-4. Infinitesimal element with stress components acting on surfaces.
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ou =a—u5x+a—u5y+a—u§z
OX oy 0z

5v=@5x+@5y+ﬂ52 . (11.38)
OX 0z

oy

§w:@5x+@5y+@§z
OX oy oz

The above expression contains nine derivatives of displacement with respect to
position. These derivatives define the strain, which is the distortion of the material, and
the solid body rotation of the material:

ou ov oW
EXX:_, Ew =T gzz:_
OX Yooy 0z
1{ow ov 1(ou ow 1({ov ou
gyZ:— _t =82y’ gzxz— D — =8XZ’ €Xy=— —+— =8yx . (“39)
2\ oy oz 2\ 0z oOX 2\ ox oy
_  OW oV _  Ou ow _ OV odu
20, =———, 2a)y=———, 20, =———
oy oz 0z OX oX oy

The top row in (11.39) defines the longitudinal, or normal, strains, which are the
dilatational distortions (expansion or contraction) parallel to the three axes we have
defined. The second row defines shear strains, which distort the shape of our
infinitesimal cube without changing its volume. The final row defines the rotations of the
cube around the three axial directions. Note that the linear displacement of an object is
not described by (11.39), because the quantities involved are derivatives of displacement,
which are identically zero for solid body displacement. Rather, these are the rotation and
distortion that are superimposed on the displacement.

Obviously, the quantities in (11.39) are differential quantities, but a real object may
undergo macroscopic deformation, so let’s consider how macroscopic strains are
measured. First, let’s focus on the longitudinal strain, considering the component &yy.
The simple algebraic version of (11.39), which is known as engineering strain, is

g, = (11.40)

where Ly is the length of the object in the x direction. However, the more appropriate
approach is to integrate the distortion, resulting in the logarithmic strain, often called true
strain:
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¢ =JdLX=AInLX:Inﬂ. (11.41)
Lx X0

Note that we have, in (11.40) and (I1.41), made the assumption that the object has not been

rotated. When rotation has occurred, the appropriate approach is to, for the purpose of

calculating the strain, rotate the coordinate system with the object.

The strain due to shear stress can also be defined either as an engineering strain or a
true strain. If we consider our block of material, the engineering strain is the amount of
offset of the surface to which the stress is applied, relative to the opposite surface,
divided by the separation distance:

Ay, &
L

X y

P (11-42)

This expression is the engineering shear strain and is better written as angular values (in
radians), as noted in figure 11-5. Note a vitally important feature here—there is a factor
of 2 difference between the expressions in (11.39) and (11.42). The engineering strain
combines the terms above and below the diagonal of the tensor, while the true strain does
not. That is the only difference and is vital because most tabulations of material
properties involving shear strain are based on the engineering strain. You should be
careful when performing quantitative calculations to assure that you understand which
type of strain you should be using with a given set of published parameters. It should
also be noted that many reference works will treat longitudinal strain using true strain,
but will use the engineering version of shear strain. Because the only difference is a
factor of 2, this is not a serious inconsistency, although it is mathematically not strictly
correct with the treatment of strain as a tensor.

B’ C’

A’ 01

y

Figure 11-5. Shear strain given as angular quantities.
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Hooke’s Law.

Hooke’s Law states that, for sufficiently small deformations, stress and strain are
proportional. This law can be generalized to state that the nine components of the stress
tensor can be written as linear combinations of the nine components of the strain tensor.
Now we can see why the engineering version of the shear strain is usually used—the
tensors are symmetric, so that combining the upper and lower symmetric terms reduces
the number of terms required to write Hooke’s law. We will follow this convention and
now present the equations describing the generalized form of Hooke’s law:

Oy =Cpé tCpe, +C38, +Cué, +Csé, +CpéE,,

O-yy = Czlgxx + C228yy + CZngz + C24‘c"yz + CZngx + C26‘9xy
O-zz = Cslgxx + C32‘9yy + Cssgzz + C348yz + C35‘92x + C36‘9xy

(11.43)
O

yz = CAlgxx + C42‘9yy + C43gzz + C44‘C"yz + C4582x + C46€xy

Oy = G518y T 058y +Cs36,, + G508, +C58, +Cs8,

O-xy = C618xx + C62‘9yy + 063822 + C648yz + C65€zx + C66gxy

The constants in (11.43) are the elastic constants of the material. In many materials,
inherent or effective symmetries reduce the number of independent terms in (11.43). The
simplest case is that of an isotropic material. Since untextured polycrystalline materials
are effectively isotropic, even when the underlying crystalline structures are much less
symmetric, we will limit our discussion to this particular case. Complete description of
an isotropic material’s elastic behavior requires only two parameters, known as the Lamé
constants 4 and u:

Cp =C;3=0Cy =Cypy =Cy =C5, = A
Cyy =Co =Coq = U , (1.44)
€y =Cyp =Cyy=A+2u

with the remaining elastic constants equal to zero. Inserting these into (11.43) gives
O =AA+2ue, o, =AA+2ue,, o©,=AA+2uc,

, (11.45)
Gyz = ﬂgyz GZX = ﬂgZX ny = lugxy

where

A=g,+e, +&,. (11.46)

Although only two constants are required, we usually use four constants that are more
readily related to experimentally measured stress-strain relationships. These are Young’s
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modulus, Y, the isentropic bulk modulus, Ks, the shear modulus, G, and the Poisson ratio,
V.

Young’s modulus is the ratio of longitudinal stress, say, oy, to the longitudinal strain,
&xx, When the two orthogonal stresses are set to zero. Thus, the first line of (11.45)
becomes

O =(A+2u)¢, +ﬂ(eyy +8ZZ)
0=(A+2u)e, +A(ey+&,) ¢ (11.47)
0=(A+2u)e, +A(g,+5,)

Solving for the strains, we get

A+u
(34 +2u)
u(31+2u) (11.48)
Ey =&, =~ A
yy Y24 #(3/1_’_2/1) XX
Y thus becomes
31+2
y:&:u. (11.49)

€ A+u

XX

The Poisson ratio is the ratio of the longitudinal and lateral strains in the foregoing:

Eyy A

V=———=

rTrEnt (11.50)

XX

The bulk modulus is the ratio of the volume stress, or pressure, to the volume strain in the
case where the longitudinal stresses are all equal and thus equal to the pressure:

K=t oap 2K (11.51)
A 3

Finally, the shear modulus is identical to the second Lame constant:
G=u. (1.52)
Strength.

One of the consequences of Hooke’s Law is that when a stress is applied and then
removed, the strain due to that stress is also reversed, so that the final strain state is
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identical to the initial strain state. This is elastic deformation. However, when a
sufficiently large stress is applied, a point is reached where some portion of the
deformation is not reversible. This phenomenon is called plastic yielding and the
permanent deformation is the plastic strain. Figure 11-6 shows a stress-strain curve that
corresponds to this behavior. The stress magnitude at the onset of plastic yielding is the
strength of the material. As might be expected, the strength depends on the details of the
stress field, so that there is no single strength. However, certain common stress situations
are encountered in practice, or easily set up in tests, so that the strengths of materials in
these special situations are commonly measured and used. In particular, there is tensile
strength, which is the case where o, _ is tensile and o, and o, are both zero. A similar

quantity can be defined for compression.

The underlying cause of elasticity is that, up to a certain level of deformation, particularly
in solids with crystalline symmetry, the atomic configuration in the no-strain state is the
lowest energy configuration and any distortion of the crystal lattice leads to restoring
forces that will return the lattice to its original configuration. However, a sufficiently
large distortion results in the creation or activation of defects in the lattice such that a new
local minimum in the energy surface is encountered, so that the restoring force goes to
zero before the lattice has returned to its original state. This point is where plastic
yielding begins. As might be expected, in the crystalline lattice, the ability of defects to
form and propagate depends critically on the lattice symmetry, so that low-symmetry
structures may have different elastic behaviors and different strengths for identical
stresses or strains applied in different directions.

The discussion in the previous paragraph is put in the context of the crystalline lattice,
which assumes a single continuous crystal. Polycrystalline materials or noncrystalline
materials can be thought of as crystals with particularly large numbers of preexisting
defects and so having much lower, but finite, strengths than the pure ideal crystals of the
same composition. It should be remembered that inertial effects and finite time required

o

fracture
fracture | plastic ~ /
stress

regime
strength—>[-------
v\yielding
elastic
regime
g

Figure 11-6. Stress-strain curve of a material showing important features.
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for information to travel across a lattice means that the strength and even the effective
elastic constants of a material can depend on the strain rate. Also, because strain results
in rearrangements of lattices, strength and elastic constants can also depend on the
magnitude of the strain. Hence, it is common to encounter discussions of rate-
dependence or to hear one speak of work-hardening or work-softening of a material. The
hardening or softening, used in this context, is speaking of changes in the yield strength
of the material.

Fracture toughness.

Eventually, at sufficiently high strains, particularly in shear or in tension, the number
of defects at a localized plane in the lattice becomes so great that the lattice is no longer
continuous across the plane and the two sides of the plane no longer exert any siginificant
attractive forces on one another, so that the material separates into two independent
pieces. This behavior is known as fracture and the stress at which it occurs is known as
the fracture toughness. Often, the term strength is used in place of toughness, but strictly
speaking, the term strength applies to plastic yielding. However, the usage of strength to
apply to fracture is so common as to be considered a legitimate use of the term by most
researchers.

As in the discussion of yield strength, we have been considering a single crystal, but
again polycrystalline materials or noncrystalline materials can be thought of as crystals
with particularly large amounts of preexisting defects, often with many of these defects
already aligned on localized planes. A note concerning noncrystalline materials is in
order here. Many noncrystalline materials are noncrystalline because they exhibit
strongly covalent bonding character that allows them to form chains or networks that
extend well beyond the size scale typical of a crystalline unit cell. In such materials, the
yield strength may be negligible and the restoring forces that do occur are the result of
straining the bonds in these polymeric constructs away from their lowest energy
configurations. The ability of polymeric chains and networks to deform without
significant bond breakage is why many polymers are able to absorb large amounts of
plastic strain before fracturing.
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I11. WAVES AND SHOCK WAVES

Planar Waves and the Wave Equation.

