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ABSTRACT 

 This dissertation describes a variety of studies on the determination of trace 

elements in samples with forensic importance.  Laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element 

composition of numerous lipstick samples.  Lipstick samples were determined to be 

homogeneous.  Most lipstick samples of similar colors were readily distinguishable at a 

95% confidence interval based on trace element composition.  Numerous strands of a 

multi-strand speaker cable were analyzed by LA-ICP-MS.  The strands in this study are 

spatially heterogeneous in trace element composition.  In actual forensic applications, 

the possibility of spatial heterogeneity must be considered, especially in cases where only 

small samples (e.g., copper wire fragments after an explosion) are available.  The effects 

of many unpredictable variables, such as weather, temperature, and human activity, on 

the retention of gunshot residue (GSR) around projectile wounds were assessed with LA-

ICP-MS.  Skin samples around gunshot and stab wounds and larvae feeding in and 

around the wounds on decomposing pig carcasses were analyzed for elements consistent 

with GSR (Sb, Pb, Ba, and Cu).  These elements were detected at higher levels in skin 

and larvae samples around the gunshot wounds compared to the stab wounds for an 

extended period of time throughout decomposition in both a winter and summer study.  

After decomposition, radiographic images of the pig bones containing possible damage 

from bullets revealed metallic particles embedded within a number of bones.  Metallic 

particles within the bones were analyzed with x-ray, K-edge densitometry and determined 

to contain lead, indicating that bullet residue can be retained throughout decomposition 

and detected within bones containing projectile trauma.
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CHAPTER 1. GENERAL INTRODUCTION 

The History of Elemental Analysis 

 Techniques for accurate quantification of elements in solutions have greatly 

improved over the years.  Many years ago, the concentration of an element in a solution 

was determined by measuring the weight of a precipitate after a chemical reaction (1).  

Later, quantification of a single element required a chemical reaction to separate the 

element from the solution, react it with a colorimetric agent, and quantification by 

absorption spectrophotometry or fluorimetry.  These techniques were time consuming, 

required many steps which increased the risk for errors, and were generally capable of 

measuring only a single element per analysis.   

The introduction of atomic spectroscopy methods allowed for the quantification 

of elements in a solution without chemical separations due to increased selectivity from 

narrower absorption or emission lines.  The development of arc and spark emission 

excitation allowed for the analysis of more than one element at a time. However, 

photographic plate detection was cumbersome and no single excitation source or 

conditions provided optimal sensitivity for all elements (2).  A few year later the first 

atomic absorption spectrophotometer (AAS) was constructed by Walsh (3).  The 

sensitivity of the absorption method was improved compared to the emission methods 

because it was no longer dependent on the excitation potential of the spectral lines 

measured (3).  AAS instrumentation was much more amenable to widespread, routine 

analysis than emission methods at the time.   

In 1960, the first plasma torch based on inductive coupling to an ionized gas with 

a hole through the center of the plasma, at or near thermal equilibrium, was developed 
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(4).  The inductively coupled plasma (ICP) is an atmospheric, high temperature 

atomization source (5000-6000 K) capable of vaporizing, atomizing and ionizing a 

variety of samples (5, 6).  Soon after being developed, these high frequency induction 

type plasmas were used as spectrometric emission sources (7) and were capable of 

detecting multiple elements in aqueous solutions with very low detection limits (8).   

Over the next 20 years inductively coupled plasma-atomic emission spectrometry 

(ICP-AES) gained prominence as a comprehensive and versatile technique for elemental 

analysis.  Although ICP-AES is still widely used, it suffers from complex spectral lines 

and many background corrections were needed for analysis (9).  

ICP-MS 

The feasibility of ICP-mass spectrometry (MS) for determination of elemental 

concentrations and isotopic abundance ratios in solutions was first demonstrated by Houk 

et al. in 1980 (10).  Today, ICP-MS is among the most powerful and sensitive 

techniques for elemental analysis.   

The capability of ICP-MS to measure Li through U in a single analysis of a 

solution makes it a versatile technique for elemental analysis. Large linear dynamic range 

and extremely low detection limits of ICP-MS are advantageous for quantification of 

elements.  Detection limits for ICP-MS range from parts-per-billion (ng/g) to the parts-

per-quadrillion (fg/g) for a typical solution, depending on the element of interest and 

background levels.  Many fields employ ICP-MS for elemental analysis, including 

geology (11), environmental chemistry (12), biochemistry (13), semiconductors (14), 

nanomaterials (15), nuclear chemistry (16), and forensic (17, 18). 
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Trace Element Analysis in Forensics 

 Comparison of samples by trace element composition can be useful in forensic 

analyses.  A number of samples that may be acquired as evidence at a crime scene have 

been analyzed for trace element composition, such as glass (19, 20, 21), soil (22, 23), hair 

(24), teeth and bones (25), and drugs (26) by various techniques.  Some such analysis 

techniques include particle induced x-ray emission (PIXE), micro x-ray fluorescence 

(mXRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX), 

spark source mass spectrometry, laser induced breakdown spectroscopy (LIBS), 

synchrotron radiation x-ray fluorescence, flame atomic absorption spectroscopy (FAAS), 

and graphite furnace-AAS.  

Although there are many techniques used for elemental analysis in forensics, ICP-

MS offers the potential for a highly sensitive, rapid, and cost effective analysis of small 

samples for identification and comparison of forensic evidence (27, 28). Many 

forensically related samples have been analyzed for trace elements by ICP-MS, such as, 

hair (29) and nails (30), cigarettes (31), charcoal ash (32), heroin (33, 34), and ginseng 

roots (35).  Trace and ultratrace elemental analysis by ICP-MS has also been used in 

many forensic analyses to determine if samples are similar to or distinguishable from one 

another.  This technique has been used to compare various samples such as steel and 

glass (27), including float (36), container (37), sheet (38), and automotive (39) glass, for 

forensic analysis.  Unfortunately, analysis of solid samples by ICP-MS requires 

dissolution of the sample into an aqueous solution.  Dissolution destroys the sample and 

information of the initial sample such as morphology or integrity is lost, which is a 

disadvantage when analyzing forensic samples. 
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LA-ICP-MS for Trace Element Analysis in Forensics 

For analysis of solids by ICP-MS, there are two common options.  Dissolving the 

sample yields better precision and is more easily calibrated but can be cumbersome and 

does destroy the original piece of evidence.  However, original sample integrity is 

retained when laser ablation (LA)-ICP-MS is used directly on solids.  Therefore, the 

speed, convenience, and limited sample destruction of LA sampling is an advantage for 

forensic work.  Ablation of samples by LA-ICP-MS is relatively non-destructive and 

allows for replicate measurements of a sample, which may be required for forensic 

analyses.  LA-ICP-MS has been used to distinguish between gold samples and also to 

determine their provenance (40).  Other samples such as gemstones (41, 42), soils (17, 

43), car paints (18), bones and teeth (44), and printing inks (45) have also been 

distinguished based on trace elemental composition measured with LA-ICP-MS.  Trace 

elemental composition comparisons have also been used to determine the source of 

samples, such as i) a field where particular cannabis crops had been grown, (28) ii) mines 

from which gold samples were produced, (40) and iii) provenance of historical materials 

such as oriental porcelain, and ochers by LA-ICP-MS (46, 47). 

However, not all forensic samples can be clearly distinguished from each other 

based on trace elemental composition using ICP-MS or LA-ICP-MS.  In a nationally-

prominent example, detailed investigation into compositional analysis of bullet lead by 

the Federal Bureau of Investigation (FBI) and the National Research Council (NRC) 

indicated many problems with the use of trace element composition for forensic 

comparison of lead bullets (48).  It was determined that anywhere from 12,000 up to 35 
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million bullets for a 40-grain .22 caliber long rifle may be produced from 

“compositionally indistinguishable volumes of lead” (CIVL).  Many bullet 

manufacturers also add scrap lead from the bullet production into the melt at random 

times, which sporadically changes the composition of the original melt (48). 

In this dissertation, studies on three types of forensically related samples analyzed 

for trace element composition are presented.  Lipstick samples were distinguished from 

one another based on trace element composition with LA-ICP-MS.  LA-ICP-MS was 

also used to analyze copper wire samples to assess the variability in the trace element 

composition along the length of a wire. The presence of gunshot residue on tissue and in 

larval was determined from the amount of antimony, barium, lead, and copper on and 

within the pig tissue samples by LA-ICP-MS.  Finally, the pig decomposition studies 

resulted in bones that apparently had very small (<0.5mm) bullet fragments in them.  

The presence of gunshot residue or bullet transfer within bone samples was determined 

by radiography and K-edge, x-ray densitometry.  This latter method avoids even the 

small amount of sample destruction inflicted by LA-ICP-MS. 

Analysis of Specific Forensic Samples for Trace Element Composition 

Trace Elements in Lipsticks 

Cosmetics, such as lipstick, recovered from a crime scene may provide valuable 

forensic information.  Lipstick is worn regularly by many people, smears left on 

cigarette butts, glassware, clothing, bedding, napkins, paper, etc. may be valuable 

evidence in a forensic investigation (49, 50).  Lipstick recovered from clothing or skin 

may also indicate physical contact between individuals.  Forensic analysis of recovered 

lipstick smear evidence can provide valuable information on the recent activities of a 
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victim or suspect.  Trace elemental analysis of lipstick smears could be used to 

complement existing visual comparative procedures to determine the lipstick brand and 

color.  

 Atomic spectroscopy methods are well suited for sensitive and selective analysis 

of complex samples.  Lipstick samples have also been analyzed to determine trace metal 

concentrations, particularly for toxic metals.  Techniques such as graphite furnace 

atomic absorption spectroscopy (AAS) (51), AAS for acid digested and solid lipstick 

samples (52, 53, 54), laser induced breakdown spectroscopy (LIBS) (55), ion 

chromatography (56), neutron activation analysis (NAA) (57), and SEM-EDS (58) have 

been used to analyze trace metals in lipsticks.  Toxic metals in lipsticks have also been 

determined by ICP-AES (55) and ICP-MS, (59, 60, 61) but not LA-ICP-MS. 

Trace Elements in Copper Wire 

Speaker cable, typically composed of multiple strands of copper wire, is 

commonly used for binding or strangling victims and is often left at crime scenes. 

Fragments may also be recovered from electronic circuits or components after a bomb 

explosion.  Comparison of one or more copper wire strands found at a crime scene to 

those found in the possession of a suspect could be used as evidence to link the suspect to 

the scene of the crime.  A study by Dettman et al. (62) measured trace element 

concentrations in high-purity copper wire by solution ICP-MS.  Unfortunately, 

dissolution destroys the sample which is a disadvantage when analyzing forensic 

evidence (62).  Dettman et al. found substantial variability in the trace element 

composition along a ~20 m length of copper wire indicating trace element heterogeneity 

in high purity copper wire strands.  However, even greater variability in the trace 
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element composition existed between different copper rods produced by a single 

manufacturer over a 10 day span and therefore high purity copper samples could still be 

distinguished from one another (62). 

Trace Element Analysis of Gunshot Residue with LA-ICP-MS 

Determining the type of trauma present on a recovered body, i.e. sharp force, 

blunt force, or projectile trauma, is important in forensic investigations to establish the 

cause of death.  Projectile trauma can be difficult to distinguish from sharp force trauma 

on a decomposing carcass due to the stage of decomposition and insect activity around 

and within the wound tracts, (63, 64) especially if the bullet is not recovered at the scene.   

Only a few radiochemical and microscopic studies have been conducted regarding the 

analysis of gunshot wounds in decomposing remains (63, 65, 66, 67).   

The current method to distinguish projectile trauma from other trauma is the 

detection of GSR around a wound.  One composition consistent with GSR particles is a 

combination of lead, barium, and antimony in an individual particle (68).  GSR is 

airborne vaporized particles which are ejected through the gun muzzle, cool rapidly into 

liquid droplets, and subsequently solidify (68). Copper and iron have also been detected 

in GSR particles (69).  These particles are typically collected from a surface, i.e. the 

hand of a suspected shooter, with an adhesive stub and analyzed using scanning electron 

microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) (70).  SEM-EDS can 

non-destructively locate and provide morphological information on individual particles 

which is advantageous for forensic analysis of GSR.  However, in most forensic 

casework, GSR is not analyzed on decomposing bodies due to the limitations of current 

GSR collection methods.   
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Decomposition is a progressive process and can be divided into five chronological 

stages: fresh; bloat; active decay; advanced decay; and dry or remains (67).  During 

these stages the body undergoes many changes that may alter or obscure gunshot wound 

evidence on skin (67).  Depending on the type of environment in which the body is 

exposed, the insect activity on the remains, and the stage of decomposition, GSR is only 

detectable by SEM-EDS around the entrance wound for a short period of time (~24 

hours) (63).  Efficient GSR collection may be hindered by liquids and adipocere that 

may be present on the surface of decomposing remains (63).   

GSR particles on decomposing remains are difficult to detect with SEM-EDX.  

Therefore, organisms, such as fly larvae, that feed around wounds on decomposing tissue 

have been studied (63, 64, 65).  ICP-MS was also used to analyze GSR on skin tissue 

around gunshot wounds on a pig carcass to distinguish projectile from sharp force trauma 

in later stages of decomposition (63).  Elements consistent with gunshot residue were 

present at higher concentrations in the skin tissue around the gunshot wounds compared 

to the tissue around the stab wounds for 37 days after death in the summer and 60 days 

after death in the winter study (63).  Udey et al. (69) further studied the GSR in tissue by 

examining the possibility of differentiating bullet types in fresh and decomposed tissue 

using ICP-MS.  All of these studies were conducted using dissolved samples.  Laser 

ablation (LA)-ICP-MS of larvae and tissue samples would provide faster results with less 

sample preparation for the detection of GSR compared to dissolution for ICP-MS 

analysis.   
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Trace Element Analysis of Gunshot Residue with Radiography and K-edge, X-ray 

Densitometry 

GSR particles are radiopaque and are easily observed in radiographs (71, 72).  In 

cases of gunshot injuries, radiographs can be used for the retrieval of the bullet or to 

visualize pieces of the bullet as well as metallic particles from the primer, the bullet, the 

cartridge case, and the firearm itself (73).  In a study by Lantz et al., radiopaque bullet 

residue was observed around the entrance wound of a victim shot by a .22 caliber rifle 

and analyzed with scanning electron microscopy-energy dispersive x-ray spectroscopy 

(SEM-EDX).  Lead was determined to be the predominant element present.   

K-edge absorption densitometry is capable of detecting heavy metals with high 

spatial resolution.  This method has been used to measure and monitor uranium and 

plutonium in several samples in facilities around the world (74).  In K-edge densitometry 

analysis, an X-ray beam is passed through a sample to a collimated energy-sensitive X-

ray detector.  At an energy corresponding to an absorption edge for an element, there is 

an abrupt decrease in transmission resulting in a step edge at a particular photon energy 

in the transmitted X-ray spectrum (75).  The photon energies at which step edges occur 

identify the elements present in the sample.  This technique can be used to identify the 

presence of lead in GSR or bullet transfer particles that are embedded within skeletonized 

remains.  

Data Analysis for Comparison of Forensic Samples 

Data analysis methodology is also important in forensic analysis.  One simple yet 

valuable chemometric method is principal component analysis (PCA), which reduces 

multivariate data into a two- or three-dimensional scores plot.  The scores plot depicts 
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most of the variation within a data set.  PCA has been proven to be a useful, efficient, 

and reproducible technique for the comparison of forensic samples by trace elemental 

composition with LA-ICP-MS. (17, 37, 47, 76) 

Dissertation Organization 

 The first chapter of this dissertation is an introduction to the history of elemental 

analysis, the use of elemental analysis in forensics, more specifically LA-ICP-MS, for 

trace elemental analysis of forensic samples, and a background on radiographic 

techniques in forensic analysis.  Chapter 2 and 3 are manuscripts prepared for 

submission in a peer reviewed journal.  These chapters describe the analysis of lipstick 

and copper wire samples for trace element homogeneity and to distinguish between 

samples based on trace element composition with LA-ICP-MS. Chapter 4 is a manuscript 

submitted to the Journal of Forensic Science regarding the detection of GSR on 

decomposing remains with LA-ICP-MS.  Chapter 5 is a manuscript prepared for the 

submission to the Journal of Forensic Science on the detection of GSR within 

skeletonized remains by radiography and K-edge, x-ray densitometry. Chapter 6 presents 

general conclusions of this dissertation. Appendix A is a paper published in Organic 

Electronics for which I contributed analysis of the composition of the solar cell by LA-

ICP-MS. 
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CHAPTER 2. DISTINGUISHING LIPSTICK SAMPLES OF SIMILAR COLORS 

BY TRACE ELEMENT ANALYSIS FOR FORENSIC COMPARISONS 

 

Jonna Berry and R. S. Houk 

 

Abstract 

Cosmetic evidence, such as lipstick, can be useful to evaluate a link between a 

suspect and a victim or crime scene.  Trace element composition of lipstick samples was 

determined using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-

MS). Three sections of 28 lipstick samples were analyzed with LA-ICP-MS to assess the 

homogeneity in trace element composition throughout a lipstick sample.  Compositional 

variability within a lipstick sample and between different lipstick samples was assessed 

with principal component analysis on mass spectra collected from three sections of 28 

lipsticks during LA-ICP-MS.  Lipstick samples were determined to be homogeneous in 

elemental composition.  Most lipstick samples of similar colors were readily 

distinguishable at a 95% confidence interval (C.I.) based on trace element composition.   

Lipsticks in the Dark Brown color group were distinguishable within only an 80% C.I. 

 

Introduction 

 Cosmetics, such as lipstick, recovered from a crime scene may provide valuable 

forensic information.  Lipstick is worn regularly by many people and lipstick smears left 

on cigarette butts, glassware, clothing, bedding, napkins, paper, etc. may be valuable 

evidence (1, 2).  Lipstick recovered from clothing or skin may also indicate physical 

contact between individuals.  Forensic analysis of recovered lipstick smear evidence can 

provide valuable information on the recent activities of a victim or suspect.  Trace 
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elemental analysis of lipstick smears could be used to complement existing visual 

comparative procedures to determine the lipstick brand and color.   

 Previous forensic techniques employed for the organic analysis of lipsticks by 

compositional comparison include thin layer chromatography (TLC) (3, 4, 5), gas 

chromatography (GC) (3, 4, 6), and high performance liquid chromatography (HPLC) (7, 

8).  These methods provide useful information regarding the identification of lipsticks.  

However, they all require long sample preparation times and destroy the sample.  

Nondestructive techniques for the forensic analysis of lipstick smears include UV 

fluorescence observation combined with purge-and-trap gas chromatography (2), 

microspectrophotometry and scanning electron microscopy energy dispersive 

spectroscopy (SEM-EDS) (9), and Raman spectroscopy (1, 10, 11, 12).  However, 

background from particular substrates such as paper and fibers and fluorescence from 

lipstick smears can cause interferences of some lipstick spectra (1, 9, 10, 11). 

 Atomic spectroscopy methods are well suited for sensitive and selective analysis 

of complex samples.  Lipsticks have also been analyzed to determine trace metal 

concentrations, particularly for toxic metals. Many techniques have been used to analyze 

trace metals in lipsticks: graphite furnace atomic absorption spectroscopy (AAS) (13), 

AAS for acid digested and solid lipstick samples (14, 15, 16), laser induced breakdown 

spectroscopy (LIBS) (17), ion chromatography (18), neutron activation analysis (NAA) 

(19), and SEM-EDS (9).  ICP-atomic emission spectroscopy (ICP-AES) (17) and ICP-

MS (20, 21, 22) have also been used to determine toxic metals in lipsticks.  

