
Feature selection, statistical modeling and its applications to universal JPEG

steganalyzer

by

Jaikishan Jalan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Hridesh Rajan, Co-major Professor

Jennifer Davidson, Co-major Professor
Clifford Bergman

Iowa State University

Ames, Iowa

2009

Copyright c© Jaikishan Jalan, 2009. All rights reserved.



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  1506799

Copyright  2012  by ProQuest LLC.

UMI Number:  1506799



ii

DEDICATION

To

my wife

&

family



iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION TO STEGANOGRAPHY AND STEGANALYSIS 1

1.1 JPEG Image Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 JPEG Steganographic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Universal JPEG Steganalyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Previous work on related Steganalyzers . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 FEATURE SELECTION FOR STEGANALYSIS USING THE MA-

HALANOBIS DISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 General Feature Reduction Technqiues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Previous Work on Feature Reduction in Steganalysis . . . . . . . . . . . . . . . . . . . . 11

2.3 Mahalanobis distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Description of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 3 STEGANALYZER FEATURES DESIGNED ON STOCHASTIC

MARKOV MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 POMMS for Steganalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Intra block features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Inter block features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



iv

CHAPTER 4 CANVASS - A STEGANOGRAPHIC FORENSIC TOOL FOR JPEG

IMAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . 40

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



v

LIST OF TABLES

Table 2.1 Three Top Ranked Classifiers for Univariate and Multivariate Rankings. Dis-

played for each embedding algorithm and level of embedding. k = number of

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3.1 Detection accuracy results for POMM based features on NRCS database . . . . 28

Table 3.2 Detection accuracy results for POMM based features on Camera database . . . 28

Table 3.3 Detection accuracy results for POMM based features on Corel database . . . . 29

Table 3.4 Detection accuracy results for POMM based features on Bows2 database . . . . 29



vi

LIST OF FIGURES

Figure 1.1 JPEG compression steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 Mahalanobis distance vs. feature group size for five embedding algorithms using

features in (54). Solid line: multivariate distances. Dashed line: univariate

distances. Note different scales on distance axes. . . . . . . . . . . . . . . . . . 16

Figure 2.2 Detection accuracy results using univariate feature ranking for groups increas-

ing by 10 features, cover images (solid line) and four embedding rates for five

algorithms. Note different scales on distance axes. . . . . . . . . . . . . . . . . . 18

Figure 2.3 Detection accuracy results using multivariate feature ranking for groups increas-

ing by 10 features, for cover images (solid line) and four embedding rates for five

algorithms. Note different scales on distance axes. . . . . . . . . . . . . . . . . . 19

Figure 3.1 The adjacent lower neighborhood adj≺(ai,j). The hash marks represent the

location (i, j). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2 Partially Ordered Markov Model for steganalysis . . . . . . . . . . . . . . . . . 25

Figure 3.3 Detection accuracy results for different steganalyzers on BOWS2 database . . . 31

Figure 3.4 Detection accuracy results for different steganalyzers on Camera database . . . 32

Figure 3.5 Detection accuracy results for different steganalyzers on Corel database . . . . . 33

Figure 3.6 Detection accuracy results for different steganalyzers on NRCS database . . . . 34

Figure 4.1 Canvass - A software package for steganalysis . . . . . . . . . . . . . . . . . . . 37

Figure 4.2 Canvass - Detailed Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.3 (a)General and (b)Process Log file. (c) Sample report . . . . . . . . . . . . . . 39



vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. First and foremost, Dr. Jennifer Davidson

for her guidance, patience and support throughout this research and the writing of this thesis. Her

insights, active research meetings and words of encouragement have often inspired me and renewed my

hopes for completing my graduate education. I would also like to thank my committee members Dr.

Hridesh Rajan and Dr. Clifford Bergman, for their insightful comments and encouragement.

This work was possible due to funding by the National Institute of Justice, through the Midwest

Forensics Resource Center at Ames Laboratory under Interagency Agreement number 2008-DN-R-038.

The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University, under

contract No. DE-AC02-07CH11358. I would also like to thank Gerard Meyer for agreeing to beta test

our software and provide non-monetary support in the goal of fulfilling the objective of this research. I

would also like to thank Dr. Jessica Fridrich and Dr. Yun Q. Shi for providing code for the steganalyzers

used in this thesis. Special thanks to Dr. Gwaneal Doerr for providing a rich database of JPEG image

which helped in this research. Last, but not the least, I would like to acknowledge the support of John

Dickerson and College of Engineering, Iowa State University for granting access to Matlab grid which

saved a lot of computational time in our experiments.



viii

ABSTRACT

Steganalysis deals with identifying the instances of medium(s) which carry a message for communi-

cation by concealing their exisitence. This research focuses on steganalysis of JPEG images, because of

its ubiquitous nature and low bandwidth requirement for storage and transmission.

JPEG image steganalysis is generally addressed by representing an image with lower-dimensional

features such as statistical properties, and then training a classifier on the feature set to differentiate

between an innocent and stego image. Our approach is two fold: first, we propose a new feature reduc-

tion technique by applying Mahalanobis distance to rank the features for steganalysis. Many successful

steganalysis algorithms use a large number of features relative to the size of the training set and suffer

from a ”curse of dimensionality”: large number of feature values relative to training data size. We

apply this technique to state-of-the-art steganalyzer proposed by Tomás Pevný (54) to understand the

feature space complexity and effectiveness of features for steganalysis. We show that using our ap-

proach, reduced-feature steganalyzers can be obtained that perform as well as the original steganalyzer.

Based on our experimental observation, we then propose a new modeling technique for steganalysis by

developing a Partially Ordered Markov Model (POMM) (23) to JPEG images and use its properties to

train a Support Vector Machine. POMM generalizes the concept of local neighborhood directionality

by using a partial order underlying the pixel locations. We show that the proposed steganalyzer out-

performs a state-of-the-art steganalyzer by testing our approach with many different image databases,

having a total of 20000 images. Finally, we provide a software package with a Graphical User Interface

that has been developed to make this research accessible to local state forensic departments.
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CHAPTER 1 INTRODUCTION TO STEGANOGRAPHY AND

STEGANALYSIS

Steganography is the practice of communicating a hidden message in such a way that no one, apart

from the sender and intended recipient, suspects the existence of the message. The goal of steganography

is to embed a payload into a cover object to obtain a stego object in such a way that the presence of

hidden information cannot be detected by either perceptual or statistical analysis of the stego object.

The counterpart of steganography is steganalysis. The main goal of steganalysis is to identify whether

a given object has a payload embedded in it. Other information about the payload is often sought,

including identification of the steganography algorithm, estimation of payload length, recovery of the

payload, or obliteration of the payload. If there exists an algorithm that can determine whether or

not a given image contains a secret message with a success rate better than random guessing, the

steganographic scheme is considered to be broken. A more detailed introduction to steganography and

steganalysis can be found in (10; 14; 21) .

Steganalysis can be broadly classified into two categories: passive or active. Passive steganalysis

is concerned with detecting the presence or absence of hidden messages in a stego signal and identi-

fying the stego embedding algorithm. On the other hand, active steganalysis addresses further issues

such as estimating the embedded message length, locating the hidden message, finding the secret key

used in embedding, identifying some parameters of the stego embedding algorithm, or extracting the

hidden message itself, which is often the ultimate goal. Attacking steganography can also be classi-

fied as targeted and blind steganalysis. In targeted steganalysis, known embedding signatures, such

as characteristic histogram shapes, are exploited to create specific feature values that can distinguish

between stego and cover images. Blind steganalysis uses a set of generic feature values that model image

statistics so as to distinguish between cover and stego images. Blind methods can be used on a variety

of steganographic algorithms and do not target a specific algorithm. Recent advances in steganalysis

allow for some blind detection algorithms to be almost as accurate as targeted detection algorithms.

With the advent of digital media and the Internet, multimedia objects such as still images and
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videos have become popular and are shared easily. Image and video data make a good choice for hiding

payload. These objects are readily available and their broad presence on the Internet makes it difficult

to check each one for hidden payload and thus difficult to detect the use of steganography. A single

image can hold a reasonable amount of information, and a video file can hold more. In addition, there

is a plethora of freeware available for hiding secret information, as can be seen by visiting the site

stegoarchive.com (6). MSU StegoVideo is a public video steganographic tool; see (7). In this research,

we restrict steganalysis of image data to Joint Photographic Experts Group (JPEG) format because of

its wide use in consumer cameras and on the Internet. It also has the advantage of low bandwidth for

storage and transmission, unlike raw or other uncompressed formats.

Our objective is to develop a passive blind steganalysis system which offers increased potential for

classifying unknown embedding algorithms. Blind JPEG image steganalysis is generally addressed by

representing an image with lower-dimensional features such as statistical properties, and then training

a classifier on the feature set to differentiate between an innocent and stego image. To tackle this

problem, we first analyze existing state-of-the-art steganalysis systems. In Chapter 2, we presents a

filter-type feature selection algorithm that selects a reduced feature set using the Mahalanobis distance

measure. It provides one solution to the problem of computational complexity, without loss of accuracy

in detection. The experiment is applied to a well-known JPEG steganalyzer, and shows that using

our approach, a reduced-feature steganalyzer can be obtained that performs as well as the original

steganalyzer. The steganalyzer is that of Pevný et al. (54) that combines DCT-based feature values

and calibrated Markov features. Our results demonstrate that as few as 10-50 features can be used to

create a classifier that gives comparable results with the full suite of 274 features. This further helps

us to understand which features are most useful for steganalysis. A manuscript describing the reduced

feature steganalyzer has been accepted to the SPIE Media Forensics and Security XII, 2010 in San Jose,

USA and Dr. Jennifer Davidson will be presenting the results at the conference.