Imagine a block of some substance, which has an (as yet unspecified) equation of
state and, initially, has a uniform density throughout. Suppose that, on one side of the
block, we apply an infinitesimal time-varying deviation in the pressure P:

P(t) = Py + P'(t). (1n.1)

At the surface where the pressure is applied, the density is related to the pressure by

p®=pwuﬂ0=%+Pﬁ%g§)- (111.2)

S

Alternatively, we can write the pressure as
P®=%+pﬁ{§q . (11.3)
op )s

Writing the derivative in terms of commonly used EOS parameters and taking advantage
of the infinitesimal nature of the disturbance,

P@t) =P, + p'(t) R0 (111.4)

Lo

Taking the surface as an infinitesimally thick layer, then the pressure is now applied to
the immediately adjacent infinitesimally thick layer, and so on. The atoms at one
position must be accelerated toward their neighbors, resulting in a change in density as
the atoms approach their neighbors. Because this requires finite time, there will be an
increasing time lag associated with the pressure as one moves farther away from the
surface where the pressure was originally applied. Thus, we have a varying pressure and
density field that depends both on position and time—this is a wave.

Since the force is normal to the surface where it is applied, the atoms are accelerated
normal to the surface. However, the disturbance also is propagating that same direction,
so that the wave propagation direction and the induced atomic motions are parallel. This
is known as a compressional, or longitudinal, wave. We are most familiar with
longitudinal waves as sound waves. If the applied stress had been shear, then the atomic
motions would be perpendicular to the propagation direction and the wave would be a
transverse, or shear, wave. All materials are able to propagate longitudinal waves, while
only materials that can support shear stress are able to propagate a shear wave. Now let’s
consider the mathematical description of the wave we are discussing.

Consider the density, which depends on both the time and the position, p(x,t), where
propagation is in the x direction. Since the pressure variation is applied uniformly to a
planar surface, there is no lateral variation in the pressure, so the wave is planar. Now, at
time = 0, consider two closely spaced points in the undisturbed material, x and x + dx.
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Since there is no net lateral force, the material does not spread laterally and we can think

of a section of the wave having a constant area A. The mass between x and x + dx

traversed by that section of the wave is

m = pyAdx

(111.5)

Starting at time zero, the wave passes, imparting motion to the material and causing time-

and position-dependent displacements y at time t to the new positions
X+ z(x.t)

X+dx+ y(x+dx,t)

where the difference in displacements is given by
_ — (%
x(x +dx,t) — y(x,t) = (6x)t dx
The mass remains constant, so that the new density p, must satisfy

p1Alx +dx + y(x +dx,t) —x — y(x,t)] = poAdx

This leads to the densities being related by

(2]

Putting this back into equation (111.2), we find at time t,

— (%%
P = po(axjt-

Newton’s second law gives the force on the mass as

o’y
F= ,OOAdX(W}X .

(111.6)
(11.7)
(111.8)
(111.9)
(111.10)
(11.12)

The force on the layer at x is P(x,t)A, while the force at x + dx is -P(x + dx,t)A. The net

force, then, is

F= P(x,t)A—P(x+dx,t)A:—Adx(aﬁp ] :
X t
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This means that

%y oP’
Adx =—Adx , 11.13
po (atz jx [ aX jt ( )

which is equivalent to

x| __[Ks |00
po[atz l_ [po J(@xl' (111.14)

Taking the derivative of p" from (111.10) and eliminating o, on both sides, we get

[azf) :[KSOJ[‘?Z{]. (111.15)
ot® ). Py JLOX )

Now, let’s define (dropping the subscripts 0 for simplicity),

c? ﬁ. (111.16)
Yo,

Then we finally rearrange to get

o) %
L == . (11.17)
(ax2 o oclat? )

This is the wave equation for sound, but the form is more general. With different
parameters defining c, this equation describes any type of wave, including
electromagnetic radiation and water waves.

Now, let’s find the solution to this equation. Since the derivatives on both sides are
of the same order, we can write new variables that are a linear combination of the
variables x and t. We might also consider that the proportionality constant ¢ should be
used, so we introduce the new variables & = x — ctand n = x + ¢¢. The same applies to a
second arbitrary function F(#), so that the most general form for y is

7 =F.(x=ct)+F,(x+ct). (111.18)

Wave speed and the speed of sound.

Note that the function F; describes a disturbance propagating with speed c in the
positive x direction, while F, desribes propagation in the negative x direction, again at
speed c, and that the functions F; and F, are arbitrary and independent. Given that the
speed of the wave is ¢, we now know the speed of sound in terms of material properties:
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C= [=S (111.19)

It turns out that the foregoing is much more general than the derivation above might
seem to indicate. If the force due to pressure is replaced by an elastic restoring force,
then this equation holds equally well for arbitrary (small) deformation in materials that
show strength. In such cases, remember that there are two different types of stress and
strain—Ilongitudinal and shear. When the shear strength of a material is not zero, the
longitudinal sound speed is modified by the fact that longitudinal deformation has both
dilatational and shear strain components. When a longitudinal strain is applied to a
laterally unconfined material, the longitudinal strain is given by

£, =—=, (111.20)
where Y is Young’s modulus. The lateral strains are related to this by Poisson’s ratio:

, =VE =V - (111.21)

g, =$[ay ~v(o,+0,)] (111.22)

However, if the material is confined so that it cannot expand laterally, such as when
the material has an effectively infinite lateral extent, the stress field must adjust itself to
make the lateral strains exactly zero, which is accomplished if

VO,
—o =29 11.23
oy=0,=— (111.23)
and the longitudinal strain becomes
2
g =Tl | (111.24)
Y (1-v)
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Let us define a modulus m that has the property

m=%=(1_\(2(vl%. (111.25)

X

It turns out that this quantity can be related to the bulk and shear moduli by their relations
to Young’s modulus:

Y

=3z (111.26)
Y

Tt (111.27)

m = KS+%G. (111.28)

Thus, the longitudinal elastic wave in a medium with strength will travel at a speed

(111.29)

As you might suspect, the speed of a shear wave in a material with strength is

c. =[S (111.30)
e,

Shock Waves.
Origin of shock waves.

As noted above, the wave equation allows arbitrary wave profiles, so the profile can
be a discontinuous jump, i.e., a shock wave. We know that shock waves exist, but why
do they exist? The answer lies in the details of the equation of state.

With a few special exceptions over a restricted pressure range, materials are
characterized by an isentropic bulk modulus with a positive pressure derivative K_.', so
that K increases with pressure. If you apply a small increase in pressure, say in the

leading edge of a wave, both K, and p will increase:

Ko =Kg, + K0P =K, [1+ K i—Pj : (111.31)

S0
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oP oP
p=p0+p0—:po[1+—]. (1.32)

These lead to

¢ = (14 K2 (1422 (1.3

So Kso

where c is the initial sound speed. The consequence of this equation is that the next

small part of the wave has a higher speed and can overtake the leading edge of the wave.
Now, consider the entire wave, which can be thought of as little wavelets with each part
moving faster than all the parts that went before (Figure 111-1). The entire wave steepens.
Because the trailing portions of the wave cannot pass the leading portions (they would
slow down upon reaching the uncompressed material ahead of the wave), the wave
steepens into a discontinuity and the resulting wave is a shock wave. In fact, because the
wave also compresses the material so that the distance between two points in the material
is decreased, shock waves can even form in materials where K.’ is slightly negative.

Strictly speaking, as long as the expression

(1+K5'5—P) (1+5—P)> 1 (111.34)

Kso Kso

holds, a wave will steepen into a shock wave if allowed to propagate far enough.
It should be noted that a few specific phases of a few materials have relatively large
negative values of K, at least over some pressure range. Among these are fused quartz

and the y phase of cerium. These phases, over the appropriate pressure range, cannot
form shock waves in compression.

Figure I11-1. Steepening of a wave into a shock wave.
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Figure I11-2. Thermodynamic potentials and velocities are changed by passage through the shock wave.

The Conservation Equations.

A shock wave changes the state of the material through which it passes (Figure 111-2)
and the state of material emerging from the shock wave is related to the state of the
material entering the shock wave by the conservation of mass, momentum, and energy.
The equations describing the conservation relations are known as the Rankine-Hugoniot
equations. The Rankine-Hugoniot equations are most easily derived if they are placed in
a reference frame in which the shock wave itself is at rest.

Conservation of Mass.

Conservation of mass requires that the mass flux j = pu be constant, where u is the
speed of the material perpendicular to the wave, so that the relationship between the flux
out of the wave and that into the wave is

Pl = ] = poly. (111.35)

where u, = Us-up, with u, being the velocity change imparted by the wave to the material
and U_ being the speed of the shock wave relative to the unshocked material.

Conservation of Momentum (Newton’s second law).
The momentum density of the material is equal to pu, so that the momentum flux is
2 .. . .
pu. As a consequence of (I11.35), any nontrivial solution requires that the momentum
flux must change. This, then, requires an acceleration and an accelerating force in
accordance with Newton’s second law. The force is provided by a pressure difference, P,

— P,. If the material spends an arbitrarily short time At in the shock wave, then the
amount of material in area A of the shock wave is AjAt. The velocity difference u,-u,
must be equal to

U, —U, = — At:POTPR
AJAt ]

(111.36)
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We can rearrange this and substitute for j to give

P+ pu’ =P, + p,u’. (11.37)

Conservation of energy.

An ideal shock wave is a discontinuity, so the material remains in the shock wave
only an infinitesimal amount of time. Hence the process is adiabatic because there is no
time for heat transfer, so the energy flux into the shock wave must equal that coming out.
The total energy flux is equal to the mass flux times the sum of enthalpy and kinetic
energy, so

plul(HlJr%ufj:pouo(Ho+%u§). (111.38)
Since pu is constant, we can make use of H = E + PV = E + P/p to get

El+i+£uf:E0+&+lu§. (111.39)
P2 Py 2

Since the specific volume V = 1/p,

u=jv. (111.40)
Then, we can rewrite (111.37) as
P+jV, =R+, (111.41)
and solve for j*:
jz=\2:5‘i. (111.42)

Using this with (111.40), rearranging (111.39) and simplifying, we get
El_E()=%(F>O+p1)(v0 V). (111.43)

Thus, we have an expression of the internal energy change.
Laboratory Reference Frame.