ICP-MS also offers the potential for a highly sensitive, rapid, and cost effective 

analysis of small samples for identification and comparison of forensic evidence (23, 24). 
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Trace and ultratrace elemental analysis by ICP-MS has been used to determine if various 

materials are similar to or distinguishable from one another based on trace element 

composition.  Various samples of steel and glass, including float, container, sheet, and 

automotive glass, have been compared to one another for forensic analysis using this 

technique (23, 25, 26, 27).   

Samples are usually dissolved for ICP-MS analysis.  However, original sample 

integrity is retained when laser ablation (LA)-ICP-MS is used directly on solids. Ablation 

of samples by LA-ICP-MS is relatively non-destructive and allows for replicate 

measurements of a sample, which may be required for forensic analyses.  The speed and 

convenience of sampling with LA-ICP-MS is also advantageous for forensic work.  

Samples such as gemstones, soils, gold, and car paints have been distinguished based on 

trace elemental composition by LA-ICP-MS (28, 29, 30, 31, 32).  Trace elemental 

composition comparisons have also been used to determine the source of samples, such 

as a) a field where particular cannabis crops had been grown, (24) b) mines from which 

gold samples were produced, (32) and c) materials such as oriental porcelain, and ochers 

by LA-ICP-MS (33, 34). 

Data analysis methodology is also important in forensic analysis.  Principal 

component analysis reduces multivariate data into a simple, two- or three-dimensional 

scores plot. The scores plot allows for visual interpretation of most of the variation within 

and between samples in a data set. PCA provides quantitative statistical data as to 

similarities or differences between samples.  PCA has proven to be a fast, efficient, and 

reproducible technique for the comparison of forensic samples by trace elemental 

composition with LA-ICP-MS (25, 30, 34, 35). 
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Experimental 

 Elemental composition and homogeneity of 28 lipstick samples were determined 

by LA-ICP-MS. Thirteen lipstick samples were purchased new from a store.  Two sticks 

of lipstick each of the same brand and color were obtained in order to determine if 

duplicate lipstick samples had indistinguishable trace elemental composition.  Duplicate 

lipstick samples were purchased for five different colors; these duplicates labeled are a or 

b in Table 1.  Used lipstick samples were donated by students and faculty at Iowa State 

University (n=15) (Table 1).  Lipstick samples were observed visually and samples that 

were indistinguishable in color were grouped together into eight color groups (Table 1).  

Full Mass Scan of Lipsticks to Identify Elements Present 

Each lipstick was analyzed by LA-ICP-MS to determine the trace element 

composition.  Four to five smears of lipstick, around 2.4 cm x 5 mm, were applied to 

clean Teflon squares (2.5 x 2.5 cm) for laser ablation.  Teflon contains minimal trace 

metal background and thus was chosen as the substrate for the lipstick smears. The 

Teflon squares were soaked in 12% nitric acid with 18 MΩ·cm Millipore water for a 

minimum of 48 hours before use.  The nitric acid was prepared by in-house sub-boiling 

distillation. The lipstick smears were ablated with a femtosecond laser (Coherent Libra 

Ti:Sapphire, pulse width 100 fs, frequency tripled to 266 nm, Santa Clara, CA) laser in a 

single line scan pattern. Argon was used as the carrier gas through the ablation cell.  The 

nominal spot size was ~70 µm.   

Full elemental mass spectra were acquired using a quadrupole ICP-MS (Bruker 

Aurora Elite, now Analytik Jena) to identify the elements present.  Instrument and laser 

parameters were optimized for maximum stability and sensitivity during the ablation of 
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NIST 610 glass.  Signals for all m/z values were measured in peak hopping mode. 

Background was measured during the ablation of an area on the Teflon square that did 

not contain lipstick.  Other instrument parameters are listed in Table 2 and selected m/z 

values for the following analysis are listed in Table 3 

Homogeneity and Distinguishability of Lipsticks   

Lipstick samples were separated into seven color groups based on smear color.  

The homogeneity of the trace elemental composition within each stick was determined 

and lipsticks within a color group were compared to one another in the same experiment.  

To assess trace element homogeneity, each stick was cut into three sections with non-

flavored non-waxed dental floss, rather than a metal knife.  The first section of the stick 

of lipstick is referred to as the “top” section, the next section as the “middle”, and the last 

section nearest the bottom of the stick is labeled as the “bottom”.  Each lipstick section 

was smeared onto clean Teflon squares and ablated in the same manner as described 

previously.  The m/z values selected from the full mass scan experiment (Table 3) were 

measured during the ablation of each smear.  Ten mass spectra were collected per 

section of lipstick.  Background was measured during the ablation of an area on the 

Teflon square that did not contain lipstick.   

Data Analysis  

PCA was performed on the acquired mass spectra in order to determine whether 

the lipstick samples were homogeneous in trace elemental composition throughout a 

lipstick sample and distinguishable within a color group.  Blank subtracted signals below 

the limit of detection were denoted as zeros.  After signals were corrected for the limit of 

detection, each mass spectrum was normalized to the signal with the highest intensity, 
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either 48Ti+, 209Bi+, 138Ba+, or 27Al+ (Table 1).  The signals from all isotopes of the 

reference element were removed from the PCA.  Solo Eigenvector version 6.5.1 was 

used for the PCA comparison of mass spectra.  No other scaling or preprocessing was 

used before data were input into the PCA software. 

 

Results and Discussion 

Multielement mass spectra were acquired from every stick of lipstick to determine 

all trace elements present in at least one of the lipstick samples.  Figure 1 is the 

multielement mass spectrum from lipstick sample Red 1; the y-axis is set to a maximum 

of 1.0x106 c/s in order to view the trace elements.  Isotopes present in at least one 

lipstick sample were measured for homogeneity of a single lipstick sample and for 

distinction between different lipstick samples (Table 3). 

Three sections of each of the 28 lipstick samples were analyzed. PCA allows for a 

visual representation of the variation in large amounts of data, such as numerous mass 

spectra, for comparison purposes.  Data points which cluster in similar score space in a 

PCA scores plot indicate the samples are similar, or indistinguishable.  In contrast, data 

points that occupy separate regions in score space have more variation between different 

sets than within each set and are distinguishable from one another.   

Homogeneity of Trace Element Composition within a Lipstick Sample 

Trace element composition was determined for three sections (top, middle, and 

bottom) of each lipstick sample by LA-ICP-MS.  Ten mass spectra per section of lipstick 

were included into the PCA scores plots.  Each mass spectrum is generated as a single 

data point on the PCA scores plots (Figs. 2-9).  The ten replicate mass spectra of each 
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lipstick section generally cluster together in PCA score space, indicating good 

reproducibility and little variation between the mass spectra of a lipstick section.  Mass 

spectra from the top, middle, and bottom sections of the same lipstick sample also 

generally overlap in score space (Figs. 2-9).   Good overlap of the points from the three 

lipstick sections is observed in both Light Pink samples in Figure 3. This indicates that 

most sections of a lipstick sample are indistinguishable from one another based on trace 

element composition.  These results indicate the lipstick samples in this experiment have 

little variation in trace element composition throughout a stick of lipstick and can be 

considered homogeneous.  

Replicate mass spectra of some lipstick samples occupy larger PCA score space 

than others, i.e. lipstick samples Red 4 (Fig. 2), Orange 2 (Fig. 4), Light Brown 3a and 3b 

(Fig. 8), and Dark Brown 1a and 1b (Fig. 9).  These lipstick samples have a higher 

variability in trace element composition, however, replicates from the top, middle, and 

bottom sections overlap in score space and are still considered indistinguishable.  

Replicate mass spectra of lipstick sections that occupy a smaller amount of score space 

contain less variability in trace element composition.   

Distinguishing Lipstick Samples of Similar Color 

Lipstick samples were separated into eight color groups based on visual 

similarities (Table 1).  The mass spectra of the top, middle, and bottom section of each 

lipstick sample were compared to the mass spectra from the other lipstick samples within 

a color group with PCA. In PCA plots of each color group, sections of a lipstick sample 

generally cluster in separate regions of score space from other sections of lipstick 

samples of different brands and colors (Figs. 2-9).  For example, the three lipstick 
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samples in the Orange color group cluster separately in score space from one another and 

are distinguishable (Fig. 4).  The variability in trace element composition between 

lipstick samples is greater than the trace element variability within a single lipstick 

sample.  In this study, most lipstick samples of different brands or colors are 

distinguishable from other lipstick samples of similar colors based on the trace element 

compositions to a 95% C.I.  This does not pertain to duplicate lipstick samples of the 

same brand and color.  Lipsticks from the Dark Brown color group were distinguishable 

to an 80% C.I. due to larger trace element composition variability in the Dark Brown 1a 

and 1b samples (Fig. 9).  

Duplicate lipstick samples of the same brand and color are not distinguishable 

from one another based on trace element composition.  Mass spectra acquired from all 

sections of the duplicate lipstick samples cluster together in score space on the PCA 

scores plots (Figs. 4, 7-9). The top, middle, and bottom sections from a given lipstick 

sample of the same brand and color are indistinguishable from one another in trace 

element composition.  Duplicate lipstick samples of the same brand and color in this 

experiment are also indistinguishable based on trace element composition. 

No significant difference in distinguishability between lipstick samples, or 

homogeneity within a single lipstick sample, was observed between the new and used 

lipstick samples.  Replicate mass spectra from the top section of lipstick sample Red 2 

(labeled Red 2T) do not cluster in the same PCA score space as the mass spectra from the 

middle (Red 2M) and bottom (Red 2B) sections of lipstick sample Red 2 (Fig. 2).  The 

variation in the top section is due to an approximately 200 fold increase in bismuth 

concentration compared to the smears of the middle and bottom sections of lipstick.  
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This increase in bismuth may be due to contamination on the top section of lipstick since 

it was a used sample.  

 Variations in signal not attributed to changes in trace element composition were 

accounted for in this work.  Mass spectra were normalized to the maximum signal to 

account for variations in the amount of lipstick ablated a) between replicate 

measurements of the same lipstick section, or b) between separate lipstick samples.  

Signal drift is also corrected for when the mass spectra are normalized to the maximum 

signal.  All lipstick samples within a color group were analyzed on the same day to 

eliminate any day to day variation in laser and plasma conditions.  

 

Conclusions 

 In this initial study, little variation in trace element composition throughout a 

lipstick sample was observed, showing that lipstick samples were homogeneous.   All 

lipstick samples of different brands or colors are distinguishable from lipstick samples of 

similar colors based on their trace element compositions in a PCA scores plot.  Duplicate 

lipstick samples of the same brand and color in this experiment are not distinguishable 

based on trace element composition. Contamination on the top section of a lipstick 

sample should be considered when analyzing used lipstick samples. 

 In forensic applications this method could assist in the identification of the brand 

and color of an unknown lipstick sample recovered at a crime scene by distinguishing the 

unknown sample from known lipstick samples based on trace element composition.  The 

laser ablation method is quick and most of the sample remains intact for subsequent 

studies which is advantageous in forensic work.  
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Future analyses of lipstick samples should include the comparison of a new 

lipstick sample to a used lipstick sample of the same brand and color.  More lipstick 

samples should be analyzed to determine if larger sample sizes may be distinguished 

from one another based on trace element composition.  Larger sample sizes could also be 

used to determine an accurate statistical probability that two lipstick samples of similar 

color may be distinguished based on trace element composition.  The effects of trace 

elements in underlying substrates, such as clothing and skin, should also be investigated.  

Eventually, databases containing trace elemental compositions of lipsticks may be 

created.  This database could assist in identification of an unknown lipstick sample by 

distinguishing the unknown lipstick sample recovered at crime scenes from known 

samples in the database.      
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FIG. 1 – Multi elemental mass spectrum from lipstick sample Red 1.  All isotopes of many elements are not shown and 
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FIG. 2 – PCA scores plot from mass spectra of “Red” lipstick smears.  Three sections of 

each lipstick sample, the top (T), middle (M), and bottom (B) cluster together and are 

indistinguishable.  Different lipstick samples cluster separately from one another in score 

space, indicating that the lipstick samples are distinguishable.  
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FIG. 3 – PCA scores plot from mass spectra of “Light Pink” lipstick smears.  Three 

sections of each lipstick sample, the top (T), middle (M), and bottom (B), cluster together 

and are indistinguishable.  Different lipstick samples cluster separately from one another 

in score space, indicating that the lipstick samples are distinguishable.  
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FIG. 4 – PCA scores plot from mass spectra of “Orange” lipstick smears.  Three sections 

of each lipstick sample, the top (T), middle (M), and bottom (B) cluster together and are 

indistinguishable.  Different lipstick samples cluster separately from one another in score 

space, indicating that the lipstick samples are distinguishable.  
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FIG. 5 – PCA scores plot from mass spectra of “Gold” lipstick smears.  Three sections of 

each lipstick sample, the top (T), middle (M), and bottom (B) cluster together and are 

indistinguishable.  Different lipstick samples cluster separately from one another in score 

space, indicating that the lipstick samples are distinguishable.  
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FIG. 6 – PCA scores plot from mass spectra of “Purple” lipstick smears.  Three sections 

of each lipstick sample, the top (T), middle (M), and bottom (B) cluster together and are 

indistinguishable.  Different lipstick samples cluster separately from one another in score 

space, indicating that the lipstick samples are distinguishable.  
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FIG. 7 – PCA scores plot from mass spectra of “Nude” lipstick smears.  Three sections 

of each lipstick sample, the top (T), middle (M), and bottom (B) cluster together and are 

indistinguishable.  Different lipstick samples cluster separately from one another in score 

space, indicating that the lipstick samples are distinguishable.  
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FIG. 8 – PCA scores plot from mass spectra of “Light Brown” lipstick smears.  Three 

sections of each lipstick sample, the top (T), middle (M), and bottom (B) cluster together 

and are indistinguishable.  Different lipstick samples cluster separately from one another 

in score space, indicating that the lipstick samples are distinguishable.  
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FIG. 9 – PCA scores plot from mass spectra of “Dark Brown” lipstick smears.  Three 

sections of each lipstick sample, the top (T), middle (M), and bottom (B) cluster together 

and are indistinguishable.  Different lipstick samples cluster separately from one another 

in score space, indicating that the lipstick samples are distinguishable.  
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TABLE 1 – Description of lipstick samples, the color groupings, and the isotope with the 

maximum signal that the signals from each lipstick section were normalized to. Lipstick 

samples with an “a” and “b” after the label are duplicates of the same brand and color.  

Color 

Group 

Label 

on Plots Brand Color 

New/ 

Used Section 

Reference 

Isotope 

Reds Red.1T Rimmel Just So Used Top 48Ti+ 

  Red.1M London   Middle 48Ti+ 

  Red.1B       Bottom 48Ti+ 

  Red.2T Estée Blazing Used Top 48Ti+ 

  Red.2M Lauder Berry  Middle 48Ti+ 

  Red.2B       Bottom 48Ti+ 

  Red.3T L.A. Berry Red New Top 48Ti+ 

  Red.3M Colors   Middle 48Ti+ 

  Red.3B       Bottom 48Ti+ 

  Red.4T Mary Kay Amber Used Top 138Ba+ 

  Red.4M  Suede  Middle 138Ba+ 

  Red.4B       Bottom 138Ba+ 

Light  Lt.Pink.1T Revlon Heart  Used Top 209Bi+ 

 Pinks Lt.Pink.1M  Warming  Middle 209Bi+ 

  Lt.Pink.1B       Bottom 48Ti+ 

  Lt.Pink.2T Maybelline Fushia Used Top 48Ti+ 

  Lt.Pink.2M  Blast  Middle 48Ti+ 

  Lt.Pink.2B       Bottom 48Ti+ 

Nudes Nudes.1aT L.A. Satin New Top 48Ti+ 

  Nudes.1aM Colors   Middle 48Ti+ 

  Nudes.1aB       Bottom 48Ti+ 

  Nudes.1bT L.A. Satin New Top 48Ti+ 

  Nudes.1bM Colors   Middle 48Ti+ 

  Nudes.1bB       Bottom 48Ti+ 

  Nudes.2T L’Oréal Crystallized Used Top 48Ti+ 

  Nudes.2M  Coral  Middle 48Ti+ 

  Nudes.2B       Bottom 48Ti+ 

  Nudes.3T CoverGirl Pillow Pink Used Top 48Ti+ 

  Nudes.3M    Middle 48Ti+ 

  Nudes.3B       Bottom 48Ti+ 
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TABLE 1 continued – Description of lipstick samples, the color groupings, and the 

isotope with the maximum signal that the signals from each lipstick section were 

normalized to. Lipstick samples with an “a” and “b” after the label are duplicates of the 

same brand and color.  

Color 

Group 

Label 

on Plots Brand Color 

New/ 

Used Section 

Reference 

Isotope 

Oranges Orange.1aT Milani Mandrina New Top 48Ti+ 

  Orange.1aM    Middle 48Ti+ 

  Orange.1aB       Bottom 48Ti+ 

  Orange.1bT Milani Mandrina New Top 48Ti+ 

  Orange.1bM    Middle 48Ti+ 

  Orange.1bB       Bottom 48Ti+ 

  Orange.2T Revlon Strawberry Used Top 48Ti+ 

  Orange.2M  Suede  Middle 48Ti+ 

  Orange.2B       Bottom 48Ti+ 

  Orange.3T Jafra Chilled Used Top 209Bi+ 

  Orange.3M  Peach  Middle 209Bi+ 

  Orange.3B       Bottom 209Bi+ 

Golds Gold.1T Fashion Forever  Used Top 48Ti+ 

  Gold.1M Fair Gold  Middle 48Ti+ 

  Gold.1B       Bottom 48Ti+ 

  Gold.2T Chanel Pink Used Top 48Ti+ 

  Gold.2M  Sugar  Middle 48Ti+ 

  Gold.2B       Bottom 48Ti+ 

Purples Purple.1T Mary Kay Rich Fig Used Top 27Al+ 

  Purple.1M    Middle 27Al+ 

  Purple.1B       Bottom 27Al+ 

  Purple.2T L.A. Berry Ice New Top 138Ba+ 

  Purple.2M Colors   Middle 138Ba+ 

  Purple.2B       Bottom 138Ba+ 

  Purple.3T L.A. Luscious New Top 138Ba+ 

  Purple.3M Colors Wine  Middle 48Ti+ 

  Purple.3B       Bottom 138Ba+ 

Light  Lt.Brwn.1T L’Oréal Iced Latte Used Top 48Ti+ 

 Browns Lt.Brwn.1M    Middle 48Ti+ 

  Lt.Brwn.1B       Bottom 48Ti+ 

  Lt.Brwn.2T Benefit Lana Used Top 48Ti+ 

  Lt.Brwn.2M    Middle 48Ti+ 

  Lt.Brwn.2B       Bottom 48Ti+ 

  Lt.Brwn.3aT New York Plum Rum New Top 48Ti+ 

  Lt.Brwn.3aM Color   Middle 48Ti+ 

  Lt.Brwn.3aB       Bottom 48Ti+ 

  Lt.Brwn.3bT New York Plum Rum New Top 48Ti+ 

  Lt.Brwn.3bM Color   Middle 48Ti+ 

  Lt.Brwn.3bB       Bottom 48Ti+ 

 

 

 

 



40 

 

 

TABLE 1 continued – Description of lipstick samples, the color groupings, and the 

isotope with the maximum signal that the signals from each lipstick section were 

normalized to. Lipstick samples with an “a” and “b” after the label are duplicates of the 

same brand and color.  