In Chapter 3, we propose a new modeling technique by developing a Partially Ordered Markov Model

(POMM) to characterize JPEG images. Our rationale to do so is based on our experimental observation

from Chapter 2, which shows that the Markov based features used by (54) contribute significantly

to the detection process. A POMM generalizes the concept of local neighborhood directionality by

using a partial order underlying the pixel locations. It has been shown that this property results in a

computational advantage of POMMS over Markov Random Fields (MRF) in two ways (41): whenever

the normalizing constant needs to be calculated, such as in determining the joint probability distribution

function (pdf), the joint pdf of a POMM is available in closed form; and the normalizing constant for a
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POMM is always known and equal to the value one (24). We also show that our steganalyzer can beat

state-of-the-art on four different databases, namely BOWS2 (67), Camera, Corel and NRCS (25) with

more than 20,000 images.

In Chapter 4, we present Canvass, a software package that has been developed in Java to make this

research accessible to the Iowa Department of Criminal Investigation forensic lab. This is followed by

conclusions and suggestions for future work.

The rest of the chapter is as follows. We discuss the nature of JPEG images since we restrict

steganalysis to JPEG images, and provide necessary details to the reader concerning the JPEG format.

We then introduce a simple case of steganography in JPEG images followed by a popular steganographic

algorithm, which we use later to test our proposed steganalyzer. We end this chapter by a small

discussion on state-of-the art steganalyzers, some of which are used for comparison with the proposed

steganalyzer.

1.1 JPEG Image Format

A digital image can be viewed as a spatial, multivariate array of pixels (picture elements). Suppose

a generic pixel location is written as s, a vector in R
2. The quantity g(s) denotes the pixel value, such

as the intensity of radiation in a band of the electromagnetic spectrum, at pixel location s. Then we

write an image as

g ≡ {g(s) : s ∈ D}

where D is the index set of pixel locations. This set is typically finite with regular spacing, so that,

without loss of generality, we assume

D = {(x, y) : x = 1, ..., M ; y = 1, ..., N}

Thus, an image is an MxN rectangular array of pixel values. In an 8 bit image, g(s) ∈ {0, 1, ..., 255}.

The Joint Photographic Experts Group (JPEG) format stores image data in a lossy compressed state

as quantized frequency coefficients. Image files that employ JPEG compression are commonly called

”JPEG files”. Figure 1.1 shows the compressing steps performed. The JPEG compressor first partitions

the uncompressed image into sets of 8 by 8 pixels. The discrete cosine transformation (DCT) transforms

the 8x8 spatial brightness values into 8x8 frequency coefficients (real numbers) as follows:

Gu,v = α(u)α(v)
7

∑

x=0

7
∑

y=0

gx,ycos

[

π

8

(

x +
1

2

)

u

]

cos

[

π

8

(

y +
1

2

)

v

]
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where u is the horizontal spatial frequency, for the integers 0 ≤ u ≤ 7; v is the vertical spatial frequency,

for the integers 0 ≤ v ≤ 7; gx,y is the spatial pixel value at coordinates (x, y); Gu,v is the DCT coefficient

at coordinates (u, v) and α is a normalizing function given as

α(n) =















√

1
8 if n = 0,

√

2
8 otherwise.

After applying the DCT, a quality matrix Q is used to quantize the frequency coefficients to integers in

the range -1024 to 1023. This step loses information. The quantized DCT coefficients are computed as

Bj,k = round

(

Gj,k

Qj,k

)

where 0 ≤ j, k ≤ 7 and B is the set of quantized DCT coefficients. After lossy quantization, the Huffman

coding ensures the lossless coding of the quantized coefficients. A more detailed description of the JPEG

compression can be found in (11).

Figure 1.1: JPEG compression steps

Note that the correlations among DCT coefficients can be exploited in two following ways:

• Intra block correlations: It capture correlations that occur with each 8x8 block of quantized

DCT coefficients.

• Inter block correlations: It capture correlations that occur between DCT coefficients in differ-

ent blocks but the same (or close to the same) relative positions.

1.2 JPEG Steganographic Algorithms

A steganography algorithm embeds a payload into a cover object in such a way that the presence of

hidden information cannot be detected by either perceptual or statistical analysis of the stego object.

A payload consists of a vector of uniformly randomly generated bits 0 and 1, representing an encrypted

bitstream. A JPEG steganography algorithm embeds payload by changing the quantized DCT coeffi-

cient values B. The most popular, frequently used and easy to implement steganographic method is the
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Least Significant Bit (LSB) steganography. The LSB steganographic methods can be classified into the

following two categories: LSB replacement; and LSB matching, also called plus/minus one embedding

(50). The LSB replacement method works by replacing the least significant bit of a DCT coefficient

value with the payload bit. In LSB matching, a coefficient value is modified as needed by increasing or

decreasing the base 10 coefficients randomly to match the payload bit. If the bit must change, a value

of +1 or -1 is added randomly to make the DCT bit value match that of the payload’s. This seemingly

innocent modification of the LSB embedding is significantly harder to detect, because changed pixel

values are no longer paired as in LSB replacement.

Jsteg (4) is probably the first steganographic tool to embed in JPEG images. It was developed

by Derek Upham in 1993. This hiding algorithm embeds a payload bit by replacing the LSB of the

quantized DCT coefficients and skipping all those coefficients whose value is 0 or 1. It can embed

data roughly 12% of file size of cover image, and embedding is performed in a sequential order on the

coefficients.

OutGuess (56) was developed by Neil Provos in 2001. The algorithm identifies redundant coefficients

that have the least effect on the cover image and modifies them if necessary during embedding of

message bit using LSB replacement. For each bit changed due to payload embedding, the algorithm

changes another untouched coefficient. The original global histogram of JPEG coefficients is preserved

after embedding is complete. The algorithm voluntarily limits the maximum size of data that can be

embedded to 6% of file size of cover image in order to make the algorithm more robust to statistical

analysis.

The F5 (68) steganographic algorithm was introduced by Pfitzmann and Westfeld in 2001. It was

developed from Jsteg in an iterative fashion with each new version being less detectable. It embeds

message bits into randomly chosen DCT coefficients. If the payload is small enough, it uses ”matrix

embedding”, an approach based on coding theory that minimizes the necessary number of changes to

embed a message of certain length. The message length and the number of non-zero non-DC coefficients

are used to determine the best matrix embedding that minimizes the number of modifications of the

cover image. For payload too large for matrix embedding, it decrements the absolute value of DCT

coefficients if LSB of the DCT coefficient and payload bit does not match. The author claims that its

maximum steganographic content size is roughly 13% of size of cover image.

Steghide (2) uses a graph-theoretic approach to steganography. At first, the secret message is

compressed and encrypted into the payload bitstream having n bits. Then a random site visitation

sequence is generated in the DCT domain. The n quantized DCT coefficient values (cover values) from
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those locations are listed, and paired with payload bits. The pixel locations (ui, vi) 1 ≤ i ≤ n for

each cover value are retained along with the coefficient value. For each payload bit i, 1 ≤ i ≤ n, the

corresponding cover value bit is inspected. If the payload bit value matches the corresponding cover

value bit, then nothing is done. If payload bit i does not match the corresponding cover bit, then a

graph-theoretic search algorithm is used to find a different cover value, say at position j in the original

list of DCT values, whose bit matches the payload bit. The DCT values at the two sites are switched

so that the DCT value at position i with pixel location (ui, vi) is now at location j (uj , vj) and vice

versa, and the bit values of the newly located cover values now match with the corresponding payload

bits at each location i and j in the payload list. This is done for all such possible pairs until all the

payload bits match with switched cover bits, or until it is not possible to make any more exchanges.

If there are any remaining payload bits not embedded, that is, not having bits that correspond to the

cover value bits in the list, then those remaining cover value bits are used to embed those payload bits

by LSB replacement (overwritten).

JPHide (3) uses DCT coefficients based on a fixed table such that coefficients with higher numerical

value are selected first. All coefficients in the current class are used first to hide the information before

the next class is chosed. The data hiding process continues in the current coefficient class even after

the complete message has been hidden. A pseudo-random number generator determines if coefficients

are skipped. The probability of skipping bits depends on the length of the hidden message and how

many bits have been embedded already. An interesting property of JPHide is that it not only modifies

the least-significant bits of the DCT coefficients, it can also switch to a mode where the second-least-

significant bits are modified.

1.3 Universal JPEG Steganalyzers

Steganalysis can be considered as a two-class pattern classification problem if the test image needs

to be classified as either a cover image or a stego image. Generally, the classification consists of two

parts, feature extraction and pattern classification. Since image data is typically very large, a lower-

dimensional representation of the information in the image, relative to the classification task at hand,

is required. A feature is such a lower-dimensional representation of the image data and is crucial for

many classification problems, including steganalysis. The best features for steganalysis should contain

information about the changes incurred by data hiding rather than by the content of the image.

Calibration is a well known technique in steganalysis which improves detection accuracy by making

features dependent on the changes incurred by data hiding rather on the image content itself. This was
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first introduced by Fridrich in (27). Calibration is a process used to estimate macroscopic properties of

the cover image from the stego image. During calibration, the stego JPEG image Is is decompressed

to the spatial domain, cropped by few pixels in both directions, and compressed again with the same

quality matrix as the stego image. It is assumed that the newly obtained JPEG image has most

macroscopic features similar to the original cover image. This is because the cropped image is visually

similar to the original image. Moreover, the cropping brings the 8x8 DCT grid ”out of sync” with the

previous compression, which effectively suppresses the influence of previous JPEG compression and the

embedding changes. We will see how this technique can be used later in Chapter 3. More information

on calibration can be found in (27; 52; 53; 42).

