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1

CHAPTER 1. INTRODUCTION

1.1 General introduction

Polymers are amazingly versatile molecules with a tremendous range of applications. Our

lives would be very different without them. There would be no multitudes of plastic encased

electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many

commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers

as two of the most essential types of molecules central to cellular life, Proteins and DNA, are

both polymers! [1] With their wide range of application to a variety of uses, polymers are still

a very active field in basic research. Of particular current interest is the idea of combining

polymers with inorganic particles to form novel composite materials. [2]

As computers are becoming faster, they are becoming all the more powerful tools for mod-

eling and simulating real systems. With recent advances in computing on graphics processing

units (GPUs) [3–7], questions can now be answered via simulation that could not even be

asked before. This thesis focuses on the use of computer simulations to model novel polymer-

inorganic composite systems in order to predict what possible phases can form and under what

conditions. The goal is to provide some direction for future experiments and to gain a deeper

understanding of the fundamental physics involved. Along the way, there are some interesting

and essential side-tracks in the areas of equilibrating complicated phases and accelerating the

available computer power with GPU computing, both of which are necessary steps to enable

the study of polymer nanocomposites.
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1.2 Overview and thesis organization

Following this introduction, chapter 2 provides a very brief overview of polymer physics

focused on those aspects important to the research performed in this thesis. Then, chap-

ter 3 introduces molecular dynamics as a simulation technique and its application to polymer

systems.

After these introductory chapters, there are a number of published papers included in the

thesis. The first is in chapter 4. It calculates the phase diagram of a particular pentablock

copolymer using molecular dynamics (MD). As first author, I performed all of the simulations,

all of the data analysis, and wrote the bulk of the paper discussing the results.

This initial study is motivated by experiments performed by Prof. Mallapragada’s group [8–

10] which are aimed at developing polymer-inorganic composite materials. Studying such

complicated systems with MD first requires a good understanding of the simpler case of just

multiblock polymers in solution, a problem that was still poorly understood at the time [11].

In order to gain this understanding for the cubic phases relevant to the experiments, another

study is undertaken and another paper published, included in chapter 5. As with the previous

paper, I performed all of the simulations and data analysis and wrote the bulk of the paper.

A significant amount of computer time is needed in order to solve the problems associated

with equilibration in this second paper. At the time of its completion, general purpose com-

puting on the GPU was starting to gain a significant amount of attention. And with NVIDIA’s

release of CUDA, the prospects for running scientific applications on the GPU became much

more promising. Using it, some astronomy simulations developed at the time reported greater

than a factor of 100 speedups for certain calculations [4,5]. At this level, a single GPU has the

awesome potential to replace a computer cluster at a fraction of the cost.

Thus we began a fun “side project” over the summer into the feasibility of using GPUs

to accelerate molecular dynamics. The result, after only a few months of work, is a fully

functional code with significant speedups. All the details are published in the paper included

in chapter 6. We are the first to publish all the algorithms needed to efficiently implement

MD fully on the GPU. In this paper, all of the algorithmic design and programming expertise
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come from me and I wrote the entire paper.

Finally, with an understanding of equilibrating phases in MD and the power of GPU com-

puting to perform the massive amount of simulations needed, a final paper (for the purposes of

this thesis, at least) is published detailing an extensive study of the phases of polymer-inorganic

composite materials included in chapter 7. As with the other papers of this type, I perform all

the simulations, most of the analysis, and write the bulk of the paper.

Of course, this final extensive paper would not have been possible without the additional

preliminary work in ref. [12] by Chris Knorowski, a REU student I mentored for a summer,

and the subsequent work by Rastko Snepnek in ref. [13], whom I collaborated with.

As an aside, but an important one, chapter 8 looks at numerical errors in molecular dy-

namics calculations. The focus is on the differences in GPU computing vs. CPU computing

in regard to these errors and the analysis serves as a first step in bringing the two in line.

The final chapter, chapter 9, wraps up with some conclusions.
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CHAPTER 2. INTRODUCTION TO POLYMERS

2.1 Polymer fundamentals

2.1.1 Monomers

Polymers are large molecules made up of many repeating units called monomers. Chem-

ically, monomers are often variations on hydrocarbons with the covalent bonding between

carbon atoms providing the links between monomers. All hydrocarbons (except methane)

are, of course, polymers given this consideration. section 2.1 shows polyethylene as an exam-

ple. There is a zoo of different monomers available to build polymers from, each with unique

properties useful in different applications. [1, 14]

Discussing particulars of the chemistry is beyond the scope of this thesis. Instead, polymers

are presented throughout as an abstracted bead-spring model. Each monomer is represented

by a bead with a position and mass. The bonds that string these beads into polymers are

represented as springs, as shown in section 2.1.

2.1.2 Types of polymers

The simplest and most common type of polymer is one where all monomers are connected

to form a long linear chain of n monomers. Other configurations are possible with a few

examples shown in section 2.1. For instance, at certain points along the main chain, shorter

chains can branch off. Or long chains could all be attached to a central monomer, forming

a star pattern. [14] Of course, the possible permutations do not stop here. Branches can

be linked to other branches, which are linked to other branches all the way up in a very

complicated topology. While it may seem like a simple thought experiment, all these possible
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Figure 2.1 Examples of different types of polymers

branching patterns are not just the subject of theoretical interest. Chemists have long been

synthesizing polymers with controllable architectures, and some applications depend on the

unique properties provided by the branching. [1, 14]

2.1.3 Polydispersity

One important issue worth mention on the subject of synthesizing polymers is that of

polydispersity. Polymerization is a chemical reaction occurring in a soup of monomers and

partially formed polymers. Random thermal effects may result in the final polymers not

all ending up with exactly the same length, or some small amount of branching may have

occurred where linear chains were desired. [14] The degree to which not all of the polymers in

a system are the same is called the polydispersity, and limiting it is an important challenge to

experimentalists. Of course, dealing with the theory of polymers in this thesis, monodisperse

systems, where all polymers are identical, can easily be created and studied. Polydispersity

can of course be incorporated into models, too, when it is necessary.
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Figure 2.2 Block copolymer examples

2.1.4 Block polymers

Just as there is virtually no limit on the branching architecture of polymers, there is no

limit forcing all monomers to be of the same type. Heteropolymers can be created with two or

more different types of monomers spread randomly across the chain or organized into blocks as

shown in subsection 2.1.4. [1] Block copolymers, polymers with two different types of monomers

grouped in blocks, have particularly interesting properties discussed later in section 2.2 and

are the main subject in the research papers included in this thesis (chapters 4, chapter 5, and

7).

2.1.5 Polymers in solution

A system of many polymers together with nothing else present is called a polymer melt. The

physics is relatively well understood for such systems of polymers with simple architectures,

like homopolymers and diblocks [1, 14]. The details are skipped over here as the research

area this thesis focuses on involves systems of polymers in solution. A solution is a liquid

of solvent molecules into which some material, polymers in this case, has been dissolved.

Water and ethanol are two household examples of solvents. Many industrial solvents, such as

cyclohexane, are also often used in conjunction with polymers.

Working up to the level of studying many interacting polymers first requires an under-

standing of the conformations of a single polymer chain in solution. The picture to have in
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mind for the following discussion is that of a long chain of monomers surrounded by a sea of

solvent. At first glance, it would seem that the flexibility or stiffness of the individual bonds

to bending should play a big role in determining the possible conformations of the polymer.

Indeed, locally, a trio of Carbon atoms in the chain C − C − C are quite stiff to bending.

However, over a long enough length scale many small bends can add up to a large one [1, 14],

and at this level the polymer appears completely flexible. The length scale this occurs at is

called the persistence length [14] or Kuhn length [1]. Its value depends on the temperature and

the chemical makeup of the monomer [14]. No matter what this length is, in the idealized case

of an infinitely long polymer chain we can always “zoom out” to a length scale much larger

than the Kuhn length and observe an apparently completely flexible polymer.

What does have an impact on the conformation of the polymer is the type of interactions

between the monomer and the solvent. Special terms apply when that solvent is water. Hy-

drophilic monomers like to be in contact with water. A polymer chain of hydrophilic monomers

will spread out as much as it can in what is called a coil. Hydrophobic monomers prefer each

other more than they prefer water. A polymer chain of these monomers will collapse into a

globule, shielding as many monomers as can be from contact with water. This concept can

be generalized to other types of monomers in solvents other than water. A polymer in a good

solvent spreads into a coil configuration, while it collapses into a globule in a poor solvent.

There is a halfway point between the two called a theta solvent, which is best explained in the

more quantitative framework in subsection 2.1.6. [1]

2.1.6 Scaling

Long polymer chains exhibit a fractal scaling behavior, demonstrated in subsection 2.1.6.

The effects of this behavior are such that if portions of the same polymer are examined over

different length scales, the conformations have identical statistical properties in properly scaled

coordinates. [1] This feature of polymers is very useful in efficiently modeling them on the

computer, the reasons for which are described in subsection 3.5.1.

Scaling behavior can also be applied to analytical calculations of polymer properties. The
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Figure 2.3 One of these two panels shows only a portion of a polymer
generated from a random walk. The other shows the entire
polymer, but only half of the monomers are displayed and the
view is zoomed out by a factor of two. Can you tell which is
which? (Hint: The partial view is the lower right quadrant
of the full view). This visual self-similarity demonstrates the
fractal scaling nature of polymers.

most famous example of this is the Flory exponent [14]:

〈RG〉 = a · nν (2.1)

where 〈〉 denotes an ensemble average. RG is the radius of gyration of the polymer, defined by

R2
G =

1
n

n∑
i=1

(�ri − �rcm)2 (2.2)

, where �ri are the positions of the monomers, �rcm is the center of mass position, and n is

the number of monomers. As a root mean square of the monomer positions, the radius of

gyration is a measure of the size of the space that the polymer occupies. With that in mind,

Equation 2.1 says that the size of the polymer scales with the number of monomers n to the

power ν, with some constant of proportionality, a.

What is truly remarkable is that ν takes on one of three discrete values depending on the

solvent. In a good solvent, Flory’s theory predicts ν = 3/5 which is extremely close to the

best available numerical result of 0.588 [14]. In a theta solvent ν = 1/2 and in a poor solvent,
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ν = 1/3. The discrete values ν can take on are well understood from the work of DeGennes [14].

He mapped the problem into a spin model where renormalization group theory dictates the

allowed value of the exponents. DeGennes was awarded the 1991 Nobel prize in physics in part

for this discovery.

The last case with ν = 1/3 can be easily understood with an intuitive argument. In a

poor solvent, the polymer wants to collapse into as small a space as it can in order to shield

the hydrophobic beads from the solvent. What better shape is there to accomplish this task

than a sphere? From simple geometry, the radius of a sphere scales as the volume to the 1/3

power, thus explaining ν = 1/3 as the volume of a sphere of tightly packed monomers will

scale proportionately with the number of monomers in the sphere.

The scaling behavior of polymers can also be taken advantage of to calculate many other

properties [14]. Detailed discussions on these analytical calculations are beyond the scope of

this thesis and there are excellent textbooks on the subject [1, 14].

2.2 Phases

2.2.1 Segregation

As a first step in predicting the behavior of large systems of many block copolymers,

an understanding of the tendency of two different components to mix is needed. The Flory

interaction parameter χ nicely wraps up all of the microscopic interactions, temperature and

pressure effects, etc. . . [1,14]. The details behind its derivation are not important here. What

is important is the the effects of the parameter and how it can be used to model polymer

systems numerically.