Color 

Group 

Label 

on Plots Brand Color 

New/ 

Used Section 

Reference 

Isotope 

Dark Dk.Brwn.1aT L.A.  Cocoa  New Top 48Ti+ 

 Browns Dk.Brwn.1aM Colors Shimmer   Middle 48Ti+ 

  Dk.Brwn.1aB       Bottom 48Ti+ 

  Dk.Brwn.1bT L.A.  Cocoa  New Top 48Ti+ 

  Dk.Brwn.1bM Colors Shimmer  Middle 48Ti+ 

  Dk.Brwn.1bB       Bottom 48Ti+ 

  Dk.Brwn.2T MAC Frost  Used Top 48Ti+ 

  Dk.Brwn.2M  Spanish Fly  Middle 48Ti+ 

  Dk.Brwn.2B       Bottom 48Ti+ 

  Dk.Brwn.3aT L.A.  Frozen  New Top 48Ti+ 

  Dk.Brwn.3aM Colors Berries  Middle 48Ti+ 

  Dk.Brwn.3aB       Bottom 48Ti+ 

  Dk.Brwn.3bT L.A.  Frozen  New Top 48Ti+ 

  Dk.Brwn.3bM Colors Berries  Middle 48Ti+ 

  Dk.Brwn.3bB       Bottom 48Ti+ 
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TABLE 2—Instrument and laser parameters for the analysis of lipstick smears 

Outer gas flow 18.0 L Ar min-1   

Auxiliary flow 1.80 L Ar min-1 

Sheath flow 0.30 L Ar min-1 

Sampler and skimmer cones Ni and Ni, CRI configuration (Analytik Jena) 

Scan mode  Peak hopping 

Dwell time 10 ms  

RF Power 1400 W 

Torch position, ion optics Optimized for maximum sensitivity and 

stability 

  

100 fs Laser  Coherent Libra Ti:Sapphire 

Operational wavelength 266 nm 

Laser energy 130 mW pulse-1; Filtered to 17 mW pulse-1 

Frequency 1000 Hz 

Spot size ~70 µm 

Raster speed 450 µm sec-1 

Carrier gas flow rate through 

ablation cell 

0.99-1.00 L Ar min-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

 

TABLE 3 – List of isotope m/z values measured during ablation of lipstick smears in the 

Distinguishability and Homogeneity of Lipsticks experiment.  Selected elements are 

present in at least one of the lipstick samples.  

 
 

 

  

7Li+, 25Mg+, 26Mg+, 27Al+, 45Sc+, 47Ti+, 48Ti+, 51V+, 55Mn+, 54Fe+, 57Fe+, 59Co+, 70Ge+, 
74Ge+, 79Br+, 80Br+, 89Y+, 90Zr+, 91Zr+, 93Nb+, 95Mo+, 98Mo+, 103Rh+, 117Sn+, 118Sn+, 
121Sb+, 123Sb+, 127I+, 133Cs+, 137Ba+, 138Ba+, 139La+, 141Pr+, 177Hf+, 178Hf+, 182W+, 183W+, 
194Pt+, 195Pt+, 203Tl+, 205Tl+, 206Pb+, 207Pb+, 208Pb+, 209Bi+, 232Th+, 235U+, 238U+ 
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CHAPTER 3. SAMPLING AND SPATIAL HETEROGENEITY  

IN TRACE ELEMENTAL ANALYSIS OF COPPER WIRE 

 FOR FORENSIC COMPARISONS BY LASER ABLATION-INDUCTIVELY 

COUPLED PLASMA-MASS SPECTROMETRY 

 

Jonna Berry, Stanley J. Bajic and R. S. Houk 

 

Abstract 

 The objective of this work is to assess the forensic value of copper wire strands for 

pairwise comparison based on trace elemental composition.  The bulk of the work is 

done without sample dissolution using laser ablation (LA)-inductively coupled plasma-

mass spectrometry (ICP-MS)  Numerous strands of varying lengths from a multi-strand 

speaker cable were analyzed. Multivariate statistical analysis was performed on the mass 

spectra to determine the compositional variability within a particular wire strand and 

between different strands.  The copper wire strands in this study are spatially 

heterogeneous in trace element composition.  The spatial variability in the trace 

elemental composition within a single strand of copper wire is similar to that between 

multiple strands.  Examining spatially resolved data is important to determine the 

variations in elemental composition within a sample.  In actual forensic applications, the 

possibility of spatial heterogeneity must be considered, especially in cases where only 

small samples (e.g., copper wire fragments after an explosion) are available. 

 

Introduction 

 Inductively coupled plasma-mass spectrometry (ICP-MS) offers the potential for a 

highly sensitive, relatively non-destructive, rapid, and cost effective analysis of small 
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samples for identification and comparison of forensic evidence (1, 2). Trace and ultratrace 

elemental analysis by ICP-MS has been used to determine if samples are similar to or 

distinguishable from one another.  This technique has been used to compare various 

samples of steel and glass, including float, container, sheet, and automotive glass, for 

forensic analysis (1, 3, 4, 5).  

For analysis of solids by ICP-MS, there are two common options.  Dissolving the 

sample yields better precision and is more easily calibrated but can be cumbersome and 

does destroy the original piece of evidence.  Thus, the speed, convenience, and limited 

sample destruction of LA sampling is an advantageous feature for forensic work.   LA-

ICP-MS has been used to distinguish between gold samples and also to determine their 

provenance (6).  Other samples such as gemstones, soils, and car paints have also been 

distinguished based on trace elemental composition measured with LA-ICP-MS (7, 8, 9, 

10).  The provenance has been determined for samples such as cannabis crops, oriental 

porcelain, and ochers as well, using LA-ICP-MS to measure trace elemental composition 

(2, 11, 12).   

 However, not all forensic samples can be clearly distinguished from each other 

based on trace elemental composition using LA-ICP-MS. In a nationally-prominent 

example, detailed investigation into compositional analysis of bullet lead by the Federal 

Bureau of Investigation (FBI) and the National Research Council (NRC) indicated many 

problems with the use of trace element composition for forensic comparison of lead 

bullets (13). Anywhere from 12,000 up to 35 million bullets for a 40-grain .22 caliber 

long rifle may be produced from “compositionally indistinguishable volumes of lead” 

(CIVL). Many bullet manufacturers also add scrap lead from the bullet production to melt 

at random times, which sporadically changes the composition of the original melt (13). 
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One recent development in LA-ICP-MS is the use of femtosecond lasers. 

Femtosecond lasers create finer particulates which lead to an increase in signal intensity 

and stability, and narrower confidence intervals for determining unknown concentrations 

compared to a nanosecond laser, particularly when ablating solid metal targets (14, 15, 

16).  A decrease in deposition around the ablation pit, an increase in signal intensities, 

and an improvement in the limit of detection are often observed when helium is used as 

the carrier gas through the ablation cell compared to argon (17, 18).   A femtosecond 

laser with helium as the carrier gas through the ablation cell coupled to the ICP-MS can 

provide accurate measurements of trace elements with high sensitivity and selectivity.  

Data analysis methodology is also important in forensic analysis.  One simple yet 

valuable chemometric method is principal component analysis (PCA), which reduces 

multivariate data into a two- or three-dimensional scores plot. The scores plot depicts 

most of the variation within a data set. PCA has been proven to be a useful, efficient, and 

reproducible technique for the comparison of forensic samples by trace elemental 

composition with LA-ICP-MS (3, 9, 12, 19). 

 Speaker cable, typically composed of multiple strands of copper wire, is 

commonly used for binding or strangling victims and is often left at crime scenes. 

Fragments may also be recovered from electronic circuits or components after a bomb 

explosion.  Comparison of one or more copper wire strands found at a crime scene to 

those found in the possession of a suspect could be used as evidence to link the suspect to 

the scene of the crime. 

In the present work, preliminary experiments determined that individual strands of 

copper wire had quite different trace elemental compositions; all such strands could 

apparently be distinguished from one another easily (19). This initial study formed the 
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basis of the present work.  The spatial variability of the elemental composition of the 

copper wire strands was further investigated.  Monster XP Compact High Performance 

Speaker Cable wire used in this study is high purity copper speaker wire (>99% copper) 

(20).  Elemental impurities within the wire increase the electrical resistivity and decrease 

the conductivity through the cable. Therefore, high purity copper wire is used for speaker 

cable due to its high electrical conductivity and low atomic impurities. This work aimed 

to distinguish between individual high purity copper wire samples.  If high purity 

samples were distinguishable, samples of lower purity would most likely be easily 

distinguished from one another as well.   

A similar study by Dettman et al. (21) measured trace element concentrations in 

high-purity copper wire by solution ICP-MS.  Dissolution destroys the sample which can 

be a disadvantage when analyzing forensic evidence.  Larger gauge wire was used in this 

study (12 AWG) (21), whereas the present work analyzed 36 AWG high-purity copper 

wire.  The present work provides a thorough investigation of the variability in trace 

element composition throughout high-purity copper wire typically used as speaker cable.   

This paper illustrates an issue in sampling size of the strands for pairwise 

comparisons, which is caused by the spatial heterogeneity of the trace elemental 

composition within each copper strand.  This spatial heterogeneity effect was verified by 

solution analysis.  Dettman et al. observed similar trace element variations within ~ 20 m 

length of a larger copper wire by solution analysis (21). 
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Experimental 

Samples   

The sample was a single 30 m length of 65 stranded Monster XP Compact High 

Performance Speaker Cable wire.  The linear polyethylene dielectric (LPE) insulation 

coating was peeled off the wire.  Copper strands were unwound and unbraided from the 

original cable.  In this paper, the term “wire” refers to the entire speaker cable, a bundle 

of copper strands intertwined together and covered with plastic insulation.  A “strand” is 

a single copper thread removed from the insulation and unwound from the wire.  A 

“segment” of a strand is a linear section from which one or multiple “sub-segments” (~ 9 

cm long) of strand were removed for analysis (Fig. 1).  The same ten copper strands were 

used in all experiments and are labeled accordingly as Strand 1 through 10.  

LA-ICP-MS Analysis 

      An apparatus to pull the strands straight in the ablation cell was developed to allow 

for the focused laser beam to remain on the strand during the ablation.  The strands were 

wound around two screw posts to keep them taut during ablation.  The apparatus 

contained a maximum of ten copper wire strands for ablation at once.  Each sub-segment 

of copper strand removed for analysis was ~ 9 cm long to allow for room to grasp the 

strand to mount it in the apparatus.   Various 2 cm long sub-segments were actually 

ablated in the LA cell.  The copper strands were 36 AWG and the diameter was 

approximately 120 µm.   

Two types of laser ablation experiments are presented.  The experiments are 

listed in order of the number of sub-segments per strand which were analyzed, not in the 

chronological order they were performed.  In Experiment I, one sub-segment of three 

segments (A, B, and C) of nine copper strands was removed for analysis (Fig. 1a).   In 
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Experiment II, four adjacent sub-segments of two segments (D and E) of ten copper 

strands were removed for analysis (Fig. 1b).  Multiple laser ablation experiments were 

conducted, which all yielded similar results.  The two laser ablation experiments 

presented in this paper provide a reasonable representation of the results from many such 

experiments done over the duration of the project.  

In both experiments, the sub-segments were ablated with a femtosecond (fs) 

(Coherent Libra Ti:Sapphire 266 nm, Santa Clara, CA) laser in a single line scan pattern. 

Helium gas was used as the carrier gas through the ablation cell.  The nominal spot size 

was ~70 µm.  The laser removed most of the upper half of each circular wire, leaving the 

remaining strand with a semi-circular, D-shaped cross section.   

The strands were suspended ~ 1 cm above a piece of Teflon so the edge of the 

laser that did not ablate the strand was defocused before it reached the Teflon piece.  

Argon was introduced into the sample tube after the ablation cell and before the torch via 

a Y setup.  The elemental mass spectra were acquired using a magnetic sector ICP-MS 

(Element 1, Thermo Scientific Inc., Bremen Germany).  All data were obtained in low 

resolution, m/∆m ~ 300.  Plasma conditions were optimized with a nebulized tune 

solution for maximum and most stable signals (Table 1).  In Experiment I, 45 mass 

spectra were measured per sub-segment of each strand.  Signals for Ag, Bi, Cu, Pb, Sb, 

Sn, W, Zn and Zr were peak-area integrated and background subtracted.  In Experiment 

II, 12 mass spectra per sub-segment were measured.  Signals for the m/z values of Ag, 

Cu, Pb, Sb, Sn, Zn and Zr were peak-area integrated and background subtracted.  In both 

experiments the background was measured with the laser on, but shuttered, and helium 

flowing through the ablation cell.  Bi and W were added to the original list of elements in 

Experiment I after being detected in various dissolution samples of copper strands.   
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Measures were taken to account for various instrumental effects.  Experiments I 

and II (described below) were each completed in a day (one day per experiment) in order 

to eliminate day-to-day plasma variations.  A piece of standard NIST 610 glass was 

ablated with the fs laser and selected m/z values were measured at the beginning and end 

of each experiment and compared in order to monitor for instrument drift over time.   

Signals for the selected m/z values were normalized to the 63Cu+ signal to correct for the 

variations in the amount of copper removed during ablation and to address possible 

problems caused by copper deposition on the cones.  New background spectra were 

measured frequently.  The new background spectrum was subtracted from the succeeding 

copper strand mass spectra.   

Various laser ablation experiments, detailed below, were performed with the fs 

laser to eliminate possible sources of variations in trace element signals other than 

heterogeneity of the strand.  One experiment assessed different methods of cleaning the 

strand before ablation.  Strands were wiped with either a dry Kimwipe, or a Kimwipe 

wetted with deionized water, or ablated with the fs laser to remove the surface of the 

strand before the mass spectra were acquired.  In order to remove the surface of the 

strand with the fs laser and retain a significant amount of strand for re-ablation, the raster 

speed was increased to 400 µm s-1 and the laser power was decreased to 34 mW.  The 

raster speed and laser power were reset to the parameters listed in Table 1 when mass 

spectra were collected.  The mass spectra from the cleaned strands were compared to 

mass spectra from strands where no cleaning was performed.  There was no significant 

difference in the mass spectra between the cleaned strands and the strands which were not 

cleaned (data not shown).   
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Sample Dissolution Analysis 

Signals during LA-ICP-MS are often erratic, even for spatially homogeneous 

samples.  Therefore, several segments of copper strands were dissolved to determine 

whether LA alone caused the apparent spatial variations in elemental signals.  Sample 

dissolution was used as a validation method for the LA-ICP-MS results.  Three segments 

(F, G, and H) of nine copper wire strands were broken by hand (i.e. not cut with a metal 

object) every 12 to 15 m (Fig. 1c).  Each segment of copper strand was weighed to 

~0.025 g and dissolved in ~1 g of an acid solution of 20 percent hydrochloric acid and 20 

percent nitric acid (2:1).  Both acids were prepared by in-house sub-boiling distillation. 

The solution was diluted to ~500 ppm copper and 0.5 percent acid with 18 MΩ·cm 

Millipore water.  Indium was added at ~ 4 ppb as an internal standard. Solutions were 

prepared in Teflon bottles which were vapor cleaned above 70 percent nitric acid for at 

least 16 hours.  The solutions were introduced into the ICP-MS via a 400 µL nebulizer 

and an ESI Apex-Q desolvation device.  The heater on the Apex was set to 100 oC and 

the chiller was set to 2 oC.  Argon gas was used as the sample gas at 1.015 L min-1 into 

the ESI Apex-Q.  Nitrogen gas was also applied to the Apex Q at ≤ 10 mL min-1 to 

increase signal and improve stability.  Plasma conditions were optimized with a standard 

solution for maximum and most stable signals (Table 1).  The signals for Ag, In, Sn, Sb, 

W, Pb, and Bi were acquired using a Thermo Scientific Element 1 ICP-MS.  The 

background was measured with a blank of the 0.5 percent acid solution and Millipore 

water.  Signals for the measured m/z values were peak-area integrated, background 

subtracted and corrected for the amount of copper strand dissolved and for the internal 

standard concentrations.  
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Data Analysis for Comparison of Strands 

 PCA reduces multivariate data into a simple, two- or three-dimensional scores plot 

which depicts most of the variation within the data set (22).  The scores plot is composed 

of a set of axes called principal components (PCs).  The PCs represent the major variance 

within the variables, in this case, net signals at selected m/z values, of a data set.  A PCA 

scores plot allows for the visualization and interpretation of the samples in the data set for 

comparison to one another (19).  

Data sets comprising multiple mass spectra from one, or multiple, sub- segments 

of a copper strand were used to produce a PCA scores plot.  One such data set was 

selected as the model. Data sets from the other sub-segments were then compared to the 

model.  The variance, or spread of results, from the data set to the model was determined 

by the Q-value.  The Q-value is a measure of the difference, or residual, between the 

mass spectra of one data set to their projection onto the model in the PC scores plot (19).   

A large Q-value indicates the data sets differ extensively.  In the same model, multiple 

Q-values of a data set are averaged together to simplify the plot and depict an overall 

point that represents the average Q-value for each copper strand.  A 95% confidence 

interval (C.I.) is calculated from each model.  If the average Q-value of a strand is larger 

than the Q-value of the 95% C.I. of the model, the copper strand is considered 

distinguishable from the model.  Alternatively, if the average Q-value of a copper strand 

is smaller than the Q-value of the 95% C.I. of the model, the copper strand and the model 

are considered indistinguishable from one another to a 95% C.I.   
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To simplify the data, tables were created which list the strands that were 

indistinguishable from the PCA model based on the average Q-value of the strand and the 

95% C.I. of the model.  The strands that are not listed in a particular table were 

distinguishable from the model.  

For laser ablation results, signals were normalized to the 63Cu+ signal and the Cu 

signals were removed from the PCA analysis.  For the dissolution results, signals were 

peak-area integrated, background subtracted and corrected for the amount of copper 

strand dissolved and for the internal standard concentrations.  Cu and In signals were 

removed from the PCA analysis.  Commercial PCA software, Solo Eigenvector version 

6.5.1 was used.  No other scaling or preprocessing was used before data were input into 

the PCA software. 

 

Results and Discussion 

Laser Ablation 

Two sub-segments of a copper strand were ablated with the fs laser and all 

selected elements were measured by ICP-MS (Fig. 2).  Seven elements with the largest 

signals that contained more than one isotope and minimum interferences were initially 

selected for experiments.  The selected elements included Cu, Zn, Zr, Ag, Sn, Sb, and Pb.  

Examination of the various isotope ratios shows that all these signals are due to the actual 

atomic ions and are not polyatomic interferences. 
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Numerous experiments were also conducted on the copper strands using a 

nanosecond (ns) laser (LSX 500 Nd:YAG 266 nm, CETAC Technologies, Omaha NE).  

Results were similar with either laser; however, only the fs laser results are reported 

below.  In particular, the spatial heterogeneity described below was of similar severity 

with either laser.  

Experiment I: Pairwise Comparison of Segments A, B, and C Between Nine Copper 

Strands 

Three segments (A, B, and C) per copper strand were ablated with the fs laser. The 

mass spectra from segment A of one strand are used as the model in an average Q-

residual plot and compared to the mass spectra of segment A from the remaining strands.  

This comparison is repeated with segment A of each strand used as the PCA model.  The 

Q-values from each mass spectrum were averaged together to represent the average Q-

value for that strand.  The strands which were indistinguishable from the PCA model 

(average Q-value was lower than the Q-value from the 95% C.I. of the model) in the 

average Q-residual plot are listed in Table 2.  Most of the strands are distinguishable 

from one another in the pairwise comparisons, in agreement with the previous 

observations using both LA (19) and solution analysis (21). There are only six total 

indistinguishable pairwise comparisons when the mass spectra from one sub-segment of 

segment A are used as the model for comparisons (Table 2).  Results are similar when 

the mass spectra from the single sub-segments of segment B and C are used as the models 

(data not shown).  