The conservation equations are typically more useful in practice if we recast them
into a reference frame in which the material is initially at rest, since this is the situation
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that apples to measurements in the usual laboratory experiment. Reminding ourselves
that U, = -u, and setting

U, =y —U,, (111.44)
we rearrange (111.35):
A Y (111.45)
p Ug-u,
From (111.37), we get
P-R=pUu,. (111.46)

Now, note that (111.43) is unaffected by the change in reference frame. However, a
convenient consequence of this change is to make use of (111.41) and (111.44) to get

El—EO:POVO—p+%u§. (111.47)

In the typical experimental case, where P ~ 0, this is simply

E,~E, =%u§. (111.49)

Effective Compressive Modulus

An important note is that, although the shock wave obeys the wave equation, the
wave speed is not that of a sound wave, because the sound speed was derived under the
assumption of infinitesimal pressure and density change. Because the changes are finite
(and can be large), the effective modulus that would be used in the wave speed formula is
different and is, in fact, dependent on the amplitude of the shock wave. Going back to
the wave equation and the calculation of the wave speed, we see that the effective
modulus is going to be

K =pU2, (111.50)

where U_is the speed of the shock wave. An interesting problem is that, ideally, the

jump from the undisturbed state to the final state in a shock wave is instantaneous, so
(111.50) is the only value of the modulus for the entire compression process. Now, let’s
recast this in terms of V by using
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dp 2
—_p2: 111.51
dv v Po ( )

oP -
—=—p,U . 111.52
av pO S ( )
If we look at the Rankine-Hugoniot equations (111.45) and (111.46), we find that the entire
compression, from start to finish, has

AP B pOUsup

AV U/
P

which is exactly the same expression as in (111.52), even though we are now dealing with
a finite quantity. Thus the actual path taken by the material during the shock
compression process is a straight line in P-V space. This straight line is called the
Rayleigh line.

=—piuZ, (111.53)

Shock Wave Stability.

Shock waves do not always form and, if formed may be unstable and break up. One
condition for stability is that the flow behind the shock wave be subsonic. To see why
this is, suppose we consider the shock wave in a coordinate system where the shock wave
is stationary. Then we see material approaching from the right at velocity U_and leaving

to the left at velocity Us-up, as if Figure I11-2. If Us'“p > ¢, then any disturbance at the

shock front will propagate away from the shock front and the shock wave will break up.
Thus, a necessary condition for shock wave stability is

U,<u,+c . (11.54)

The shock Hugoniot.

Because the shock wave properties of a material are ultimately controlled by the equation
of state (at low pressures also by the mechanical strength of the material), the shock wave
response is a property of the material. It is useful to identify a curve that is defined as the
locus of end states of the shock process, which is known as the Hugoniot curve. The
Hugoniot curve can be cast into any number of spaces, but the most common are shock
wave speed versus particle speed, both measured in the rest frame of the unshocked
material (U_-u p); pressure versus specific volume (P-V); and pressure versus particle

speed, again with the speed measured in the rest frame of the unshocked material (P-up).

A common mistake is to think of the Hugoniot curve as a thermodynamic path, but it
isn’t. It is simply the curve defined by the end states of the shock process for
progressively stronger shocks, all starting from the same initial condition. If the initial
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Rayleigh Line

Hugoniot

\Y,

Figure I11-3. Simple concave upward Hugoniot curve in P-V space, with a Rayleigh line connecting the
starting and ending states (a and b) for a shock wave.

condition is (effectively) zero pressure and 298 K in the full-density stable phase at that
condition, then the Hugoniot is known as the principal Hugoniot.

For a simple material without any complicated behavior, the P-V Hugoniot typically
looks like the curve in figure 111-3, i.e., a simple concave-upward line. We know that the
actual path taken by the material is the Rayleigh line. The negative slope of the Rayleigh
line, from equation (111.53) is the square of the shock impedance, o,U_.

If the material has finite strength, the yield strength of the material is never reached at
low stresses and the wave is an elastic wave. It may run faster than the longitudinal
sound speed if the stress dependence of the elastic constants gives the modulus m in
equation (111.28) a positive derivative with stress, resulting in an elastic shock. Typically,
in such cases, the speed is close to the sound speed because the stress is low. If the final
stress state is above the yield strength, the material will yield, with greater volume strain.
The Hugoniot at that point will change slope as seen at point b in figure 111-4. The
longitudinal stress at that point is known as the Hugoniot elastic limit, or HEL. However,
the change in slope means that the Rayleigh line required to get to the region of the
Hugoniot just above point b has a smaller slope and, hence, a lower wave speed. This
violates the basic condition for a shock wave, namely that the higher pressure portions of
the wave travel faster than the lower pressure portions. Such a wave cannot exist and the
only allowed path is actually two waves, with the first taking the material to the yield
point and the second taking the material to the final state, as shown by the path a-b-c in
figure 111-3. Now, what about path a-d in figure 111-4, where the Rayleigh line falls above
the lower portion of the Hugoniot? In such a case, the wave speed required by the slope
of the Rayleigh line is higher than that for any lower portion of the Hugoniot and there is
again only a single wave taking the material all the way to the final state. We say in such
a case that the elastic wave is overdriven. The stress of the final shock wave required to
overdrive the elastic wave is usually substantially higher than the value of the HEL. The
wave profiles associated with the paths shown in figure I11-3 are given in figure 111-5.
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Figure 111-4. Hugoniot curve of a material with finite strength, showing compression
paths involving two waves (a-b-c) and one wave (a-d).

Figure 111-5. Stress histories of compression paths shown in Figure I11-4. The path
taking the material to states b and c require two separate waves, with two jumps in stress
separated in time, while the path to state d requires only a single wave.

A similar behavior can be seen when the material undergoes a pressure-induced phase
transition to a lower volume phase, although the details are different. In fact, it is
possible to have multiple upward convex regions of a Hugoniot, so that to reach some
parts of the Hugoniot may require three or even more individual waves. A particularly
good example is the mineral calcite (CaCOg3), which can have as many as four individual
waves required to reach portions of the Hugoniot.
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An empirical observation is that the Hugoniot curves of many materials are linear, or
piecewise linear, within the resolution of the data, in the US-up plane:

Us = Co + su,, . (111.55)

We noted this behavior earlier when we discussed the shock wave equation of state. This
provides a convenient means of describing the Hugoniot curve of a material with only
two parameters plus the initial density.

The Hugoniot elastic limit.

As noted before, at sufficiently low pressures, materials that show finite strength will
exhibit an elastic wave that precedes the shock wave. This elastic precursor has a stress
known as the Hugoniot elastic limit. The longitudinal stress of this wave is, very simply,
given by

o, = poCall, - (111.64)

where C_, is the elastic wave speed, which might not be quite the same as the sound speed
you would measure in the material with an ultrasonic apparatus.
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IV. CALCULATIONS INVOLVING SHOCK WAVES

Reference Frames.

For many people, reference frames in shock wave work are a source of confusion,
frustration, and error. A number of published papers, particularly those dealing with
complicated shock geometries, are invalidated by the fact that calculations were done in
the wrong reference frames. There are several different reference frames that you might
encounter. Each has its own applications and some are used more than others.

All of the different reference frames are important for the appropriate applications.
The danger that most researchers face is in using data referenced to one frame in
equations that were developed in a different frame, thus producing erroneous results.
Even more confusing is that, in many experiments, calculations are best done using
equations that require the use of two different reference frames. In such cases, the
equations are chosen for the most simple implementation and, often, to minimize
difficulties in propagation of errors.

Eulerian reference frames.

The reference frames we are accustomed to, where some point (the origin) is fixed
relative to some reference, with constant lengthscales, are known as Eulerian reference
frames. When we use a ruler to measure an object, the dimension we measure is an
Eulerian dimension. If we measure the position of that object relative to some fixed point
in the room, then we have determined the position in an Eulerian reference frame. If the
object is moving, and we use the same ruler and a stopwatch to determine the velocity of
the object, the velocity we obtain is an Eulerian velocity. The most important
characteristic of Eulerian reference frames is that the ruler we use doesn’t change.
Hence, if we measure the length of a relaxed spring and then stretch the spring, we use
the same ruler, to measure it again. The fact the object (in this case, the spring) has
changed position or dimension does not affect the reference frame.

Laboratory Frame.

The laboratory reference frame is an Eulerian inertial (sometimes called Newtonian)
frame in that it is tied to a set spatial scale and the reference frame has no fictitious forces
due to acceleration. The laboratory frame, or lab frame, is the easiest to comprehend,
simply because it is the frame we typically use in the course of our everyday lives. The
important aspect of the laboratory frame is that, typically, it is the rest frame for the
instrumentation used in experiments, so that, before an experiment begins (usually), all
objects in the entire system making up the experiment are at rest. Hence, experimental
data are typically referenced to the laboratory frame. Note that the origin of the frame,
i.e., the position designated as “zero,” is completely arbitrary and may be chosen for
convenience. However, when position is important, it is vital that the same origin be
used throughout the experiment.

Shock Wave Reference Frame.

Another Eulerian reference frame is the frame in which the shock wave is at rest and,
usually, is at the origin. An important assumption that is made is that the shock wave is
steady, so that the reference frame is not accelerating and the reference frame is therefore
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inertial. This reference frame is also Eulerian, so that the lengthscale is constant. As a
result, transformation from the laboratory frame to the shock wave frame is accomplished
by a Galilean transformation. The most important application of the shock wave
reference frame is in the derivation of the shock wave jump conditions.

Shocked material reference frame.

The last Eulerian reference frame we consider is one in which the material emerging
from a shock wave is at rest. The Eulerian nature of the reference frame means that the
lengthscale is constant. Also, the assumption is made that the shock wave is steady, so
that the reference frame is also an inertial frame. This reference frame is important in
situations where more than one wave traverses the material during an experiment, so that
the ending state of one wave provides the initial condition for the next wave.

Lagrangian reference frames.