1.3.1 Support Vector Machine

Once the feature set is fixed, the detection performance will vary based on the pattern classifier

used and the actual feature values. The support vector machines (13) (SVM) are very powerful for

two-class classification. Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ R
n are

the feature vectors and yi ∈ {1,−1} are the two classes, the SVM requires the solution of the following

optimization problem:

max
∑

i

αi −
1

2

∑

i,j

αiαjyiyjK(xi,xj)

subject to 0 ≤ αi ≤ C,

∑

i

αiyi = 0.

Here training vectors xi are mapped into a higher (perhaps infinite) dimensional space by the function φ.

Then the SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional

space. C > 0 is the penalty parameter of the error term. Furthermore, K(xi,xj) ≡ φ(xi).φ(xj) is called

the kernel function. Once a SVM has been trained, it can be used to determine the class of an unknown

sample x by computing the sign of

f(x) =

Ns
∑

i=1

αiyiK(si,x) + b

where si are training instances xi (support vectors) with αi > 0 and Ns is the number of support vectors.

In our experiments, we use a SVM with radial basis function (RBF): K(xi,xj) = exp(−γ||xi − xj ||
2),

γ > 0. For a more comprehensive introduction to SVMs, please see (13).
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1.3.2 Previous work on related Steganalyzers

In one of the earliest papers to appear on blind steganalysis, Avcibas et al. (12) use image quality

measures (IQM) to detect watermarks. ANOVA is used to pick IQM measures that have greater

discriminating power between watermarked and non-watermarked images in the spatial domain.

A work by Fridrich (27) has clearly been a fundamental contribution to blind JPEG detection. Using

a linear classifier, 23 DCT-based features and a training set of 1600 images, accuracies for correct stego

classification obtained were state-of-the-art at the time. A more recent work of Farid’s (46) describes the

use of various Support Vector Machine (SVMs) and 432+216 = 648 features trained on 32000 images,

with five JPEG embedding algorithms. The authors performed a forward feature selection search to

select individual features ranked by classification accuracy, and constructed (linear) SVMs for the sets of

selected features. Following Fridrich’s and Farid’s works, Shi et al. (62) introduced a JPEG steganalyzer

using Markov transition matrices calculated on four directional differences in neighboring values in the

DCT coefficients. Their steganalyzer used 324 feature values, a polynomial kernel (nonlinear) SVM

classifier, and approximately 7500 training images. Their results show an improvement over both Farid’s

and Fridrich’s features to distinguish between stego and cover image data formatted in jpeg, trained on

800 images. Shi’s work presented an investigation into the use of each of the four directions individually

and how each direction performs in detection. They concluded that the combination of the four sets

of features performs better than each set individually, and did not reduce the number of features in

the model. In Pevný et al.’s more recent work (54), the authors combine the four Markov feature sets

into one set by averaging the four values at a location, producing 81 instead of 324 feature values, a

reduction in the number of Markov feature values. They add the 81 to an extended set of 193 DCT

features, producing a total feature set of 274 values. This set of feature values produces an improvement

in classification accuracy over Shi’s Markov model. Later on in 2008, Chen and Shi(18) extended the

steganalyzer in (62) to 486 features by computing transition probability matrices for each difference

JPEG 2-D array to utilize the intrablock correlation, and ”averaged” transition probability matrices

for those difference mode 2-D arrays to utilize interblock correlation. Although this steganalyzer is an

improvement over preceding ones, we believe that a better accuracy rate can be achieved.
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CHAPTER 2 FEATURE SELECTION FOR STEGANALYSIS USING

THE MAHALANOBIS DISTANCE

As mentioned in Section 1.3, blind JPEG image steganalysis is generally addressed by representing

an image with lower-dimensional features such as statistical properties, and then training a classifier on

the feature set to differentiate cover and stego image. Many successful steganalysis algorithms use a large

number of features relative to the size of the training set and suffer from a ”curse of dimensionality”:

large number of feature values relative to training data size. High dimensionality of the feature space can

reduce classification accuracy, obscure important features for classification, and increase computational

complexity. This chapter presents a filter-type feature selection algorithm that selects reduced feature

sets using the Mahalanobis distance measure, and develops classifiers from the sets. The experiment

is applied to a well-known JPEG steganalyzer, and shows that using our approach, reduced-feature

steganalyzers can be obtained that perform as well as the original steganalyzer. The steganalyzer is

that of Pevný et al. (54) that combines DCT-based feature values and calibrated Markov features.

We show that it is possible to build a classifier having many fewer features than the full suite of

features, and that these lower-dimensional classifiers have performance results very comparable to that

of the classifier with all features. This also gives an indication about the features which are better for

the purpose of steganalysis. This research will appear in print and by presentation at the SPIE Media

Forensics and Security XII, 2010.

2.1 General Feature Reduction Technqiues

Computationally intensive, analysis for steganography content requires many hours and even days of

processing image data to develop a reliable classifier. If a smaller subset of the features can be selected

to represent the intrinsic dimensionality (35) of the data at its full dimension, then it may be possible

to develop a classifier that is as effective as the one with all features, with less computation time and

complexity.

There are two basic approaches to feature reduction or feature selection: filter approaches and
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wrapper approaches. A filter method provides a reduced feature set by ranking the feature values

independently of the classifier, while a wrapper method uses a classifier to assess the effectiveness of the

feature subset chosen. As such, wrapper methods are typically dependent on the type of classifier used,

such as artificial neural network or support vector machine, and a classifier is developed with each choice

of subset chosen. Filter methods tend to be much quicker than wrapper methods. A disadvantage of

filter methods is that because of their independence from the classifier, it is not known how the selected

subset will perform until a classifier is built. However, with fewer features it may be possible to develop

several classifiers from which a satisfactory one can be picked.

Feature selection methods can be divided further into two categories, univariate and multivariate.

Univariate methods examine features individually to determine discriminating power, while multivariate

methods examine groups of feature values. Multivariate methods allow correlations and dependencies

between features to be accounted for, while univariate methods do not. Univariate methods applied

to steganalysis include the Bhattacharyya distance (65; 64; 70; 45). There appear to be no attempts

to use the Bhattacharyya distance in a multivariate environment for steganalysis as of this time. Mul-

tivariate feature selection methods used in steganalysis include principal components analysis (PCA)

(60; 44), although there are known limitations to PCA. The Mahalanobis distance measure along with

an empirically determined threshold value was used in (31) for classification of feature values (Center

of Mass, COM), and not for feature reduction.

The availability of statistical information from the data guides the selection of distance measure.

The Bhattacharyya distance measure can be used if the probability density functions for the classes are

known. Let p0(x) be the probability distribution for one class and p1(x) be the probability distribution

for the second class. Then the Bhattacharyya distance between the two classes is defined as

B(p0, p1) = −log

∫

√

(p0(x)p1(x)dx. (2.1)

In theory, the Bhattacharyya distance gives upper and lower bounds of the Bayes error (26), although in

practice the bounds are often not tight enough. While this univariate filter-approach is straightforward

to compute for image feature data, it does not take into consideration other information, such as mean

or variance values.

PCA can be used for feature reduction. It provides the optimal solution to the linear projection

problem of feature reduction when using the least mean square measure of error. The general goal

of using PCA is to provide a representation of the data that is de-correlated, where second-order

dependencies are removed. It can also be used to reduce the number of feature variables necessary for

classification. PCA has been useful in reducing the thousands of variables in microarray data (51) to
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a manageable amount. PCA ranks features according to the variance of features in a transformed and

uncorrelated feature space described by the singular value decomposition (63). If the data has higher

order dependencies or nonlinear dependencies, then PCA will be insufficient in revealing all the structure

in the data. Because PCA simply ranks the feature variables according to the variance of the data,

PCA may or may not provide an adequate clustering of the data classes. Selecting features according to

largest eigenvalue ranking given by principal component analysis can be suboptimal (17; 15), including

for steganalysis (44; 70).

If estimates of the population mean values, variances, and covariance matrix are available from the

data as is often the case in steganalysis, then the Mahalanobis distance can be used. The Mahalanobis

distance between two classes can be written as

D2 = (µs − µc)′V −1(µs − µc) (2.2)

here expressed for two classes s = stego and c = cover. Here, µs (µc) represents the mean vector for

the stego (cover) population, prime denotes matrix transpose, and V is the covariance matrix.

The Mahalanobis distance has been used in other areas of pattern recognition for several decades,

including species identification in zoology (61), diagnostic validity in neurology (36), and many other

fields. It is used to provide a measure of similarity between multivariate populations and uses covariance

information between variables to weight the contributions to the distance. The Euclidean distance, on

the other hand, in essence gives excess weight to variables that are highly correlated and gives additional

weight to variables that have similar information. The Mahalanobis distance gives less weight to those

variables that have high variance and to those variables that have high correlation, so that other feature

variables with lower correlations can contribute to the distance. When correlations between variables

are known to exist, the Mahalanobis distance can offer an advantage for clustering. That is the case

for the feature sets under consideration in this chapter.

2.2 Previous Work on Feature Reduction in Steganalysis

While the work described in Section 1.3.2 shows JPEG steganalysis on how individual features

classify (as in (27)) or linear classification of selected subsets of features (as in (46)), only a few other

papers present systematic methods for reducing features in JPEG steganalysis and creating comparable

classifiers. A filter approach using the Bhattacharyya distance for steganalysis feature selection was

investigated in (70); however, the application to steganalysis was very brief, comparing the detection

rate on one spatial domain LSB embedding algorithm only. In (44), the authors describe three wrapper
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methods for grayscale steganalysis. In (40), the authors investigate the use of PCA for total variance of

the data for spatial domain embedding, and perform forward and backward feature selection on the 27

features for several databases, comparing detection accuracies. In (49) , the authors describe a feature

selection method for steganalysis on JPEG images using a K Nearest Neighbor approach, which takes

some time to process as it is itself a classifier. In (48), the authors use a wrapper-type method to reduce

the number of features for JPEG steganalysis. Authors in several papers have chosen fewer feature

values so as to make their number of features manageable in the course of their feature design (19; 34).