Next, the mass spectra from the sub-segments of segments A, B, and C of a strand 

were combined and used as the model.  The mass spectra from the three segments of the 

remaining strands are compared to the model.  The Q-values from the three sub-segments 
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in each strand were averaged together to represent the average Q-residual for a strand.  

The strands which were indistinguishable from the new model are listed in Table 3.  

When the distance over which the copper strand is analyzed increases from one sub-

segment to three sub-segments, the total number of indistinguishable pairwise 

comparisons increases to eight.  Note that in Table 3, Strand 8 is indistinguishable from 

six of the models.  This is because the compositional variability within the mass spectra 

of the segments in Strand 8 is smaller than the variability within most of the other strands 

in this experiment.  This is explained in more detail at the end of the Results/ Discussion 

section.   

Experiment I:  Pairwise Comparison of Sub-Segments within an Individual Strand 

Based on the previous results, many of the copper strands seem to be 

distinguishable from one another based on trace elemental composition (19).  However, 

this judgment is based on analysis of only small sub-segments of the strands.  The mass 

spectra of one segment are compared to the mass spectra from the remaining segments 

within the same strand in an average Q-residual plot (Fig. 3). If the average Q-value of a 

strand is larger than the Q-value of the 95% C.I. of the model, the copper strand is 

considered distinguishable from the model.  Alternatively, if the average Q-value of a 

copper strand is smaller than the Q-value of the 95% C.I. of the model, the copper strand 

and the model are considered indistinguishable from one another to a 95% C.I.   

Figure 3 shows that different segments of the same strand are also distinguishable 

from one another. The differences between the segments within the same strand are of 

similar magnitude as the difference between strands in the previous average Q-residual 

plots.  The results from the segments not shown in the graph are also distinguishable 

from one another within the same strand; they are omitted merely to simplify the plot.   
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Signals for each element measured during laser ablation were plotted versus 

distance over which the strand was ablated (Fig. 4).  Signal spikes are mainly due to 

actual spatial variations in the trace elemental composition within the 2 cm long copper 

strand (Fig. 4).  The laser ablated the 2 cm piece of copper strand over 4.5 minutes while 

the ICP-MS hopped through the selected m/z values.  The large spikes in element signal 

persist over 10 s or more of the analysis and are not merely due to large, transient 

particles entering the plasma.  This instrument measures the various elements 

sequentially.  A small time lapse occurs between isotope measurements as the magnetic 

field and accelerating voltage are changed to transmit a different m/z value.  Considering 

the small time lapse, many of the trace elements do not occur together throughout the 

strand.  It appears that certain elements, especially Sn (Fig. 4), are present mainly in 

discrete grains or inclusions and are not distributed homogeneously.    

These results indicate that the spatial variability of the trace elemental 

composition throughout a copper strand is similar to the variability between different 

strands of a speaker wire.  Trace element data are easily collected over a small spatial 

section by laser ablation.  Examination of time resolved isotope signals over a length of a 

sample is useful to assess the heterogeneity of the sample. Many common analytical 

methods do not collect time and spatially resolved data, or cause it to be lost during data 

processing.  For the copper strands studied in the present work, analysis of one small 

fragment of a strand is not an adequate sample size to evaluate a possible match between 

different strands or wires.   

Experiment II:  Effects of Increased Sample Size on Pairwise Comparisons 

A larger number of sub-segments were analyzed in order to determine the effects 

of increased sampling size on pairwise comparisons of copper stands.  Four sub-
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segments of segment D and E were ablated with the fs laser (Fig. 1b).  Eight sub-

segments per strand were sampled in this experiment compared to the three sub-segments 

analyzed in the previous experiment.  Mass spectra from four sub-segments of segment 

D of a strand were compared to those from the four sub-segments of segment D from the 

remaining strands.  With a larger area of copper strand for comparison, the total number 

of indistinguishable pairwise comparisons increases to 43 (Table 4).  The results are 

similar when the four sub-segments of segment E of a strand are compared to the sub-

segments of segment E of the remaining strands in an average Q-residual plot (plot not 

shown).    

 The increase in the number of indistinguishable pairwise comparisons compared 

to Experiment I may be partly due to the number of sub-segments per segment used for 

analysis.  An increase in the number of sub-segments of copper strand leads to a larger 

number of indistinguishable stands.  The increase in spatial variability is attributed to the 

heterogeneity of the trace elemental composition within the strand.  Using four sub-

segments as the PCA model in the average Q-residual plot increases the variability within 

the model.  With larger variability within the model, segment D of the remaining strands 

becomes less distinguishable from the model.  

Mass spectra of the eight sub-segments from segments D and E are included in the 

Q-residual model and compared to spectra from the sub-segments from segment D and E 

of the remaining strands (Table 5).  There are 44 indistinguishable pairwise comparisons 

when eight sub-segments of a strand are compared to eight sub-segments of the remaining 

strands in an average Q-residual plot. Again, an increase in the spatial variability of the 

trace elemental composition over longer distances of copper strand analyzed causes more 

strands to become indistinguishable from one another based on the average Q-residual 
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plot.  Normally, the precision and reproducibility would be expected to improve when 

more samples are compared resulting in more distinguishable samples.  With these 

results, an increase in the number of indistinguishable samples when more samples are 

compared is an indication of sampling issues. 

 

Experiment II:  Pairwise Comparison of Segments D, and E within an Individual Strand 

The four sub-segments from segment D are compared to the four sub-segments of 

segment E within the same strand in an average Q-residual plot (Fig. 5).  The segments 

of Strand 1 are distinguishable from one another.  In the remaining strands, the segments 

are distinguishable from one another (the average Q-value falls above the 95% C.I.) when 

one segment is used as the model. However, when the opposite segment of the same 

strand is used as the model, the segments appear indistinguishable from one another (the 

average Q-value falls below the 95% C.I.).   

In this case, the segment selected as the model affects the comparison diagnosis.  

This result is caused by the spatial variability of the trace elemental composition within 

the segment used as the model.  When the spatial variability of the sub-segments in the 

PCA model is larger than that of the sub-segments the model is compared to, the two 

segments are indistinguishable from one another in the average Q-residual plot.   

Note the larger Q-value for the 95% C.I. in the model when the two segments are 

indistinguishable; the horizontal dashed lines are higher in Fig. 5 in these cases.  This is 

another indication that the model has a larger variation with more spatial variability 

within the sub-segments.  Likewise, the two segments appear distinguishable from one 

another when the spatial variability in the trace elemental composition of the sub-

segments in the model is smaller than that of the sub-segments the model was compared 
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to. These results also indicate that the spatial variability of the trace elemental 

composition within a single copper strand is similar to the variability between strands.   

All of the trace elements measured contribute to the spatial variability within a 

model to different degrees, depending on the sub-segment.  For example, one sub-

segment may have large Pb and Sn signal spikes (e.g., Fig. 4), which increases the 

variability when that data set is used as the model.  Different sub-segments could have 

large signal spikes in different locations, or from other elements, which would increase 

the variability when those sets are used as the model.  The present work shows that these 

sub-segments may even originate from the same copper strand, which explains why 

segments from the same strand are distinguishable as well as indistinguishable from one 

another, depending on which segment is selected for the model.  For example, when 

segment D, in Strand 2 (Fig. 5) is used as the model segment E from the same stand 

appears distinguishable from the model.  Segment E from Strand 2 has large Sn and Sb 

signal spikes. This increases the variability within the model for segment E compared to 

segment D, resulting in segment E being distinguishable from segment D.  Conversely, 

when segment E from Strand 2 is used as the PCA model, segment D is indistinguishable 

from the model in the Q-residual plot.  This again is due to the large variability within 

the results for segment E when it is used as the model.  Large variability within the data 

set used as the model can cause more data sets to become indistinguishable from the 

model.  Therefore, heterogeneity of the sample and sampling size must be considered in 

order to confirm an indistinguishable pair or distinguish two samples from one another 

based on trace elemental composition. 

An important observation from this study is that when more sub-segments are 

included in the PCA model of a Q-residual plot, more strands become indistinguishable 
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from the model in a pairwise comparison. The increase in the number of indistinguishable 

pairwise comparisons is due to an increase in the variation within the PCA model.  

Variation in the data, in this particular case, is a result of fluctuations in the signals for the 

various m/z values measured during laser ablation of the copper strands.  Examples of 

large variations in PCA models include the Q-residual plot for segment comparison of 

Strands 2-6 in Fig 5.  Multiple effects may cause fluctuations in the signals of the various 

m/z values.  Spatial heterogeneity throughout the copper strand will cause fluctuations in 

the signal at various m/z values.  The more area (or sub-segments) included into the PCA 

model, the more signal fluctuation is introduced, unless very large areas of the sample are 

analyzed.  This creates a PCA model with large variations, which leads to more 

indistinguishable strands in a pairwise comparison to the PCA model.  Other sources of 

signal fluctuation were considered and measures were taken to attenuate or correct for 

these fluctuations, as explained in the Experimental section.  

Dissolution Experiments 

Dissolution experiments were conducted to ensure that the variability within and 

between strands was not due to the laser ablation process.  Five strands were measured as 

solutions.  After the three segments from five strands were analyzed the copper 

deposition in the Apex and cones became too large and further analyses would not have 

been reliable.  Fifteen mass spectra were collected per segment of copper strand.  

Signals for the m/z values were blank subtracted and corrected for the amount of copper 

strand dissolved and for the internal standard signal.   

The fifteen mass spectra per segment for all three segments of the five strands 

were included into a PCA scores plot (Fig. 6).  The fifteen replicates of each segment 

cluster together in the PCA score space.  Replicates or samples which cluster in similar 
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score space in a PCA scores plot are considered similar, or indistinguishable.  However, 

most of the segments within the same strand, as well as segments between different 

strands, cluster separately in score space (Fig. 6). The separate clustering of the segments 

between strands, as well as within a single strand, indicates the segments of a particular 

strand are dissimilar, or distinguishable from one another.  This observation further 

demonstrates that the trace elemental composition varies significantly both between 

strands and also between segments of a single strand.  Dettman et al. also found 

substantial variability in the trace element composition along ~20 m lengths of copper 

wire, along with even larger variability in the trace element composition of copper rods 

produced over a 10 day span (21).  

Sample contamination must be considered in the dissolution samples and may 

account for some separation of the samples in the score space.  However, the likeliness of 

variable contamination in every dissolution sample is considered small; therefore, most of 

the separation in score space is likely due to spatial variability in the elemental 

composition throughout a strand.   

 

Conclusions 

This study shows that the spatial variability, or homogeneity, of the trace 

elemental composition within a sample, such as a copper strand, should be determined in 

order to verifiably distinguish recovered fragments from other strands within the same 

wire.  Examining spatially resolved data is important to verify the variations in elemental 

composition within a sample.  This is an example of a case where ablating only small 

portions does not adequately represent the entire sample.  When a small number of sub-

segments from a copper strand are analyzed, the results indicate most of the strands are 
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distinguishable from one another in pairwise comparisons.  However, when sub-

segments throughout 30 m of the copper strand are analyzed, many of the strands are no 

longer distinguishable due to the spatial variability of the trace elemental composition 

throughout individual copper strands. Individual segments within a single strand are also 

distinguishable from one another in an average Q-residual plot, indicating spatial 

variability throughout a strand.  When the spatial variability in the trace elemental 

composition used as the PCA model in an average Q-residual plot increases, more strands 

become indistinguishable by pairwise comparisons from the PCA model.  The variations 

in the elemental composition along the length of a strand are similar to the variations 

between different strands.  The heterogeneity of the sample and sampling size must be 

considered in order to confirm an indistinguishable pair, or distinguish two samples from 

one another, based on trace elemental composition. 

In actual forensic applications, the possibility of spatial heterogeneity should be 

evaluated, particularly in cases where only small samples are available (e.g., copper 

strand fragments after an explosion).  It may be helpful to investigate the manufacturing 

process more closely to determine the cause of the heterogeneity throughout a copper 

strand, as described by Dettman et al. and done for other materials like container glass 

(23) and bullet lead (13). 
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FIG. 1—Illustration of where the segments and sub-segments were removed from copper 

wire strands for analysis. Figure 1a) depicts the location where the segments and sub-

segments were excised from the strand for Experiment I for laser ablation analysis. Figure 

1b) depicts the location where the segments and sub-segments were excised from the 

strand for Experiment II for laser ablation analysis.  Figure 1c) is a diagram of the 

segments removed for sample dissolution analysis. 
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FIG. 2—Average mass spectrum for two copper strands ablated with the fs laser and 

measured by ICP-MS.  Peaks with significant count rates (c/s) were labeled, m/z ratios 

were measured from 7Li to 238U.  Peaks below m/z 63 were not labeled due to polyatomic 

interferences.  
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FIG. 3—Average Q-residual plot from segments (A, B, or C) of nine copper strands.  

The segments in the boxes originate from the strand numbered at the top of each box.  

The segments from the remaining six strands not shown in plot are also distinguishable 

from one another within the same strand. Strands were ablated and measured by ICP-MS. 
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FIG. 4—Plot of count rate (c/s) vs. distance ablated over a strand segment (cm).  

Segment A, B, and C were removed between 12-15 meters throughout a strand.  45 scans 

of the selected isotopes were measured on the Element 1 ICP-MS over 275 seconds as the 

laser ablated over the 2 cm of the strand.  Results were similar with the remaining m/z 

ratios measured.  Signals are normalized to 63Cu+ signal. 
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FIG. 5—Average Q-residual plot from one segment (D or E) of five copper strands.  The 

segments in each box originate from the strand numbered at the top of each box. The 

remaining five strands not shown in plot follow the same trend as the plots above. Wire 

strands were ablated with the fs laser and measured by ICP-MS.   
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FIG. 6—Scores plot from mass spectra of dissolved samples of three segments, (F, G, and 

H) from five strands.  Each mass spectrum is represented as a single data point on the 

plot.  Segments F, G, and H from Strand 5 cluster close together and may be 

indistinguishable.  The remaining segments cluster separately from one another in score 

space, indicating that different segments of the same strand are distinguishable. 
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TABLE 1—Instrument and laser parameters for the analysis of copper wire strands 

ICP-MS Instrument 

Element I (Thermo Scientific, 

Inc.)   

Sampler and skimmer cones Ni, H configuration (Thermo Scientific, Inc.) 

Scan mode  Peak jump  

        dwell/settling time 10 ms dwell time/ 2.1 ms settling time 

Resolution Low  

   

100 fs Laser  Coherent Libra Ti:Sapphire  

Operational wavelength 266 nm  

Laser energy 140 mW pulse-1  

Frequency 1000 Hz  

Spot size ~70 µm  

Raster speed 80 µm sec-1  

   

  Laser Ablation Experiment Dissolution Experiment 

Carrier gas through ablation cell 0.800 + 0.19 L He min-1 - 

Additional gas after laser, 

 before torch 
0.530-0.550 L Ar min-1 - 

Nitrogen gas through Apex Q - <10 mL min-1 

Sample gas into Apex Q - 1.015 L Ar min-1 

RF Power 1150 W 1150 W 

Cool/auxiliary gas stream 16.00/1.16 L Ar min-1 16.00/1.47 L Ar min-1 

Torch position, ion optics 
Optimized for maximum 

sensitivity and stability 

Optimized for maximum 

sensitivity and stability 

Acquisition   

        Runs/passes Exp. I: 45 runs/1 pass   

Exp II: 12 runs/ 1 pass 

15 runs/1 pass 
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TABLE 2—Experiment I: Comparison of Segment A.  Numbers under “PCA Model” 

column correspond to the strand from which the mass spectra of segment A was used to 

produce the PCA model.  The mass spectra from segment A of the strands listed in the 

“Indistinguishable Strand(s)” column are indistinguishable from the strand in the PCA 

model to a 95% C.I. 

PCA 

Model 

Indistinguishable 

Strand(s) 

1 - 

2 4, 9 

3 - 

4 - 

5 9 

7 5 

8 - 

9 - 

10 4, 9 
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TABLE 3—Experiment I: Comparison of All Segments.  Numbers under “PCA Model” 

column correspond to the strand from which the mass spectra of segment A, B and C 

were used to produce the PCA model.  The mass spectra from segment A, B, and C of 

the strands listed in the “Indistinguishable Strand(s)” column are indistinguishable from 

the strand in the PCA model to a 95% C.I. 

PCA 

Model 

Indistinguishable 

Strand(s)  

1 - 

2 8 

3 8 

4 8 

5 8 

7 8, 2 

8 - 

9 1 

10 8 
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TABLE 4–Experiment II: Comparison of Four Sub-Segments from Segment D.  

Numbers under “PCA Model” column correspond to the strand from which the mass 

spectra of four sub-segments from segment D were used to produce the PCA model.  The 

mass spectra from four sub-segments from segment D of the strands listed in the 

“Indistinguishable Strand(s)” column are indistinguishable from the strand in the PCA 

model to a 95% C.I. 

PCA 

Model 

Indistinguishable 

Strand(s) 

1 9, 5, 8, 2 

2 - 

3 1, 2, 5, 8, 9, 10 

4 1, 2, 3, 5, 8, 9, 10 

5 2, 8, 9, 10 

6 1, 2, 3, 4, 5, 7, 8, 9, 10 

7 1, 2, 5, 8, 9, 10 

8 2, 9, 10 

9 5, 10 

10 2, 9 
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TABLE 5—Experiment II: Comparison of All Sub-Segments.  Numbers under “PCA 

Model” column correspond to the strand from which the mass spectra of all sub-segments 

were used to produce the PCA model.  The mass spectra from all sub-segments of the 

strands listed in the “Indistinguishable Strand(s)” column are indistinguishable from the 

strand in the PCA model to a 95% C.I. 

PCA 

Model 

 Indistinguishable 

Strand(s) 

1 2, 3, 4, 5, 8, 9, 10 

2 3, 5 

3 5, 8, 9, 10 

4 3, 5, 8, 9, 10 

5 8 

6 3, 4, 5, 8, 9, 10 

7 3, 4, 5, 6, 8, 9, 10 

8 5, 9, 10 

9 3, 4, 5, 8, 10 

10 3, 5, 8, 9 
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Abstract 

 Identifying trauma wounds on decomposing remains is important in order to 

establish a cause of death in forensic investigations.  This pilot study was performed to 

assess the potential forensic value for the detection of gunshot residue via the elements 

Sb, Pb, Ba, and Cu on decomposing remains with laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS).  The effects of a variety of unpredictable 

variables, such as weather, temperature, and human activity, on the retention of gunshot 

residue around projectile wounds were assessed.  A winter and summer study were 

performed. Elements consistent with GSR persisted in the skin around the gunshot 

wounds through the winter study for 220 days after death.  Antimony was present in the 

skin around the gunshot wounds in the summer study for 34 days after death.  Larvae 

first appeared on the carcasses in the winter study 157 days after death; these larvae 

contained the characteristic GSR elements.  Larvae were present on the summer study 

carcasses 24 hours after death.  Elements consistent with gunshot residue were detected 

in the larvae feeding from within the gunshot wounds for 4 to 6 days after death.  Other 

sources of lead and barium contamination, which could be mistaken for GSR, must be 

considered in actual forensic application of this methodology.     
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Introduction 

Determining the type of trauma present on a recovered body, i.e. sharp force, blunt 

force, or projectile trauma, is important in forensic investigations to establish the cause of 

death.  Projectile trauma can be difficult to distinguish from sharp force trauma on a 

decomposing carcass due to the stage of decomposition and insect activity around and 

within the wound tracts, (1, 2) especially if the bullet is not recovered at the scene.   