In our discussion above, we used the example of a spring. Now suppose that the
spring itself is the ruler. As the spring is stretched or compressed, the ruler changes
dimension by the same amount such that the measured length of the spring never changes
and the position of a given coil in the spring is constant. This is the fundamental
characteristic of a Lagrangian reference frame, in which the material is always at the
same position. In such a reference frame, every atom is at a fixed position. The material
always has a velocity of zero in the Lagrangian reference frame. This is inherently a
noninertial reference frame. In the typical experiment, the material frame initially
coincides with the laboratory frame, possibly except for the position of the origin, but the
two begin to diverge at the onset of the experiment. The Lagrangian reference frame is
particularly useful in experimental data analysis because experimental measurements are
usually made at specific positions, such as interfaces, that change position and velocity in
other reference frames but stay constant in the Lagrangian reference frame. Since the
material velocity is always zero, only waves have a velocity in the Lagrangian reference
frame.

A note on wave speeds.

One thing to be careful of when dealing with waves is that characteristic wave speeds
that are a property of the material, such as the speed of sound, only have meaning when
measured relative to the rest frame of the material. However, such speeds may be
expressed as either Eulerian or Lagrangian values.

Position-time diagrams.

A common tool in shock wave work is the position-time diagram, more often called
the x-t diagram. Actually, there are two separate types of such diagrams and different
researchers use different terminologies for these diagrams. The most common diagram is
the Lagrangian position-time diagram, which is what is most commonly meant by x-t
diagram. This diagram, an example of which is in figure IVV-1(a), shows the positions of
interfaces and waves. Since this is a Lagrangian diagram, material interfaces are at a
constant position and only the waves propagate. Some researchers color-code this
diagram with different colors to distinguish interfaces, fractures, compressional and
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Figure IV-1. Position-time diagrams of impact of a 1 mm stainless steel 316 plate onto a 3 mm aluminum
6061 plate at 1.5 km/s. Red lines indicate compressional waves, while light blue lines indicate dilatational
waves. Green lines indicate left-facing free surfaces, dark blue lines indicate right-facing free surfaces, and
pink or purple lines indicate material interfaces. (a) Lagrangian diagram. (b) Eulerian diagram.

dilatational waves. This type of diagram is particularly useful in visualizing wave
interactions. Because measured wave speeds in experiments are usually presented as the
Lagrangian values, this is often the most relevant diagram for discussing such
measurements. The static nature of interfaces also makes this a particularly easy diagram
to draw and makes it conceptually simple.

The position-time diagram can also be drawn with Eulerian coordinates, as in Figure
IV-1(b). This is sometimes called a y-t diagram, but is just as often called an x-t diagram
(there are also some researchers who call the Lagrangian diagram the y-t diagram). The
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Eulerian diagram is most important when one needs to visualize material interface
motion.

Calculating Hugoniot points from an EOS.

In some applications, one may have an equation of state (either partial or complete) in
hand and want to calculate the Hugoniot of the material. The calculation is
straightforward and is based on the requirement that the internal energy of the Hugoniot
state be that achieved by adiabatic compression along the Raleigh line.

Consider an equation of state for some phase ¢ consisting of a reference condition,
(P, T,), areference compression curve, a Mie-Griineisen thermal component, and an

energy of transition, E, required to get from the initial condition of the experiment,
(Pyor Toor #y0)s to the reference condition and phase of interest. Remember that the change

in internal energy given by the Rankine-Hugoniot conservation equations can be written
as

1
B,y —Eog =2 (P + Poo) (Vo —Vir) (IV.1)

where the subscripts 00 and H refer to the initial condition and the Hugoniot state,
respectively. Now, we require that the energy change using the EOS be equal to that
given by (IV.1):

P 1
Etr + Ec +VH j 7 = E(PH + POO)(VOO _VH ) (|V2)
P

4

where

Vi
E:j (aK,T-P) _ dv

T=T,

, (IV.3)

Vi
E, :—I PdV

for a reference isotherm or isentrope, respectively. In (IV.2), the first term on the left
hand side is the energy taken up by getting to the reference state of the phase of interest,
the second term is the energy of compression along the reference compression curve, and
the third term is the energy due to isochoric heating at the Hugoniot volume to get from
the reference compression curve to the Hugoniot. P_is the pressure on the reference

compression curve at volume V.

Equation (1V.3) is not, in general, analytic, but some simple approximations
commonly used in many EOS fits make it both analytic and simple to arrange to obtain
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the value of P, for a given Hugoniot volume V .. First, if we take the common

assumption that the Grineisen parameter explicitly depends only on the volume (or
density), then (IV.3) becomes

\ 1
Etr+Ec+}/—H(PH _P(:)=E(PH +P00)(V00 —VH), (IV.4)
H

where y,, is the value of yat volume V ,. This expression is then rearranged to give

E +E YoV POO—V—HP
tr C C
_ VH
P, = VR . (IV.5)
2 Vn

Equilibrium Hugoniot temperature.

Normally, temperature is not known in shock wave experiments, but it can be
calculated based on certain assumptions. The most important assumption is that the
material is in thermal equilibrium and must be in a single phase. The validity of this
assumption is open to debate, but it can be useful. Starting at the reference temperature,
T, if we are using an isotherm as the reference compression curve, then we simply

require equality between the two integrals:

T, P,
J. C,dT :VHJ- d—P, (IV.6)
T p 7

with the integrals being evaluated on the Vy isochore. If the reference compression curve
IS an isentrope, then we must do the calculation in two steps, the first being the
temperature rise on the isentrope:

Vi
T, =T, exp(—j ldv]. (IV.7)
Vo \
The second step is to perform the calculation in (1V.6), replacing T, with T
Th Py
j C,dT =VHI d—P (IV.8)
T 7

4

As noted earlier, this is the equilibrium temperature in a single phase. This is not what
you will get if the Hugoniot state is a mixed phase or if the shock process does not
deposit energy uniformly. The latter is often the case when the sample is initially porous
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or when the sample undergoes nonuniform deformation, such as localized shearing,
during compression.

Impedance matching.

One of the most important concepts in practical shock wave physics is impedance
matching. This concept defines how a mechanical wave, such as a shock wave, is
transmitted and/or reflected at an interface between two materials. It is a bit more than
that, however, in that it is really a description of how momentum is transported across an
interface, whether that momentum arrives in the form of a wave or as momentum carried
by an impactor (with the interface being the interface of the impactor with the target).
The basic concept here is that of mechanical impedance z, which is effectively defined by
the initial density multiplied by the wave speed:

z=pc (IV.9)

In the case of an acoustic wave, c is the longitudinal sound speed. In the case of a shock
wave, c is the shock wave speed, U..

Impedance matching is based on the requirement that both normal stress and normal
material velocity component be continuous across an interface. These continuity
requirements are easy to understand by considering the consequences of violating them.
In the first case, if the material velocity normal to the interface is not continuous, then the
materials will either separate (target faster than the projectile) or will interpenetrate
(projectile faster than the target). Obviously, the latter is unphysical, while the former
cannot occur unless the normal stress is exactly zero. A discontinuity in the stress
implies a force that is accelerating the interface. However, there is no source for such a
force, so such a discontinuity cannot exist. Now that we have established the continuity
requirements, relating two of the shocked state variables between the two materials, the
requirement that the shocked states also satisfy the Rankine-Hugoniot conditions with the
specific Hugoniot parameters of the two materials makes the system fully constrained.

Impacts.

It is easiest to begin by considering what happens when an impactor impacts a target at
some normal velocity ug. The conditions attained in the impact are governed by the
properties of the materials—specifically the shock Hugoniots—and the continuity
requirements. To satisfy the continuity equation for material velocity, we must use a
common reference frame for the both the impactor and the target. We choose to use the
laboratory frame as our rest frame, in which case, we need to make a transformation on
the material velocity of the impactor, so that u, becomes UgUp,p where Us, is the material

velocity of the target. Thus, the velocity decrease in the impactor is exactly equal to the
difference between the impact velocity and the particle velocity in the target. That said,
and substituting the new expressions of the particle speed into the momentum equation
(111.46), we require

po,iUs,i (ud _up,t) = pO,tUs.tup,t ' (IV10)
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If the material Hugoniot curves can be expressed in the usual way as

U,=C+su, , (Iv.11)

then the solution for the particle velocity in the target can be written as

—b—+/b* -4ac

Uy, = o , (IV.12)
where
a=S,05; —SPor : (IV.13)
b=-C,p,; — 25,00 Us —C. 0, : (IV.14)
¢ = po,ita(C; + s57uq) - (1V.15)

When the target Hugoniot is unknown, then the impact velocity is combined with a
second measurement, usually of the shock velocity U_ in the target, to get

b
U, =U,+a'—|a’ 4+ Por Uslly : (IV.16)
Poi S
where
! 1 ’
a' = z_si<Ci + U %f) . (IV.17)

A special case arises if the impactor and the target are the same material, which requires
that the value of Up must be 1/zud. This second case is the situation of the traditional

experiment to determine the shock Hugoniot of a material. It should be noted that the
forms of the equations can result in large uncertainties for density in experiments with
large compressions, even though the uncertainties in the impact and shock velocities
might be considerably better than 1%.

The foregoing can often be made clearer by a graphical representation (Figure 1V-2).
If we imagine the target P-up Hugoniot beginning at rest in the laboratory reference

frame, then the rest frame of the impactor is moving at the impact velocity, with the sense
of direction reflected, so that the origin of the impactor Hugoniot is at a velocity equal to
the impact velocity, u,, with the Hugoniot extending in the negative velocity direction of

the lab frame. In this construction, the conditions achieved by the impact are determined
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Figure IV-2. The state achieved in an impact is governed by the Hugoniot curves of the impactor and the
target. The initial state of the impactor is at rest in a reference frame moving at the impact velocity relative
to the laboratory frame, with the positive direction being opposite to that defined by the laboratory frame.
The rest frame of the target is the laboratory frame.

by the intersection of the two Hugoniots. This graphical construction is a useful tool for
understanding the evolution of a material state in complicated experiments. Release
adiabats and reshock Hugoniots can also be represented on such a diagram, so that the
evolution of materials as they interact with other materials at interfaces can be mapped
out. Typically, this is done to obtain a good conceptual grasp of the interactions that are
taking place so that the calculations to obtain accurate descriptions of the states achieved
can be set up properly. To tie the graphical construction back to the concept of the
material impedance, we note that the slope of the Hugoniot cast in P-up space is equal to

the impedance. We say that a material has a higher impedance if the Hugoniot has a
greater slope in P-uIO space.