With the exception of the grayscale steganalysis research in (33; 44; 40; 46), and the JPEG steganal-

ysis in (49; 48), none of these ten previous works perform any in-depth investigation into the selection

of fewer features for the express purpose of overcoming the dimensionality limitations. That is the goal

of our work in this chapter. Our work is the first (to our knowledge) use of the Mahalanobis measure

for feature selection in steganalysis. We show how the Mahalanobis distance can be used to provide

a good ranking of the features and maintain accuracy of detection relative to the original full suite of

features. The benefits of using a ranking of feature variables that maintain the ability to classify well

with smaller numbers of features include reduced complexity in both feature dimension and training

computation time. This can lead to improved ability of the classifier to generalize its solution to unseen

data. We select support vector machines for the classifiers, as they are known to offer the potential for

generalizable solutions in high-dimensional feature spaces (35).

2.3 Mahalanobis distance

We now describe the Mahalanobis distance measure. Let Xi be a random variable (r.v.) representing

feature i, and let xc
ij (xs

ij) denote a sample from cover (stego) image i of feature value j. Denote by x̄c
i

(x̄s
i ) the sample mean for feature i for the cover (stego) class, and by vc

jk = 1
N−1

∑N

i=1(x
c
ij −x̄c

j)(x
c
ik−x̄c

k)

the sample covariance between feature j and feature k. The sample covariance values vs
jk are similarly

defined for stego images. Let V c = (vc
jk) denote the cover sample covariance matrix, and V s = (vs

jk)

denote the stego sample covariance matrix. Let p denote the number of features and let N denote the

number of training images. In our particular case, N = 5000 each for cover and stego, and p = 274.

After calculating the sample covariance matrices, we use the pooled covariance matrix to calculate the

Mahalanobis distance (47):

V =
N

2N − 2
V c +

N

2N − 2
V s =

N

2N − 2
(V c + V s). (2.3)
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For a set of k ≤ p features, the Mahalanobis distance D2
(k), in quadratic form, between the centroids of

those features is given by:

D2
(k) = (µc − µs)′V −1(µc − µs) (2.4)

where µc = (x̄c
1, x̄

c
2, ..., x̄

c
k)′ and µs = (x̄s

1, x̄
s
2, ..., x̄

s
k)′ represent the vector of sample mean values for the

cover and stego images, respectively, and V −1 is the inverse of the pooled covariance matrix for the k

features. In practice, V may be only positive semi-definite (that is, not full rank) or ill-conditioned.

The problem of inverting V may be regularized by offsetting the diagonal of V and thus creating a

positive definite matrix out of V in the following way. Let ǫ > 0 be a number that is significantly

smaller than the average variance of the class clusters, and write V = QDQ′ as the diagonalization of

V by orthogonal matrix Q. The values of D = diag(λ1, ..., λn) are the eigenvalues for V . By adding ǫI

to the matrix V , where I is the identity matrix, we can solve the problem of inverting V effectively:

V + ǫI = QDQ′ + ǫI = QDQ′ + Q(ǫI)Q′ = Q(D + ǫI)Q′ (2.5)

Since the eigenvalues in V + ǫI are now strictly positive and ǫ was chosen ”large enough” to avoid

ill-posedness, we let V̂ = V + ǫI replace the covariance matrix V in the calculation of the Mahalanobis

distance, Eq. 2.4. Our value for ǫ is the minimum of the diagonal entries of the pooled covariance

matrix V , divided by 10 000.

Note that the Mahalanobis distance gives less weight for features having larger variance and more

weight for features having smaller variance. This can be seen by looking at the one dimensional case

(only one feature), where the Mahalanobis distance is

D2
j =

(x̄c
j − x̄s

j)
2

σ2
j

, j = 1, ..., p (2.6)

where x̄c
j (x̄s

j) are the respective sample means for the j-th cover (stego) feature, and σ2
j = N

2N−2 [
∑N

i=1(x
c
ij−

x̄c
j)

2 +
∑N

i=1(x
s
ij − x̄s

j)
2] is the common variance. In higher dimensions with more than one feature, 1

σ2

is replaced by the inverse of the (regularized) covariance matrix. A larger Mahalanobis distance value

indicates more class separation when the Mahalanobis distance is used, with a threshold, as a linear

classifier.

The Mahalanobis distance can be expressed in terms of principal components, that is, in terms

of the eigenvectors and eigenvalues that are used in principal component analysis. Following a result

by (17), the relation between eigenvalues of the covariance matrix for the feature data and values for

the Mahalanobis distance measure becomes clear. The PCA in this case is performed on the feature

data matrix Y consisting of all mean-centered cover and stego feature vectors vertically concatenated
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and having dimension 2Nx p. Let W be the p dimensional covariance matrix for Y : W = Y ′Y . Let

D2 denote the Mahalanobis distance between the two classes c = cover and s = stego where c takes

proportion q and s takes proportion 1− q. Then for d = µc − µs, the respective mean vectors of length

p for the two feature classes, and V in Eq. 2.3, it can be shown that

W = q(1 − q)dd′ + V (2.7)

D2 = d′V −1d (2.8)

Let P1, P2, ...., Pp (the columns of P ) denote the p eigenvectors of W , with eigenvalues γ1, γ2, ..., γp

respectively. Recall the spectral representation of W : W =
∑p

i=1 γiPiP
′

i . For given k ≤ p, let Bk =

(P1, P2, ..., Pk) be a basis and denote D2
(k) as the distance between the clusters using Bk in place of W .

Here it is not assumed that γ1 ≥ γ2 ≥ .... ≥ γp. It has been shown in (17) that

D2
(k) =

∑k

i=1
(P ′

i
d)2

γi
(

1 − q(1 − q)
∑k

i=1
(P ′

i
d)

2

γi

) (2.9)

In particular, for k = 1, for any single feature i,

D2
(1) =

(P ′

i
d)2

γi
(

1 − q(1 − q)
(P ′

i
d)

2

γi

) (2.10)

Eq. 2.9 shows clearly that the maximum value of the Mahalanobis distance for k features may not

correspond to the top principal components corresponding to the largest k eigenvalues.

In short, our use of the Mahalanobis distance is as a (linear) multivariate classifier, where we use a

forward feature selection algorithm to rank features. We then follow by classification using a support

vector machine on increasingly nested subsets of features.

2.4 Description of Experiments

Using the heuristic of selecting approximately 10 times as many training examples as there are

features (35), we used 5000 original image data for training. Recent research results indicate (48)

that using a specified steganalysis scheme - the set of extended DCT feature values from the Merged

model having 193 feature variables - a minimum of 5000 image training data was needed to produce

classification results that have less than 1 percent standard deviation in their output values. For our

experiments, we use the BOWS2 database (67), containing 10 000 images, and pick half of them to

create the training database and use the remainder for testing. With approximately 10 000 images for
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the training set (5000 cover and 5000 stego), we assume that this large data set will deliver relatively

low variance in classifier predictability and that the detection accuracies we obtain produce reliable

steganalysis in a comparable sense. Our main interests are in comparing results of the full complement

of features to classifiers trained with fewer features. Our assumption is not unreasonable, in particular

the data used in (48) was also the BOWS2 database with the extended DCT feature set, very similar

to our experiment. Those authors showed that for that data set and feature set, variance of results was

experimentally verified to be under 1 percent. Other authors have also used approximately 5000 images

for similar research (38; 44; 20).

The BOWS2 database consists of images in pgm format of size 512x512. The images were divided

randomly into two disjoint groups of equal size. The first group was used to create the training examples

with both cover and stego data. The second group contained the remaining images that were used for

testing. We did not use those stegoimages for which the steganography embedding algorithm exited

unsuccessfully. Thus, no image or its different variations were simultaneously seen by the SVMs for

testing and training, and there were an equal number of images used for cover and stego. This strict

division of images enabled us to estimate the performance on never seen images. We intentionally

chose to generate our cover and stego images for training and classification in a way to avoid double

compression, reformatting the raw pgm files into JPEG files saved with 75% quality factor. Recall

that a JPEG image is double compressed when it is first compressed using quantization matrix Q1,

then uncompressed and re-compressed using quantization matrix Q2, where Q2 6= Q1. When an image

undergoes double compression, the statistics of DCT coefficients can change, and may resulting in

misclassification if the steganalyzer is not designed to handle detection of double compression. Our

detection scheme assumes that the data has not been double-compressed.

We generate stego images by embedding data with different message lengths and different embedding

algorithms. The five different steganography embedding methods we consider are: OutGuess (56), F5

(68), JPHide& Seek (3), StegHide (2), and JSteg (4). Each of these methods embeds bits of value 0 or 1

directly into the quantized DCT coefficient array. The payload is assumed to be an encrypted bitstream.

We use bits per nonzero ac coefficient, or bpnz to describe message length, with bpnz = 0.05, 0.1, 0.2, 0.4.

Images embedded using Outguess have only bpnz = 0.05, 0.1, 0.2. Once the stego images are generated,

we extract feature values from the cover and stego images according to the steganalyzer by Pevný et

al. in (54), which we call Merged. The full suite of feature values are extracted initially, and subsets of

the feature values are used in accordance to the task at hand.

First, to determine the feature subset using the Mahalanobis distance, we gather all the feature data
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calculated from the training set for all cover and all embedding algorithms at all levels of embedding.