Only a few radiochemical and microscopic studies have been conducted regarding the 

analysis of gunshot wounds in decomposing remains (1, 3, 4, 5).   

The current method to distinguish projectile trauma from other trauma is the 

detection of gunshot residue (GSR) around the wound.  GSR may originate from the 

primer, propellant, lubricant, bullet, bullet jacket, cartridge case, and barrel of the gun (6).  

The airborne vaporized particles are ejected through the gun muzzle, cool rapidly into 

liquid droplets, and subsequently solidify (7). Some of these particles are carried with the 

bullet and settle in and around the bullet wound.  Berryman et al. (8) hypothesized that a 

low pressure gas zone exists behind the bullet which draws in vapor and GSR during 

passage through tissue.  This effect distributes GSR particles throughout the wound tract. 

One composition consistent with GSR particles is a combination of lead, barium, 

and antimony in an individual particle (7).  Copper and iron have also been detected in 

GSR particles (8).  GSR particles are typically collected from a surface with an adhesive 

stub and analyzed using scanning electron microscopy-energy dispersive x-ray 

spectroscopy (SEM-EDS) (9).  SEM-EDS can non-destructively locate and provide 

morphological information on individual particles which is advantageous for forensic 

analysis of GSR. 



77 

 

 

In most forensic casework, GSR is not analyzed on decomposing bodies due to the 

limitations of current GSR collection methods.  Decomposition is a progressive process 

and can be divided into five chronological stages: fresh; bloat; active decay; advanced 

decay; and dry or remains (5).  During these stages the body undergoes many changes 

that may alter or obscure gunshot wound evidence on skin (5).  Depending on the type of 

environment in which the body is exposed, the insect activity on the remains, and the 

stage of decomposition, GSR is only detectable by SEM-EDS around the entrance wound 

for a short period of time (~24 hours) (1).  Efficient GSR collection may be hindered by 

liquids and adipocere that may be present on the surface of decomposing remains (1).  

Debris on the sample surface may obstruct particle visualization and detection via SEM-

EDS as well (1).  SEM-EDS requires long analysis times, which are undesirable for 

forensic casework.  The analysis of a blank stub for GSR background subtraction can 

take from 2 to 6 hours and analysis time increases with the number of particles on a 

sample (7).   Another limitation of SEM-EDX is that elements of low atomic masses that 

may be present in GSR can remain undetected by SEM-EDX (10).  

Due to the limitations of SEM-EDS for GSR analysis, alternative methods for 

detecting GSR have been employed.  Koons et al. demonstrated the potential for ICP-MS 

to detect GSR through the analysis of cotton swabs spiked with Sb, Ba and Pb from 

standard solutions (11).  Wang et al. also used solution nebulization ICP-MS to detect 

GSR extracted from GSR collection swabs (12).  These studies show the potential for 

ICP-MS to detect GSR, however, samples were not collected from decomposing remains. 

GSR particles on decomposing remains are difficult to detect with SEM-EDX, 

therefore, organisms that feed around wounds on decomposing tissue have been studied.  

ICP-MS with solution nebulization has been used to analyze blowfly larvae (Chrysomya 



78 

 

 

megacephala) from decomposing porcine carcasses for the presence of GSR.  These 

studies were designed to distinguish projectile trauma from sharp force trauma on carrion. 

Blowfly larvae that fed on meat contaminated with GSR were digested and analyzed as 

solutions via ICP-MS for the presence of GSR (1, 2, 3).  The larvae studies conducted by 

LaGoo et al. (1), Rashid (2), and Roeterdink et al. (3) concluded that the larvae that ate 

the meat previously shot with a gun contained higher concentrations of elements 

consistent with GSR than the larvae that fed off of the meat with no GSR.   

ICP-MS was also used to analyze GSR on skin tissue around gunshot wounds on a 

pig carcass to distinguish projectile from sharp force trauma in later stages of 

decomposition (1).  LaGoo et al. (1) placed two pig carcasses outside for 37 days during 

the summer and two additional pigs outside for 60 days during the winter.  In each study, 

one carcass was shot 11 times and the second was stabbed 11 times.  After 7 days of 

insect activity the gunshot wounds and stab wounds were morphologically similar and 

indistinguishable from one another.  No GSR was detected around the surface of the 

entrance wounds via SEM-EDS after 24 hours.  Elements consistent with gunshot residue 

were present at higher concentrations in the skin tissue around the gunshot wounds 

compared to the tissue around the stab wounds for 37 days after death in the summer and 

60 days after death in the winter study (1).   Udey et al. (9) further studied the GSR in 

tissue by examining the possibility of differentiating bullet types in fresh and decomposed 

tissue using ICP-MS.   Elements such as Cu, Fe, Sb, Ba, and Pb were found to be present 

in significantly different concentrations around the gunshot wounds and could be used to 

differentiate gunshot wounds from controls.  Copper was found in higher concentrations 

around tissue shot with jacketed bullets.  Antimony and lead concentrations were 

significantly higher in samples shot with non-jacketed bullets (8). These results indicate 
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gunshot residue may remain embedded in tissues throughout decomposition of the 

remains.   

All of the above studies were conducted using dissolved samples.  Laser ablation 

(LA)-ICP-MS of larvae and tissue samples would provide faster results with less sample 

preparation for the detection of GSR compared to dissolution for ICP-MS analysis.  Most 

of the skin sample remains intact after LA, in contrast to solution nebulization.  If a 

section of skin is excised and dissolved, that piece is not amenable to further examination 

by other techniques.  We are not aware of other studies on the detection of GSR on 

blowfly larvae or decomposing tissue using LA-ICP-MS.  

This study addresses the retention of GSR embedded in the skin around the 

gunshot wounds, and also in larvae feeding in and around gunshot wounds, on 

decomposing carcasses in different environments. Samples were collected over a longer 

time frame compared to the study by LaGoo et al. (1) to determine if GSR can be retained 

and detected in skin tissue for an extended period of time.  The main objective of the 

present work was to assess the potential value of LA-ICP-MS procedures for the detection 

of elements consistent with gunshot residue in larvae and skin samples on decomposing 

remains, and assess the duration that gunshot residue may be retained in such samples.  

 

Experimental 

 This work included a winter and summer study.  All carcasses in this study were 

obtained from the Iowa State University Swine Farm immediately after being euthanized 

for other reasons.  In both studies pig carcasses were shot or stabbed approximately 1 to 

2 hours after death.  Carcasses were placed outside in large mesh cages for a period of 

time to decompose.  The mesh cages kept large animals out while allowing insects to 
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access the remains.  To determine the presence of GSR on decomposing remains, two 

types of samples were collected from all carcasses; a) larvae feeding in and around the 

gunshot and stab wounds, and b) skin tissue excised from around the wounds.  

Winter Study 

 In the winter study, one pig carcass (~60 kg) was shot 15 times by an Ames Police 

Department Detective with a Sig Sauer .40 caliber handgun and Winchester SXT 180 

grain bonded hollow point jacket ammunition.  The barrel of the handgun was cleaned 

with a Bore Snake between each shot and held approximately 30 cm away from the 

carcass for each shot.  Adjacent gunshot wounds were separated by at least 13 cm.  A 

second pig carcass (~60 kg) was stabbed with a stainless steel kitchen knife 15 times as a 

control for wound morphology and trace metal content comparisons. Both pig carcasses 

were placed outside in November 2013 in an open field, approximately one meter apart, 

in mesh cages to decompose.  Mesh cages were constructed from hog panel and covered 

with 2.54 cm chicken wire fencing.  The sides of the cages were buried 15 to 25 cm deep 

into the soil to prevent animal scavengers from burrowing under the cages to access the 

carcasses.  Mice could still access the carcasses, so 6 mm wire mesh was fastened to both 

mesh cages in March 2014.  

The decomposition process is slower in the winter and skin samples were 

collected around the fifteen gunshot and stab wounds periodically from November 2013 

until the end of June 2014.  Flies arrived on the carcasses 144 days after death.  Larvae 

hatched on the carcasses beginning 157 days after death, in April 2014, and were 

collected for 21 days.  No larvae were present on days 174, 176, and 177.  No larvae fed 

from the gunshot wounds from days 165 through 170; only larvae feeding on and inside 

the stab wounds were collected during this period. 
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Summer Study 

The summer study began in June 2014.  Three pig carcasses (~115 kg each) were 

each shot 15 times with a handgun in the same manner as the Winter Study.  Three other 

pig carcasses (~115 kg each) were each stabbed with a knife 15 times as a control.  In 

order to determine whether different environments affected the duration of time GSR 

could be detected in the larvae and on the skin, carcasses were placed in separate 

environments.  A set of pig carcasses (one carcass containing gunshot wounds and one 

carcass containing stab wounds) were placed outside in mesh cages near a river bank. 

Another set of carcasses were placed in mesh cages in a forested area, and the third set 

were placed in mesh cages in an open field. The carcasses are referred to as the “river”, 

“trees”, and “open field” carcasses, respectively, in this paper.  The mesh cages were 

used as described above.  

Larvae were present on the summer carcasses 24 hours after the carcasses were 

placed outside.  To allow time for feeding, the first larvae were collected 24 hours after 

they appeared.    Larvae were collected from all carcasses until they were no longer 

feeding on or inside the wounds.  Skin samples were collected from each carcass until 

September 2014.   

Analysis of Larvae Samples 

Larvae feeding in and around the gunshot and stab wounds were collected with 

plastic tweezers and placed in 15 mL plastic test tubes (Corning Inc.).  Numerous larvae 

were collected feeding in and around three gunshot and three stab wounds from each set 

of carcasses.  Collections occurred daily until larvae were no longer feeding in or around 

the wounds.  Larvae samples were frozen with liquid nitrogen and stored in a freezer at -

30 °C until the end of the study.   
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Frozen larvae were lyophilized (Labconco: FreeZone 4.5) for 24 hours to remove 

the water.  After lyophilization, larvae were stuck to a piece of quartz with collodion and 

samples were ablated with a femtosecond laser (Coherent Libra) (Table 1).  The m/z 

values for elements consistent with GSR (antimony, barium, and lead) were measured 

with a quadrupole ICP-MS (Bruker Aurora Elite, now Analytik Jena) to determine the 

presence of GSR elements.  

Analysis of Skin Tissue Samples 

Skin tissue was excised from around the wounds with a ceramic knife to avoid 

metal contamination.  The skin was cut approximately 2 cm away from the wound on all 

sides.  The skin sample containing the wound was separated from the underlying fat layer 

and placed between two pieces of wax paper in a sealable plastic bag.  Skin samples were 

not collected from the same wound twice.   

The plastic bags containing the skin samples were stored in a freezer at -30 °C 

until the end of the study.  Skin samples were secured to square pieces of plastic cutting 

board, 20 x 15 cm, to ensure the sample remained flat while drying.  Samples were then 

placed in a freezer (-80°C) for one hour.  All skin samples then were lyophilized 

(Labconco: FreeZone 4.5) for 72 hours to remove the water.  After lyophilization, skin 

samples were removed from the cutting boards for laser ablation.   

Samples were ablated around the edges of the wound entrance hole with a 

femtosecond laser (Coherent Libra) (Table 1). The m/z values for elements consistent 

with GSR (copper, antimony, barium, and lead) were measured with a quadrupole ICP-

MS (Bruker Aurora Elite, now Analytik Jena) to determine the presence of GSR.  
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Results and Discussion 

Decomposition Observations and Wound Morphology: Winter Study 

During the winter study, slight bloating was observed in both carcasses 1 day after 

death.  Outdoor temperatures decreased from 4 °C to -6 °C by day 5 and the carcasses 

were covered with 2.5 cm of snow.  On day 15, the temperature increased to 6 °C and the 

carcasses bloated further. From day 16 through day 102, the carcasses remained frozen, 

fully to partially covered in ice and snow, and no further decomposition was observed.  

Mice were able to access both carcasses through the 2.54 cm chicken wire from day 1 

until day 110.  Eventually, 6 mm wire mesh was fastened to the exterior of the cages to 

keep the mice out.  As average temperatures increased to 15 °C, further bloating was 

observed in both carcasses by day 155.  Flies were first present on the carcasses on day 

144. However, temperatures fell to 4 °C, or lower overnights and no larvae hatched until 

day 157.  Larvae fed from the carcasses for 24 hours and were collected on day 158. 

Larvae remained on the carcasses until day 186 but were no longer feeding near the 

wounds after day 178.  Decompositional fluid seepage was observed on both carcasses 

on day 160.  The desiccation stage of decomposition began before the last skin sample 

was collected on day 220.  

The wound morphologies of the gunshot wounds and stab wounds were visually 

distinguishable in the winter study from day 1, until the spring, day 173, (Fig. 1).  By day 

173 the gunshot wounds and stab wounds were difficult to distinguish visually.  Note the 

stab wound image from day 173 in the winter study (Fig. 1).  The stab wound is encircled 

in the photograph and was the only hole present originally.  The additional holes were 

created by the larvae as entrance and exit holes to travel within the carcass.  These holes 

could potentially be mistaken for trauma wounds on decomposing carcasses. 
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Decomposition Observations and Wound Morphology: Summer Study 

In the summer study, bloating was observed in all carcasses only 2 hours after 

death.  Average outdoor temperatures throughout the summer study ranged from 14 °C to 

27 °C.  Egg masses were present on all carcasses 9 hours after death.  Larvae hatched on 

all carcasses on days 2 or 3.  Larvae collection began on day 3, after feeding from the 

carcasses for 24 hours, and collection began on day 4 from the open field stab wound 

carcass. Collection continued until larvae no longer fed on and within the wounds, which 

occurred on day 17 for the carcasses near the river, day 19 for the carcasses in the trees, 

and day 25 for the carcasses in the open field.  Beetles are predators of fly larvae and 

arrived on most carcasses by day 8.  Less beetle activity was observed on the carcasses in 

the open field compared to the carcasses near the river and in the trees, which may have 

allowed the larvae to feed around and within the wounds on these carcasses for a longer 

period of time.   On day 25, 4 cm of rainfall caused the river near the farm to flood.  The 

carcasses placed under the trees and in the open field were submerged under 

approximately 50 cm of flowing water for an unknown period of time (less than 24 

hours).  Skin samples were collected until day 34 on all carcasses.  After day 34, no 

further wounds were discernable on the carcasses in the trees or open field, due to insect 

activity, decomposition, and the flood.  The carcasses near the river were not affected by 

the flood and skin samples around wounds were collected on day 53 and 106 as well.  

The desiccation stage of decomposition began by day 53 of the summer study.   

The wound morphology of the gunshot wounds and the stab wounds on the 

summer study carcasses were no longer visually distinguishable only 6 to 9 days after 

death (Fig. 2). This period is short due to high larvae activity on the carcasses and an 

increased rate of decay caused by the warmer temperatures during the summer study.  
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Detection of Gunshot Residue  

In order to determine the elements that may distinguish the gunshot wounds from 

stab wounds, full elemental mass scans were completed during LA-ICP-MS of sixteen 

skin samples, eight containing gunshot wounds and eight containing stab wounds (Table 

1).   The elements Sb, Pb, Ba, and Cu were found to be present at higher levels around 

the gunshot wounds compared to the stab wounds and therefore, all skin samples were 

analyzed by LA-ICP-MS for these four elements.   

Sb, Pb, and Ba are elements consistent with gunshot residue. Gunshot residue may 

also contain copper, although transfer from the copper jacket is the more probable source 

of copper on the skin samples around the gunshot wounds.  Some species of the Diptera 

order regulate copper for growth (14).  Therefore, copper was not evaluated in the larvae 

samples, only Sb, Ba, and Pb were measured.  

The amount of GSR deposited around each gunshot wound did vary and may 

account for some variation in the amount of GSR elements found.  In order to minimize 

the variation of deposited GSR, the guns in both the winter and summer studies were 

cleaned between shots to minimize carry over from the previous shot.  The guns were 

also held at approximately the same distance from the carcasses for each shot.   Sample 

signals were normalized to signals from a standard NIST 612 reference glass sample in 

order to eliminate changes in signals due to day-to-day laser and plasma variations, as 

well as signal loss due to the cone clogging.  

Notice the data plots have a three or four cycle log scale on the vertical axis.  

Thus, a small separation between points for the samples collected from the carcasses 

containing gunshot wounds and from the samples containing stab wounds on the plots 

amounts to a large difference in the measured signals. 
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Winter Study: Skin Samples 

 Decompositional changes and mice activity made wound identification difficult 

near the end of the winter study.  As a result, 11 skin samples were collected out of the 

15 wounds which were inflicted into both carcasses. 

Figure 4 shows a significant difference in antimony levels contained in the skin 

around the gunshot wounds compared to the stab wounds is observed for 155 days after 

death.  Antimony levels were reduced by day 178.  However, levels remained higher 

around the gunshot wounds than the stab wounds throughout the entire study.  Lead 

levels in the skin around the gunshot wounds were also significantly higher than the lead 

levels in the skin around the stab wounds throughout the entire study, 220 days after death 

(Fig. 5).  Barium levels in the skin around the gunshot wounds were initially higher than 

around the stab wounds.  A reduction in barium abundance near the gunshot wounds 

occurred between day 47 and day 68; in this period nearly 8 cm of snow had accumulated.  

Regardless, a significant difference in barium levels around the gunshot wounds 

compared to the stab wounds remained for 155 days after death (Fig. 6).  Copper levels 

were significantly higher in the skin around the gunshot wounds for 47 days after death 

compared to the stab wounds (Fig. 7).  The decrease in copper levels around the gunshot 

wounds by day 68 may be due to the increase in precipitation between days 47 and 68 

(Fig. 8).  

Winter Study: Larvae Samples 

In the winter study, when larvae were present within the gunshot wounds, both 

antimony and lead levels were higher in the larvae feeding on the gunshot wounds 

compared to the larvae feeding on the stab wounds (Figs. 8-9).  Larvae were feeding on 

and within the gunshot wounds from day 158 to 166 and day 170 to 178.  Larvae feeding 
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from the stab wounds were analyzed on days 158 through 178 (Figs. 8-10).  Even though 

larvae were not present until 157 days had elapsed, Sb and Pb still persisted.  Barium 

levels within the larvae feeding from the gunshot and stab wounds vary with time; and no 

significant difference is observed between Ba in gunshot vs. stab wounds (Fig. 10).  This 

may be due to the possible bioaccumulation of barium within larvae which was also 

observed by LaGoo et al. (1).  Barium may be a less reliable indicator element for the 

determination of gunshot residue within larvae.   

Summer Study: Skin Samples 

 Due to decompositional changes, high larvae activity, and the flood, identification 

of all wounds on the carcasses in the summer study was difficult.  Of the 15 wounds 

inflicted into all carcasses, 9 skin samples were collected from the carcasses in the trees 

and the open field, and 11 skin samples were collected from the carcasses near the river. 

Antimony levels are very high in the skin around the gunshot wounds compared to 

the stab wounds for four days after death (Fig. 12).  The difference in antimony levels in 

the skin around the gunshot wounds compared to the skin around the stab wounds 

decreases over 34 days of decomposition.  Note the vertical axis is a log scale (Fig. 12), 

and despite the flood on day 25, the antimony levels around the gunshot wounds still 

remain at least two times higher than that around the stab wounds for the remainder of the 

study.  No wounds remained on the carcasses in the open field and in the trees after 34 

days.  Antimony levels in the gunshot wounds collected from the carcasses near the river 

remain higher 106 days after death (Fig. 12), even in the summer.    