Transmitted waves.

Although the most common (and most easily calculated) impedance matching problem is
that of impact, many situations require the application of impedance matching to a wave
that is transmitted to an interface inside a material. In that case, the continuity equations
still apply, but the donor material through which the arriving wave has travelled is no
longer at the principal Hugoniot starting state, so that the post-interaction state will fall
either on a secondary Hugoniot anchored to the initial shock state or on a release adiabat
anchored to the initial shock state. The impedance mismatch determines whether an
impinging shock wave is reflected into the donor material as a release wave or as a
reshock. If the acceptor material has a higher impedance than the donor, then the
reflected wave will be a reshock and the transmitted wave will have a higher stress than
the impinging wave. Similarly, a lower impedance in the acceptor material will result in
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Figure IV-3. Impedance matching with a transmitted wave. The incident wave brings the donor material to
state 1 on its principal Hugoniot (a). If the acceptor material has a lower impedance, then the donor will
follow a release adiabat (b) to match state 2 on the acceptor Hugoniot (c). If the acceptor has a higher
impedance, then the donor will be reshocked to state 3 at the intersection of its reshock Hugoniot with the
principal Hugoniot of the acceptor (e).

the wave being reflected as a partial release and the transmitted wave will carry a lower
stress than the impinging wave.

The graphical representation of this problem is shown in Figure 1VV-3. To do the
calculation with complete fidelity requires a more complete EOS of the donor, because
the final state for the reflected wave is not on the principal Hugoniot.

Wave interactions.

Interaction of two waves propagating through a single medium is also an impedance
matching problem. Now, instead of two separate materials, the matching occurs with the
same material that has been placed into two independent P-uj, states by two separate
waves. Although the two waves are independent of one another, once they pass through
each other, the stress and laboratory-frame (or any common reference frame) particle
velocity is common between the two end states. The basic situation is shown in Figure
IV-4. Because both waves have already placed the material at states on the principal
Hugoniot, the passage of one wave through material already shocked by the other wave
places the material at a state on a Hugoniot anchored at the first shock state on the
principal Hugoniot, so one needs more than just the principal Hugoniot of the material to
perform this calculation. Additionally, the material may not be at the same
thermodynamic condition as that produced by the passage of the second wave through
material already shocked by the first. The reason is that although the pressure (or stress)
is the same, it is the laboratory frame in which the particle velocities must match. There
IS no requirement that the particle velocity be such that it gives the same density (and thus
any other thermodynamic variable) in the two states. Hence, there will usually still
effectively be an interface at which the actual in situ properties of the material change.
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Figure IV-4. Trajectories of two shock waves interacting in a Lagrangian x-t diagram. both waves (the
incoming waves, a and b) propagate into unshocked material. Interaction produces two outgoing waves, ¢
and d. The interaction states, produced by the propagation of the outgoing waves through material already
shocked by the incoming waves, must have the same pressure (or longitudinal stress) and particle velocity
in the laboratory frame, but can have different thermodynamic states. The two thermodynamic states
interface at the vertical dashed line.

The only exception to this is when the two waves that interact have the same amplitude
prior to interacting.
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V. EXPERIMENT DESIGN AND TECHNIQUES

A wide variety of experimental techniques are used in shock wave studies. New
techniques are continually being developed and existing techniques are continually being
refined and improved, so no static document such as these lecture notes can hope to be
either comprehensive or current. Hence, the approach taken here is to present a survey of
historical and current techniques, but focus on those few that have long been the
standards for work in this field. In particular, shortcomings with historical methods that
researchers using older data should be aware of are noted.

Generating Shock Waves.

Ultimately, shock waves are generated experimentally by applying a sudden pressure
increase to some part of a target, so that the disturbance propagates away as a wave that
either starts out as a shock wave or becomes one as it propagates. The important feature
of the process is its dynamic nature, as opposed to the essentially static nature of
compression techniques using diamond anvil cells, piston-cylinder presses, and
multianvil presses, for instance.

Traditionally, the pressure increase has been provided either by the detonation of a
high explosive charge or the impact of a projectile. However, any means of depositing a
substantial amount of energy in a short time, including laser irradiation, irradiation by
ionizing or neutron radiation, or ramp loading by application of the pressure associated
with a changing magnetic field can also be used. The primary feature of shock waves
generated for fundamental material studies is that they are planar in the region where the
material behavior is being probed, so that the one-dimensional spatial derivatives can be
used during analysis.

Explosives.

The original approach to shock wave generation was to use high explosives to drive
the experiment. In some ways, this is a little circular, since the detonation front in a high
explosive is itself a kind of shock wave. In the earliest experimental designs, a planar
detonation wave was generated by a plane wave lens and either propagated directly into
the target or though a booster charge into the target (Figure V-1). The explosive was in
direct contact with the target and the detonation wave propagated into the target as a
shock wave. This technique was used extensively until the mid-late 1960°’s and is still
used for some purposes, especially for understanding material response in situations
where the material would be driven directly by an explosive charge anyway. The
primary shortcoming of the in-contact explosive drive for many applications is that the
detonation products expand from the back of the charge, allowing the pressure to drop so
that the shock wave in the target decays as it propagates. This complicates data analysis.
The advantage of the technique is that explosives are relatively easy to use, charges can
be made quite large, and not much highly expensive apparatus is involved in the
experiments.

47



Plane Wave Lens

Booster Charge

— Target

Figure V-1. In-contact explosive drive system.
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Figure V-2. Explosively driven flyer system.

The problem of shock wave decay can be solved if the explosive charge is used to
drive a flat plate that impacts the target, generating a shock wave (Figure V-2). Because
the impact generates the shock wave and the same amplitude shock propagates into the
plate as well as the target, the shock wave does not decay but propagates with a constant
amplitude. The impacting plate, called the flyer plate or the driver plate, can be heated
by the acceleration process, thus changing its properties in a poorly known way, but
heating is minimized by allowing the detonation products of the driving charge to expand
across a gap between the driving charge and the flyer plate to “gently” accelerate the
plate without subjecting it to strong shocks. This is the preferred method for driving
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experiments when equation of state data are the goal of the experiments and the samples
are too large for use with other driving techniques. Depending on details, the impacting
plate can be driven up to velocities ranging from ~ 2 km/s to ~ 8 km/s. In addition to
possible heating of the flyer plate, the primary uncertainty in experiments driven is this
way is the accuracy with which the impact speed of the plate is known. Until very
recently, accuracies better than 2% were very difficult to achieve and the accuracy was
often significantly worse. An interesting modification of this technique eliminates the
flyer plate, so that the expanding detonation products impinge directly on the target,
subjecting it to a ramp loading rather than a shock wave.

Guns.

Starting in the mid- to late 1960°s guns became the means of choice for driving planar
shock waves. Guns are still considered the gold standard for driving shock waves for
most types of measurements. A variety of gun designs exist, but all make use of a
nominally cylindrical sabot that carries a planar flyer plate in the nose of the projectile.
There are two basic types of guns. Single-stage guns (Figure V-3) are what you normally
think of when you think of a gun. A projectile is accelerated down a barrel by a working
fluid, which can be either compressed gas or the combustion products of a propellant
charge. Depending on details, such guns produce projectile speeds ranging from a few
10’s of m/s up to ~2.7 km/s. Two-stage guns (Figure V-4) are significantly more
complicated and are designed for extremely high performance. The basic idea of the two
stage gun is to compress the working fluid, typically H; or, less frequently, He (hence the
use of the name light gas gun by some researchers) to a much higher pressure than
normal and to allow it to expand rapidly, driving the projectile. To accomplish this, a
piston is driven, usually by a propellant charge, but sometimes by a compressed gas,
down a large diameter pump tube containing the working fluid, compressing it. The
pump tube is separated from the barrel, called the launch tube, by a tapered section
known as the central breech. The purpose of the taper is to stop the piston by allowing it
to trade Kkinetic energy for plastic deformation as it extrudes itself into the taper. The
downstream end of the taper is separated from the launch tube by one or more metal discs
designed to rupture at a predetermined pressure. The projectile sits immediately
downstream of the burst disc, also known as the rupture diaphragm. Upon rupture of the
disc, the working fluid expands, accelerating the projectile down the launch tube.
Because of the high density and temperature of the working fluid under these conditions,
the sounds speed in the working fluid is very high, allowing higher limiting velocities.
Additionally, a shock wave is set up in the fluid that reverberates between the projectile
and the piston, providing additional acceleration over what would be provided by the gas
pressure alone. In single stage guns, the primary concern is that the projectile tilt be
acceptable. Typically, the tilt ranges from near zero to 2 mrad. In two stage guns, the
acceleration process places sufficient stress on the projectile that the flyer plate may also
undergo deformation. This deformation is usually assumed to be axisymmetric and
parabolic or spherical, so it is common to talk about impactor bow in addition to
projectile tilt.
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Figure V-4. Two-stage gun for accelerating projectiles to very high velocities.

Radiation-Driven Methods.

A relatively recent development has been the advent of laser systems that can deposit
sufficient power in a spatially uniform manner over an extended area that such lasers can
be used to drive shock wave experiments. A variety of methods for accomplishing this
exist, but they tend to fall into one of three types: direct drive, hohlraum drive, and flyer
launch. The most common approach with lower power lasers is to deposit the laser
radiation in an ablator that is in contact with the target (Figure V-5). The ablator may be
either confined by a window or unconfined. Confinement is limited by the window’s
ability to remain transparent to the laser radiation. The high pressure generated by the
essentially instantaneous deposition of the laser energy into the ablator is transmitted into
the target. Depending on the history of the deposition, the resulting wave may be either a
ramp rave or a shock wave. The target, as used in this discussion, may be the sample
under study or it can also be a flyer plate that is accelerated against a sample to produce a
shock wave by impact onto the sample.
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Figure V-5. Direct drive laser-driven experiment.