Given a system defined over a region of space, let φA(�r) be the fraction of the volume

occupied by component A and φB(�r) be same for component B. For the purposes of this

discussion it does not matter whether one of these components is a monomer in a polymer

and the other is solvent, or if they are two different components in a block copolymer. The

Flory interaction parameter can be applied in both cases. χ is relevant in a type of mean field

approximation where in a given small unit of space, φB is constant and thus φA = 1 − φB.
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The utility of χ comes with the following definition, which is regular solution theory applied

to polymer physics:

Fint = χ · φA(1 − φA) · kBT (2.3)

. It says that the free energy in each small unit of space is given by the product of χ, the

densities of the components and the temperature. When χ is positive and large, minimizing

the free energy requires minimizing the product φA(1−φA) and can be done by making either

φA or 1 − φA = φB go to 0. Thus large positive values of χ encourage the segregation of

the A and B components. Similarly, a negative χ leads to a minimum free energy when the

product of densities is maximal. This occurs when the densities are each 0.5 and thus mixing

is promoted. [14]

Using this theory as a starting point, a number of properties of polymer systems can be

calculated analytically. [1,14] An exposition of such calculations is well beyond the scope of this

thesis. The Flory interaction parameter does appear again in section 2.3 in a brief discussion

on various numerical modeling strategies.

2.2.2 Self-assembly in solution

Moving on to a more concrete example appropriate to the types of polymers studied in

detail later in this thesis, let’s look at what happens with amphiphilic polymers in solution.

Amphiphilic polymers have both hydrophilic and hydrophobic monomers. Specifically, say we

have a system of diblock polymers like the one shown in subsection 2.1.4 where the first block

is hydrophilic and the second is hydrophobic. Immediately after being placed in solution, the

hydrophilic half is happy where it is, but the hydrophobic half is not. In a process called

self-assembly, the hydrophobic blocks of many polymers find each other and aggregate forming

a micelle. subsection 2.2.2 is a schematic diagram for a micelle. The hydrophobic blocks are

all contained within the dense core of the micelle where the solvent has been expelled while

the hydrophilic blocks reach out into the solvent in the corona, shielding the core from contact

with the solvent.

The typical example of a micelle is a spherically shaped object, but they can come in many
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Figure 2.4 The dark lines in the middle are the hydrophobic block of the
polymer and aggregate to form the core of the micelle. Gray
lines around it are the hydrophilic block of the polymer forming
the corona. The presence of the solvent is indicated by small
circles.

shapes and sizes. Being made of a conglomeration of flexible polymers, a roughly spherical

micelle can be squished and bent in various ways depending on its environment, distorting it

from a truly spherical shape. Not all micelles are even roughly spherical. At higher polymer

concentrations, cylindrical micelles are common.

In a system consisting of many micelles, the possibility exists that they arrange in patterns

that exhibit long range order. For instance, spherical micelles in solution can line up on a

cubic lattice (see chapter 5 for a detailed study). Or cylindrical micelles can pack together in

ordered hexagonal or square packing patterns (see chapter 7 for many examples). These are

just a few examples of the many phases that can result with amphiphilic polymers in solution.

More details regarding the possible phases and their structure can be found in the research

papers included in this thesis.

2.3 Numerical modeling and simulation methods

The polymer in subsection 2.1.6 was created with a very simple numerical technique called

a random walk. Starting with a monomer at an initial point, a step in a random direction is
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taken and another monomer placed there. Yet another step in another random direction is

then taken and a third monomer is placed. This process repeats until the n monomers making

up the polymer are all placed. This method is in a class of simulations called Monte Carlo

simulations because they model physical systems with a series of events which occur with a

random probability (with the proper distribution, of course). [1]

Methods exist to apply Monte Carlo techniques to model more complicated polymer sys-

tems, including the amphiphilic polymer systems mentioned in the previous section. One way

this is done is by representing each of the monomers on the points of a cubic lattice. A set of

initial polymers is created with the random walk technique and then perturbed by a series of

moves that each slightly rearrange the polymers (i.e. by moving a monomer from one lattice

point to a neighboring one). A potential energy function is chosen that models the essential

physics and is employed as a filter to accept or reject each potential move (sometimes, the

potential energy is calculated with Equation 2.3). If a move lowers the energy, it is always

accepted. If it instead raises the energy, it is accepted with a probability

pi→j = exp
(
−Ej − Ei

kBT

)
(2.4)

where Ei and Ej are the energy of the system before and after the move in question. In this

way, the ensemble of all states visited by performing many moves is that of the NVT ensemble

of statistical mechanics. [1] While not as commonly used in the literature, it is possible to

perform similar simulations without the restriction that the monomers sit on a lattice.

In a self consistent field theory, an initial density profile φ(�r) is assumed along with the

symmetries of the phase under study. Then, Equation 2.3 together with the free energy of the

non-interacting polymer blocks is used to calculate an apparent “force” which is then used to

update the density. At this point Equation 2.3 is used again and the process is repeated until

an unchanging self-consistent solution is found. [14] By its implicit assumptions, self consistent

field theories are particularly appropriate to describe melts.

Molecular dynamics (MD) represents each monomer as a single particle and solves the equa-

tions of motion to calculate the behavior of the system over time (more details in chapter 3).

This is the method chosen for modeling polymer systems in this thesis. Without going into
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too many details on the pros and cons of each method, MD offers some distinct advantages.

First, the calculations are simple and adding additional types of particles and interactions is

straightforward. In self-consistent field theory, for example, the addition of inorganic particles

(see chapter 7 for a relevant research topic) must be done in a very unnatural way by subtract-

ing delta function voids from the density. Second, the calculations in MD can be efficiently

executed in parallel on large computer systems, allowing more polymers to be simulated for

longer times. Finally, when using MD something can be learned about the actual time de-

pendent dynamics of the system in question, which is not possible with Monte Carlo nor self

consistent field theory as they are ensemble approaches.
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CHAPTER 3. INTRODUCTION TO MOLECULAR DYNAMICS

3.1 The method

3.1.1 Definition

Molecular dynamics (MD) is a very simple but powerful simulation technique. In a way,

it can be considered as a brute-force approach to solving statistical mechanics problems. It

starts by representing every atom of the system in question as a point in 3-space �rj , with j

as the index assigned to the atom from 1 to N . Some Hamiltonian is given, e.g. a Newtonian

H = K + V (�r1, �r2, ...�rn), to specify the physics these atoms obey. MD makes no attempt

to finesse a solution given this information. In the simplest terms it is the solution of the

equations of motion resulting from the Hamiltonian. [15] Perhaps this doesn’t sound like much

of a task, as physics students do this every day in classical mechanics class for systems of a few

particles. But in a research setting MD is typically applied to anywhere from tens of thousands

of particles up to hundreds of millions [6] and limited only by the computer power that can be

brought to bear.

3.1.2 Numerical integration

Tackling the solution of thousands of coupled differential equations of motion is the task

of the numerical integration routine. Such methods are usually derived by taking the Taylor

series expansion of the variable in question. Depending on the way that terms are combined

and cancelled, many different methods are available. [16] A very simple and often used scheme

for numerically integrating Newtonian motion is called Verlet integration. It can be derived
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simply by first taking the forward Taylor series expansion of �rj(t),

�rj(t + δt) = �rj(t) + �vj(t) · δt + 1/2 · �aj(t) · δt2 + 1/6 ·�bj(t) · δt3 + O(δt4) (3.1)

(here the first second and third derivatives have been replaced by velocity �v, acceleration �a

and jerk �b) and then taking the same expansion but stepping back in by time δt

�rj(t − δt) = �rj(t) − �vj(t) · δt + 1/2 · �aj(t) · δt2 − 1/6 ·�bj(t) · δt3 + O(δt4) (3.2)

. Add those two equations together and the δt and δt3 terms cancel out leaving an expression

involving only the position at various times and the acceleration:

�rj(t + δt) = 2�rj(t) − �rj(t − δt) + �aj(t) · δt2 + O(δt4) (3.3)

.

Reading Equation 3.3 from left to right, it says that the position of a particle j at time t+δt

can be easily (and approximately) calculated knowing only the two previous saved positions

and the current acceleration. The step size δt must clearly be chosen small so that the error

term O(δt4) remains negligible (see chapter 8 for more information on such errors). With a

small δt, whatever behavior of the modeled system is of interest most likely occurs over the

time span of thousands or even millions of time steps. Thus, the core of any MD simulation is

performing step after step, each one advancing the simulation slowly forward in time.

Equation 3.3 works well, but is not the most convenient. Often, for purposes of the eval-

uation of the kinetic energy or other reasons, it is desirable to know both the position and

velocity. There is another way to formulate the Verlet integration routine making this possi-

ble [15]. It calculates identical results to the one derived here, but tracks particle position and

velocity instead of the position at two separate times.

3.1.3 Statistical ensembles

Newtonian mechanics makes for simple examples and descriptions in a thesis, but any

real system of interest is probably not conveniently described in the resulting NVE ensemble

(constant number of particles N , constant volume, and constant energy). Of course, once
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Figure 3.1 Velocity distribution both from simulation in an NVT ensem-
ble and from theory. The quantity f(v)dv is the probability of
finding a particle with velocity between v and v + dv.

equilibrium is attained the NVE ensemble is identical to any other. But reaching the desired

equilibrium by guessing an initial condition and running NVE for a while is nearly impossible.

Most real world systems are either held at constant temperature and volume (NVT) or constant

pressure and temperature (NPT). Successful methods for modeling these systems in MD have

been developed. [17,18].

Going through the entire derivation of these methods here is beyond the scope of this

thesis. As a brief summary, they work by introducing a fictitious degree of freedom into the

Hamiltonian H. In the case of NVT integration, the temperature of the system T appears in

such a way that when the system temperature T is below the set point, energy is transfered

from the fictitious degree of freedom into the system. When the actual temperature T is above

the set point, energy is transferred from the system to the fictitious degree of freedom. In

this way, the temperature is regulated to always be near the set point and so it is called a

thermostat. It can be proven that with the particular functional form used, the region in phase

space the system explores is exactly the canonical ensemble of statistical mechanics. [17] This

property can be demonstrated by comparing the distribution of particle velocities found in

a simulation with the theoretical Maxwell-Boltzmann result. Such a comparison is made in
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subsection 3.1.3 with good agreement. The agreement could be a little better, however. It is

thought that the particular numerical integrator chosen to implement NVT integration in this

case is not particularly precise. An investigation into other integrators will be performed in

the future, especially in view of the results obtained in chapter 8.

3.1.4 Periodic systems

Computers are finite machines and can only store and handle so many atoms in a given

simulation. For instance, there is no possible way every atom in an entire beaker of water could

be simulated. Today’s computers have enough power and storage for only a tiny, nanometers

wide, portion of the liquid. However, accurate results can still be obtained, particularly if

periodic boundary conditions are employed correctly. In the simplest case, all atoms are

contained in a cubic simulation box and the simulation is programmed so that when an atom

leaves one side, it comes in the opposite side. Additionally, atoms near the edge can “see” the

atoms on the other side. As long as there are enough atoms in the simulation to obtain good

statistics and the size of the box is larger than the length scale of the property under study,

there are usually no serious problems. The same technique works for the study of materials

with periodic repetitions, i.e. crystalline solids, though depending on the symmetry the crystal

might not fit perfectly in a cubic box (see chapter 5 for an example).