 Lead levels in the skin around the gunshot wounds were significantly higher 

compared to the lead levels around the stab wounds for four days after death (Fig. 13).  

By day 6 lead levels in the skin around the stab wounds increased and remained at higher 
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levels throughout the remainder of the study.  Lead is found in many sources and is a 

very common contamination element.  Possible lead contamination from dust stirred up 

from the fields on the farm or from gasoline in the trucks or tractors may be the cause of 

the increase in lead levels on the carcasses.  Lead levels around the gunshot wounds from 

the carcasses in river and trees were at least three times higher than the lead around the 

stab wounds for the entire study (Fig. 13).  Other sources of lead near carcasses should 

be considered for similar studies.  

 Barium levels in the skin around the gunshot wounds were higher than in the stab 

wounds initially.  However, Ba levels did not persist for more than one day after death.  

Barium levels on the skin of the gunshot wounds were comparable to, or lower than, the 

barium levels on the skin of the stab wounds for the majority of the study.  An increase in 

barium levels in the gunshot and stab wounds occurred between days 20 and 34.  The 

cause of the increase in barium is unknown, however, the flood occurred during that time 

frame and may be a possible source of the excess barium.  Herbicides that were sprayed 

onto the fields throughout the study were tested for possible trace metal contamination 

and no antimony, barium, or lead were measured in any of the herbicides.  

 Copper levels in the skin around the gunshot wounds were significantly higher 

than the copper levels in the skin around the stab wound for 12 days after death (Fig. 15).  

An increase in precipitation after day 8 of the study may account for the loss in copper 

levels in the skin around the gunshot wounds (Fig. 16).  Copper is retained in the skin for 

a shorter duration around the gunshot wounds than antimony or lead, which may be an 

indication that the copper is from a different source, possibly transfer from the bullet 

jacket and not from the GSR.    

  



89 

 

 

Several unexpected events, such as the flood and possible contamination most 

likely caused by human activity in the summer, and mice in the winter, occurred while the 

carcasses were outside.  These types of uncontrolled events would occur in actual 

forensic practice as well.  This study indicates that GSR persists around a wound robustly 

enough to withstand many weather and human events. 

Summer Study: Larvae Samples 

Antimony levels within the larvae feeding from the gunshot wounds were 

significantly higher than the antimony levels within the larvae feeding from the stab 

wounds for 10 days after death (Fig. 17).   

 Lead levels in the larvae feeding on the gunshot wounds were higher than in the 

larvae feeding on the stab wounds for 4 days after death (Fig. 18).  Lead levels in the 

larvae from the carcasses in the open field increased on day 5.  An increase in lead levels 

in the larvae from the carcasses in the trees was observed 9 days after death.  Increased 

lead levels in the larvae occurred at similar times as the increase in the lead levels on the 

skin around the wounds.   

 No significant difference in barium levels from the larvae feeding on the gunshot 

wounds was observed compared to the larvae feeding on the stab wounds throughout the 

entire study (Fig. 19).  Similar results were observed from the larvae in the winter study 

(Fig. 10).  These results in barium levels may be caused by the bioaccumulation of 

barium within larvae.  Barium may not be a reliable element for the determination of 

gunshot residue within larvae, either.  Larvae will not migrate from one food source to 

another.  Therefore, it is unlikely that the increase in lead and barium levels in the larvae 

feeding from the stab wounds is caused by larvae that migrated from the carcass 

containing gunshot wounds. 
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 Long lyophilization periods (up to 72 hours) were required for this study due to 

the large number of samples to be freeze dried.  In most criminal cases, fewer larvae and 

less skin tissue would be collected for GSR analysis, so lyophilization would be much 

faster.  Therefore, this method can still be considered a simple and rapid sample 

preparation method for the analysis of GSR on decomposing carcasses.  

Quantification of Sb, Pb, Ba, and Cu present around the wounds would be difficult 

with LA-ICP-MS because a matrix matched standard is needed for calibration, i.e., to 

assure similar ablation of both the standard and the sample. Determining quantifiable 

amounts of element consistent with GSR would also be difficult with dissolution of 

samples due to uncertainty in the original amount of GSR dissolved.  Dissolution is a 

destructive analysis method, and the original sample integrity may have significant 

forensic importance. Comparing the levels of metals consistent with GSR around gunshot 

wounds to stab wounds on decomposing remains can be considered a valid qualitative 

assessment for the detection of GSR.   

Conclusions 

Larvae, temperature, and precipitation had substantial effects on the retention of 

GSR in the skin around gunshot wounds on decomposing carcasses.  In the winter study, 

outdoor temperatures were lower, larvae activity was absent or delayed, and elements 

consistent with GSR and possible transfer from the bullet were detected in the skin around 

the gunshot wounds at higher levels compared to the stab wounds for an extended period 

of time.  Gunshot and stab wounds were no longer visually distinguishable on the winter 

study carcasses 173 days after death.  However, antimony and lead were detected at 

higher levels in the skin around the gunshot wounds compared to the stab wounds for the 

entire duration of the study, 220 days after death.   
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Larvae were present on the winter study carcasses 157 days after death.  When 

larvae were present within the gunshot wounds, antimony and lead were detected in the 

larvae feeding on the gunshot wounds at higher levels than the larvae feeding on the stab 

wounds.   

 In the summer study, elements consistent with GSR and bullet wipe were initially 

detected in the skin around the gunshot wounds at higher levels than the stab wounds.  

Due to warmer temperatures, higher larvae activity, increased decomposition rates, and 

rainfall, the levels of antimony, lead, barium, and copper around the gunshot wounds are 

reduced more quickly than in the winter study carcasses.  Gunshot and stab wounds were 

no longer visually distinguishable 6 days after death.  Antimony and lead levels in the 

skin around the gunshot wounds remained higher than the stab wounds throughout the 

entire study.  

Larvae were present on the summer study carcasses 24 hours after death.  

Antimony was detected in larvae feeding on the gunshot wounds at higher levels than 

larvae feeding on the stab wounds for 10 days after death.  Lead levels in the larvae 

feeding on the gunshot wounds were higher than the larvae feeding on the stab wounds 

for 4 days after death.  Due to possible bio accumulation of barium and regulation of 

copper for growth in larvae, barium and copper may not be reliable elements for the 

determination of GSR within larvae.   

Possible contamination sources of lead and barium near carcasses must be 

considered with this type of study.  Contamination from human activity on the farm may 

have contributed to the increase in lead and barium levels in the larvae and skin samples 

during the study.   Little human activity occurred around the carcasses throughout the 

winter study and no contamination was observed in the larvae or skin samples.   
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The purpose of this study was to assess the potential for LA-ICP-MS to detect 

GSR that had been retained around gunshot wounds throughout decomposition.  The 

initial results are promising and future studies to further validate this method in different 

environments are desirable.  Additional studies would be needed in order to assess the 

retention of GSR around gunshot wounds in other environments and climates.  Studies 

where animal scavengers are allowed access to the carcasses would provide further 

information as to the identification of gunshot wounds and retention of GSR around the 

wounds when large animals are present.  Determining the period of time GSR is retained 

around gunshot wounds on human cadavers compared to pig carcasses would be an 

important study considering pig skin is thicker than human skin and therefore may retain 

GSR for longer periods of time. 

In general, these early results indicate potential forensic value of measuring GSR 

elements in skin and larvae.  More such studies will help to clarify effects of factors such 

as weather and nearby human activity, which would occur in real forensic applications.  
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FIG. 1– Comparison of wound morphology in the winter study as carcasses decomposed.  

The top row is gunshot wounds and the bottom row is stab wounds.  Images are not the 

same wound from day to day.  The days listed on the top are the number of days after 

death. The stab wound is encircled on day 173; the remaining holes were formed as the 

larvae fed from the carcass.  
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FIG. 2– Comparison of wound morphology in the summer study as carcasses 

decomposed.  The top row is gunshot wounds and the bottom row is stab wounds.  

Images are not the same wound from day to day.  The days listed on the top are the 

number of days after death.  
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FIG. 3– Log plot of antimony signals in pig skin around gunshot wounds (black) and stab 

wounds (gray) from the winter study carcasses.  
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FIG. 4– Log plot of lead signals in pig skin around gunshot wounds (black) and stab 

wounds (gray) from the winter study carcasses.  
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 FIG. 5– Log plot of barium signals in pig skin around gunshot wounds (black) and stab 

wounds (gray) from the winter study carcasses.  
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FIG. 6– Log plot of copper signals in pig skin around gunshot wounds (black) and stab 

wounds (gray) from the winter study carcasses.  
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FIG. 7– Plot of accumulated precipitation throughout the winter study.  Between days 8 

through 128 the precipitation occurred as snowfall.  Rainfall occurred between days 1 

through 7 and 129 through 220. The x-axis corresponds to the days that skin samples were 

collected from the carcasses. 
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FIG. 8– Log plot of antimony signals in larvae feeding in and around the gunshot wounds 

(black) and stab wounds (gray) from the winter study carcasses.  
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FIG. 9– Log plot of lead signals in larvae feeding in and around the gunshot wounds 

(black) and stab wounds (gray) from the winter study carcasses.  
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FIG. 10– Log plot of barium signals in larvae feeding in and around the gunshot wounds 

(black) and stab wounds (gray) from the winter study carcasses.  
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FIG. 11– Plot of accumulated rainfall while larvae were present on the carcasses during 

the winter study.  The x-axis corresponds to the days that larvae were collected from the 

carcasses. 
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FIG. 12–  Log plot of antimony signals in pig skin around gunshot wounds (darker 

colors) and stab wounds (lighter colors) from the summer study, open field (green), river 

(blue), and tree (orange) carcasses.  
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FIG. 13– Log plot of lead signals in pig skin around gunshot wounds (darker colors) and 

stab wounds (lighter colors) from the summer study, open field (green), river (blue), and 

tree (orange) carcasses.  
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FIG. 14– Log plot of barium signals in pig skin around gunshot wounds (darker colors) 

and stab wounds (lighter colors) from the summer study, open field (green), river (blue), 

and tree (orange) carcasses.  
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FIG. 15– Log plot of copper signals in pig skin around gunshot wounds (darker colors) 

and stab wounds (lighter colors) from the summer study, open field (green), river (blue), 

and tree (orange) carcasses.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0E+05

3.0E+06

3.0E+07

3.0E+08

1 2 4 6 7 8 12 20 34 53 106

A
v

er
a

g
e 

S
ig

n
a

l 
(c

/s
)

Number of Days After Death

Copper in Skin from Summer Pigs



109 

 

 

 
FIG. 16– Plot of accumulated rainfall throughout the summer study.  The x-axis 

corresponds to the days that skin samples were collected from the carcasses. 
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FIG. 17– Log plot of antimony signals in larvae feeding in and around the gunshot 

wounds (darker colors) and stab wounds (lighter colors) on the summer study, open field 

(green), river (blue), and tree (orange) carcasses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0E+03

1.0E+04

1.0E+05

1.0E+06

3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 22 25

A
v

er
a

g
e 

S
ig

n
a

l 
(c

/s
)

Number of Days After Death

Antimony in Larvae from Summer Pigs



111 

 

 

 
FIG. 18 – Log plot of lead signals in larvae feeding in and around the gunshot wounds 

(darker colors) and stab wounds (lighter colors) on the summer study, open field (green), 

river (blue), and tree (orange) carcasses. 
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FIG. 19 – Log plot of barium signals in larvae feeding in and around the gunshot wounds 

(darker colors) and stab wounds (lighter colors) on the summer study, open field (green), 

river (blue), and tree (orange) carcasses. 
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FIG. 20 – Plot of precipitation during the time larvae were present on the carcasses in the 

summer study.  The x-axis corresponds to the days that larvae were collected from the 

carcasses. 
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TABLE 1—Instrument and laser parameters for the analysis of skin and larvae 

 
Trace Elements 

in Skin Analysis of Skin Analysis of Larvae 

Outer gas flow  18.0 L Ar min-1 

Auxiliary flow 1.80 L Ar min-1 

Sampler and skimmer cones Ni and Ni, CRI configuration (Analytik Jena) 

Scan mode  Peak hopping 

Dwell time 10 ms 10 ms 1 ms 

RF Power 1400 W 

Torch position, ion optics Optimized for maximum sensitivity and stability 

    

100 fs Laser  Coherent Libra Ti:Sapphire 

Operational wavelength 266 nm 

Laser energy 130 mW pulse-1; Filtered to 17 mW pulse-1 

Frequency 1000 Hz 

Spot size ~70 µm 

Raster speed 150 µm sec-1 

Carrier gas flow rate through 

cell (L He min-1) 
1.02 

1.06-1.09 0.89-1.04 

Additional carrier gas 

(T in after cell) (L Ar min-1) 
0.93 1.18-1.25 0.83-0.94 
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CHAPTER 5. DETECTION OF BULLET RESIDUE IN BONES AND SOIL  

FROM DECOMPOSED PIG CARCASSES WITH RADIOGRAHY,  

MICRO-COMPUTED TOMOGRAPHY,  

AND X-RAY K-EDGE DENSITOMETRY 

 

Jonna Berry, Scott Wendt, R. S. Houk, and J. N. Gray 

Will be submitted to The Journal of Forensic Science 

 

Abstract 

 Identifying gunshot trauma on skeletonized remains is important, yet difficult, in 

forensic investigations.  Detection of bullet residue within bone would assist in 

distinguishing gunshot wounds on skeletonized remains.  Pig carcasses were inflicted 

with gunshot wounds postmortem and placed outside to decompose for either 4 or 11 

months.  After decomposition, radiographic images of the pig bones containing possible 

damage from bullets revealed metallic particles embedded within a number of bones.  

Radiographs of soil from bones containing projectile trauma also contained metallic 

particles. Micro-CT scans of select bones provided volumetric information of metallic 

particles and smaller particles were also detected.  Metallic particles within the bones 

were analyzed with x-ray, K-edge densitometry and determined to contain lead. Studies 

on bullet residue mostly concern human or animal samples in a good state of preservation.  

Little radiochemical and microscopic research has been conducted regarding the analysis 

of gunshot wounds on decomposing remains. This study indicates that bullet residue can 

be retained throughout decomposition and detection of bullet residue within bones would 

provide valuable information when determining the cause of death. 
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Introduction 

 Determining the type of trauma present on a recovered body, i.e. sharp force, blunt 

force, or projectile trauma, is important in forensic investigations to establish the cause of 

death.  The current method to distinguish projectile trauma from other trauma is by the 

detection of gunshot residue (GSR) around the wound.  GSR is airborne vaporized 

particles formed from the combustion of the primer and propellant.  Molten GSR 

particles are ejected through the gun muzzle, cool rapidly into liquid droplets, and 

subsequently solidify (1). GSR particulates usually range in sizes from 0.5 µm to 10 µm 

in diameter (1).  One composition consistent with GSR particles is a combination of lead, 

barium, and antimony in an individual particle (1).  Copper and iron have also been 

detected in GSR particles associated with propellant/primer (2). GSR from the bullet itself 

are irregularly shaped fragments formed as it breaks up upon impact. These fragments 

range in size from 50 microns to several millimeters length and/or width. The presence of 

many tiny particles is especially true for skeletal cadavers with bones shattered by the 

bullet, where the small fragments can be tightly embedded in the bone matrix. As a body 

decomposes, bullet fragments initially embedded within muscle and tissue may settle in 

the soil below the remains as well.  Skeletal remains are difficult to assess and generally 

bullet fragments remain only in or near the damaged bone. 

GSR particles settle in and around the gunshot wound.  GSR has also been 

detected on bone, below the subcutaneous tissue immediately after shooting (3).  The 

outer membrane of the bone, the periosteum, is uplifted when a bullet penetrates the bone 

exposing it to GSR (4).   Berryman et al. hypothesized that a low pressure gas zone 

exists behind the bullet which draws vapor and GSR in during passage through an object, 
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and distributes it throughout the wound tract and eventually onto the exposed bone under 

the periosteum.  This hypothesis is further supported by the detection of GSR on the 

bottom of discharged bullets, including some which were severely deformed and 

recovered from skulls and walls at crime scenes (5). 

Characterization of gunshot wounds is one of the widest fields of research in 

forensic medicine.  However, studies on GSR and bullet residue mostly concern human 

or animal samples in a good state of preservation (6).  Unfortunately, little radiochemical 

and microscopic research has been conducted regarding the analysis of gunshot wounds 

on decomposing remains (7, 8, 9) and even less literature exists for gunshot wounds on 

skeletonized remains (3, 9).  Projectile trauma is difficult to identify on skeletal remains 

when typical projectile fracture patterns are not present (3).  A few studies have 

identified GSR and metallic fragments from the bullet retained in the bones during 

decomposition.  In one study, GSR was observed in four out of nine pig skulls containing 

gunshot wounds after decomposing for 4 years (9).  In a second study, GSR particles 

were detected in 4 cases of buried, charred, or submerged remains, along with the remains 

of a historical First World War soldier (6).  In both studies, GSR persisted even after 

long periods of decomposition and preservation in peculiar environments. 

GSR particulates formed from the combustion of the primer, propellant, and other 

sources of the weapon usually range in sizes from 0.5 µm to 10 µm in diameter (1).   

Particles of this size are too small to image with radiography or to determine the 

composition of with K-edge, x-ray densitometry.  Therefore, the particles analyzed in 

this work are most likely the fragments torn from the bullet as it passed through the bone.  

These fragments will be referred to as bullet residue in this study.  Lead particles from 

bullet residue are expected to be more abundant around projectile trauma from non-
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jacketed bullets (2).  However, this study indicates that lead particles can be identified in 

bones shot with a copper jacketed bullet as well. 

The present work evaluates three x-ray techniques for the detection of bullet 

residue in skeletonized remains.  First, radiographic images of bones and the soil 

surrounding the bones were taken to determine if bullet residue was present. Second, if 

high density particles were visible, micro-computed tomography (µCT) was performed on 

several of the bones in order to obtain high resolution spatial and morphological 

information about the particles.  Finally, to positively determine the metallic composition 

of the bullet residue particles detected within the bone, x-ray K-edge densitometry was 

performed on select bones.   

Metallic lead particles, such as bullet residue, are radiopaque and easily observed 

in radiographs (10, 11).  When a victim is discovered recently after death with possible 

gunshot injuries, postmortem radiographs are conducted to locate the projectile, depict the 

bullet track, and assist in retrieval of the bullet and bullet fragments (10).   In a study by 

Lantz et al., (11) radiopaque bullet residue was observed in a radiograph around the 

entrance wound of a victim shot by a .22 caliber rifle.  The bullet residue was analyzed 

with scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) 

and lead was determined to be the predominant element present (11).  
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High resolution x-ray imaging, either micro radiography or micro-CT, is a non-

destructive radiological technique used to investigate small, centimeter sized objects with 

spatial resolutions as small as 5 microns.  This technique has been used as an objective 

and rapid tool for estimating the firing distance in intermediate-range gunshot wounds by 

the detection of GSR within the tissue (12).  Micro-CT was also used to detect GSR on 

remains that were decomposed or severely charred by fire to differentiate entrance 

wounds from exit wounds (12, 13). 

K-edge absorption densitometry is capable of detecting heavy metals and has been 

used to measure and monitor uranium and plutonium in facilities around the world (14).  