Holhraum drive is the preferred drive for very high energy multi-beam systems such
as the National Ignition Facility. In this approach, laser energy is deposited on the inner
walls of a very small hohlraum, heating the walls to sufficient temperatures to generate
soft x-rays. The x-rays, in turn, are absorbed by an ablator material to produce high
pressures that are, most often, transmitted directly into a sample through a shield
(required to keep the x-rays from reaching the sample and heating it prior to wave
arrival).

Although we have concentrated on laser radiation here, any radiation that can be
absorbed by a material can be used to generate high pressures. This was actually used
during the days of underground testing, when the radiation flux from a nuclear explosion
was used to generate extremely high shock pressures.

Magnetic Drive.

Another recent development is the ability to use large current sources to magnetically
drive shock wave experiments. Magnetic drive makes use of the magnetic pressure
caused by a magnetic field produced by and interacting with a rapidly rising current. A
typical drive geometry is shown in Figure VV-6. In this configuration, a current passes
through the cathode, and is short-circuited to the anode. The magnetic field B produced
by the current loop interacts with the current I to produce a force per unit length of
current path on the conductors through the relation

F=I1xB (V.1)

This force accelerates the conductors. This can be used in two different ways. In the first
way, because the current starts at zero and rises over a finite time, the force on the inner
surface of the loop rises, producing a ramp compression history. This can be used to
shocklessly compress the conductors and other materials placed in contact with the
conductors. In the second way, the conductors are accelerated, becoming impactors that
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Figure V-6. Configuration of a magnetically-driven experiment.

can be used to generate very high shock pressures. The Z-Machine at Sandia can use this
technique to accelerate plates to velocities in excess of 30 km/s.

Diagnostics for experiments.

Once we have the ability to drive shock waves in an experiment, we must then be
able to make useful measurements on the experiment, which means fielding some suite of
diagnostic instrumentation. There is now a wide variety of different measurement
techniques. Often, the choice of what particular technique to use comes down the cost
and required resolution. In a few cases, only one particular type of measurement can give
the required information. Here, we will discuss some of the various techniques that are
available, although only a relatively restricted set of these is widely used on a regular
basis. This listing is not intended to be exhaustive, both because there are many types of
measurements that might be made and because new techniques are constantly being
developed. The ones discussed in depth are those that are considered mature and tend to
be used by researchers at more than one institution.

Mechanical response measurements.

The most mature measurements are those that measure the mechanical behavior of the
material understudy, usually by detecting arrivals of shock waves or measuring changes
in velocity or position with time. These techniques include optical and electrical
techniques and, because of their mature and fundamental nature, some subset of them is
found in every shock wave laboratory in the world.

Pins.

A variety of pins can be used to detect shock wave arrival at a surface and also to
determine impact times, and, by detecting passage of a projectile at different positions,
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measure projectile speed. Two particular types, the electrical shorting pin and the
piezoelectric pin, are very widely used (Figure V-7). Shorting pins exist in two different
configurations. The simplest is a bare wire conductor that is held at a potential relative to
ground. Contact with a grounded conductor, which could be the projectile (through
simultaneous contact with a grounded pin) or a conducting target, or electrical breakdown
of an insulator between the pin and a grounded conductor, which can be caused by
passage of a shock wave, allows current to flow, which is detected by appropriate
recording electronics. Details of the circuits involved depend on the purpose of the
measurement and the time resolution needed. The more complicated type of pin is the
coaxial self-shorting pin. In this case, a central conductor is held at a potential relative to
a surrounding grounded shield. An end cap over the pin is impacted, driving it against
the central conductor and shorting the pin, allowing the current to flow. In the most
sensitive pins of this type, the cap is actually already in contact with the conductor, but an
anodized layer insulates it from the conductor. Passage of a shock wave through the cap
causes either electrical or mechanical breakdown of the anodized layer, allowing the pin
to short. A common feature of shorting pins is the requirement for a power supply and
RLC circuit with a tailored time constant.

A different type of electrical pin that is widely used is a piezoelectric pin. In this type
of pin, a piezoelectric crystal or ceramic is held in contact with the central and outer
conductors of a coaxial pin, with electrical contact made in such a way that the passage of
a stress pulse through the piezoelectric material causes a momentary potential and current
flow. Probably the most common piezoelectric material in this application is lead
zirconium titanate (PZT). Such pins are often used to determine impact time of a
projectile and as a source of a trigger signal for recording diagnostics.

A less commonly used pin is the optical pin, which generates an optical signal when
shocked. There are two types of such pins that have been used. The first consists of an
optical fiber with a glass microballoon at the end. Collapse of the microballoon causes a
brief flash of light that is detected by fast optical detectors. The other type of pin consists

a b C
ground T~ inner — |
pin N\ conductor
active
pin outer — |
conductor
anodized piezoelectric
cap crystal

Figure V-7. Electrical pins commonly used to detect impact or shock arrival. (a) Bare shorting pin (shown
with grounding pin); (b) Coaxial shorting pin; (c) Piezoelectric pin.

of an optical fiber with a polished and mirrored end. Movement of the mirrored surface is detected by one
of the Doppler techniques described below.
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Optical Shock Breakout.

Optical methods have been, for many years, the preferred alternative to pins for high-
resolution determination of shock arrival times and, also, for obtaining free-surface
velocities. There are two different approaches.

Flash gaps.
When a shock wave arrives at an interface, it is transmitted and reflected in

accordance with the impedance matching principle discussed earlier. If the acceptor
material is a gas, then it may be very strongly heated by the shock wave to a temperature
sufficient to emit thermal radiation as visible light. This is the basic principle of the flash
gap (Figure V-8), in which a thin gap (typically 50-100 um), filled with a gas (usually
argon or krypton) is placed against the surface of the donor material. The gap is usually
formed by a groove machined into an acrylic block that serves as a window. Arrival of
the shock wave results in a brief flash of light that can be recorded. Arrays of such gaps
could be placed against a target having surfaces at different levels and on different
materials and be viewed through slits by a streak camera (to be discussed below),
allowing shock arrival timing to be obtained that is spatially resolved in one direction.

Mirror extinction.

A second approach to optically detecting arrival of a shock wave is to place a rear-
surface mirror against the surface of a donor material (Figure VV-9) and observing
extinction of light reflected from that surface when the shock wave arrives. This
approach has been used for many years in situations where space constraints preclude the
use of flash gaps. One can also obtain position-time histories of free surfaces by
inclining the mirror so that

acrylic
window

\—\

sample

gap |

Figure V-8. Flash gap used to detect shock arrival at the surface of a sample.
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Figure VV-9. Rear-surface mirrors used to detect shock arrival at the surface (breakout mirror) or arrival of a
moving sample surface (surface arrival mirror)).

it extinguished progressively as the surface arrives at the mirror. The signals from
mirrors are typically recorded using streak cameras.

Doppler velocimetry.

Doppler velocimetry has become one of the most common approaches to obtaining
time-resolved velocity histories of interfaces when such interfaces can be accessed
optically and can reflect light. Such interfaces can be either free surfaces or interfaces
with transparent windows. The most common windows are 100-cut LiF, PMMA, z-cut
sapphire, and z-cut quartz. There are two basic approaches to Doppler velocimetry.

VISAR.

VISAR (Velocity Interferometer System for Any Reflector) has been in use since the
1970’s and has become the workhorse technique in many laboratories. In this technique,
monochromatic light is reflected from the surface and enters a modified Michelson
interferometer in which one leg of the interferometer has a known delay relative to the
other. The delay is usually achieved by insertion of an etalon of known properties.
Motion of the surface parallel to the optical path of the light being reflected from it
induces a Doppler shift. In the VISAR, the light coming from the surface is split and sent
through the two legs of the interferometer and then recombined. If there has been a
change in the line of sight velocity, this results in a shift of the frequency of the delayed
light relative to the undelayed light, so that recombination of the two causes modulation
of the light intensity with a beat frequency, so that the velocity change can be determined.
The advantage of this approach is that only the changes in velocity are determined, which
are small enough that the beat frequency can be readily detected with relatively
inexpensive recorders. Additionally, the sensitivity of the system can be adjusted by
changing the amount of delay in the delay leg of the interferometer. The major
shortcoming of VISAR is that it cannot properly deal with situations when more than one
velocity is in the field of view.
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PDV.

A relatively new technique that has been made possible by optical
telecommunications technology is a technique that is known variously as photonic
Doppler velocimetry (PDV), Heterodyne velocimetry (Het-v), or, simply, Doppler
velocimetry. This is true Doppler velocimetry and simply mixes the shifted light
reflected from the surface being probed with unshifted light from the source laser. The
mixed signal, containing a modulation due to the heterodyne beat frequency, is recorded.
The great advantages of this technique are that it is self-calibrating (it depends only on
the frequency of the laser) and it can admit multiple velocities in the field of view. The
biggest drawback is that it requires fast recorders that are substantially more expensive
than those needed for VISAR. However, the cost is offset somewhat by much of the rest
of the instrumentation being less expensive, since many of the components, including the
laser, are standard items used in the telecommunications industry.

Gauges.
The major drawback of both pins and Doppler techniques is that they can only probe

events at mechanically or optically accessible interfaces or surfaces. The most common
approach to probing the interior of a sample is through the use of embedded gauges.
Gauges consist of a transducer with lead wires or ribbons, typically contained in a flat
package. In atypical gauged experiment, the sample is cut into two pieces and the two
pieces glued back together with the gauge package between them (Figure V-10).

Multiple gauge packages may be placed at different levels in the same target to provide
information at different points, which is especially useful if the wave is not steady. There
are several types of gauges in use.

Quartz gauges.

Quartz is a piezoelectric material and quartz crystals may be thinned sufficiently for
use as a gauge. Passage of a stress wave a results in a potential across the gauge due to
the piezoelectric effect. At sufficiently low stresses where the quartz remains elastic, the
stress history may be followed as the potential changes in response to the changing stress
amplitude. Such gauges must be carefully calibrated in order to obtain quantitatively
accurate results.

Manganin gauges.