3.2 Properties calculated

Fundamentally, MD provides a full description of the position and velocity of every atom

at every point in time during the simulation. From this information any of a multitude of

system properties can be calculated. Starting with a few basic ones, the kinetic energy of the

system can be calculated using the standard equation

K =
N∑

j=1

1
2
mj · v2

j (3.4)

. From this, the temperature can be calculated using the equipartition theorem

T =
2〈K〉

NdofkB
(3.5)
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(where Ndof is the number of degrees of freedom in the system). Many other thermodynamic

state variables can be similarly calculated.

Most often in the work done in this thesis, the primary result of interest is the long range

order in the phase that has formed over the course of the simulation. Typically, this can

be easily identified by eye just by displaying the spatial coordinates �rj(t) interactively in 3D

rendering software such as VMD [19]. Snapshots saved every so often can even be loaded in

and played as a movie, which is often useful when trying to gain an intuitive grasp on the

dynamic behavior of the systems.

But the limit of properties that can be calculated certainly does not stop here. Just from

the position data alone, quantities such as the pair correlation function can be calculated by

averaging over all particles and many configurations. [15] Densities can be averaged and plots

made of that. Gyration radii of polymers can be calculated or micelles identified. There are

way too many such properties to even list here. For more polymer related examples examples of

useful dynamical and structural properties that can be extracted from MD simulation results,

see the observables sections in the various papers included in this thesis, chapters 4, 5, and 7.

3.3 Potential energy specification

So far, no specific mention has been made of the specification of the potential energy

V (�r1, �r2, ...�rn) used to obtain the particle accelerations for use in the numerical integration. As

a technique, molecular dynamics is extremely general and can be applied to a wide range of

physical systems. The potential energy V is simply the input into the simulation that deter-

mines the dynamics to be simulated. It can be calculated from physics as detailed as ab initio

quantum calculations [20], or from potentials tabulated between atoms and tweaked by fitting

techniques to provide accurate results [21], or approximated further to idealized potentials

between coarse-grained beads representing groups of atoms, all the way up to potentials drawn

by hand to any shape that can be imagined.

Each level of further approximation reduces the complexity of calculation, allowing larger

systems to be simulated for more time steps while using the same amount of computer time.
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For example, the state of the art in ab initio MD may only be able to simulate a few hundred

atoms for total simulation times of mere nanoseconds on the world’s fastest supercomputers.

In contrast, the coarse-grained polymer simulations in this thesis effectively contain hundreds

of millions of atoms and run for hundreds of microseconds of simulation time. Of course, each

method has its own respective area of application and the level of physics employed in the

calculation of V must be chosen appropriate to the problem. More discussion on the level of

approximation relevant to polymers is present in subsection 3.5.1.

To make this general discussion more concrete, for the purposes of this thesis (and even a

huge majority of MD simulations performed in the community), V is approximated by breaking

it into pieces.

V (�r1, �r2, ...�rn) ≈
N∑

i=1

N∑
j=i+1

Vpair(�rj − �ri, i, j)

︸ ︷︷ ︸
pair energy

+
∑

(i,j)∈bonds

Vbond(�rj − �ri)

︸ ︷︷ ︸
bond energy

(3.6)

. First, the pair energy is summed over all pairs of particles. In general, it is expressed as a

function of the vector between the particles in the pair but it is most often simplified to a more

convenient form in a coordinate system where �ri is at the origin and the potential is isotropic:

Vpair(�rj − �ri, i, j) = V (r, i, j) (3.7)
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. This form is so often discussed that the “pair” subscript is usually dropped for brevity. The

indices i and j remain as parameters to the function as the two particles may be of different

types and the potential must be allowed to account for this. The pair potential V (r, i, j) can

take many forms, but the canonical example is the Lennard-Jones potential

VLJ(r, i, j) = 4εij

[(σij

r

)12 −
(σij

r

)6
]

(3.8)

where εij is minimum of the potential located at r = 21/6σij ≈ σij (see section 3.3). The main

features of the Lennard-Jones potential include a hard core repulsion for small r when the

atoms are near each other along with a medium-range attraction. It is actually a very accurate

potential for modeling interactions between atoms in a noble gas [15], but it is also commonly

used in coarse-grained systems.

The bond energy can be simplified in a similar assumed coordinate system. And the

simplest model for two bonded particles is, of course, harmonic

Vharm(r) =
1
2
k (r − r0)

2 (3.9)

where k is the stiffness constant and r0 is the equilibrium bond length.

In simulations of atomic systems, biomolecular simulations in particular, additional bond

terms between 3 and 4 particles are included. [21] They are not used for the polymer simulations

in this thesis, so they are not presented in detail here.

3.4 Problem size and calculation efficiency

3.4.1 Scaling and efficiency

Evaluating Equation 3.6 (or more accurately, its derivatives to get the force) is the most

time consuming step in performing a MD simulation. Implementing the calculation as a direct

interpretation of the forumla results in Nbonds+N(N−1) ∈ Θ(N2) calculations to be performed

in each time step. In this case, doubling the size of the simulation would mean that it takes four

times as long to execute. With N desired in the tens of thousands, the number of calculations

to be performed is extremely high.
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An approximation is often made to bring the calculations down to a more attainable level.

The pair potentials (and forces) are cut off to 0 at r = rcut, which is 3.0σ in all work presented

in this thesis. Visual inspection of the Lennard-Jones potential in section 3.3 shows that the

potential is near zero at this point, so performing the cut only minimally changes the dynamics.

The upshot is that the number of calculations to perform is reduced by a huge factor. Even

better, with the right algorithms the time can be made to scale with N instead of N2. See

chapter 6 for a detailed discussion on the implementation of these efficient algorithms.

3.4.2 Computer time required

Even with these approximations, performing MD on systems of tens of thousands of atoms

can be very time consuming. Standard MD packages like LAMMPS [22] and NAMD [23] are

programmed to run in parallel on a cluster of many computers. To give a concrete set of

numbers, the typical polymer simulation run in this thesis is split across 64 CPU cores and

runs for 24 hours. Of course, with GPU computing, the same simulation can be performed on

a desktop computer in the same amount of time, but that is a topic for chapter 6.

3.5 Application to polymers

3.5.1 Modeling polymers using MD

To model the phases of polymer systems efficiently in MD, the concept of treating each atom

individually must be forgotten. A single short polymer might contain thousands of atoms. At

most, given the computer resources available, just a few polymers could be simulated together

like this. Periodic boundary conditions will not help here as the length scale of interest, the

repeat length of the ordered phase of polymers, is going to be much larger than a box with

just a few polymers in it.

However, polymers have the fractal scaling behavior previously discussed in subsection 2.1.6.

So in a model where each bead in the simulation represents a number of monomers, say 10, the

results at long length scales will be the same (scaled, of course) as those where every monomer

is treated individually. This technique is called coarse-graining. When modeling polymers of
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finite length, the method can only be stretched so far, of course. A entire polymer cannot be

represented by a single bead and retain the same properties. The limit to which a polymer

can be coarse-grained is determined by the Kuhn length [1].

Further details on the choice of pair and bond potentials to implement this coarse-grained

polymer model are explained in section 4.3 and to some extent in chapters 5 and 7.

3.5.2 Modus operandi

Any MD simulation must be started given some initial condition. When studying the self-

assembled phases of polymer systems, the choice of the initial conditions is simple. A random

number generator is used to place polymers in the simulation box. The parameters of the

simulation are then set and a number of integration steps run (usually anywhere from 20–50

million). In this manner, the polymers are given no preferential initial state, leaving only the

physics of the self-assembly process to drive the final phase to form.

Saving the state of the system at every single time step during the simulation is not feasible.

A single simulation run could easily consume terabytes of hard disk space. Instead, snapshots

are typically saved at regular intervals of 100,000 time steps or more. This is usually sufficient

to determine the phase of the system and to provide some idea of the dynamics. When a more

detailed accounting of the dynamics over short time scales is needed, particular simulations

are rerun or continued with snapshots saved more often.

Thermodynamic state variables like temperature and the internal energy are also calculated

and saved every so often. While these usually do not enter into the analysis of the polymer

simulations presented in this thesis, they serve as good cross checks that the simulation ran

correctly and without any strange behavior.

3.5.3 Equilibration

An understanding of equilibration in the context of MD is required in this thesis. After

all, in the study of phase diagrams of polymer systems it is the equilibrium state that is

the desired result of any simulation run. The principal of thermal equilibrium in statistical
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mechanics states that any system, when left alone for a long enough time will reach a state

of equilibrium. It is the long enough part that can become tricky to deal with in molecular

dynamics.

So given a particular simulation, the question “has been it run long enough to reach equi-

librium?” must be asked. In short, it is impossible to answer that question with a proof. One

can, however, look at a number of indicators. When dealing with phases of polymer systems,

the simplest way to check for equilibration is to play a movie of the entire saved simulation

trajectory. If the simulation reaches a point where the resulting phase is stable and unchang-

ing over a long time, then this is a good indicator that thermal equilibrium has been reached.

Quantifiable parameters related to the structure can also be calculated and plotted versus time

where, again, a stable region at the end indicates equilibrium has been reached (see chapters

4 and 5 for uses of such indicators).

However, there is the possibility that the dynamics of the system are so slow, especially

for systems at a low kinetic temperature, that it becomes kinetically arrested. When this is

the case, examining the trajectory or any of the parameters of the structure will show a stable

region because the dynamics of the system have stopped, not because it has reached a final

thermal equilibrium. These cases can often be spotted by looking at particle diffusion rates.

Finally, the possibility also exists that an apparent stable state is reached that is not

kinetically arrested but is still not the true thermal equilibrium. Metastable states like these

can be compared to supposed more stable states quantitatively by performing free energy

calculations. But such calculations are tricky to perform and best not done unless something

of particular importance will be learned. More easily, the presence of metastable states can

be identified by performing many simulations starting from different initial configurations. At

least then an argument can be made that the state which shows up more often is likely to be

the true stable equilibrium. As a particular example, chapter 5 deals with a very challenging

system that requires both a very careful choice of temperature to avoid kinetically arrested

states and the right periodic box size to attain true equilibrium.
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3.6 Units

A system of units has so far deliberately not been mentioned. After all, numbers stored

and calculated in a computer are dimensionless, so the formulation of MD must not depend

on the system of units. In fact, especially in the field of coarse-grained polymer simulations,

it is most convenient to work in a system of reduced units defined by the pair potential. Two

fundamental units come directly from the Lennard-Jones potential. First, the value of the

potential is in units of energy and defined by the value of ε. In the computer ε is effectively set

to one, but the results of a simulation are valid for any system of units simply by assigning a

different value to ε and scaling the results. Similarly, the fundamental unit of length is defined

by the pair potential as σ. And finally, when calculating the acceleration from a derivative of

the energy (force), the mass of the particle m makes the third fundamental unit. As with the

energy, these two values are effectively set to 1 in the computer but can be assigned a value to

scale the simulation into any real system of units.

Given the three fundamental units of energy (ε), length (σ) and mass (m) any other units

can be derived. For example, the unit of time τ =
√

mσ2/ε. Being concrete for the moment,

if SI units of Joules, meters and kilograms are used, then the unit of τ would be seconds.