We used 5000 cover and 1250*4 stego images (four levels of embedding) for calculating Mahalanobis

distance for each steganography algorithm. Note that in Eq. 2.4, the size of the (pooled) covariance

matrix is equal to the number of feature variables used. The regularized covariance matrix is invertible

but for each new trial set of k features, the inverse matrix V̂ −1 must be calculated, and thus this method

is fairly computationally time-consuming, especially as k increases. Once the ranking is complete, a

classifier is built.
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Figure 2.1: Mahalanobis distance vs. feature group size for five embedding algorithms using features

in (54). Solid line: multivariate distances. Dashed line: univariate distances. Note different scales on

distance axes.

The SVM classifier we implemented was a soft margin support vector machine with gaussian kernel

(13) (using LIBSVM (16)). We determined the training parameters of the C-SVMs by grid-search

performed on the following multiplicative grid

(C, γ) ∈
{(

2i, 2j
)

|i ∈ Z, j ∈ Z
}

.

Although we do not use them, SVMs that use Mahalanobis kernels have been developed for pat-

tern recognition problems. In (30), the authors present a comparison of kernel Mahalanobis distance
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classifiers giving experimental evidence that these types of classifiers can be advantageous for nonlinear

pattern distributions.

We provide two rankings of the features. For the univariate ranking, we computed the Mahalanobis

distance using individual features. We use Equation 2.6 and a single feature j from the two classes cover

and stego, and compute p univariate values. The ranking for the univariate case is simply in decreasing

values determined by Equation 2.6.

The Mahalanobis distance values for the univariate case are computed separately for each of the five

embedding algorithms, where the data for all levels of embedding available for the specified embedding

algorithm are combined (4*1250=5000). Once the univariate ranking is determined, the Mahalanobis

distance for groups of features of size k, k = 1, ..., 274 are calculated. Graphs for these groups of

univariate Mahalanobis distance values are shown in Figure 2.1 and indicated by the dashed line in

each of the five graphs.

For a second experiment, we used a forward feature selection method to create subsets of features that

collectively give Mahalanobis distance values. We call this multivariate feature selection. Starting with

the feature that gave the largest univariate Mahalanobis distance value in Equation 2.6, the Mahalanobis

distance values for all remaining feature vectors paired with the first feature were calculated (k = 2

in Equation 2.4), and the feature that gave the largest Mahalanobis distance value over all pairs was

selected as the second feature. This continued in an iterative fashion, using the multivariate Mahalanobis

distance measure as given by Equation 2.4 for k = 2, 3, ..., 274, selecting the feature that gave the largest

Mahalanobis distance value at each iteration. This produced a second ranking of the features that was

different from the univariate ranking. The multivariate Mahalanobis distance values for groups based on

this second ranking are shown in Figure 2.1 and indicated by the solid line in each of the graphs. Based

on the graphs in Figure 2.1, it is clear that every feature used in Pevný et al. (54), paper contributes

some information that increases the Mahalanobi distance monotonically.

Since our goal is to produce classifiers using these subsets and determine if fewer features can produce

classification results comparable to the full suite of features, we next created SVMs for feature sets of

increasing size. We elected to choose feature subsets of size 10 ∗ M, M = 1, 2, ..., 27, plus the entire

set of 274 features. For each set of features and for each embedding algorithm, we create an SVM,

and produce detection accuracy data using the test set. An SVM was created for the 28 feature sets

in the univariate ranking, and for the 28 feature sets in the multivariate ranking. To train each SVM,

the cover image data provided 5000 feature vectors, and the stego image data (in total) provided 5000

training data. We test for accuracy on each level of bpnz for each embedding algorithm and separately
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Figure 2.2: Detection accuracy results using univariate feature ranking for groups increasing by 10

features, cover images (solid line) and four embedding rates for five algorithms. Note different scales

on distance axes.
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Figure 2.3: Detection accuracy results using multivariate feature ranking for groups increasing by 10

features, for cover images (solid line) and four embedding rates for five algorithms. Note different scales

on distance axes.
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for the cover data (no hidden data). For testing, we use the unseen data with 5000 cover images and

5000 stego images for each embedding level, for a total of 25000 test data.

Table 2.1: Three Top Ranked Classifiers for Univariate and Multivariate Rankings. Displayed for each embedding algorithm and level of embedding.

k = number of features.

Merged
Univariate Ranking Multivariate Ranking

1st k 2nd k 3rd k 1st k 2nd k 3rd k

Jsteg

Cover 99.64 99.78 70 99.74 80 99.72 90 99.68 150 99.66 130 99.66 140

0.05 bpnz 99.10 99.20 230 99.18 220 99.18 240 99.40 110 99.34 80 99.34 100

0.10 bpnz 100.00 100.00 210 100.00 220 100.00 230 100.00 60 100.00 70 100.00 80

0.20 bpnz 100.00 100.00 40 100.00 50 100.00 60 100.00 10 100.00 20 100.00 30

0.40 bpnz 100.00 100.00 10 100.00 20 100.00 30 100.00 10 100.00 20 100.00 30

Outguess

Cover 98.78 98.92 270 98.82 250 98.78 260 98.92 270 98.90 260 98.82 170

0.05 bpnz 95.26 95.92 100 95.92 120 95.76 200 95.58 250 95.52 270 95.48 260

0.10 bpnz 99.92 100.00 60 100.00 70 100.00 90 100.00 50 100.00 60 100.00 80

0.20 bpnz 99.98 100.00 10 100.00 30 100.00 40 100.00 10 100.00 20 100.00 30

F5

Cover 91.82 93.56 70 93.54 110 93.54 120 93.22 170 93.16 20 93.16 90

0.05 bpnz 59.64 59.64 274 59.28 140 59.28 150 59.64 274 59.50 270 59.18 260

0.10 bpnz 97.78 98.36 150 98.32 140 98.32 160 98.24 210 98.16 200 98.12 190

0.20 bpnz 99.96 100.00 20 100.00 30 100.00 90 100.00 50 100.00 60 100.00 70

0.40 bpnz 99.98 100.00 20 100.00 30 100.00 40 100.00 20 100.00 30 100.00 40

Steghide

Cover 91.78 92.22 190 92.10 180 92.02 120 92.26 50 92.10 80 91.94 30

0.05 bpnz 69.52 70.06 260 69.68 270 69.52 274 69.88 160 69.86 260 69.66 210

0.10 bpnz 87.96 88.12 260 88.00 270 87.96 274 88.24 250 88.22 200 88.18 170

0.20 bpnz 98.72 99.06 90 99.02 80 98.96 100 98.88 100 98.86 60 98.86 120

0.40 bpnz 99.96 100.00 80 100.00 90 100.00 110 100.00 10 100.00 160 100.00 170

JPHide

Cover 97.50 98.22 50 98.20 40 98.20 80 97.98 10 97.82 130 97.80 20

0.05 bpnz 82.51 83.44 220 83.38 210 83.26 150 83.94 60 83.60 20 83.52 50

0.10 bpnz 90.70 91.16 150 91.14 160 91.14 180 91.28 60 91.20 170 91.08 140

0.20 bpnz 98.70 98.84 160 98.84 170 98.82 60 99.02 60 98.82 70 98.78 50

0.40 bpnz 99.82 99.96 30 99.96 40 99.96 50 99.96 50 99.94 20 99.94 40

The accuracies for each embedding algorithm and each embedding level are displayed in Figures 2.2

and 2.3. The graphs show that for many instances, accuracies close to the full set of features are reached

with many fewer features than the full 274. Table 2.1 displays a few of the top results in number format

that supports this observation.

2.5 Discussion of Results

From the graphs and table, we can see there are many instances of feature sets that produce results

within 1-2% of the Merged feature set. In general, the multivariate feature sets were able to give

results comparable to the univariate feature sets but with fewer features, although for both rankings,

the lower levels of embedding required more features than the higher levels of embedding to give

comparable results to the full Merged set. Jsteg in its sequential embedding form is known to be

straightforward to detect. For the freeware available on the internet, Jsteg embeds payload bits are

embedded in a lexicographical order from top left to bottom right of the coefficient array. Embedding

in a random order is of course preferable but software code must be written by a user to implement

this. Evidence of highly accurate detection rates are displayed in graphs in Fig. 2.2(a) and Fig 2.3(a).

Also, full embedding at the 0.4 bpnz level is detected at high levels of accuracies, near 100% for all

the steganalyzers of all sizes except for size 10 features in JPHide using the univariate ranking, and

sizes 10-30 features in Steghide for multivariate ranking. Lower rates of embedding have lower rates

of detection, especially for 0.05 bpnz in F5 where matrix embedding is used. Detection rates for the
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class cover are generally in the upper 90s% except for F5 and Steghide. The false positive rate for each

steganalzyer is 1-(cover detection rate). The way we implemented the SVMs did not allow us to choose

detection accuracies based on false positive rates. Higher or lower false positive rates may be desirable

or necessary for certain applications. Forensic investigations typically require higher lower positive

rates. The general trend was for detection accuracies to increase as more features were added to the

classifiers with increases leveling off or oscillating between 50-100 features. However, some classifiers

had jumps up or down in accuracy rates as a group of 10 features were added to the current set.

This is apparent in Outguess-Univariate and Multivariate, where accuracies increased from 80 to 90

features, and in JPHide-Univariate, where accuracies decreased from 60 to 70 features, and a curious

dip in F5-Multivariate from 160 to 170 features. Another phenomenon that occurred was in several

instances, cover detection rates changed in the opposite direction of stego detection rates from one size

to another. For example, if a user wanted to choose a feature subset based on a high cover detection

rate so that the false positive rate was low, then the lowest embedding detection rate may not be as

high as possible. This happens in F5-Multivariate, where one of the highest cover detection rates occurs

for n=170 features, but that is also one of the lower detection rates for 0.01 embedding. Trade-offs in

detection accuracies must be made.