Manganin is the most commonly used gauge material. This alloy is peizoresistive, so
that changes in the stress change the resistance of a gauge in a nominally linear fashion.
Other materials, such as carbon, are also used, but manganin is by far the most common
type of piezoresistive gauge.
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Figure VV-10. Embedded gauges are placed into a sample that has been cut open and then glued back
together with the gauge package between the two parts.

Induction gauges.

A special type of gauge is the inductance gauge. This gauge makes use of the fact
that a conductor moving perpendicular to the direction of a magnetic field will develop a
potential across it that is given by

\Y :|0(V><B) (V.2)

where | is the vector describing the orientation and length of the conductor, v is the
velocity vector of the conductor and B is the magnetic field vector. If the motion, field,
and conductor are all mutually perpendicular, then the potential is equal to the product of
the scalar length, speed, and field strength. These gauges require that there be an applied
field of known strength and that the material in which the gauge is embedded be
sufficiently insulating to not interfere with the field. Induction gauge packages have
several advantages. It is common for a gauge package configuration similar to that
shown in Figure V-11 to be placed inclined in the target. As the shock wave progresses
through the sample, it accelerates the different elements of the shock tracker, allowing the
speed of the wave to be followed as a function of time. Simultaneously, the velocity
history at different levels in the target are measured by the single-element gauges, known
as stirrup gauges, in the middle of the package. This is useful in situations in which the
wave is not steady and its speed is therefore changing.

Radiography.
Another type of probe that can be used to investigate the interior of the target is

radiography. The most common form is x-radiography. A variety of x-ray sources exist
that can be used, from small flash-x-ray machines to large facilities like DARHT. The
common feature is that they produce a very short, intense flash of x-rays. The x-rays are
used to measure the path-length absorption between the x-ray source and an imaging
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Figure V-11. Common type of induction gauge package, with stirrup gauges to measure velocity history
and shock trackers to measure shock wave position as a function of time. In use, the magnetic field is
oriented so that only the portions of the gauge element that are horizontal in this diagram produce an
induced current.

detector. The resulting images allow the path-integrated densities to be obtained and can
be used to image density changes within the target. Multiple flashes can be used to watch
progression of an experiment. Multiple simultaneous flashes from different orientations
can also be used to produce crude three-dimensional tomographic reconstructions. The
main drawback with x-rays is that they cannot be focused, which limits resolution. An
alternative to x-rays is protons. Because protons are charge particles, they can be
focused, allowing a plane within the target to be imaged. Also, because the interactions
of protons with the atoms in a material depend on the charge density in the atoms,
protons are sensitive to composition. The Proton Radiography facility at LANSCE is
capable of making up to 32 images in quick succession in a single experiment.

Non-Mechanical Measurements.
Pyrometry.

If one thinks back to our discussions of shock waves and equations of state, one thing
that becomes apparent is that temperature does not appear in the Rankine-Hugoniot
equations. This means that normal probes of mechanical response in shock waves will
not provide information on the temperature. However, temperature is a vital factor in
studies of phase transformations and material strength, so that one must either use a
different set of probes that can measure temperature or resort to theoretical models to
estimate temperature. There are several possible ways to measure temperature, but most
are either so specialized or so slow that we will not consider them here. The one
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technique we will address is optical and infrared pyrometry. A surface at temperature T
will radiate energy as a function of frequency in accordance with the Planck blackbody
function and spectral emissivity:

1

ehv/kT -1 (V3)

I(\/,T)=5(1/)%l/3

where | is the power emitted per unit area per unit frequency per unit solid angle, ¢ is the
spectral emissivity, h is Planck’s constant, c is the speed of light in vacuum, v is
frequency, and T is temperature. It is more common to cast this equation into one
dependent on wavelength, A:

ATy =e(a) 0L (V.4)
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where | is the power emitted per unit area per unit wavelength per unit solid angle.
Figure V-12 shows the appearance of this function at three different temperatures for a
blackbody, which has an emissivity of 1.0. The resulting radiation can be measured as a
function of wavelength, usually employing a multichannel pyrometer which has
detectors, such as photomultiplier tuber or photodiodes, that view the incident radiation
through narrow band-pass filters. Fitting the Planck function using some assumption
about the emissivity allows the temperature of the emitting surface to be estimated. If,
now, the surface is placed against a transparent window, then it can remain at high
pressure after passage of a shock wave, allowing the temperature state at high pressure to
be obtained. The major shortcoming of this technique is that, for opaque samples such as
metals, this is a surface (interface) technique. The temperature is not as easily related to
the bulk temperature of the interior of the sample as is the particle velocity. A thermal
diffusion profile is set up between the sample and the window that depends on the
thermal properties of the sample and window, neither of which is well-known. However,
to the extent that the properties of the components are known, the bulk temperature in the
sample can be obtained from the interface temperature. The second problem is that the
state that one obtains from such a calculation is the reshocked or released state due to
impedance matching against the window. This is related to the initial shock state, but,
again, requires calculations with built-in assumptions.

The one exception to these difficulties is if the state of the sample after impedance
matching against the window is in a mixed phase, lying on a phase boundary. In such a
case, the thermal diffusion into the window, instead of setting up a temperature gradient
in the sample, changes the relative abundances of the two phases, supplying the heat
though latent heat of transformation. In such a case, the temperature observed is the
phase transition temperature of the material at the pressure achieved by the impedance
matching process. This is the only situation in which the interpretation of the measured
temperature is relatively straightforward.

Another simplification exists if the sample being observed is transparent. In such
cases, the emission from the shocked material behind the shock wave can be observed as
the shock wave is propagating through the material. The primary difficulty here is that
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Figure VV-12. Blackbody Planck function vs. wavelength for temperatures of 3000 K, 4000K, and 5000 K.

the emission is a volume emission, so that the effects of emissivity and absorption in the
sample become more complicated. However, the fact that there are no wave-interface
interactions means that the observed state is the principal Hugoniot state. One caution is
in order. Particularly at shock stresses below 50 GPa in materials with covalent bonding
character, localized deformation can give rise to nonuniform temperature distributions
behind the shock wave. Typically, analysis of pyrometer records makes the assumption
that the observed state is at a single uniform temperature.

X-ray Diffraction.

One of the difficulties in shock wave work is that most materials can undergo phase
changes when shocked. If the new phase is a solid, unless there is auxiliary data from
static high pressure experiments, we usually have no information on the crystal structure
of the new phase. Under some circumstances, x-ray diffraction can be fielded on shock
wave experiments. Because most x-rays used for diffraction studies have relatively low
energies, the region probed is within a few microns of the sample surface. As a result, an
anvil that can keep the sample at high pressure for sufficient time to obtain the data must
be used. Such anvils must be transparent to the x-rays and, ideally, should be amorphous
S0 as to avoid spurious peaks. This technique is still at a very low level of maturity and is
an active area of research and development.

Spectroscopy.
If the sample can be accessed optically, particularly if the sample is transparent, then

it can be probed spectroscopically. The easiest spectra to obtain are emission spectra in
the optical or infrared, but absorption and stimulated emission spectra can be obtained.
As with x-ray diffraction, the use of spectroscopy in dynamic experiments is not a mature
technique and is an active area of research and development.
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Figure V-13. Schematic of a rotating mirror streak camera. This type has been used extensively at LANL.

Recorders.

Regardless of the type of measurement, the data must be recorded in some way. This
may be on image plates, film, or with digitizers or oscilloscopes. We will not discuss
these recorders. There is one type of recorder, however, that has a long history of use in
shock wave experimentation. This is the streak camera. Today, there are two basic types
of streak camera. The first and most important is the rotating mirror streak camera
(Figure V-13), in which a mirror is turned by a turbine or electric motor, allowing the
image of one or more slits to be smeared out in time onto a strip of film. Thus, the image
that results has one spatial dimension representing position along the slit and the other
representing time. A variety of designs exist for such cameras. Although such cameras
are being replaced with electronic systems for some applications, they are still widely
used. The second type of streak camera is the electronic image converter streak camera.
In this case, the image is electronically smeared out in time over a detector. Such
systems can record faster events than is typically possible with rotating mirror cameras
and, often, the detectors are more sensitive than film. Often, image converter streak
cameras suffer from nonuniform writing rates that require a periodic time signal be
recorded simultaneously with the light coming from the experiment.

Designing a successful experiment.

Here is some basic guidance for designing a successful one-dimensional shock wave
experiment. The most important goals in experiment design are to assure the experiment
stays one-dimensional and, usually, to assure the shock wave is steady. Also important is
to strive for maximum accuracy, but all the accuracy in the world won’t help if the basic
experiment is invalid because of a bad design.

Edge effects.

Probably the most common mistake made in experimental shock wave physics is
design of an experiment in which one-dimensionality is destroyed before the important
part of the experiment is complete. This occurs because waves emanating from lateral
interfaces in the target/projectile package and traveling laterally through the target reach
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position(s) where measurements are being made while the phenomenon of interest is still
occurring.

To avoid edge effects polluting the experiment, it is important to assure that the total
experiment (target plus impactor) has sufficient lateral extent to allow all the longitudinal
waves of interest to be observed prior to the arrival of waves propagating from the edge
of assembly. There are two issues to be aware of. First, in a given material, waves will
travel in toward the center from the edge. In the usual situation, the “edge wave”
originates at the edge of the sample on the impact surface (Figure V-14). At this point,
the impedance mismatch between the sample and whatever the rest of the target assembly
is made of results in a lateral pressure difference on impact and this initiates a disturbance
that propagates inward. Simultaneously, the shock wave in the sample is propagating in
the longitudinal direction. Keep in mind that the sound speed behind the shock wave is
usually significantly greater than the shock wave speed relative to the shocked material,
so the edge wave travels faster than the shock wave. However, since it must travel along
a slant path, it takes more time to reach the center of the target at the shock front. A
common rule of thumb is that the boundary of the one-dimensional shock wave moves
inward with a 45° angle from the edge at the impact surface.