Temperature deserves special mention. Instead of trying to convert Boltzmann’s constant

kB into the system of reduced units, it is factored entirely out of every equation involving

temperature. The reduced temperature T ∗ = kBT/ε is used in its place, and as a ratio of

energies it is dimensionless.
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CHAPTER 4. COARSE-GRAINED SIMULATIONS OF GELS OF

NON-IONIC MULTI-BLOCK COPOLYMERS WITH HYDROPHOBIC

GROUPS

A paper published in Macromolecules 1 [24]

Joshua A. Anderson and Alex Travesset

4.1 Abstract

Solutions of multi-block non-ionic polymers with hydrophobic blocks in water exhibit crys-

talline and liquid-crystalline phases over a narrow temperature range. This strong temperature

sensitivity, critical in the design of novel self-assembled materials, is the result of the drastic

increase of hydrophobicity combined with the weakening of solvating interactions (hydrogen

bonding or dipolar) as the temperature is raised. In this paper we separate thermal fluctua-

tions into a ‘kinetic’ temperature and solvation effects and parametrize temperature variations

with a single parameter α, where the solvent is modelled implicitly. We provide a microscopic

interpretation for this parameter and molecular dynamics simulations are used to investigate

the phases of short ABCBA pentablocks, where the A and C blocks are hydrophobic and the B

blocks are hydrophilic but contain hydrophobic groups. At low temperatures and for increasing

concentrations, the system undergoes a sol-gel transition. The gel is swollen and consists of

highly interconnected spherical micelles with a finite lifetime. At higher temperatures, lamel-

lar and perforated lamellar phases are found for increasing polymer concentrations, while for

intermediate concentrations the system is found in a supercoiled gel. We find good agreement
1Reproduced with permission from J. Anderson and A. Travesset, Macromolecules 39, 5143 (2006). Copy-

right 2006 American Chemical Society.
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of our results with modified and inverted Pluronic R© systems, and discuss the relevance for

other polymers including hydrophobic blocks like telechelic or peptide based polymers.

4.2 Introduction

The success of self-assembly as a technique to make new materials hinges on our ability to

synthesize or recognize the appropriate components, ranging from simple molecules to complex

aggregates, and to identify the environmental conditions that must be met for the components

to self-assemble into a material exhibiting the specific physical, chemical and/or biological

properties of interest [25, 26]. Polymers offer unique properties as components [27, 28]. Ionic

polymers (polyelectrolytes) are soluble in water and play a critical role in many biological and

industrial processes. Non-ionic polymers may also be water-soluble if they contain functional

groups that form sufficiently strong hydrogen bonds with water molecules.

Polymers in solution interact with each other leading to spatial and/or temporal organiza-

tions such as crystals, liquid-crystals, thermoreversible gels, etc. Our current understanding

of these organizations and their dependence on chemical composition, chain topology, solvent

properties and other factors is still poor [29]. Multiblock copolymers offer an even wider

range of phases and morphologies. Telechelic polymers are ABA triblock polymers where the

B block is a long water soluble chain and A blocks are short, surfactant-sized hydrophobic

chains. Telechelic polymers in solution form flower-like micelles, which are well understood

theoretically [30–32], and are responsible for the relative simplicity of its rheological proper-

ties [33]. Pluronic R© polymers are short (about 100 monomers or less) triblock ABA polymers

where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO) (see [34] for a re-

cent review). The phase diagram of Pluronic R© polymers as a function of temperature, polymer

concentration, chain length and relative fraction of PEO to PPO monomers is fascinatingly

diverse, and encompasses all phases observed in diblock copolymer melts [33, 35] and many

others, such as nematic and cubatic liquid crystalline phases [33].

Pluronic R© and telechelic polymers are just two examples exhibiting the diversity of phases

and morphologies of solutions of multiblock polymers that combine both hydrophilic and hy-
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drophobic blocks. The synthesis of novel multiblock copolymers and surfactants that self-

assemble into new phases and morphologies has become a very active field. Recent examples

include toroidal supramolecular assemblies [36], Y-junctions micelles [37] and dendritic sur-

factants showing a number of phases that include an A15 lattice [38]. This A15 lattice is

characteristic of a minimal area tiling of the three dimensional space [39], and it has recently

been predicted [40] to be a stable phase in melts of branched copolymers. Another example of

polymer synthesis is the attachment of 2-(diethylamino)ethyl methacrylate (DEAEM) blocks

to the ends of a Pluronic R© F127 polymer [8]. DEAEM blocks are hydrophobic at high pH

(pH ≥ 8), but as the pH is lowered the DEAEM groups gain a proton, become charged and

therefore hydrophilic [41]. The combined Pluronic R©-DEAEM system (PLD) is both strongly

temperature and pH sensitive, where the strong temperature sensitivity is inherited from the

Pluronic R© chain and the pH sensitivity results from the DEAEM end blocks. This rich sensi-

tivity to external changes allows the investigation of self-assembled structures by precisely and

independently tuning the relative strength of hydrogen-bonding, electrostatic and hydrophobic

forces.

In this paper, we provide a general model to investigate non-ionic multi-block polymers

in solution where one or several blocks contain hydrophobic groups, and present concrete

results for the PLD system for which abundant experimental data exists [8–10]. Previous

MD simulations of the PLD system have been performed with a model where the solvent is

considered explicitly [42]. Such simulations are appropriate to explore the structure of single

micelles, but are still computationally too costly for determining phase diagrams. Implicit

solvent models enable simulations of large systems [43–45]. Although several effects may not

be reliably accounted for, most notably hydrodynamics, implicit models are expected to provide

an accurate description of static equilibrium properties.



28

4.3 Model

4.3.1 Temperature sensitivity of hydrophobic monomers

A common characteristic of soluble polymers containing hydrophobic blocks is their strong

temperature sensitivity. In Pluronics R©, for example, different phases are observed over the

narrow temperature range between 10-60oC, with more ordered phases found for increasing

temperature [46].

The origin of this anomalous behavior results from the drastic increase in hydrophobicity

combined with the weakening of hydrogen bonding interactions, which enhance solubility,

as temperature is increased. The temperature dependence of the hydrophobic effect can be

seen in the analysis of the Ostwald coefficient for methane [47]. As shown in Figure 4.1 an

increase in temperature of 35oC, in absolute temperatures ΔT
T ∼ 10%, results in an increases

of hydrophobicity by a factor of two. Longer alkanes follow similar trends [47], so we assume a

similar hydrophobic effect for polymers containing hydrocarbons. In Pluronics R© polymers, the

oxygen in the PEO groups has a strong hydrogen bonding interaction with water molecules,

which is enough to keep PEO soluble at all temperatures [29]. In PPO monomers, however,

the additional methyl group (see Figure 4.2) is enough to drive them insoluble at around 10o

C.

The consequence of Figure 4.1 is that the quality of the solvent (water) for hydrocarbons

is rapidly decreasing over a narrow temperature range. Coarse-grained models for polymers

containing hydrocarbon groups where the solvent is modelled implicitly or with a simplified

potential must consider potentials with a strong temperature sensitivity. Otherwise, solubility

will inevitably increase with temperature.

The phase diagram of an aqueous solution of PEO as a function of temperature and con-

centration is complex and has been the subject of recent studies [29, 48]. In this paper, we

consider short PEO blocks at temperatures within the range 10 − 80C. In this region of the

phase diagram PEO blocks are well described as a chain in a good solvent.
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Figure 4.1 Ostwald coefficient Σ of methane as a function of temperature
( [47] and references therein) showing the drastic change in sol-
ubility as a function of temperature.

4.3.2 Model and simulation details

The polymers we consider in this paper are pentablock copolymers with an ABCBA struc-

ture. As shown in Figure 4.2 each A block is composed of 6 beads and has two branches, the

B blocks consist of 10 beads and the C blocks of 7 beads; each polymer contains a total of 39

beads. The choice of 10 Kuhn monomers for block B is consistent with a chain of 100 PEO

units as it follows from experiment values [49]. The number of Kuhn monomers of the other

blocks are then fixed by mimicking the composition of the real PLD system [8] as illustrated

in Figure 4.2.

We describe the non-bonding interactions as effective Lennard-Jones 6-12 potentials. Fol-

lowing the discussion at the end of the previous subsection, the beads in both A and C blocks

are hydrophobic2 and interact with a potential

UAA,AC,CC(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

. (4.1)

PEO monomers are soluble in water but the quality of the solvent is strongly temperature

dependent. This property is modelled by a parameter α (0 ≤ α ≤ 1) with the solvent becoming
2The temperature dependence for these blocks as described by Figure 4.1 is unnecessary as it is assumed

that they are already dehydrated; that is, they avoid the solvent
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Figure 4.2 The PLD system consists of a F127 pluronic with DEAEM
groups attached at both ends (adapted from [10]). Below we
show the model representation used in the simulations. At high
pH, DEAEM are hydrophobic.

of poorer quality with an increasing value of α. Thus the interaction of B with all beads is

UBA,BB,BC(r) = 4ε

[(σ

r

)12 − α
(σ

r

)6
]

. (4.2)

At α = 0 this potential is purely repulsive

U(r) = 4ε
(σ

r

)12
, (4.3)

so a given B bead will avoid all other non-bonded beads and prefer contact with the solvent.

At α = 1, the interactions of B are the same as with A and C and therefore hydrophobic. It

should be noted that a similar model has been recently used to investigate the globular to coil

transition [50]. All beads in our model have the same mass m and interaction range σ. It has

recently been shown [51], that the solvent significantly modifies the packing of the polymer as

compared with the same situation without solvent. This effect becomes particularly important

for solvents bulkier than water, like benzene, but even in this case, the effect is short-ranged

(less than 1 nm) so it is reasonable to expect that it can be incorporated into the parameters

of the coarse-grained description.

The hydrophobic effect is the driving force responsible for the different structures observed,

and in our model the hydrophobic interaction is parameterized by α (see Equation 4.2). Within
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the temperature range between 10o−45oC, thermal fluctuations are around ΔT/T ∼ 10% while

hydrophobic interactions change by a factor of around two, as discussed in the previous section.

In our simulations, we will keep the kinetic temperature fixed and assume that temperature

variations are fully accounted for by the parameter α. From previous considerations, the error

involved in this approximation should be of the order of 10%, which is most likely less than

the error resulting from coarse-graining and treating the solvent implicitly.

The nearest beads within the polymer chain are connected by a harmonic potential given

by

Ub(r) =
1
2
kb (r − r0)

2 , (4.4)

with kb = 330εσ−2 and r0 = 0.84σ to avoid bond crossing. The polymers are considered to be

completely flexible without any bending potential.

Simulations are carried out with the DL POLY [52] simulations package. A number Npoly

of polymers are considered in a finite cube of length L with periodic boundary conditions. The

monomeric packing fraction φP is related to L and Npoly by

φP =
πNpolyNmon

6L3
, (4.5)

where the number Nmon = 39 is the number of beads per polymer. All potentials are cut-off

at a value rc = 3σ. Simulations are performed in the canonical NVT ensemble using the Nose-

Hoover thermostat [15] for temperature control. The equations of motion are integrated using

the Verlet leapfrog algorithm with a time step Δt = 0.00203τ , where τ =
√

mσ2/ε is the unit

of dimensionless time.

The initial configuration is generated using the GenPol package [53]. GenPol uses a com-

bination of Monte Carlo and Molecular Dynamics algorithms to create relaxed homogeneous

polymer chains.