In Table 2.1, we give a listing of the top three ranked feature sets for each ranking algorithm,

univariate and multivariate. If a user wanted to reduce the feature size significantly, there are a number

of classifiers that give results close to the Merged results. For example, to detect JPHide and Seek

cover images to within 1% of the Merged accuracy, 10 multivariate features could be used, and 50-60

could give as good as or better accuracy than the Merged for all levels of embedding for JPHide and

Seek. We also found that many of the top features are from Calibrated Markov feature set for all

the steganographic algorithm. This gives a strong indication that features which exploit neighborhood

dependency among DCT coefficients are effective in steganalysis. We use this information to build a

model for steganalysis in the next chapter.



22

CHAPTER 3 STEGANALYZER FEATURES DESIGNED ON

STOCHASTIC MARKOV MODEL

In this section, we present a new set of features for steganalysis. Experiments in Section 2.4 show that

features which exploit neighborhood dependency among DCT coefficients are well suited for steganalysis.

A Markov based process has been used with success in (62; 18) to model DCT coefficients for the purpose

of steganalysis. In this chapter, we show the use of the Partially Order Markov Model (POMM)

(24; 22; 32) for steganalysis which generalizes the concept of local neighborhood directionality by using

a partial order underlying the pixel locations.

Markov random fields are a well-known modeling tool and have been used successfully in many

areas of image analysis. However, the use of MRFs continues to be problematic when problems require

computing an explicit joint probability, such as for texture classification and parameter estimation.

A nice subclass of MRFs was introduced by Abend et al (9) for image analysis, called Markov mesh

models (MMMs). MMMs allow, under minimal and reasonable assumptions, an explicit closed form

for the joint probability of the random variables (r.v.s) at hand, expressed in terms of a conditional

probability. The conditional probabilities express the spatial dependency of the data, via a directional

neighborhood, unlike the undirected neighborhood of a MRF model. Abend et al. also showed that the

conditional probability of one r.v. given the rest of the r.v.s can be expressed in terms of r.v.s in a local

spatial neighborhood. A partially ordered Markov model generalizes the concept of local neighborhood

directionality by using a partial order underlying the pixel locations. It has been shown that this

property results in a computational advantage of POMMS over MRFs: whenever the normalizing

constant needs to be calculated, such as in determining the joint probability distribution function

(pdf), the joint pdf of a POMM is available in closed form, and the normalizing constant for a POMM

is always known and equal to the value one (24).

It is beyond the scope of this chapter to give a detailed introduction to POMMs, but a few ideas

pertinent to the discussion at hand can be discussed. We assume we have a partial order ≺ placed on

the set of pixel locations in the image, or a poset. It can be shown that for a given poset (A,≺), we
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Figure 3.1: The adjacent lower neighborhood adj≺(ai,j). The hash marks represent the location (i, j).

have a class of acyclic directed graphs where each class corresponds to the same poset (A,≺) but the

individual acyclic directed graphs in the class have different edge sets. The edge sets give rise to the

neighborhood relationship between pixel values, which in turn are used to describe conditional proba-

bilities on neighborhoods of pixels. We shall be interested in the Markovian neighborhood relationship,

described for POMMs in Definitions 1 and 2, where A is the set of r.v.s in the image, and E a set of

edges. Given a directed edge (C, B), tail on C, head on B, we write C ≺ B under the partial order ≺.

Definition For any B ∈ A, the cone of B is the set cone B = {C ∈ A : C ≺ B, C 6= B}.

Definition For any B ∈ A, the adjacent lower neighbors of B are those elements C ∈ A such that

(C, B) is a directed edge in the graph (A, E). Formally, adj≺B = {C : (C, B) is a directed edge in

(A, E)}.

We give a simple example of the adjacent lower neighborhood in Figure 3.1. Here ai,j−1 ≺ ai,j and

ai,j−1 ≺ ai,j . The definition of a POMM is as follows, where L0 is the set of minimal elements in the

poset. The notation P (A) denotes the (discrete) probability measure A, based on the r.v. A. We use

the common notation that an upper-case letter denotes the r.v. A, while a realization of A is denoted

by a. P (A) is used to denote the probability measure that defines the r.v. A, and P (A|B) is used to

denote the conditional probability measure of A given another r.v. B.

Definition The partially ordered Markov model (POMM) is defined as follows: Let B ∈ A where

(A, E) is a finite acyclic digraph of r.v.s and (A,≺) is its corresponding poset. Describe the set of r.v.s

not related to B by YB = {C : B and C are not related }. Then (A,≺) is called a partially ordered

Markov model (POMM) if for any B ∈ A\L0 and any subset UB ⊂ YB we have



24

P (B|cone B, UB) = P (B|adj≺B).

For our purposes, we assume that the acyclic digraph underlying the r.v.s of the random image A is

the one induced by replicating adj≺(ai,j) at all locations (i, j) in the pixel domain. In other words, the

neighborhood is translational invariant. It must be checked that the digraph thus generated is indeed

acyclic. Some restrictions that guarantee an acyclic digraph can be found in (24). For example, the

digraph generated by adj≺(ai,j) in Figure 3.1 is acyclic.

This material is sufficient to discuss the features described next. The interested reader is directed

to (24).

3.1 POMMS for Steganalysis

With the notation introduced in the previous section, we now discuss the application of POMMs to

steganalysis. We develop POMM directly on quantized DCT coefficients array as the embedding takes

place directly in that domain. Assume that A is on a rectangular pixel set, A = {Ai,j : 1 ≤ i ≤ M, 1 ≤

j ≤ N}. Let Θi,j be an ordered indexing set that is invariant to shifts on the array where |Θi,j | = n.

For example

Θi,j = ((i, j), (i, j + 1)) (3.1)

is such a set and |Θi,j| = 2. We describe an invariant cluster set Ci,j on the array of r.v.s A by

Ci,j = {Ak,h : (k, h) ∈ Θi,j}. A new set of r.v.s C is defined as C = {Ci,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N}. Let

f : R
n → R be a function that exploits the dependency among DCT coefficients in Θi,j. Apply f via

an induced manner to C by f(C) = W where W = {Wi,j : Wi,j = f(Ci,j) ∈ R, 1 ≤ i ≤ M, 1 ≤ j ≤ N}.

For example, let Θi,j be as in Equation 3.1 and define f : R
2 → R by

f(Ci,j) = Ci,j [0] − Ci,j [1] (3.2)

Then f applied to C produces f(Ci,j) = f(Ai,j , Ai,j+1) = Ai,j − Ai,j+1 = Wi,j . To create a POMM,

we define the partial order as Wi,j ≺ Ci,j for 1 ≤ i ≤ M, 1 ≤ j ≤ N . This in turn defines a directed edge

with tail on Wi,j and head on Ci,j . This is shown in Figure 3.2. The adjacent lower neighbors is the set

of r.v.s adj≺Ci,j = Wi,j . The POMM defined by its conditional probabilities, given by P (Ci,j |Wi,j).

This satisfies the definition of a POMM and all the properties now apply. For the probabilities

at hand, we are specifically interested in the function f given in Equation ?? and applied to the

four directions horizontal h, vertical v, diagonal d, and minor diagonal m. In this case, we have
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Figure 3.2: Partially Ordered Markov Model for steganalysis

Ch
i,j = (Ai,j , Ai,j+1), Cv

i,j = (Ai,j , Ai+1,j), Cd
i,j = (Ai,j , Ai+1,j+1), Cm

i,j = (Ai+1,j , Ai,j+1). Thus in each

direction, we calculate P (Ci,j |Wi,j) by noting that

P (Ci,j |Wi,j) = P (C1, C2|f(C1, C2)) (3.3)

= P (C1, C2|C1 − C2) (3.4)

=
P (C1, C2, C1 − C2)

P (C1 − C2)
(3.5)

which is then perform by histogram binning of the data. If we assume that −T ≤ ai,j ≤ T for

1 ≤ i ≤ M, 1 ≤ j ≤ N , then −2T ≤ wi,j ≤ 2T and it is easy see that there will be (2T + 1)2 number

of such conditional probabilities for each direction. We calculate conditional probabilities, given by

P (Ci,j |Wi,j) for all the four different directions and use average of the 4 directional probabilities to

characterize f on A. These conditional average conditional probabilities, denoted by F will be used as

features for steganalysis.

We fit the POMM described on the array of quantized DCT coefficients as the embedding takes

place directly in this domain. Since the embedding process generally does not take into account the

dependency among DCT coefficients, correlations between DCT coefficients in cover and stego image

is affected. We fit a POMM as follows to exploit both inter and intra block dependency among DCT

coefficients. Before we fit the POMM, we clip quantized DCT coefficients to between [-T,T]. This is

necessary, otherwise the pdf for the POMM will be very sparse as DCT coefficient value lies within

[-1024,1023]. In our case, we use T=5 as it is well known that more than 96% of the DCT coefficients

are found to be within [-5,5] (28; 69). This results in 121 intra and 121 inter block features and hence

a total of 242 features for steganalysis.

3.1.1 Intra block features

Certainly, steganographic embedding causes disturbance on the smoothness, regularity, continuity,

consistency, and/or periodicity of quantized DCT coefficients, and therefore correlations among DCT
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coefficients. To quantify this change, we apply the above developed POMM on the quantized DCT

coefficients array B as described in Section 1.1. We use the conditional probabilities F of this POMM

as intra block features. Since this POMM models the dependency among DCT coefficients within a 8x8

DCT block, we refer to these probabilities as intra block features.

3.1.2 Inter block features

Inter block correlation is reflected among those JPEG modes, i.e., coefficients located in the same

position within the 8x8 blocks, which capture the frequency characteristics of those blocks. JPEG

steganographic embedding will disturb this kind of interblock correlation. Let the quantized DCT

coefficient array B is of size MxN . Then there are Nr ∗Nc number of 8x8 DCT blocks where Nr = ⌈M
8 ⌉

and Nc = ⌈N
8 ⌉. Let X i,j be the array formed by collecting DCT coefficients located at i, j from every

8x8 blocks. Equivalently, X i,j
u,v is the dct coefficient located at i, j in u, v block where 1 ≤ u ≤ Nr,

1 ≤ v ≤ Nc. The array X i,j is called a mode array as it represents mode or specific frequency from

every 8x8 block.