In K-edge densitometry analysis, a white x-ray beam is passed through a sample to a 

collimated energy-sensitive x-ray detector, such as a high purity germanium detector with 

a multichannel analysis capability.  Figure 1 shows the x-ray absorption coefficient for 

lead plotted as a function of photon energy. A discontinuous sharp increase in the 

absorption coefficient is observed at a photon energy of 88 keV.  This increase results in 

an abrupt decrease in transmission rate of photons through the material, resulting in a step 

edge at a particular photon energy of the transmitted x-ray spectrum (15), see Figure 9a.  

Each element has a large change in the absorption coefficient at a unique photon energy 

corresponding to the binding energy of the 1s electrons. The presence of a K-edge at a 

particular photon energy identifies the unique element while the size of the jump is related 

to how much of the element is present.  K-edge densitometry is capable of 

simultaneously measuring multiple heavy metals present in various materials.  
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Experimental 

This work involved a winter and summer study.  In both studies, pig carcasses 

were inflicted with gunshot wounds 1 to 3 hours postmortem. All carcasses were 

euthanized for other reasons prior to use in this study.  Carcasses were then placed 

outside in large mesh cages for a period of time to decompose.  The mesh cages were to 

keep large animals out while allowing insects to access the remains.  These carcasses, 

along with carcasses containing stab wounds, were also used in another study to 

investigate the retention of GSR in tissue and within larvae feeding around the wounds 

during decomposition.  

Four pig carcasses (~60-115 kg) were each shot 15 times by Ames Police 

Department detectives with a Sig Sauer .40 caliber handgun and Winchester SXT 180 

grain bonded hollow point jacket ammunition.  The handgun was cleaned with a Bore 

Snake in between each shot and held approximately 30 cm away from the carcass for each 

shot.  Adjacent gunshot wounds were separated by a minimum of 13 cm.  After the 

gunshot wounds were inflicted, the carcasses were placed in mesh cages outside to 

decompose. Mesh cages were constructed from hog panel and covered with 6 mm wire 

mesh.  The sides of the cages were buried 15 to 25 cm deep into the soil to prevent 

animal scavengers from burrowing under the cages to access the carcasses.   

 In the winter study, one pig carcass (~60 kg) was shot and placed outside in a 

mesh cage to decompose in November 2013.  The bones were collected after 306 days of 

decomposition.  In the summer study, three pig carcasses (~115 kg) were each shot and 

place outside in mesh cages to decompose in June 2014.  In order to determine whether 

different environments affected the retention and detection of metallic particles from the 

bullet in the bones, carcasses were placed in separate outside environments on a farm.  
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One pig carcass was placed near a river bank, another in a forested area, and the third 

carcass was placed in an open field. The bones from the summer study carcasses were 

collected after 143 days of decomposition.   

 The bones from each carcass were collected and placed in 18 gallon plastic 

containers.  Bones were stored in a laboratory and allowed to dry for 84 days for the 

winter carcass and 48 days for the summer carcasses.   After the bones and any organic 

matter on the bones were dried, the organic matter was cleaned off of the bones from the 

summer carcasses with toothbrushes and a nail brush to avoid metal contamination.  The 

bones from the winter study carcass had little residual organic matter and did not require 

cleaning.   

 Radiographs were taken of bones that showed damage, possibly from a bullet, to 

look for indications of metallic fragments. Soil that had fallen off of the bones from the 

carcass containing gunshot wounds and the carcass containing stab wounds from the 

winter study was collected from the bottom of the plastic containers. Digital x-ray images 

of the damaged bones and collected soil were captured using the high resolution CT 

facility at the Center for Non-Destructive Evaluation (CNDE).  The micro-CT system is 

comprised of a Kevex micro-focus x-ray tube (130 kV, 4 μm diameter spot), 4-axis 

micro-step positioner and digital array detector. The detector is a General Electric 

DXR500L amorphous silicon flat panel detector with a CsI conversion screen. GE 

Rhythm data collection software generates the digital images.  The CT system can 

generate both high resolution (2 micron) digital radiography and 3D CT data at 3 micron 

voxel sizes to be performed.  

CT scans were subsequently performed on bones that contained numerous high 

density particles, typical of Pb fragments. High-speed CT reconstruction was done using 
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custom reconstruction software, and custom image analysis software was used for 

visualizing the 2D and 3D data sets. The visualization software is capable of isolating the 

high contrast particles from the bones in order to obtain better morphological information. 

The isolated objects can be exported and saved as virtual 3-D objects defined in a 

standard computer aided drafting (CAD) format. 

A third type of x-ray scan, a K-edge densitometry measurement, was also 

performed on bones with relatively large fragments (~0.5 mm in width) to determine their 

elemental composition. For this scan, an energy dispersive x-ray detector was used to 

positively identify the high density indications observed in the radiographs as Pb 

fragments. The system is comprised of a standard 3.2 kW industrial Comet x-ray tube 

(320kV, 1.5 to 3 mm diameter spot), an x-z-theta multi-axis sample positioner and a high 

purity germanium (HPGe) detector coupled to a multi-channel analyzer (MCA).  This x-

ray photon counting detector measures x-ray spectra that can be used to identify metal 

particles based on the presence of a step edge in the Bremsstrahlung spectrum.  As 

discussed above, each element has a specific energy at which this edge occurs.  When Pb 

is present within the area irradiated with x-rays a sharp step edge in the measured 

Bremsstrahlung spectrum at 88 keV is observed.  

 

Results and Discussion 

Decomposition of Carcasses 

 The carcass from the winter study was in the desiccation stage of decomposition 

when the bones were collected (Fig. 2).  The bones contained a light layer of dirt and 

were not cleaned before analysis.  The carcasses from the summer study were in between 



123 

 

 

the end of the advanced stage of decomposition and the beginning of the desiccation stage 

(Fig. 3).  Organic matter from the decomposing carcasses was present on all of the bones 

and was cleaned off before further analysis.   

X-Ray Imaging of Bones and Soil 

 Radiographic images were taken of 35 bones containing fractures that may have 

been caused by a bullet projectile.  Metallic radiopaque particles were identified in 29 of 

the 35 bones.  A summary of the number of metallic particles identified in each bone or 

bone fragment is found in Table 1.  Example radiographs of a few bones and bone 

fragments are shown in Figures 4-6.  Many of the metallic particles clustered near 

fracture areas are most likely GSR, or metallic particles from the bullet itself which were 

deposited on and within the bone as the bullet passed through, also known as, bullet 

residue.   

 More metallic particles were identified on bones from the winter carcass 

compared to the summer carcasses.  This may be because the bones from the carcass in 

the winter study were covered with only a slight layer of dirt when collected from the 

field and were not cleaned.  Many of the bones from the summer study were partially to 

fully covered in organic matter from the decomposing carcasses.  The organic matter was 

brushed off with a nail or tooth brush and bullet residue may have been removed during 

this process.  On day 25 of the summer study, 4 cm of rainfall caused the river near the 

farm to flood and the carcasses placed under the trees and in the open field were 

submerged under approximately 50 cm of flowing water for an unknown period of time 

(less than 24 hours).  The cleaning and immersion events may have contributed to fewer 

particles being observed in the bones from the summer carcasses compared to the winter 
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carcass.  However, even after these events, significant and easily detectable Pb bullet 

fragments are still found, the retention of bullet residue within skeletonized remains is 

robust enough to withstand a long period of time and unpredictable events.  

Fractured bones that did not contain metallic particles may have been broken 

during transport of the carcasses, or more likely, as the bullet passed through nearby 

bones and torsion caused them to fracture without ever coming in contact with the bullet.   

Radiographic images of the soil which fell from the winter carcasses containing 

either gunshot wounds or stab wounds are compared in Figure 7.  Numerous high 

contrast particles are observed in the radiograph of the soil from the bones of the carcass 

containing gunshot wounds (Fig. 7a).  No high contrast particles are identified in the soil 

from the bones of the carcass containing stab wounds (Fig 7b).  The two carcasses were 

both placed in mesh cages and located only 3 feet from one another.  The high contrast 

particles observed in the soil from the gunshot carcass are most likely metallic fragments 

from the bullets.   These results indicate soil around the bones, and potentially the soil 

directly below the carcass may also contain bullet residue.  As a body decomposes, bullet 

fragments initially embedded within muscle and tissue may settle in the soil below the 

remains and should be considered for analysis when determining the type of trauma 

present on skeletonized remains.  

µCT of Bones 

 µCT scans of “Fragment 1” from the left scapula of the carcass from the winter 

study were performed.  A CAD image of the metallic particles extracted from the bone 

was created (Fig. 8).  Morphological information of the metallic particles embedded 

within the bone is available from the µCT scans.  The three large particles embedded 

within the bone fragment are irregularly shaped, not spherical (Fig. 8).  GSR particles 
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from the primer combustion are known to be spherically shaped.  However, the irregular 

shape observed from the particles embedded within bone is consistent with irregular 

shapes formed from the mechanical destruction of the bullet as fragments are torn off 

during passage.  This is another indication that the particles embedded within the bones 

are fragments from the bullet and not GSR from the primer. 

CT provides better image resolution compared to radiographic 2D images and 

numerous smaller metallic particles are observed in the CAD image extracted from the 

CT scan of the bone fragment (Fig. 8).  In the original x-ray image of “Fragment 1” of 

the left scapula from the carcass in the winter study, three lead fragment are observed.  

These three fragments are approximately 0.75 mm in width (Fig. 8a). In the CAD image 

from the CT scans, the three ~0.75 mm sized particles are observed, along with many 

otherwise undetected lead fragments on the order of 0.1 mm in diameter (Fig. 8b).   The 

size of the particle that can be identified with CT is dependent on the spatial resolution of 

the detector.  High resolution-CT is needed for imaging the smaller lead fragments (0.1 

mm).  Samples no larger than a few hundred square mm can be analyzed with high 

resolution-CT, therefore, an area containing possible projectile trauma may need to 

excised from larger bones before analysis.    

X-ray, K-edge Analysis of Metallic Particles 

Two bones and one bone fragment were analyzed with an energy dispersive x-ray, 

K-edge technique in order to determine the composition of the embedded particles 

observed in their radiographs.  This technique will identify metals with relatively high 

atomic numbers, such as lead, if present in the particles.  The bones for which x-ray, K-

edge analyses were performed are shown in Figures 4-6. As mentioned, if a K-edge at 88 

KeV is shown in the Bremsstrahlung spectrum then lead is present in the sample volume 
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irradiated by the x-rays.  The edges in the spectra collected on the bullet residue particles 

indicates that lead is present in all of the metallic particles that were analyzed (Figs 9-11).  

For each bone analyzed, several additional x-ray spectra were collected within a few mm 

from the metallic particle to verify that no Pb K-edge was present (Figs. 9-11).  This 

indicates that the Pb detected near the metal particles is from the particle itself and not 

from anything else.  This is illustrated in Figure 12 which shows the result of a 2D raster 

scan of an area around one particular particle. An x-ray spectrum is collected at each 

location of the raster scan, and those spectra are available for later analysis.    

 The 2-dimensional raster scan shown in Figure 12 was performed with the 

germanium detection, K-edge system in a square area around particle #1 (labeled in Fig. 

6) on “Vertebrae 2” from the carcass in the open field (Fig. 12).  The scan has a very fine 

spatial resolution (~150 μm) in the horizontal direction, and a coarser resolution (~1 mm) 

vertically.  A transmitted spectrum is collected for each pixel in the scan.  The red and 

black areas correspond to the empty region just above the bone (Fig. 12) where the un-

attenuated incident x-rays reach the detector and produce very high intensities.  The 

lighter green areas are where the x-rays are passing through the relatively thin bone.    

The white, pink, and dark blue squares indicate areas where fewer photons are detected 

due to a denser object attenuating much of the x-ray beam (particle #1).  This area 

corresponds to the lead fragment (#1) in the box on the radiograph in Figure 12 (also in 

Fig. 6).  From this image, portions of the metallic particle are being detected in several 

grid locations of the raster scan covering an area that is approximately 0.25 mm wide by 

0.5 mm long (Fig. 12). Due to the presence of an edge at 88 keV in the x-ray spectrum 

(Fig. 11a) from this particular metallic particle, the energy dispersive measurement proves 

that the suspect particle is indeed a lead fragment, most likely from a bullet fragment. 
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All particles analyzed with the K-edge system were at least partially composed of 

lead (Figs 8-11).  From the particles’ location around damaged bone, the irregular 

morphology, and lead composition, it can be assumed that these particles are bullet 

fragments.  It must be noted that lead particles are also created from other sources such 

as: leaded petrol emissions, plumbing materials, battery plates, solder, glass, and paints, 

(1) however, it is unlikely that metallic lead from some other source would be found 

embedded within skeletonized remains, particularly in the vicinity of bone damage.  

Animal scavenging of a carcass can break bone but will not result in Pb becoming 

embedded in the bone.   

Unfortunately, the K-edge system at CNDE is not optimized to perform K-edge 

scans needed to locate and identify small Pb fragments in bone. More specifically, the 

imaging capability is separate from the K-edge system and it is difficult to locate the 

particle for K-edge analysis.  K-edge analyses on the CNDE system required up to 18 

hours for a detailed scan.  Therefore, only a few bones were analyzed with the x-ray, K-

edge technique.  However, particles from the remaining bones were embedded near 

fractures and have similar high density radiographic features.  These particles most likely 

contain lead bullet fragments.   

Lead particles are expected to be more abundant around projectile trauma from 

non-jacketed bullets (2).  However, this study indicates that lead particles can be 

identified in bones shot with a copper jacketed bullet as well.  Antimony and barium are 

also present in primer GSR (1); however, the presence of these elements could not be 

determined. This is probably because the concentrations are below the level that can be 

detected by K-edge densitometry.  Elements with lower atomic numbers become harder 
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to detect because the K-edges are at lower energies where more photons are absorbed in 

the bone and therefore, fewer low energy photons reach the detector.  At these photon 

energies, the K-edges cannot be distinguished from the noise. In general, elements with 

lower atomic masses (below ~140) are difficult to detect, especially at low concentrations.  

However, it is unlikely that these fragments contained antimony or barium being that 

these fragments are from the bullet itself and not from the primer.  

This study indicates that bullet residue remained embedded within and on the 

bones for 306 days of decomposition throughout the winter study.  In the summer study, 

carcasses decomposed for 143 days, the carcasses in the trees and open field were 

submerged underwater in a flood for a day, and the bones from all three carcasses were 

cleaned with a nail brush or tooth brush, yet bullet residue was still retained and identified 

in some of the bones.   

A typical collection method for skeletonized remains from a crime scene is to 

collect the bones in paper bags for transfer. The soil directly underneath any bone trauma 

may contain bullet residue and could be collected for analysis as well.  It would be 

advantageous for the soil and debris to be broken down into fine particulates and imaged 

in a thin layer. This would increase the chances of detected any small lead fragments by 

minimizing the contrast effects produced by larger soil particles.  A forensic advantage 

of identifying bullet fragments in skeletonized remains with this method is that the bones 

can be imaged with x-ray radiography without removing the bag and disturbing the 

evidence.  If bullet residue is not observed, the bone could then be cleaned with a brush 

and the bone and removed soil could be imaged separately in an effort to find very small 

particles that may have been obscured.  Any bones containing metallic fragments in the 

vicinity of bone trauma could be sent for further analysis to determine the composition of 
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the metallic fragments.  Techniques such as K-edge densitometry or laser ablation-

inductively coupled plama-mass spectrometry (LA-ICP-MS) could determine if the 

particles are composed of lead with little to no sample destruction.  If lead fragments are 

detected around the vicinity of bone trauma it is very likely the fragments embedded 

within the bone are from a bullet and would provide valuable information when 

determining the cause of death.  

Conclusion 

 Radiographic images of pig bones containing possible bullet trauma revealed 

bullet residue on 29 of the 35 bones imaged.  The bones from the summer study 

contained less GSR and bullet residue than the bones from the carcass in the winter study, 

most likely because the summer bones were cleaned and some were submerged 

underwater in a flood. Radiographic images of the soil from the bones of the winter 

carcass containing gunshot would revealed numerous metallic particles, most likely from 

the bullets, compared to the soil from the bones of the stabbed carcass.  

Micro-CT allowed for morphological information of the particles which showed 

irregular shapes indicative of mechanical tearing of the bullet fragments.  Smaller 

particles were also visible with the micro-CT method.  The bullet residue particles were 

determined to contain some amount of lead with x-ray K-edge densitometry.   

Little research has been conducted on the retention of bullet residue on and within 

skeletonized remains.  This pilot study demonstrates the potential for bullet fragments to 

be detected on skeletonized remains to aid in the identification of projectile trauma.  This 

methodology is completely non-destructive; the entire samples remain intact after the 

analysis which is advantageous in forensic work. Identification of projectile trauma on 
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skeletonized remains would be important in forensic investigations in order to assist in 

determining the cause of death.   
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FIG 1—Absorption coefficient plot for lead (Pb), the K-edge is observed at 88 keV.  The 

discontinuities at the left are L-edges and correspond to the 2s and 2p electron binding 

energies of the lead atom. 
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FIG 2—Images of the winter carcass a) ~4 hours after death. and b) when the bones were 

collected, 306 days after death (bottom).   
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FIG 3—Images of the summer carcass left in the trees a) ~6 hours after death, and b) 

when the bones were collected, 143 days after death (bottom).  
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FIG 4—a) - Image of seven fragments of the left scapula from the winter carcass. The 

arrow in the left image indicates the fragment that is depicted on the right (“Fragment 1” 

from Table 1); 4b) X-ray radiograph of the “Left Scapula Fragment 1” from the winter 

carcass, the three dark spots in the circle are the metallic lead particles. 
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FIG 5—X -ray radiograph of “Right Scapula” from the winter carcass.  The dark line in 

the circle is several metallic particles. 

 

10 mm 



137 

 

 

 
 

 

FIG 6—X-ray radiograph of “Vertebrae 2” from the summer carcass in the open field.  

The arrows indicate the metallic particles (dark spots) and are labeled #1, #2, and #3 for 

reference in the text and in Fig.9. 
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FIG 7— a) X-ray radiograph of the soil that fell from bones of the winter carcass 

containing gunshot wounds.  The lighter spots are the metallic lead particles (some 

circled in orange) b) X-ray radiograph of the soil that fell from bones of the winter carcass 

containing stab wounds. 
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FIG 8— a) Zoomed X-ray radiograph of the “Left Scapula Fragment 1” from the winter 

carcass.  The three dark spots in the box are the metallic lead particles; b) Particles were 

isolated from the bone in CT analysis revealing many additional tiny fragments. 
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 FIG 9—X-ray Bremsstrahlung spectrum of metallic particle in the “Left Scapula 

Fragment 1” from the Winter carcass (top) and the similar spectrum of an area of the bone 

4 mm away from metallic particle (bottom).  The area circled on both plots is the photon 

energy at which the K-edge is located if lead is present. 
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FIG 10—X-ray Bremsstrahlung spectrum from metallic particle in the “Right Scapula” 

from the Winter carcass (top) and a similar spectrum from an area of the bone 2 mm away 

from metallic particle (bottom).  The area circled on both plots is the photon energy at 

which the K-edge is located if lead is present.  
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FIG 11—X-ray Bremsstrahlung spectra of metallic particle #1 (a), particle #2 (b), particle 

#3 (c), and 0.2 mm away from metallic particle #1 (d) (particles numbered from Fig. 3) in 

the “Vertebrae 2” from the Open Field carcass.  The area circled on the plots is the 

photon energy where the K-edge for lead is located if lead is present. 

a 
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FIG 11 continued—X-ray Bremsstrahlung spectra of metallic particle #1 (a), particle #2 

(b), particle #3 (c), and 0.2 mm away from metallic particle #1 (d) (particles numbered 

from Fig. 3) in the “Vertebrae 2” from the Open Field carcass.  The area circled on the 

plots is the photon energy where the K-edge for lead is located if lead is present.  
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FIG 12—2D raster scan around particle #1 on “Vertebrae 2” from the Open Field carcass 

(Right).  The color look up table to the right indicates the color range corresponding to 

the photon counts. The axes are distance in µm from the zero point on the translation 

stages.  The black box on the radiograph of the “Vertebrae 2” around particle #1 is the 

area where the 2D scan was performed (top left). 
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TABLE 1—Sum of metallic radiopaque particles identified in each bone or bone 

fragment from the four pig carcasses.  Metallic particles from the bolded bones and 

fragments were analyzed by x-ray, K-edge densitometry.  