In the simulation runs of the swollen gel phase, the system is equilibrated for one million

time steps. After the equilibration period, the configuration of the system is recorded every

20, 000 time steps as it runs for an additional four million. Figure 4.3 shows the typical

behavior of the potential energy and the number of micelles during these runs. The number
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Figure 4.3 Typical time evolution of the configuration energy and number
of micelles during the simulations. Configuration data needed
to calculate the number of micelles is only sampled every 20, 000
time steps, so markers are drawn for the first few data points.

of micelles is given as a quantity more sensitive to the structure than the potential energy

from which equilibration at one million time steps is clearly demonstrated. Judging from the

micelle lifetimes, (see Figure 4.11 and containing section) a very conservative lower bound of the

number of independent configurations for a single simulation run is about three. Considering

that each configuration contains ≈ 200 micelles, that already gives a total of ≈ 600 independent

micelles from which to generate statistics. We recall that in the micelle lifetime movie (see the

supporting information), it is clearly seen that micelles change drastically in shape and size in

less than half their lifetime, so the actual number of independent configurations is expected to

be significantly larger than three.

The concentrated regime equilibrates much more slowly, and these simulation runs are

usually equilibrated after 12-15 million timesteps. Overall, the total CPU time employed to

run the simulations reported in this paper is of around 2.2 years on a single 3.2GHz Intel Xeon

processor.
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4.3.3 Observable quantities

The system investigated here generally forms micelles whose structure and superstructure

we characterize with various observables. The first step is to identify individual micelles, and

we proceed with a similar criteria used previously by other authors [45,54]: Any A or C bead

that lies within a distance rcut of any A or C bead belonging to a micelle is included in that

micelle. In order to identify micelles for a fairly large numbers of polymers (Npoly of the order

1000) an efficient algorithm is required. Consider the set of A and C monomers to be a fully

connected graph. Each bead is a node in the graph and each edge has a weight equal to the

distance between the beads. Then edges longer than rcut are removed. Now, finding the beads

belonging to each micelle is equivalent to finding the largest set of spanning trees that cover a

partitioning of the graph. This can be done using a bottom-up algorithm with running time

∈ Θ(n2) [55] where n is the number of A and C beads. The identified micelles are insensitive

to rcut from 1.22σ to 2.00σ. The value rcut = 1.44σ is used in all results presented in this

paper.

Let Nagg be the aggregation number of a given micelle. With ≈ 200 micelles forming

per configuration, the distribution of Nagg is of interest. Let W (Nagg) be the number of

micelles with aggregation number Nagg in a given configuration, then the aggregation number

distribution is found from

w(Nagg) =
W (Nagg)∑

Nagg
W (Nagg)

. (4.6)

The shapes of the micelles are characterized from the gyration tensor [54]

Gαβ =
1
N

N∑
i=1

〈(ri,α − Rcm,α)(ri,β − Rcm,β)〉 (4.7)

where the index i runs over all core hydrophobic beads within the micelle and Rcm,α is the

center of mass of the micelle. The three eigenvalues of the matrix G (ordered as g1 > g2 > g3)

characterize the radii of a given micelle.

Several observables are used to characterize the superstructures of micelles. We define

a bridging polymer as a polymer that has hydrophobic blocks in at least two micelles. The

bridging fraction fB is defined as the number of bridging polymers relative to the total number
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of polymers. Percolation is also of interest, and we define the gel fraction fgel as the fraction

of polymers belonging to the largest group of micelles interconnected by bridging polymers.

We also investigate the statistics of the coordination number NC of a micelle, defined as the

total number of different micelles that a given micelle is connected to via bridging polymers.

The distribution of coordination numbers wC(NC) is defined in the same way as w(Nagg).

Ordered structures are analyzed by computing the static structure factor,

S(�q) =
1

NpolyNmon

N∑
i=1

N∑
j=1

〈ei�q(�ri·�rj)〉, (4.8)

and by visual inspection of the configurations.

Aggregation numbers are variable in time as micelles gain or lose polymers. We thus define

the micelle lifetime τL as the time taken for a given micelle to lose half of its initial polymers.

This is calculated as follows: Let Mi
j be the set of core hydrophobic monomers of micelle

j at time step i. For each recorded time step k the set intersection I(j, k,m) = M0
j ∩ Mk

m

is calculated for all micelles m in time step k (time step 0 refers to the first timestep after

equilibration). The micelle m = mmax that gives the largest number of elements in I(j, k, m)

is identified as the “same” micelle as j. The lifetime τL is then defined as the first timestep

where the number of elements in I(j, τL, mmax) is less than half that in M0
j .

Solvent distribution is also of interest. In our model, solvent is implicit, so we compute

the solvent distribution from the following; Spheres of radius 3σ are placed on a grid in the

simulation box, and local distributions φP,X for X = A, B,C beads are calculated inside each

sphere. The solvent distribution φP,S is then obtained from φP,S + (φP,A + φP,B + φP,C) = c.

The constant c defines the packing fraction and is chosen by assuming that “solvent” beads

are absent in regions of high hydrophobicity, where only A and C beads are present. The value

c ≈ 0.57, which corresponds to random loose packing, was consistently used.
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Figure 4.4 Flory exponent ν as a function of the parameter α for long PEO
chains (composed of B beads only). Error bars are displayed at
± one standard deviation.

4.4 Results

4.4.1 The α parameter and the assumption of constant kinetic temperature

It is assumed that A and C blocks are hydrophobic and B blocks hydrophilic, but with the

solvent becoming of poorer quality for increasing temperature. We provide a more quantitative

mapping of the parameter α to the quality of the solvent by simulating a single polymer chain

consisting only of B beads and computing the Flory exponent ν (by extrapolating the gyration

radius as a function of increasing number of Kuhn lengths) as a function of the parameter α.

The results in Figure 4.4 show a Flory exponent corresponding to a good solvent ν ≈ 3/5 in

the region with α from 0–0.4, a theta point ν ≈ 1/2 around α ≈ 0.45 and poor solvent ν ≈ 1/3

in the region α ≥ 0.45. In simulations of PLD systems, where the B blocks are PEO and

hydrophilic at all temperatures, the values of α are restricted to α < 0.4.

We further assume that the dominant effect of the temperature is parameterized by α while

the kinetic temperature is kept fixed. We briefly examine this assumption with the coarse-

grained PLD model, shown in Figure 4.2; w(Nagg) is calculated at fixed α and φP and varying

values of the kinetic temperature. Generally, large aggregation numbers are entropically unfa-
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Figure 4.5 Average micelle aggregation number distribution at α = 0.0,
φP = 0.08 and at various kinetic temperatures.

vorable, and smaller aggregation numbers should be expected for increasing temperature. The

results in Figure 4.5 confirm this tendency and show that thermal fluctuations are not signifi-

cant as kBT/ε ranges from 1 to 1.2, but they become quite significant at kBT/ε = 1.3, shifting

to considerably lower aggregation numbers. We therefore interpret kBT/ε = 1.3 as a critical

temperature where thermal effects are dominant over the potential energy and will restrict the

temperature within the domain kBT/ε < 1.3. We recall that if we associate kBT/ε = 1 to a

temperature around 10oC, kBT/ε = 1.3 is a temperature of around 90oC, so the approximation

of constant “kinetic” temperature allows to explore the relevant temperature range.

4.4.2 The swollen gel

If B blocks are strongly hydrophilic, α = 0, micelles consisting of cores of A and C beads

and a corona of B blocks are formed. At low polymer concentration φP , the micelles are spaced

far apart and the system consists of almost independent micelles. As φP is increased, micelles

move closer together and become physically connected by bridging polymers. At a critical

concentration, all micelles are connected and the system is a gel.

The gelation order parameter is fgel = 1.0, indicating that polymers are connected (perco-

late) through the entire solution [1]. The critical gelation concentration φc
P (the lowest polymer
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Figure 4.6 < fB > and < fgel > as a function of concentration at α = 0.0.
Error bars are displayed at ± one standard deviation. A sharp
transition in both < fgel > and < fB > is observed from
φP = 0.02 to φP = 0.04.

concentration where fgel ≈ 1.0) is obtained by inspection of Figure 4.6 and is φc
P ≈ 0.04. Ex-

amination of the snapshot in Figure 4.7 corroborates this; the gel is swollen and is composed

of roughly spherical micelles. The sol-gel transition is very sharp, as at φP = 0.02 the system

is deep in the sol phase, while φP = 0.04 is already in the gel phase. Also plotted in Figure 4.6

is fB, the fraction of polymers bridging different micelles. This number is remarkably high,

and for example, at the critical gelation concentration φc
P ≈ 0.4 only half of the polymers are

fully contained within a single micelle. For higher concentrations, polymers fully contained in

a single micelle become increasingly rare. The results in Figure 4.6 and Figure 4.7 are indica-

tive of a swollen gel consisting of highly interconnected micelles. These results are qualitative

similar to previous studies in triblock colpolymers [57].

The average micelle aggregation number distribution is shown in Figure 4.8 for various

concentrations φP within the range 0.04–0.12. As the concentration is increased, the distri-

bution is shifted slightly to larger aggregation numbers, yet the number density of micelles

increases, as shown in Figure 4.9. Actual micelle number densities are only slightly less than

what would be expected if Nagg remained constant. This shows the relatively minor effect that

concentration has on micelle sizes.
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Figure 4.7 Snapshot of the simulation in the swollen gel phase at
φP = 0.04. A beads are colored light blue, B orange, and C
dark blue. The A and C beads are drawn with a radius of 0.8σ.
B beads are shown smaller so that the view of the micelle core
structure is not obscured. Lines also connect the B monomers
showing the bonds between beads in the polymer. Lastly, the
micelles in the background fade out rapidly so that those in the
foreground may be seen more clearly. All snapshots are created
with PyMOL [56]

Nagg

<
w

(N
a
g
g
)

>

φP = 0.04
φP = 0.08
φP = 0.12

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.8 Average micelle aggregation number distribution at α = 0.0 for
various concentrations.



39

φP

<
n

m
ic

>
(

1
(1

0
σ
)3

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

1

Figure 4.9 Number density of micelles as a function of concentration at
α = 0. The dotted line shows what is expected if 〈Nagg〉 at
φP = 0.04 were to remain constant for all φP .

NC

<
w

c
(N

C
)

>

φP = 0.04
φP = 0.08
φP = 0.12

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.10 Average distribution of micelle coordination numbers at
α = 0.0.



40

φP

<
τ L

>
(M

ill
io

ns
of

ti
m

e
st

ep
s)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1

1.2

1.4

1.6

1.8

2

2.2

Figure 4.11 The average micelle lifetime as a function of concentration at
α = 0.

A rough idea of the superstructure of the micelles can be investigated from the average

coordination number distribution wC(NC), which is shown in Figure 4.10. NC has a broad

distribution that shifts toward higher values with higher concentration. The position of the

peaks and even the shape of the distribution correspond closely with the aggregation number

distribution in Figure 4.8. This is consistent with a given micelle coordinating with as many

other micelles as it has polymers to do so. But < fB > from Figure 4.6 shows that not all of

the polymers are bridging. This implies that there are a number of polymers bridging three

micelles together with one hydrophobic block in each.

Thermal motion causes micelles to occasionally detach from the percolating gel, and con-

sequently roughly four percent of the micelles at φP = 0.04 actually have NC = 0. This is in

agreement with 〈fgel〉 slightly less than one in Figure 4.6.