To capture inter block dependency, we calculate POMM probabilities as given in Equation 3.5 on

every mode array X i,j. We use the averaged conditional probabilities of all the mode image as inter

block features.

We further apply calibration to reduce the dependency of the feature values on the image content

itself. Let Io be the given image, and let its calibrated image be Ical. We calculate intra and inter block

features for Ical also, and then finally use Fo − Fcal as our features.

3.2 Experiments

It has been shown recently in (40) that the performance of a steganalyzer depends on the database

used for training and testing the steganalyzer. Therefore, for our experiments, we use four different

databases to compare our steganalyzer based on the proposed feature set with other steganalyzers.

• Bows2: This database contains 10000 images of size 512x512 in pgm format. Please refer to

Section 2.4 for a detailed description.

• Camera: This database consists of 3164 images captured using 24 different digital cameras

(Canon, Kodak, Nikon, Olympus and Sony) previously used in (29). They include photographs

of natural landscapes, buildings and object details. All images are of size 512x512 and stored in

a raw format (tif) i.e. the images have never undergone lossy compression.
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• Corel: This database consists of 8185 images from the Corel database (8). They include images

of natural landscapes, people, animals, instruments, buildings, artwork, etc. Although there is

no indication of how these images have been acquired, they are very likely to have been scanned

from a variety of photos and slides. This database has been previously used in (71). All images

are of size 512x512 and stored in a raw format (tif).

• NRCS: This database consists of 2375 images from the NRCS Photo Gallery (5).The photos are

of natural scenery, e.g. landscape, cornfields, etc. There is no indication of how these photos were

acquired. This database has been previously used in (39). All images in this database too are of

size 512x512 and stored in a raw format (tif).

The last three databases have been downloaded from (25). We generate the training and testing set

for each database separately with a similar process as described in 2.4. For each database, feature set

and for each algorithm we train a soft margin support vector machine with gaussian kernel (13) (using

LIBSVM (16)). We used the Matlab grid provided by College of Engineering, Iowa State University

for feature extraction. It consists of Master - Slave architecture which scheduled the feature extraction

jobs on multiple 64 bit computers. Each machine runs on Quad Core Intel Xeon CPU 2.83 GHz and

4GB RAM. This sped up the feature extraction time considerably, as we used another Quad Core Intel

Xeon CPU 2.93 GHz and 3GB RAM computer to run the SVMs.

We determined the training parameters of the C-SVMs by grid-search performed on the following

multiplicative grid

(C, γ) ∈
{(

2i, 2j
)

|i ∈ Z, j ∈ Z
}

.

We compare our results with steganalyzer from feature set proposed in (62), (18) and (54) abbreviating

them as Markov324, Markov486 and Merged, respectively. Figure 3.3, 3.4, 3.5 and 3.6 shows the

detection accuracy results.

3.3 Discussion of results

We first understand the effect of threshold parameter T on the detection accuracy. Note that different

value of T will develop a different POMM and hence we will get a different feature set. We determine

the detection accuracy rate for different POMM with T = 1, 2, 3, 4, 5 across 4 different database as

described in experimental section. It is clear from Table 3.1, 3.2, 3.3 and 3.4 that POMM with T = 1

(18 features) and T = 2 (50 features) does not capture steganographic changes at lower embedding
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T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 92.67 99.75 99.75 99.83 100.00
0.05 bpc 24.43 98.15 99.58 98.99 98.99
0.10 bpc 41.62 100.00 100.00 100.00 100.00
0.20 bpc 77.93 100.00 100.00 100.00 100.00
0.40 bpc 98.74 100.00 100.00 100.00 100.00

Outguess

Cover 81.89 99.58 99.92 99.66 99.66
0.05 bpc 37.18 97.39 98.31 99.16 98.90
0.10 bpc 61.64 99.92 100.00 100.00 100.00
0.20 bpc 90.37 100.00 100.00 100.00 100.00

F5

Cover 90.31 93.01 93.18 93.43 92.00
0.05 bpc 29.65 48.19 56.53 50.72 49.71
0.10 bpc 74.47 95.79 97.39 96.46 95.20
0.20 bpc 99.92 99.92 100.00 100.00 100.00
0.40 bpc 100.00 99.75 100.00 100.00 100.00

Steghide

Cover 71.61 95.37 96.04 96.29 96.12
0.05 bpc 36.82 74.05 74.56 72.11 73.38
0.10 bpc 40.86 89.81 92.25 91.24 90.73
0.20 bpc 49.03 97.73 98.99 98.99 99.16
0.40 bpc 62.59 99.58 99.75 100.00 100.00

JPHide

Cover 83.40 84.92 89.22 91.49 90.90
0.05 bpc 29.16 37.45 30.68 28.23 25.44
0.10 bpc 32.94 44.45 39.63 39.46 37.85
0.20 bpc 51.86 69.71 84.43 88.83 92.22
0.40 bpc 90.76 96.02 98.39 99.07 99.66

Table 3.1: Detection accuracy results for POMM based features on NRCS database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 86.22 99.18 99.75 99.56 99.24
0.05 bpc 35.08 91.66 94.69 94.56 94.75
0.10 bpc 50.51 99.30 99.62 99.62 99.62
0.20 bpc 78.07 99.81 99.87 99.94 99.94
0.40 bpc 98.48 99.94 100.00 99.87 100.00

Outguess

Cover 74.53 97.47 97.91 97.47 96.65
0.05 bpc 52.39 89.80 94.14 94.39 93.69
0.10 bpc 72.71 99.35 99.81 99.81 99.81
0.20 bpc 94.03 99.93 99.93 100.00 100.00

F5

Cover 85.21 87.29 87.42 85.40 90.14
0.05 bpc 44.82 52.97 53.29 54.99 45.70
0.10 bpc 86.09 93.11 93.55 93.99 89.82
0.20 bpc 99.05 99.43 99.49 99.56 99.37
0.40 bpc 99.18 99.43 99.49 99.62 99.49

Steghide

Cover 58.85 90.01 90.52 90.14 89.51
0.05 bpc 56.01 76.80 79.71 80.28 79.14
0.10 bpc 60.05 87.55 90.39 90.39 89.82
0.20 bpc 67.13 96.97 98.23 97.98 97.98
0.40 bpc 77.24 99.56 99.94 99.81 99.75

JPHide

Cover 85.40 85.71 85.40 90.52 91.28
0.05 bpc 61.90 69.18 66.90 60.95 60.57
0.10 bpc 63.12 71.28 70.53 64.45 64.71
0.20 bpc 72.51 80.30 87.97 87.84 89.42
0.40 bpc 95.89 97.91 99.05 99.24 99.37

Table 3.2: Detection accuracy results for POMM based features on Camera database
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T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 87.02 97.80 99.76 99.80 99.95
0.05 bpc 29.79 97.39 99.61 99.58 99.39
0.10 bpc 54.72 99.98 100.00 100.00 100.00
0.20 bpc 86.78 100.00 100.00 100.00 100.00
0.40 bpc 98.53 100.00 100.00 100.00 100.00

Outguess

Cover 75.81 99.00 99.61 99.80 99.80
0.05 bpc 42.79 97.48 98.58 98.34 98.34
0.10 bpc 62.07 100.00 100.00 100.00 100.00
0.20 bpc 89.89 100.00 100.00 100.00 100.00

F5

Cover 86.19 93.55 92.55 92.18 91.79
0.05 bpc 27.32 37.51 41.10 40.81 40.74
0.10 bpc 50.42 88.76 91.30 90.69 90.27
0.20 bpc 99.07 100.00 100.00 100.00 100.00
0.40 bpc 99.88 100.00 100.00 100.00 100.00

Steghide

Cover 60.68 92.67 94.26 93.94 94.79
0.05 bpc 46.29 73.34 74.98 75.66 73.78
0.10 bpc 49.39 89.10 91.59 91.94 90.32
0.20 bpc 55.33 98.44 99.17 99.19 99.10
0.40 bpc 66.01 99.95 100.00 99.98 100.00

JPHide

Cover 79.06 83.68 86.17 85.46 85.24
0.05 bpc 42.18 42.59 43.26 44.33 44.41
0.10 bpc 44.52 48.80 52.54 54.94 56.23
0.20 bpc 54.37 72.63 89.44 92.66 92.88
0.40 bpc 81.80 99.14 99.93 99.90 99.95

Table 3.3: Detection accuracy results for POMM based features on Corel database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 93.18 98.84 99.48 99.46 99.48
0.05 bpc 33.48 92.72 97.24 96.80 96.38
0.10 bpc 58.30 99.52 99.78 99.78 99.72
0.20 bpc 83.48 99.98 100.00 100.00 99.96
0.40 bpc 97.14 100.00 100.00 100.00 100.00

Outguess

Cover 81.84 98.70 99.38 99.08 99.38
0.05 bpc 38.63 94.88 96.32 96.90 96.90
0.10 bpc 62.75 99.84 99.88 99.90 99.92
0.20 bpc 92.29 100.00 100.00 100.00 100.00

F5

Cover 87.66 90.86 91.12 90.66 89.42
0.05 bpc 29.16 49.56 51.56 52.66 54.58
0.10 bpc 66.90 95.90 96.78 96.90 97.18
0.20 bpc 99.46 99.98 99.98 100.00 99.98
0.40 bpc 99.78 99.98 99.98 100.00 100.00