Winter Carcass 

Right Scapula 9 

Left Scapula Fragment 1 3 

Left Scapula Fragment 2 2 

Left Scapula Fragment 3 1 

Left Scapula Fragment 4 4 

Left Scapula Fragment 5 4 

Left Scapula Fragment6 1 

Left Scapula Fragment 7 4 

Humerous Fragment 1 7 

Humerous Fragment 2 12 

Rib 1 14 

Rib 2 3 

Rib 3 Fragment 10 

Rib 4 Fragment 1 

Skull 4 

Vertebrae 1 7 

Vertebrae 2 1 

Vertebrae 3 4 

Open Field Carcass 

Rib 1 

Vertebrae 1 5 

Vertebrae 2 8 

Trees Carcass 

Right Scapula 8 

Rib 1 3 

Rib 2 3 

Vertebrae Fragment 6 

Mandible 4 

River Carcass 

Right Scapula 1 

Mandible Fragment 1 5 

Mandible Fragment 2 1 
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CHAPTER 6. GENERAL CONCLUSIONS 

 

In Chapter 2, little variation in trace element composition throughout a lipstick 

sample was observed, showing that lipstick samples were homogeneous.   All lipstick 

samples of different brands or colors are distinguishable from lipstick samples of similar 

colors based on their trace element compositions in a PCA scores plot.  In forensic 

applications, analysis of lipstick samples with LA-ICP-MS could assist in the 

identification of the brand and color of an unknown lipstick sample recovered at a crime 

scene by matching or distinguishing the unknown sample from known lipstick samples 

based on trace element composition.   

Chapter 3 concluded that the heterogeneity of a sample and sampling size must be 

considered in order to confirm an indistinguishable pair, or distinguish two samples from 

one another, based on trace elemental composition.  The variations in the trace elemental 

composition along the length of a copper strand are similar to the variations between 

different strands of the same speaker cable, and cannot be readily distinguished from one 

another.  In actual forensic applications, the possibility of spatial heterogeneity should be 

evaluated, particularly in cases where only small samples are available (e.g., copper 

strand fragments after an explosion).    

As discussed in Chapter 4, larvae, temperature, and precipitation had substantial 

effects on the retention of GSR in the skin around gunshot wounds on decomposing 

carcasses.  Elements consistent with GSR and bullet transfer were detected in the skin 

around the gunshot wounds and larvae feeding from the wounds at higher levels in the 

gunshot wounds compared to the stab wounds for an extended period of time. In general, 

these early results indicate potential forensic value of measuring GSR elements in skin 

and larvae for a period of time throughout the decomposition process.   
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Little research has been conducted on the retention of GSR or metallic particles 

from bullet residue on and within skeletonized remains.  In Chapter 5, the potential for 

GSR to be detected on skeletonized remains to aid in the identification of projectile 

trauma was demonstrated with radiography and K-edge, x-ray densitometry.  

Identification of projectile trauma on skeletonized remains would be important in forensic 

investigations in order to assist in determining the cause of death.   

Overall, trace elements were determined for forensic comparisons of various 

samples or detection of GSR on samples.  Issues with measuring a representative sample 

when small fragments are recovered were described.  LA-ICP-MS is a relatively non-

destructive techniques, whereas x-ray, K-edge densitometry is completely non-

destructive.  Both techniques have low detection limits for the measurement of trace 

elements, and most, or all, of the original sample integrity remains intact, which is 

advantageous in forensic analyses.   
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APPENDIX A. AN X-RAY FLUORESCENCE STUDY ON THE SEGREGATION 

OF Cs AND I IN AN INVERTED ORGANIC SOLAR CELL 

 

William R. Lindemann, Teng Xiao, Wenjie Wang, Jonna E. Berry, Nathaniel A. 

Anderson, Robert S. Houk, Ruth Shinar, Joseph Shinar, David Vaknin 

 

A paper published in Organic Electronics, 2013, 14, 3190-3194. 

 

Abstract  

X-ray near-total-reflection fluorescence reveals that in multilayers of the inverted 

organic solar cell (ITO/CsI/P3HT:PCBM-based) Cs diffuses into the organic layer and 

iodide diffuses into the ITO. Laser ablation inductively coupled plasma mass 

spectrometry measurements, which integrate elemental concentration across the whole 

multilayer structure, indicate that the Cs:I ratio remains 1:1 confirming there is no loss of 

iodine from the sample. Iodide diffusion to the bulk ITO layer is also found in a similarly 

prepared ITO/NaI/P3HT:PCBM multilayer structure. Our results are consistent with 

recent XPS measurements which show that the Cs:I ratio at the ITO/CsI surface exceeds 

8:1, and rationalize this observation. 

 

Introduction 

Because of their potentially low production costs, organic photovoltaic devices 

have become an area of critical research in the development of alternative energy sources. 

Over the past decade, the power conversion efficiency (PCE) of these devices has 

increased from 1% to over 10%. [1, 2, 3, 4, 5, 6] Many efficient organic devices are 
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comprised of a polymer/fullerene bulk-heterojunction structure - often studied is a 

mixture of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)propyl-1-

phenyl[6,6]C
61

 (PCBM). [1, 5, 7] 

These devices include ’standard’ and ’inverted’ configurations. [5]  An example 

of a successful inverted device structure is Glass / ITO / Cs
2
CO

3
 / P3HT:PCBM Blend / 

MoO
3
 / Al. [8, 9]  ITO and aluminum are the cathode and anode, respectively; the Cs

2

CO
3
 and MoO

3
 serve to alter the work function at the nodes. [5, 10] 

A cesium iodide film, spin-coated from its aqueous solution as a substitute for the 

Cs
2
CO

3
 layer, has been demonstrated to produce a usable solar cell (see Figure 1). [8]  

However, repeated elemental analysis of the CsI film using x-ray photoelectron 

spectroscopy (XPS) has demonstrated a surface Cs:I ratio of 8:1. [8]  Replacing CsI with 

CsCl or CsF resulted in inferior devices; however, the Cs:Cl and Cs:F ratios at the ITO 

surface were much closer to the stoichiometric ratio (i.e. 1.4:1 and 1:1, respectively). [8] 

Previous attempts to depth-profile organic devices using secondary ion mass spectrometry 

(SIMS) were not quantitative or conclusive. This study utilized x-ray near-total-reflection 

fluorescence (XNTRF) and laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS) to study the apparent depletion of iodine at the ITO surface. Moreover, 

previous results [8] indicated the presence of Cs at the P3HT:PCBM surface when a 

solution with higher concentration of CsI was spin-coated on ITO. In the best cells, 

however, where lower concentrations of CsI were utilized, Cs was not detected in the 

organic layer. The aforementioned techniques substantiate Cs diffusion into the 

P3HT:PCBM, even in the optimized cells. XNTRF analysis was also performed on a 

cesium carbonate cell. 
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Materials and Methods 

A solution of 1:1 P3HT:PCBM (by weight) in 1,2-dichlorobenzene with a 

concentration of 30 mg/mL was used to spin-coat the organic active layer. P3HT was 

purchased from Rieke Metals, and PCBM from nano-C; neither was refined further. The 

P3HT solution was filtered using an 0.22 m Millex PTFE filter before it was mixed with 

PCBM. Layers of CsI or NaI and P3HT:PCBM were spin-coated (as previously 

described) and thermally annealed. [8]  MoO
3
 and Al layers were not added. 

Glass/ITO/CsI or NaI/P3HT:PCBM structures were studied, so that only effects caused by 

layers adjacent to the iodide would be observed. The electron number density (ED) and 

absorption profiles across the interface of the stratified structure determine the fluorescent 

volume and allow a depth profile of the concentrations fluorescent elements. The details 

of the depth profile depend on the quality of the sample and the homogeneity of each 

stratum.  

Here, we limit our depth profile to distinguishing elemental positions only with 

respect to the ITO/P3HT:PCBM interface, i.e., into ITO substrate or into the 

P3HT:PCBM film. The ED of ITO (
ITO

=1.88 e/Å3) is calculated by assuming that its 

constituents - In
2
O

3
 and SnO

2
 - are homogeneously mixed, so that electrons are 

uniformly distributed. The ITO is 90% In
2
O

3
 and 10% SnO

2
 by mass, so the density 

calculation is weighted accordingly. From 
ITO

, the critical  

XNTRF measurements were conducted on the Ames Laboratory horizontal 

surface spectrometer (LSS) [14] using an UltraX-18 Rigaku x-ray generator with a 

rotating copper anode (Cu K, wavelength =1.54 Å), operating at 50 kV and 250 mA. 
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The Cu K line was selected by a Ge(111) crystal, which steered the downstream beam 

onto the surface at the desired angle of incidence, 
i
. The fluorescence was detected with 

a Vortex energy dispersive detector (EDD) subtending the illuminated surface (additional 

details described elsewhere [14]). A schematic of the XNTRF setup is shown in Fig. 1. To 

determine the relative emission efficiency of emission lines of different elements, salt 

(i.e., NaI, and CsCl) solutions were measured in a thermostatic, solid Teflon Langmuir 

trough maintained at 20 C. [15] Aqueous solutions of 20mM CsCl and NaI from Sigma 

Aldrich were prepared using ultrapure water (Milli-Q; resistivity, 18.1 M).  

To evaluate the location of the emitting element, we measure the fluorescence as a 

function of the X-ray incident angle () as it determines the penetration depth of the x-ray 

into the film and thus the rough location of the emitting element. For a uniform interface 

with no deposited film, below Q
c
 and dominated by the ED, the evanescent wave 

penetrates only to a few nm (thus the fluorescence is surface sensitive), whereas above Q
c

, the penetration depth is dominated by the absorption of the substrate. Above Q
c
, the 

wave can penetrate organic layers through depths on the order of micrometers.  

Quantitatively, the angular dependence of the penetration depth normal to the 

interface (D()) is given by  

 D()= 
1

 2k
0

 { }[(sin2()sin2(
c
))242]1/2+sin2(

c
)sin2()

1/2

   (1) 

where k
0
 represents the x-ray wave number, 

c
 is the critical incident angle for total 

reflection and  is a constant given by =/(2k
0
), where  is the reciprocal of attenuation 

length. [14] The incident angle  is related to momentum transfer Q
z
 by the equation 
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Q
z
=4sin()/. Using  Eq. 1, below Q

c
 D2.6 nm. Above Q

c
 (up to Q

z
= 0.065 Å1) 

D36 nm.  

On the other hand for a semi-infinite organic layer (P3HT:PCBM) the 

corresponding penetration depths below and above Q
c
 are 6.6 nm and 8200 nm. So, 

below the ITO critical angle for total reflection the fluorescence is mainly from the bulk 

of the organic layer with some contribution from ITO/organic-layer interface. At larger 

angles the fluorescence is from both the organic layer and the bulk of the ITO. Due to the 

complexity of the iodide-ITO surface-structure, these estimates have fairly large 

uncertainties. They are only used to distinguish signals that emanate from the organic 

layer and the ’bulk’ of the ITO. 

When primary x-rays travel through the film, they excite bound electrons, causing 

the materials to fluoresce. The fluorescence spectra are characteristic of individual 

elements, allowing the development of a chemical depth profile of each sample. In this 

study, the x-ray fluorescence spectra of a Glass/ITO/CsI/P3HT:PCBM structure and of a 

Glass/ITO/NaI/P3HT:PCBM structure were recorded and compared to the spectrum of a 

Glass/ITO structure. Below the critical angle (
c
) of the ITO layer, reflection from ITO 

was near-total, and only the ITO surface (atoms within the top  2.6 nm of the ITO) 

fluoresced. Above 
c
, the beam penetrated into the bulk of ITO, so that fluorescence data 

included signal from bulk ITO (atoms up to  36 nm into the ITO) as well as signal from 

the surface. The intensity of the L emission lines for Cs and I was used to compare the 

relative quantities of cesium and iodine in each structure.  

Because of the overlap of cesium and iodine spectra, x-ray fluorescence spectra 

(data not shown) for 20 mM NaI and CsCl bulk solutions were recorded to determine the 
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relative sensitivity to each element. Their spectral profiles served as references for 

obtaining the Cs:I ratio in the samples. These profiles were used to generate ideal 

Gaussian distributions around the L peaks of cesium in the Glass/ITO/CsI/P3HT:PCBM 

structure. The full-width at half-maximum of the cesium peak was determined and scaled 

peaks of equivalent widths were placed at the ideal location of the L peak for iodine. 

LA-ICP-MS was then used to analyze this same Glass/ITO/CsI/P3HT:PCBM 

structure. Several linear, lateral trenches were dug into the sample using a 100 fs laser 

(Coherent Libra, 266 nm, 10 J/pulse, 1000 pulses/s). The ablated particulates were 

transported from the LA cell to the sample with argon carrier gas. Signals for Sn+, I and 

Cs+ were acquired using a magnetic sector mass spectrometer (Thermo Finnigan Element 

1, resolution m/m  300). Plasma and ion optical conditions were optimized to provide 

maximum signal and signal stability during ablation of NIST glass 610 reference material. 

The background was measured with the laser off and argon flowing through the sample 

cell into the plasma.  

 

Results 

LA-ICP-MS data (Fig. 2) indicated the presence of iodine in significant quantities 

in the CsI-based structure. Figure 2 shows that signals for Cs+ and I rise together soon 

after the ablation starts. The steady-state signal levels for I and Cs+ were used to 

estimate the relative concentrations of the two elements (Table 1). This calculation 

assumed the ionization efficiencies for Cs and I were 100% and 29%, respectively. [16] 

The Cs:I concentration ratio is close enough to unity to indicate that iodine was not 

greatly depleted from the structure.  
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The ablated trenches were examined with a profilometer and found to be 

approximately 70 m wide x 20 m deep, i.e., deep enough so the trench penetrated 

through the P3HT:PCBM, the CsI and the ITO layers. This explains the observation of 

Sn+ signals from the ITO layer in Fig. 2.  

X-ray fluorescence spectra were collected for ITO, a Glass / ITO / CsI / 

P3HT:PCBM structure, and a Glass / ITO / NaI / P3HT:PCBM structure. Overlap 

between the spectra of cesium, iodine and indium made precise calculation of the 

quantities of these chemicals difficult. To avoid interference from indium, the spectrum 

for ITO was subtracted from the spectra of the other two. In the energy range of 3.8 - 5.0 

keV, only iodine, cesium and indium showed peaks, so after subtraction, all intensity was 

assumed to be due to the presence of cesium and/or iodine.  

Figure 3 shows the fluorescence spectra after subtraction. Figure 3 (a) shows 

fluorescence signals integrated above the ITO critical angle. These peaks are mainly due 

to the bulk contribution of cesium and iodine. The scaled Gaussian reference peaks 

coincide well with the data for the CsI structure, indicating a near-stoichiometric Cs:I 

ratio. Moreover, the iodine fluorescence intensities originating from the bulk of the 

structures were nearly indistinguishable from one another, which is consistent with the 

fact that NaI and CsI of equivalent molarity were deposited onto the substrate under 

identical conditions.   

Figure 3 (b) shows fluorescence signal integrated below the ITO critical angle, 

originating from the bulk of the P3HT:PCBM layer and from the surface of the ITO. 

Gaussian distributions around the L peak of cesium indicate a significant presence of 

cesium in the organic layer and on the ITO surface. However, fluorescence signals around 
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the L peak of iodine were much weaker than the scaled reference peaks, indicating the 

significant depletion of iodine from the surface in both structures - i.e. the surface ratio of 

Na:I and of Cs:I was much greater than 1. No signal was observed below the critical angle 

of the P3HT:PCBM layer, indicating that cesium did not reach the surface of the organic 

layer. 

 

Conclusions 

This study demonstrates that in inverted organic photovoltaic cells with a CsI 

interlayer, iodide diffuses into the ITO. Based on LA-ICP-MS data, the possibility that the 

iodine was lost during the preparation process was eliminated. Fluorescence results 

indicate that surface iodine in both sodium iodide and cesium iodide interlayers is 

depleted, supporting the XPS results of Xiao et al. [8] However, once the surface of the 

ITO layer of these structures was penetrated, fluorescence data clearly indicated the 

presence of iodine, suggesting the diffusion of iodine into the ITO interlayer. 

Fluorescence results also demonstrate a significant presence of cesium in the 

P3HT:PCBM layer, suggesting the diffusion of cesium into the organic interlayer. 

XNRTF analyses also demonstrated this diffusion in a Cs
2
CO

3
 device. These results, 

however, await further analysis.  

Neutron reflectivity data indicate that in annealed P3HT:PCBM layers, PCBM 

concentrations are disproportionately high near the external interfaces of the organic film. 

[12] Graphite intercalation experiments demonstrate that, under the appropriate 

conditions, cesium interacts spontaneously with carbon, so the diffusion of cesium into 
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the P3HT:PCBM interlayer may be explained by the interaction of cesium with the 

fullerenes in the organic layer. [17] 

Based on the XPS findings [8], it is believed that the diffusion of iodine may be a 

consequence of iodine’s high polarizability, since the Cs:X ratio decreased sharply with 

halide polarizability. Because of the spectral overlap of indium, iodine and cesium, 

quantitative depth profiling of this phenomenon was not possible using these methods. 
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Figure 1: Schematic of x-ray fluorescence setup and the CsI structure used in 

experimentation (not to scale). The commonly used Cs
2
CO

3
, spun from an organic 

solution, was replaced with CsI. The structure studied did not include MoO
3
 or Al layers. 

In the diagram, 
i
 is the angle of incidence, 

f
 is the angle of reflectance, and 

i
=

f
=. 

Z is the surface normal, and k
i
 and k

f
 are the momentum vectors of incident and reflected 

photons, respectively. An energy dispersive detector (EDD) records the fluorescence 

signal. 
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Figure 2: Mass spectra of I, Cs, and Sn over 150 scans of the ICP-MS. Mass spectra were 

determined for lateral ablations across the sample surface. Scans 0-18 and 108-150 are the 

background signals for the three m/z values acquired with the laser off. Scans 19-107 

were acquired while the laser was ablating the Glass/ITO/CsI/P3HT:PCBM structure in a 

single line scan. 
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Figure 3: Integrated bulk and surface fluorescence intensities of a Glass / ITO / NaI / 

P3HT:PCBM structure and of a Glass/ITO/CsI/P3HT:PCBM structure with the ITO 

spectrum subtracted. Gaussian distributions were plotted around the L lines for cesium 

and iodine. Data (with error bars) are displayed along with ideal peaks, displayed as solid 

lines. Units of intensity are arbitrary. 
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Table 1: Ratio of cesium to iodine (within one standard deviation) in CsI structure, as 

determined by LA-ICP-MS.  

Cs:I Trial 1 Trial 2 Trial 3 

Average Concentration Ratio 1.180.44 1.380.36 1.400.28 
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