Ratios of the gyration radii provide a quantitative look at the shape of the micelles. For

a perfect sphere, all ratios would equal 1.0. As seen in the snapshot (Figure 4.7), the micelles

that form in our system are roughly spherical at α = 0. The ratio of the longest radius to the

shortest 〈g1/g3〉 = 2.2 ± 0.75 and the middle to the shortest 〈g2/g3〉 = 1.4 ± 0.23. Given that

this data is calculated from a conservative estimate of ≈ 600 independent micelles, this spread

(one standard deviation) is not the result of small statistics; instead, there is a wide variation
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in micelle shapes. However, all are roughly spherical, as long cylinders would be characterized

by a larger 〈g1/g3〉.
Micelle lifetimes are shown in Figure 4.11 in the range φP = 0.01–0.12. The free energy

cost of having hydrophobic units in contact with the solvent is high, and therefore it should

be expected that isolated micelles are very stable. If other micelles are near, however, a chain

can bridge between micelles and eventually transfer from its original micelle to its neighbor by

thermal motion. All these considerations are in agreement with the results in Figure 4.11, where

the micelle lifetime is largest at low concentrations φP = 0.01 and decreases with concentration

in parallel to the increase in number density of micelles (see Figure 4.9). Rather interestingly,

micelle lifetime shows a plateau at φP ≥ 0.08. This implies that there is some competing

factor decreasing the rate of polymer transfer. Quantitative comparisons of micelle lifetimes

and polymer transfer are strongly dependent on the nature of the solvent, so will not be

considered in this paper.

The dynamical nature of the swollen gel is clearly visualized in the movie provided in the

supporting information. From start to finish, this animation covers one million time steps of

simulation time with frames spaced 5, 000 time steps apart. Beads are depicted in the same

manner as in Figure 4.7 except that the polymers belonging to one micelle in the first frame

are colored red. Some other polymers are colored green. The evolution of red polymers are

observed as a function of time, and the dynamics of the micelle lifetime including polymer

transfer processes are readily visualized. Creation of micelles are also visualized; The green

polymers are initially well separated in space, but as a function of time they come together

and form a new micelle.

The structure factor of the gel, which is provided in the supporting material, indicates

a liquid-like structure with no evidence for any additional order, either crystalline or liquid

crystalline.
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Figure 4.12 Average aggregation number of micelles for φP = 0.04. In
these runs, Npoly = 600.

4.4.3 The swollen to dry transition

We now investigate the properties of the gel as the B blocks become less hydrophilic by

increasing α from 0.0–0.40, following the discussion from Figure 4.4. As α is increased, micelles

are brought closer together as the B beads in the micelle coronas effectively attract one another,

resulting in overall larger aggregation numbers and fewer micelles. As shown in Figure 4.12, the

aggregation numbers steadily increases with α. The effect is small at first, but around α ∼ 0.2

aggregation numbers grow quite rapidly eventually collapsing all polymers in the simulation

box into one giant micelle as α nears 0.40. A plot of micelle number density, shown in the

supporting information, confirms the decrease of the number of micelle for increasing values of

the α parameter with an almost linear dependence.

The characteristic size of the micelles is very sensitive to α. As α is increased, micelles

evolve from a roughly spherical shape to a more cylinder-like one. The ratios gi/gj are used

to quantify this transition; Figure 4.13 shows the results. The large variation in shapes seen

at α = 0 remains for higher α but the trend for < g1/g3 > increases dramatically. But even

at α = 0.35, < g2/g3 >, the ratio of the middle radius to the shortest, remains small implying

a roughly circular cross section. These two taken together show relatively long micelles with

roughly circular cross sections suggestive of cylindrical micelles.
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Figure 4.14 Snapshot of the simulation at φP = 0.04 and α = 0.4 showing
a cylindrical micelle.
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Figure 4.15 Snapshot of the system at φP = 0.32 and α = 0.35. Visible
perforations are found across the lamellar planes.

A snapshot of the system at α = 0.4 is shown in Figure 4.14. Visual inspection indeed

shows cylindrical worm-like micelles. Their cores consist of A and C beads with B beads in

the corona. These worm-like micelles bunch together so that many B beads are not even in

contact with the solvent. Figure 4.14 also shows the presence of giant micelles at α = 0.4, that

is, micelles that wrap around the simulation box. We will further discuss the significance of

these micelles in the next section.

Results at slightly higher concentrations φP = 0.08–0.25 show similar trends, with a swollen

gel phase of roughly spherical micelles for α ≈ 0–0.25 and giant cylindrical micelles for α ≈ 0.3–

0.4. The analysis of the structure factor S(�q) shows a liquid-like structure for the swollen gel

and no particular order within the giant cylindrical micelles.

4.4.4 The concentrated regime

The concentrated regime reveals a remarkable degree of order. At polymer concentrations

φP = 0.30 and α ∼ 0.35, a perforated lamellar structure is observed in visual inspections of the

configurations as shown in Figure 4.15. The structure factor S(�q) (shown in the supporting



45

Figure 4.16 Snapshot of the system for φP = 0.50 and α = 0.35, forming
a lamellar phase. A screw dislocation is clearly visible.
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Figure 4.17 Concentrations of the solvent and A,B and C beads along the
direction perpendicular to the lamellar planes.
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material), confirms the lamellar structure. As the concentration is increased, the perforations

eventually disappear leading to a regular lamellar structure. Both regular and perforated

lamellar phases are stable against variations of the kinetic temperature kBT/ε < 1.3. If the

quality of the solvent is increased, the perforated lamellar phase gradually disappears. In good

solvent (α = 0), the perforated lamellar is absent and only the lamellar phase is found.

The structure of the lamellar phase consists of planes of A and C beads segregated from

the B beads and solvent which can be seen from the snapshots in Figure 4.16. A quantitative

analysis is shown in Figure 4.17, where the local distributions φP,X of the different beads and

solvent are shown. The maximum of the solvent concentration coincides with the maximum of

the hydrophilic B-blocks and the minimum of the hydrophobic A and C blocks. This lamellar

structure is also corroborated from the analysis of the structure factor shown in the supporting

material. From the peaks one extracts a lattice spacing of ≈ 10σ, which is in perfect agreement

with the thickness of each of the two planes obtained by inspection of the snapshots and from

the analysis of the local distributions in Figure 4.17.

In almost all runs, the regular lamellar phase shows a screw dislocation, which is clearly

visible in Figure 4.16. Only in one run corresponding to α = 0 the lamellar phase did not

show any topological defects. This may suggest that the elastic constants of the lamellar phase

increase with the quality of the solvent.

4.5 Discussion

4.5.1 Phase diagram

The results in the previous section are summarized in Figure 4.18 and show a sol phase at

low concentrations and good solvent for B blocks, followed by a swollen gel and a lamellar phase

for increasing concentration. As the solvent for B-blocks becomes poorer, a giant micelle that

wraps around the simulation box is observed, which is followed by a perforated lamellar and a

lamellar phase as the concentration is increased. The points in Figure 4.18 represent the dif-

ferent simulations presented in parameter space. The perforated lamellar is not found for good

solvent α ≈ 0, as it follows from the results at concentration φp = 0.3 and other simulations,
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tions were run. The boundaries are drawn for a better visu-
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which although not fully thermalized (and therefore not shown in the graph) clearly indicated

that the system remained in a swollen gel. We also expect that the critical concentration be-

tween the sol-gel transition should decrease with temperature as higher aggregation numbers

are more easily formed. For the same reason, we also expect the giant micelles to become

possible at lower temperatures for increasing concentration. This discussion is summarized in

Figure 4.18.

The sol, swollen gel, perforated lamellar and lamellar correspond to phases that should

be observed in experiments (a point we discuss further below). The region described as giant

micelles, however, corresponds to large micelles wrapping around the simulation box, and are

therefore a result of the finite simulation box and the periodic boundary conditions used in our

simulations. At low concentrations, we interpret the results as implying roughly long worm-like

cylindrical micelles. As polymer concentration is increased or solvent quality decreased, we

expect these micelles to aggregate forming increasingly larger and more complex structures.

On further increase of either solvent quality or concentration, we expect these aggregates to

segregate (precipitate), forming what is known as a supercoiled gel [14]. The supercoiled gel
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consists of a high polymer concentration with a low water content. For this composition,

Figure 4.18 predicts a lamellar phase. It should be noted, however, that other processes

may take place. For example, the supercoiled gel may result from condensation of cylindrical

micelles or from aggregation of more disordered structures, with subsequent reorganizations

after they precipitate. That is to say, the structure of supercoiled gels is not only dependent

on the final ensemble but also on the preparative ensemble [14].

The expected phase diagram relevant for experiments is shown in Figure 4.19. The sol phase

is a micellar liquid with some micelles clustering together. This is followed by a swollen phase.

Solvent quality is parameterized by α, which is a monotonic function of temperature. So for

increasing temperature we expect the micelles to grow in size leading to a liquid of cylindrical

worm-like micelles and a supercoiled gel, depending on concentration. The determination of the

structure of the supercoiled gel is beyond the scope for this paper. Finally, the lamellar phases

are found at larger concentrations. The sol and swollen phase show large density fluctuations

that decrease with concentration. Density fluctuations are small for the other phases except

possibly at phase boundaries, which lie beyond the scope of this paper.

4.5.2 Comparison with experiments

Simulations results can be directly compared to PLD systems at high pH (pH > 8), where

the DEAEM block (A beads) are hydrophobic. There is abundant experimental data [8–10],

which we compare to the theoretical results in this section.

In the dilute limit (2% in weight), SANS experiments at high temperatures (70oC) show

cylindrical micelles [10], while for lower temperatures (20oC) spherical micelles are suggested

[8]. In more concentrated regimes (20% in weight) a transparent, yet rigid gel phase is observed

up to low temperatures (∼ 7oC) using tube inversion and rheological measurements [9]. Further

increasing of the temperature above 45o C a physical hydrogel, which we identify with the

supercoiled gel, is formed. The formation of the hydrogel is very slow at these temperatures

and proceeds more quickly at a higher temperature (70oC). The melt state has also been

investigated. Structural studies with SANS report evidence for a lamellar phase [10], although
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Figure 4.19 Phase diagram of the PLD system extrapolated from the re-
sults in Figure 4.18. We recall that the temperature and con-
centrations displayed in the plot are not a linear function of
the temperatures and concentrations in the real system.

more experimental evidence will be needed. Equilibration times for both the melt state and

the hydrogel are very long (of the order of 1 day). All our numerical simulations are in good

agreement with these experimental results.

The structure of the hydrogel, which as stated, we associate with the supercoiled gel in

our simulations, reveals a hexagonal lattice of close packed cylinders with a water content of

around 30% in weight [10]. At this water content, our simulations would predict a lamellar

phase, but this lamellar phase corresponds to a different preparative ensemble. We speculate

that the hexagonal structure is the result of two steps, the formation of cylindrical micelles

and the posterior self-assembly of these micelles into a hexagonal structure. Further work will

be needed to clarify this point.

Inverted Pluronics R© are triblock PPO-PEO-PPO polymers. On a qualitative level, they

present some similarities with PLD systems, in that they contain hydrophobic end blocks in

between overall hydrophilic blocks (PEO), and therefore show the same temperature sensitivity

discussed for PLD systems. Phase diagrams for these systems have been reported and are
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qualitative very similar to Figure 4.19. The observed phases are a random network (sol phase),

a micellar network (swollen gel) and a uniform micellar phase, which we attribute to the

supercoiled gel. At higher concentrations a lamellar phase [58] is also found. Furthermore,

these phases follow the same sequence as a function of both concentration and temperature as

the one in Figure 4.19. Many details regarding the boundaries and the critical concentrations

separating these phases are quantitatively different, but we regard these results as providing

additional evidence on the validity of our theoretical results.