If you have reasonable estimates of the Eulerian sound speeds in the shocked target
and impactor, then you can, with a high degree of accuracy, predict the time of arrival of
edge effects. If the sound speed in the target is faster, then the path of least time is
simply a straight line from the edge of the target or impactor (whichever has the smaller
diameter) at the impact surface to the observation point. This path must be computed in
the Eulerian reference frame, so that the target is foreshortened due to the one-
dimensional compression by the shock wave. If the impactor has the higher sound speed
in the shocked state, then the path of least time initially follows the interface between the
impactor and target and then takes off at an angle determined by the ratio of the sound
speeds (Figure V-15). Specifically, the path of departure from the interface makes an
angle with the normal to the interface whose sine is the ratio of the target sound speed to
the impactor sound speed:

a1 CI t
O=sint L (V.5)
CI,i
The first problem that arises is that one is often interested in more than just the initial
shock wave. One might, for instance, be interested in the arrival of a reflected wave from
the rear of the impactor. In such a case, the conservative approach is to calculate the total
time from impact until arrival of the last feature of interest at the point of observation,
and then assure that the time for a longitudinal sound wave in the shocked target to reach
the center of the target at the impact surface is longer. This builds in a margin to account
for the approximations that usually must be made in the calculations.
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Figure VV-14. Edge releases originate at the lateral interface nearest the centerline of the experiment and
follow the path of least time to the observation point. The situation shown here is for a target with higher
sound speed in the shocked state than the impactor.
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Figure V-15. If the impactor has a higher sound speed, the edge release path is initially along the impactor-
target interface.

Overtake.

A second issue that has occasionally caused problems with Hugoniot measurements is
that, since the Lagrangian sound speed in the shocked material is substantially greater
than the speed of the shock wave itself, a release wave from the rear of the impactor can,
given sufficient running distance, overtake the shock wave in the target as in Figure V-
16. Thus, one must exercise care to assure that the impactor is thick enough to avoid this
happening. Usually, choosing an impactor with a thickness such that the shock wave
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Figure V-16. If the impactor is too thin or the target too thick, release waves from the rear of the impactor
may overtake the shock wave in the target before it reaches the surface of the target.

reaches the back of the impactor at least half way through the expected transit time of the
shock wave through the target is sufficiently conservative. This might not be the case if
the impactor is very compressible. Occasionally, overtake inside the sample is desired.
In such cases, careful calculations should be performed to assure that the correct target
and impactor thicknesses are used.

Multiple waves.

In some cases, the existence of multiple waves, due to strength or phase transitions,
can cause problems. This is particularly true in experiments when a simple wave arrival
diagnostic, such as pins or flash gaps, is used. Flash gaps are not sensitive to low-
amplitude waves and may therefore miss early arrivals. Both pins and, to some extent,
flash gaps tend to be desensitized by the arrival of a strong wave, so that later wave
arrivals may not be detected. In both cases, the problem is that a single wave is detected,
but there are really other waves. The conditions achieved in a single shock wave are
different from those achieved by multiple waves, so that the data analysis in such
experiments gives the wrong answer.

Some Tools for Estimation.
Estimation of the Hugoniot of a Material.

Often, one needs to estimate the shock Hugoniot curve of a material or mixture that
has not been characterized, either to use in a model or as a guide for designing
experiments. There are several approaches that one can take, each with its own pros and
cons. The simplest possible case, if the sound speed has been measured, is to assume that
the Hugoniot intercept is the bulk sound speed and then assume an appropriate value of s,
depending on the type of material. Highly incompressible materials and metals often
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have s =~ 1.25. Many of the less refractory metals have s = 1.5. Liquids and polymers
typically have s > 1.5. Very porous materials often have s~ 1. A slightly better
approach is, if you think the material is similar to some other material that has a known
Hugoniot, just to use the Hugoniot parameters of that other material with the density of
the material you are interested in.

Hugoniots of Mixtures.

Probably the most common, and surprisingly accurate, methods of estimating the
Hugoniot of a mixture is simple volume addition of Hugoniots. Select a couple of
pressures in the range of interest and determine the density of each constituent on its own
Hugoniot at that pressure. Then obtain a mass-weighted average of the densities using

1_\'m (V.6)
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From these, C and s can be estimated. If you have some information, such as a single

Hugoniot point, it is best to adjust the value of s to bring your estimate in line with the
data. The advantages to this approach are that it is easy and surprisingly accurate.

The underlying reason for the relatively good agreement this method gives with data
is that, as long as the pressures aren’t too high, the thermal component of the pressure is
relatively modest and the fact that thermal equilibrium isn’t achieved can be safely
ignored.

Equation of state of a mixture.

If a material is a mixture of two or more materials with different equations of state,
then the EOS of the mixture can be estimated using a conservation of volume, mass, and
energy approach. This approach works best if the materials are mixed at a fine enough
scale that thermal equilibrium is achieved at shorter timescales than the processes of
interest. The mixing is also assumed to be ideal. Hence, if we are dealing with a
solution, rather than a simple mechanical mixture, then nonideal solutions will be poorly
modeled.

The basic idea comes from the principle that a collection of objects made up of
different materials take up the same total volume and have the same total mass whether
they are together or separated. If we take the same amounts of the materials, but now
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divide them finely and mix them, taking care to squeeze out any porosity in the mixture,
the total volume and mass will still be the same. Then, any quantity that can be cast as a
specific quantity, or the derivative of the specific quantity, can be found for the mixture

by a mass-weighted average of that quantity. Hence

1_N"m (V.9)
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With these averaged quantities in hand, other parameters, such as y, can be obtained. One
important note should be considered here. For this approach to work, the different
equation of state parameters being used in the calculation should have been fit to the
same type of EOS. Also, the mixture EOS parameters should be used in the same EOS
formulation used to obtain the individual material EOS parameters. Finally, if you are
using the third order Birch-Murnaghan formulation, the mixture EOS should be taken to
the next order. Keep in mind that the value of K" in the third order BMEOS is not zero,
but instead is the value required to give a zero value of the parameter ¢,,.

Estimation of material paths in experiments.

One common need is to estimate the states that will be achieved by different
components of an experiment. To see how we might do this, let us return to the graphical
impedance matching technique. For the moment, let us restrict our discussion to
materials that are not highly compressible. In such cases, in the P-u, plane, the release
adiabat is quite often reasonably well approximated by the Hugoniot, reflected about the
point from which the release is initiated. This is because, as noted above, the thermal
component of the Hugoniot pressure isn’t very large at moderate pressures, so that the
Hugoniot actually is a reasonable approximation of the isentrope, as long as large volume
changes are not involved. It is often common to assume that reshock paths are also well-
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represented by the same curve. Now, imagine that you want to estimate what pressure
will be achieved in a material that is sitting on a baseplate, so that the baseplate, rather
than the sample is impacted directly by the impactor. First, the impact sets up a shock
wave in the baseplate. However, when the shock wave reaches the interface between the
baseplate and the sample, it will be reflected and transmitted in accordance with the
impedance matching between the two materials. Now, since we are using the reflected
Hugoniot of the baseplate to approximate the release or reshock of the baseplate, this is
fully equivalent to the unshocked baseplate impacting the sample at a velocity that is
exactly twice the particle velocity imparted to the baseplate by the initial shock wave. So
we just reflect the Hugoniot of baseplate and then allow it to interact with the sample. As
you might guess, this technique can be extended to an arbitrary number of layers, treating
the interaction at each interface in turn as an impact by the donor material at twice the
particle velocity in the donor. While this approach is tedious if done by hand, it is easily
performed if you use a program to automate the impedance matching calculations. This
technique generally works well with simple materials, but will fail rather spectacularly if
porous materials or phase changes are involved.

Estimation of times in experiments.

The estimation of times in an experiment is best done if you are able to calculate the
sound speeds in the compressed state. This requires knowledge of the Griineisen
parameters and Poisson ratios of the materials involved. Barring such knowledge or the
ability to make reasonable estimates, a reasonable approach is to assume the Eulerian
bulk sound speed behind the shock wave is equal to the shock wave speed through the
unshocked material and that the Poisson ratio is */5. Then, it is a simple matter to
estimate the time required for a wave to transit a material based on the compressed
thickness of the material and the estimated wave speed.

Some Notes on Uncertainties.
Incompletely documented uncertainties in references.

Shock wave researchers often have the bad habit of publishing data without listing the
uncertainties. Less often, uncertainties are stated, but on closer examination are found to
be assumptions based on past experience, rather than actual evaluated uncertainties.
When you run into such a situation, it is often difficult, if not impossible, to determine
what the real uncertainties are. Deciding how to proceed can be difficult, but my own
approach is, when possible, to fit the data to some simple form such as a polynomial, and
use the standard deviation from the fit as an estimate of the experimental uncertainties.
Then, if | can estimate systematic uncertainties (say, from the uncertainties on the
standards used, etc.), I can add those uncertainties.

Another problem, although less often encountered, is that the Hugoniots or other
parameterized fits for standards are listed without covariances to the fit parameters, so
that the uncertainties you would calculate are not the full story. In such cases, if possible,
I use the more conservative of two possible approaches. The first approach is to use the
standard deviation of the fit. Otherwise, | use the stated parametric uncertainties when |
know that the governing equations would likely lead to smaller uncertainties if the
covariances were actually used in the error estimation.
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Calibration.

Beware of uncalibrated instruments. While instruments may be perfectly good, you
may have some requirements for quality assurance that can only be proved during an
audit if the instruments you use are in calibration. Along those same lines, you can be
surprised by systems you thought were well-characterized. | have run into situations
where careful measurements have been made to characterize a system, only to find out
that the measurements were made with instruments that had unknown offsets in their
response.

Outliers.

When you conduct a series of measurements, you are likely confronted with outliers.
While many would have you believe that all the data have to be included or you are
committing fraud, this is not true. You should present all of the data, but it is perfectly
reasonable to reject outliers from data fits, if you have a good reason to do so. This is
where keeping good notes comes in handy. If there is an observed and documented
anomaly that is the probable cause of an apparently erroneous datum, that datum can be
rejected out of hand with a note as to why. More often, though, you may have an outlier
and not have a “smoking gun” to blame for it. What to do in such cases is more
problematic. There are well-documented statistical tests that can be used to determine
when an outlier should be omitted from a fit, although the exact criterion may be
dependent on the details of the data type. The most important thing is to thoroughly
document everything you do in your notes and in your reports and papers. The readers
should be able to understand what you did and why. They can then evaluate the total
product, both the data and the fit to the data, fairly.
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