Steghide

Cover 66.34 92.48 94.66 93.96 94.34
0.05 bpc 44.36 74.40 77.28 78.04 77.82
0.10 bpc 48.60 88.40 91.56 92.14 91.56
0.20 bpc 55.88 97.36 98.62 98.82 98.74
0.40 bpc 70.28 99.82 99.88 99.92 99.94

JPHide

Cover 90.34 92.64 94.66 95.14 94.98
0.05 bpc 64.95 71.73 69.60 70.90 70.80
0.10 bpc 66.66 74.13 73.25 74.67 75.32
0.20 bpc 74.18 85.12 94.01 94.25 94.79
0.40 bpc 92.88 99.14 99.78 99.60 99.58

Table 3.4: Detection accuracy results for POMM based features on Bows2 database
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rate which is true across different database. It is also clear that POMM with T = 3 performs better

than other POMM in smaller database (NRCS and Camera) for JPHide whereas POMM with T = 5

performs better on larger database. This trend is also true for F5. For example, POMM with T = 3

gives a detection accuracy of 56% for 0.05 bpnz embedding for F5 algorithm whereas POMM with

T = 5 gives an accuracy of 50%. But the trend is reversed once you go to a larger database. In Bows2

database which has 10000 images, POMM with T = 5 gives a detection accuracy rate of 54% for F5 at

0.05 bpnz whereas POMM with T = 3 gives 51%. It can also be seen that POMM with T = 3 gives an

overall better detection for OutGuess irrespective of database size. Performance of POMM steganalyzer

with T ≥ 3 is approximately same for Jsteg and Steghide across different database. It is clear that

based on the database size, a POMM can be build by selecting appropriate value of T . Based on above

observation, we decide to chose POMM with T = 3 to compare our approach with other steganalyzer

proposed in the literature.

From Figure 3.3, 3.4, 3.5 and 3.6, it is clear that the steganalyzer based on our proposed feature set

clearly beats Markov324 and Makorv486 in all the databases at all the embedding rates for almost every

steganography algorithm. Even though the performances of the steganalyzers are very close to 100%

for higher embedding rates, their performances vary much more at lower embedding rates. Note that

Markov486 is an extension of Markov324 and the added inter block features have helped in boosting the

performance. However, our POMM based steganalyzer shows significant improvement in performance

at the lower embedding rates compared either Markov scheme. For example, for Bows2 database,

Markov324 and Markov486 has a detection accuracy close to 6% whereas POMM based steganalyzer

gave a detection accuracy of 71%.

Our proposed steganalyzer has also performed better than Merged for Outguess and Steghide across

all the databases whereas Merged performs better at lower embedding rates for F5 and JPHide. Both

steganalyzers perform equivalently at higher embedding rates and for detecting Jsteg. For example,

the Merged steganalyzer gave a detection accuracy of 55% for Steghide at 0.5 bpnz for Corel database

whereas our POMM based steganalyzer gave a detection accuracy of 74%. On the other hand, for the

same database, Merged performed better for JPHide at 0.5 bpnz with a detection accuracy of 57%

whereas our POMM based steganalyzer detected 44% of the stego images correctly. And this trend

holds across different databases.
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Figure 3.3: Detection accuracy results for different steganalyzers on BOWS2 database
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Figure 3.4: Detection accuracy results for different steganalyzers on Camera database
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Figure 3.5: Detection accuracy results for different steganalyzers on Corel database
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Figure 3.6: Detection accuracy results for different steganalyzers on NRCS database
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CHAPTER 4 CANVASS - A STEGANOGRAPHIC FORENSIC TOOL

FOR JPEG IMAGES

There is a growing concern within the community that steganography is being used for illicit pur-

poses. The New York Times, USA Today and United States Institute of Peace have reported that

terrorists may be using steganography and cryptography on the web as a means of covert communica-

tion (37; 43; 66). A recent report from National Institute of Justice encourages investigators to look

for steganographic information while dealing with child abuse or exploitation and terrorism cases (1).

While steganalysis algorithms are abound in the academic literature, there are few software programs

that address the needs of local police departments who perform computer forensic functions for ste-

ganalysis.

Two major stego-detection tools in existence today are StegoSuite and StegDetect. StegoSuite was

developed by WetStone Technologies for the U.S. Air Force. This software is expensive and hence is not

readily available to state police forensics labs whose budget does not allow purchase of these expensive

software. In 2001, Neil Provos developed StegDetect (58) to perform steganalysis on suspected stego

images. Using this software, he analyzed millions of JPEG images from sites like eBay (59) and USENET

(57), but was unable to detect a single image with hidden data in it.

One of the objectives of this project, as mentioned in the original research proposal submitted to

Midwest Forensics Resource Center (MFRC), Ames Laboratory, is to develop a software that address

the needs of local police departments who perform computer forensic functions for steganalysis. Canvass

is a cross-platform software that has been designed after several meetings with Internet Crime Against

Children Lab (ICAC), Iowa investigators and understanding their requirement. It is developed in Java

with a graphical user interface which implements the steganalzer proposed in Chapter 3 earlier. The

current version 1.0 is shown in Figure 4.1 and provides following features:

• Ability to process multiple images with one command. User can specify the source of images from

following locations:
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– Local Machine: User can specify multiple images located in different folders on the local

machine and the software will classify each image against the steganographic algorithms

present in the system.

– Web: User can specify a web address to steganalyze jpeg images on the internet starting from

the web address specified. Given a link, it searches for jpeg images on the page, and stores

all the links on that page which it has not visited. It then recursively performs a search for

images on those links in breadth first manner until there are no more new links to visit.

• Displays detailed processing information in real time. It shows various information such as

steganography algorithm used, time of processing along with other useful information. This

is shown in Figure 4.2.

• Provides option to save the processing information at any time. A sample report is shown in 4.3c.

• Ability to stop the processing in between.

• Displays image for visual inspection.

• Ability to run on multiple platforms. In this version, it is currently supported for Windows and

*nix systems.

However, the current version only accepts JPEG images with width≥ 250 and height≥ 250. This

restriction ensures that features contains enough data to characterize the image as cover or stego. This

software will be made available from MFRC, Ames Laboratory for limited distribution to recognized

police departments.

4.1 Implementation Details

A mutli-class classifier is implemented in Canvass with
(

n
2

)

binary classifiers where n is the number

of classes. In our case, n = 6 for cover, jsteg, outguess, f5, steghide and jphide. For an unknown image,

features are extracted and passed through all the binary classifiers and assign it the class which appeared

maximum time in all the binary classifiers. Model-View-Controller (MVC) architecture has been used

to design this software. Due to this reason, it can be easily extended using a different steganalyzer from

backend, that is, if additional binary classifiers are added.
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Figure 4.1: Canvass - A software package for steganalysis

Figure 4.2: Canvass - Detailed Screen
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4.2 Installer

Canvass comes with a jar excecutable file - Canvass.jar along with several other folders. To run this

software, user must have Java installed on their machine. The software can be started by either double

clicking on the software or from command line as

java -jar Canvass.jar

It comes with the following folder:

• log: This folder contains various messages generated during the execution of the software. It

stores all the error messages under error sub folder which can help to debug the application. It

also stores the results for every image under process sub folder so that results are not lost in case

of any unexpected failure of software or system. Finally it also stores a summary of the processing

information under general sub folder. A sample general and log file is shown in Figure 4.3a and

4.3b.

• external: This folder contains compiled code for feature extraction for Windows and Linux ma-

chine. For every image, Canvass calls this code to extract the features from image and pass them

to SVM for testing purpose.

• lib: This folder contains necessary Java Swing libraries necessary to support the application.

• data: This folder contains following sub-folders:

– config: This folder contains various config files, logo of the software and other related files.

– manual: This folder contains a manual for easy use of the software.

– steganalyzer: This folder contains SVM model files for different binary SVM’s. Files for every

binary classifier is stored in sub folder i j. For example 0 1 folder represents SVM model files

for binary SVM between cover and jsteg class. We use the following numbering convention for

classes: 0 - Cover, 1 - Jsteg, 2- OutGuess, 3 - F5, 4 - Steghide, 5 - JPHide. In the future, if the

capability of Canvass needs to be extended to incorporate a new steganographic algorithm,

all that is required is to build binary SVM’s of the new class with every other existing class.

– workspace: This folder is used by the software to store any temporary files and images

computed during the execution of Canvass.
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(a) General Log (b) Process Log

(c) Sample report

Figure 4.3: (a)General and (b)Process Log file. (c) Sample report
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CHAPTER 5 CONCLUSION AND FUTURE WORK

In this thesis, we introduced the use of Partially Ordered Markov Models for the first time in the

field of Steganalysis. We have successfully developed a sound theoretical framework for steganalysis

from which rich properties can be derived. Our experiments in Chapter 3 showed that a detection

accuracy of close to 100 % can be achieved for higher embedding rates and has a comparable or better

results at lower embedding rated compared to other steganalyzers. We also developed a technique to

reduce feature space for steganalysis using Mahalanobi distance and showed that it is possible to develop

a classifier with very few number of features that perform as well as classifier built with full suite of

features. This will help to build efficient steganalyzers with lower training computation time. We have

also developed a software for steganalysis for police departments to make this research accessible to

the investigators and we hope that this will provide increased check on illegal use of images for covert

communication.

Even though the steganalyzer proposed has a high detection accuracy at higher embedding rates,

it is still not very high for lower embedding. We have shown that with some global DCT features,

the detection accuracy can further be boosted. In future, one can look into a complementary set of

features that along with POMM can give a better detection accuracy rates at lower embedding. Since

POMM provides a closed form for calculating joint pdf, new techniques can be developed by assuming a

parameterized model of POMM to estimate the message length by maximizing the joint pdf conditioned

on parameters of the model. Another way to estimate the message length could be to use the proposed

features and length of message embedded for SVM regression to predict the length of messages in

unknown images (55).
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