4.6 Conclusions

In this paper we separated thermal effects into a “kinetic temperature” and solvation effects

(hydrophobic, and to a lesser extent hydrogen bonding), which has allowed to parameterize

the temperature by a single parameter (the α parameter) in an implicit solvent coarse-grained

model. We determined the phase diagram of the PLD system both as a function of temper-

ature and concentration and found a swollen and dry gel, as well as lamellar and perforated

lamellar phases. The results are in good agreement with experimental results on PLD systems

and on inverted Pluronic R©. We provided a cross-check for the validity of our assumptions

(Figure 4.5) and showed that the parameter α is a monotonic function of the temperature,

which is well correlated with the Ostwald coefficient for alkanes Figure 4.1, which is a measure

of the hydrophobic effect. We also provided a detailed characterization of the different phases

involved. The model presented is general and is suitable to determine phase diagrams as a

function of concentration and temperature for other systems such as Pluronic R©, telechelic or

peptide based and other non-ionic polymers that are soluble yet contain hydrophobic groups

that decrease the solubility of the polymer for increasing temperature.

Explicit solvent models provide a realistic description of the dynamics and a more accurate

description of the statics [42,59–61] but the CPU cost involved for simulating the large systems

(Npoly = 600) investigated here would be very demanding. From the extensive experience

gained in simpler models [1, 14, 62], we expect that the main conclusions of this paper will

not be modified by the use of an explicit solvent. The system studied in this paper has some
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connections with the HP copolymers studied recently by scaling methods [63]. We point out,

however, that Pluronic R© and related polymers are short (of the order of 10 Kuhn lengths or

less) and scaling theories may not provide an accurate description for these systems.

There are many situations that we expect to discuss further in the future. The polymers

investigated in this paper are slightly branched (the A-blocks). Recent results in melts show the

existence of exotic phases for branched polymers [40]. It is our expectation that polymers with

different branching degrees will include the phases found in melts but by tuning temperature,

pH or concentration, additional phases will be found. The precise control and understanding of

these phases provide exciting components for novel thermo-sensitive self-assembled materials.

We hope that the simulations presented in this paper will stimulate further experimental work

in this very exciting and relatively unexplored area.

Supporting Information Available In addition to figures and movies mentioned in the

body of this paper, there are DIVX AVI clips of the snapshots. These rotate and/or rock the

image to provide a better look at the structures. This material is available free of charge via

the Internet at http://pubs.acs.org.
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CHAPTER 5. MICELLAR CRYSTALS IN SOLUTION

FROM MOLECULAR DYNAMICS SIMULATIONS

A paper published in the Journal of Chemical Physics [64]

Joshua A. Anderson, Chris D. Lorenz and Alex Travesset

5.1 Abstract

Polymers with both soluble and insoluble blocks typically self-assemble into micelles, ag-

gregates of a finite number of polymers where the soluble blocks shield the insoluble ones from

contact with the solvent. Upon increasing concentration, these micelles often form gels that

exhibit crystalline order in many systems. In this paper, we present a study of both the dy-

namics and the equilibrium properties of micellar crystals of triblock polymers using molecular

dynamics simulations. Our results show that equilibration of single micelle degrees of freedom

and crystal formation occurs by polymer transfer between micelles, a process that is described

by transition state theory. Near the disorder (or melting) transition, bcc lattices are favored

for all triblocks studied. Lattices with fcc ordering are also found, but only at lower kinetic

temperatures and for triblocks with short hydrophilic blocks. Our results lead to a number of

theoretical considerations and suggest a range of implications to experimental systems with a

particular emphasis on Pluronic polymers.

5.2 Introduction

Micelles of multi-block polymers are finite aggregates, typically around fifty polymers or

less, where the insoluble blocks shield the soluble ones from contact with the surrounding sol-

vent. Depending on control variables (temperature, polymer concentration, pH, etc..) micelles
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may self-assemble into gels that exhibit long-range order such as bcc, fcc, hcp or other, more

unusual, crystals. Micellar crystals exhibit a number of unique properties that have made them

extremely attractive for fundamental studies as well as for applications [33, 65]. Extensively

studied experimental systems include aqueous solutions of Pluronics (also known as Polox-

amers), ABA triblocks where A is Polyethylene oxide (PEO) and B is Polypropylene oxide

(PPO) [46, 66, 67] and inverted Pluronics, where the A blocks are PPO and the central block

B is PEO [58, 67] as well as non-aqueous systems such as Polystyrene-Polyisoprene (PS-PI)

diblocks in decane [68] and other solvents [69–72].

Micelles in solution are highly dynamical entities with polymers continually being absorbed

and released through time. Therefore, a micellar crystal has a considerably intricate structure,

where the long range order remains stable as the individual polymers are constantly hopping

from one micelle to the next. Theoretical approaches such as density functional or mean field

theory [39, 65, 73–77] directly study the ordered micelles and ignore the dynamical degrees

of freedom of the polymers. Studies using molecular dynamics (MD) have the advantage of

providing a reasonably realistic description of the dynamics, thus allowing the investigation

of the role of single polymer degrees of freedom. In contrast with other approaches, MD also

offers the important advantage that no assumptions need to be made about what is the possible

thermodynamic state of the system.

The goal of this study is to predict phase diagrams of triblock polymers using MD simu-

lations and to gain an understanding of the dynamics of micellar crystal formation. Because

of our ongoing interest in Pluronic systems in aqueous solutions [24], we examine systems of

AnBmAn triblocks, where the A beads are hydrophilic and B beads are hydrophobic. Although

there have been a number of previous studies of multiblock copolymers in solution using MD,

see Ref. [11] for a recent review, the prediction of crystalline structures presents substantial

difficulties. Experimentally, it is well known that the approach to thermodynamic equilibrium

is slow in these systems, with time scales of the order of minutes or hours. Therefore, even with

suitably coarse-grained models, the long time scales involved provide a considerable challenge

for MD simulation studies.
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In this paper, we provide a detailed investigation of self assembled micellar crystals using

MD. We aim to understand the mechanism by which they form, predict their range of stability

and elucidate their static and dynamic properties. We also present an in-depth study on the

challenges associated in reaching the thermodynamically stable state using MD and a successful

strategy to overcome them.

5.3 Model and Simulation Details

5.3.1 Simulation Details

Systems of polymers are modeled by coarse-grained beads in an implicit solvent. Ref. [24]

(chapter 4) provides a more detailed justification than the outline provided here. Individual

polymers are AnBmAn symmetric triblocks, where A beads are hydrophilic and B beads are

hydrophobic. All systems in this work are monodisperse with fixed values for n and m. Non-

bonded pair potentials consist of a standard attractive Lennard-Jones potential for hydrophobic

interactions

UBB = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (5.1)

and a purely repulsive potential for hydrophilic interactions

UAA,AB = 4ε
(σ

r

)12
. (5.2)

Pair potentials are cutoff to zero at r = 3.0σ. All beads have the same mass M . M , ε and

σ are arbitrary and uniquely define the units of all numbers in the simulations. Neighboring

atoms in the polymer chain are connected together with a simple harmonic potential. The

packing fraction φP of the polymers is given by

φP =
πNpolyNmon

6(L/σ)3
, (5.3)

where Npoly is the number of polymers in a box of linear dimensions L and Nmon = 2n + m

is the number of beads in each polymer. Simulation boxes are cubic with periodic boundary

conditions. For this work, we use a time step of Δt = 0.005
√

mσ2/ε. All simulations were
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performed using the LAMMPS software package [22] in the NVT ensemble via Nosé-Hoover

dynamics [17].

The temperature sensitivity of Pluronic systems is a reflection of the underlying strong

temperature dependence of the hydrophobic effect. To model temperature dependent phases

in such systems, the solvent quality for the A beads must change [24]. In this paper, we keep

the solvent quality fixed and vary only the kinetic temperature when needed to equilibrate the

systems properly.

Recently, a different implicit solvent model has been developed for describing Pluronic

systems [78], where the pair potentials for the coarse-grained simulation are fitted to results

obtained from all-atom MD and quantum chemistry simulations. Although the coarse-graining

is different (each monomer A,B represents one PEO or PPO monomer) than in our model,

the resulting potentials are quite similar to the ones in this work, Equations 5.1 and 5.2, with

the only significant difference that the values of σ are different between the two A and B

monomers, and UAA shows a minor maximum.

5.3.2 Observables

A number of observable quantities are monitored for every recorded time step during a

simulation run. The micelles themselves are identified by the same algorithm used previously

in Ref. [24]. Any hydrophobic beads within a distance of rcut = 1.2σ of one another are

identified as belonging to the same micelle. Identified micelles containing less than 3 polymers

are typically free polymers in the process of being transferred from one micelle to another and

are removed from further consideration. Observables such as statistics of micelle aggregation

number, gyration tensor, center of mass, and micelle lifetime are calculated and examined for

every simulation performed in this work. Methods used to calculate these are described in

Ref. [24].

The structure factor S(�q) is calculated over the center of mass coordinates �ri of all Nmic

micelles in the system using the formula

S(�q) = C0〈
∣∣∣∣∣
Nmic∑
i=1

ei�q·�ri

∣∣∣∣∣
2

〉 , (5.4)
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with the components of �q as multiples of 2π
L due to the use of periodic boundary conditions. The

peaks in S(�q) are then used to reconstruct the full 3D real space lattice basis, if it exists. In this

manner, S(�q) is not being used to simulate real scattering intensities as may be obtained by X-

ray experiments, but as a mathematical order parameter to discriminate between the different

ordered structures that may be present. For convenience, the normalization C0 is chosen so

that S(�q = 0) = 1. A more sophisticated treatment that allows continuum values of �q, suitable

for quantitative comparisons with X-ray experiments, has been recently introduced [79], but

we do not use it here.

Individual polymers are constantly hopping from one micelle to another. This is quanti-

fied over the entire simulation box as an overall rate of polymer transfer, rPT, by examining

contiguous simulation snapshots. Sets of indexed polymers belonging to each micelle are com-

pared between the snapshots to find the number of polymers transferred. The rate rPT is

then expressed as a fraction of the number of polymers in the box transferred per one million

time steps. A polymer that is transferred out and back to the same micelle between snapshots

will not be counted by this analysis, so snapshots are recorded every 100,000 time steps to

minimize undercounting. At kBT/ε = 1.2, a typical micelle only loses/gains one polymer per

ten snapshots recorded.

Radial distributions of the beads surrounding micelles are also of interest. These are cal-

culated by creating a histogram with bin width dr and then counting the number of beads

belonging to a micelle Ncount(r) that fall between r and r + dr, where r is the distance of the

bead from the center of mass of the micelle. Good statistics require averaging this histogram

over all micelles in the simulation and over all time steps after the micellar crystal has formed.

The average histogram is transformed into a radial density distribution of beads around a

micelle by calculating the packing fraction of beads in each bin

φi(r) =
π

6
· 〈Ncount(r)〉
4/3π

(
(r + dr)3 − r3

)
/σ3

,

where i refers to either A or B beads. We use dr = 0.2σ to balance smooth graphs with the

need for long simulation runs to obtain detailed statistics.
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5.4 Micellar crystals studied using MD

There are two major challenges faced in using MD to determine equilibrium phases. First,

the simulation must last longer than any of the relaxation times in the system. Second, the

simulation box size must be chosen properly to avoid finite size effects. The first problem is

related to the kinetic temperature at which the system is run. The second problem can become

particularly severe for simulating crystals with three dimensional order, where the incorrect

choice of an even large box size L can force the system into very distorted ordered phases. These

two issues are addressed systematically using simulations of the A10B7A10 polymer. It provides

a coarse-grained description of one of the most extensively studied Pluronics, F127 [46]. The

conclusions of this study lead to a general methodology valid for any other polymer. For a

related approach to this problem, see also Ref. [80].

5.4.1 Micelle crystallization and kinetic temperature

Initial simulations are performed with a system size of Npoly = 500 at a kinetic temperature

kBT
ε = 1.0 and with concentrations φP of 0.05, 0.10, 0.15, 0.20 and 0.25 run over 30 million

time steps each. In all cases, the initially randomly placed A10B7A10 polymers aggregate into

micelles quickly in a few thousand time steps.

Visual examination indicates that concentrations at and above φP = 0.15 are strong can-

didates for micellar crystals. Micelles are locked in place and only move a few σ from their

average positions. The analysis of the order parameter S(�q), however, indicates no long-range

ordered structures exist in any of these initial simulations. An inspection of the polymer

transfer shows that it remains negligible throughout all simulations. This is confirmed by

calculating the mean squared displacement 〈(�r(t)− �r(0))2〉 averaged over all beads in the sys-

tem. Figure 5.1 clearly shows non-diffusive behavior at kBT/ε = 1.0. These results suggest

that the individual micelles are quickly frozen in a configuration that is not representative of

equilibrium, thus preventing the entire system from reaching thermal equilibrium.

The lack of equilibration of micellar degrees of freedom suggests subsequent runs at a larger

kinetic temperature kBT/ε = 1.2. A single simulation run at φP = 0.20 formed a textbook
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Figure 5.1 (Color online) Mean squared displacement averaged over all
beads in the simulation box. This data was obtained from the
initial simulation runs of the A10B7A10 polymer at Npoly = 500
and φP = 0.20. The origin of the time axis is 30 million
time steps which indicates that the recording of these results
began after the system reached equilibrium. In the case of
kBT/ε = 1.0 this equilibrium is a metastable state, and the
beads are not diffusing. The simulation run performed at
kBT/ε = 1.2 formed a fcc lattice around time step 10 mil-
lion which persisted until the end of the run at 35 million, and
the mean squared displacement shows a characteristic diffusive
behavior.

fcc lattice after about 10 million steps, and is shown in Figure 5.2. Throughout the duration

of the run, the rate of polymer transfer was substantial, about 7% of the polymers in the box

every million time steps, even after equilibrium is reached. Playing a movie of the simulation

shows that after the lattice formed, micelles do not appear to move except by vibrating about

their average positions. However, while the micelles appear static, polymers are constantly

being exchanged among the micelles, so that any individual polymer will eventually explore

the entire simulation box. This is independently confirmed by the analysis of the mean squared

displacement of beads in Figure 5.1, which shows a classic diffusion result at kBT/ε = 1.2.

The behavior of the number of micelles Nmic in the box as a function of simulation time is

of particular interest. In simulation runs where micellar crystals are found, the system reaches
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Figure 5.2 (Color online) Snapshot of a A10B7A10 polymer simulation
run at φP = 0.20, kBT/ε = 1.2, Npoly = 500, taken after the
fcc lattice formed. A beads are represented by orange spheres,
and are shown with a reduced radius so they do not obscure
important details. Orange lines indicate bonds between these
beads. B beads are shown in blue with a radius of 0.6σ. Large
yellow spheres are placed on the lattice reconstructed from S(�q).
Every yellow sphere is sitting on a micelle, visually confirming
a perfect fcc crystal. The A beads have been removed around
a single unit cell of the lattice and yellow lines added to guide
the eye. All snapshots are generated using PyMol [56].

a plateau where Nmic remains constant, see Figure 5.3 for an example. Despite their dynamic

character even at equilibrium, Nmic then remains constant for the duration of the run. This

correlation is a general feature in all simulation runs performed. Every single one that leads

to a stable plateau in Nmic as a function of time formed a micellar crystal confirmed by peaks

in the order parameter S(�q).

5.4.1.1 Box size effects

The influence of the simulation box size choice is assessed by running additional simulations

with Npoly = 500, 600, 800, 900, and 1000 with fixed concentration φP = 0.20 and kBT
ε =

1.2. Several different random initial configurations are used at each system size to ensure

repeatability. Table 5.1 summarizes the results of all these simulation runs.
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No. configs Npoly Nmic Ordering 〈Nagg〉
1 500 32 textbook fcc 15.625
3 500 unstable none
1 600 36 none 16.67
3 600 36 distorted bcc 16.67
5 800 48 distorted bcc 16.67
5 900 54 textbook bcc 16.67
1 900 55 distorted bcc 16.36
2 1000 unstable none
4 1000 60 distorted bcc 16.67

Table 5.1 Summary of results obtained from initial test runs.

No. configs Targeted Npoly Nmic Ordering
1 16 micelle bcc 267 16 textbook bcc
4 108 micelle fcc 1800 unstable none
4 128 micelle bcc 2134 128 textbook bcc
3 250 micelle bcc 4168 unstable none

Table 5.2 Summary of simulation results from testing the algorithm on
A10B7A10.
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Figure 5.3 (Color online) Examples of the behavior of Nmic during a sim-
ulation run of the A10B7A10 polymer. Results are shown here
for two independent runs with φP = 0.20, kBT/ε = 1.2 and
Npoly = 2134. The origin of the time axis (t=0) indicates the
time step where the entire simulation started from a random ini-
tial configuration. Note how both systems eventually plateau at
the same state Nmic = 128, though it occurs at different times.

Interestingly, the additional three simulation runs at Npoly = 500 do not exhibit fcc struc-

tures. Instead, each of them remains unstable with Nmic never achieving a constant plateau

and S(�q) is devoid of peaks. Larger system sizes do reach stable ordered structures with con-

stant Nmic and numerous peaks in S(�q). Most of the structures that occur appear bcc when

examined visually, but a detailed analysis of the lattices indicates that many of them are dis-

torted. One obviously distorted structure is depicted in Figure 5.4 where the lattice is body

centered tetragonal with c/a = 1.5.

Other distortions include body centered tetragonal with c/a = 1.054 for Npoly = 800 and

a lattice that appears to be almost exactly bcc when Npoly = 1000, except that the central

micelle in the unit cell is shifted slightly from the true center. Lastly, a textbook bcc lattice is

formed in the simulation runs with Npoly = 900.

Examining the average aggregation number leads to a very illuminating result. It is found

that for almost all simulations these numbers are identical. This indicates that the average
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Figure 5.4 (Color online) Snapshot of a A10B7A10 polymer simulation
run at φP = 0.20, kBT/ε = 1.2, and Npoly = 600 taken after
the lattice formed. The resulting lattice in this system is a
body-centered tetragonal with c/a = 1.5. Coloring conventions
are identical to Figure 5.2

.

micelle aggregation number is independent of the box length (at a fixed φP ) and is only a

function of the polymer structure, kinetic temperature and concentration.

Assuming without proof that either the fcc or the bcc lattice represents the real thermo-

dynamic equilibrium of the system, the previous observation then suggests a way to generate

magic numbers of polymers to simulate equilibrium states free of finite size effects. In a bcc

lattice, each cubic unit cell contains C = 2 micelles, while the fcc lattice contains C = 4.

Therefore, in order to obtain a bcc or fcc lattice with M by M by M unit cells in a cubic

simulation box, the number of polymers needed to achieve this is given by

Npoly = CM3〈Nagg〉. (5.5)

5.4.2 MD Simulations without finite size effects

An algorithm to simulate micellar crystals without finite size effects follows very naturally

from the previous results, and is summarized in the following steps.
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1. Concentration selection: The concentration must be chosen high enough so that micelles

pack into a potential crystalline state.

2. Temperature selection: The temperature should be chosen large enough to ensure a

significant rate of polymer transfer, but low enough that the micellar crystals are not in

a disordered phase. As a rule of thumb, we have been using a polymer transfer around

10% of the polymers in the box every million steps.

3. System size selection: Calculate the average micelle number via test simulations and

use Equation 5.5 to determine the final system sizes to perform simulations on.

4. Ensure reproducibility: The formation of micellar crystals is a stochastic process so

several simulations with different initial configurations must be run.

The advantage of this algorithm is that steps 1-4 can be accomplished with relatively

modest computer resources on small system sizes, leaving the production runs with large

polymer numbers as the only computationally intensive calculations.

5.4.3 Micellar crystals of general AnBmAn triblocks

5.4.3.1 A10B7A10

Further simulation runs are carried out on the A10B7A10 polymer system to test the algo-

rithm. These additional simulations target 16, 128 and 250 micelle bcc configurations, along

with 32 and 108 micelle fcc ones. The simulations are summarized in Table 5.2. None of the

simulation runs targeting fcc phases ever reach a stable number of micelles and correspond-

ingly, S(�q) indicates there is no long-range order. On the other hand, both the 16 and 128

micelle bcc configurations are perfect and completely reproducible with the expected ordering

confirmed by the structure factor. Figure 5.5 shows a snapshot of the 128 micelle bcc phase

after it forms. Further discussion on the calculated structure factors are presented below.

Larger simulations attempting the formation of a 250 micelle bcc crystal never resulted in a

stable Nmic plateau.
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Figure 5.5 (Color online) Snapshot of a A10B7A10 simulation run at
φP = 0.20, kBT/ε = 1.2, and Npoly = 2134, taken after the
bcc lattice formed. Coloring conventions are identical to Fig-
ure 5.2

5.4.3.2 A20B14A20

The A20B14A20 polymer is also studied as it provides a closer representation to the real

Pluronic F127, since there are twice as many monomers in a polymer and the level of coarse-

graining is less, as discussed in Ref. [75]. Applying the algorithm developed above to search

for micellar crystals, the concentration was selected at φP = 0.20 and the kinetic temperature

at kBT/ε = 1.9. Initial simulation runs establish that 〈Nagg〉 = 22.5. The results, summarized

in Table 5.3, are similar to those for the smaller A10B7A10 polymer, with the bcc structure

being the most commonly found. The fcc phase again only appears in a single simulation run

and is not reproducible.

5.4.3.3 A6B7A6

Given the prevalence of bcc lattices so far, a polymer with shorter A-blocks (A6B7A6),

expected to form more crew-cut micelles and hence more prone to assemble into a fcc lattice,

is also investigated. Applying the algorithm developed above, the concentration is selected

at φP = 0.15, the kinetic temperature at kBT/ε = 1.1, and the average aggregation number
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No. configs Targeted Npoly Nmic Ordering
2 16 micelle bcc 360 16 textbook bcc
1 32 micelle fcc 720 32 textbook fcc
1 32 micelle fcc 720 35 distorted bcc
2 32 micelle fcc 720 unstable none
1 54 micelle bcc 1215 54 textbook bcc
3 54 micelle bcc 1215 55 distorted bcc
2 108 micelle fcc 2430 unstable none

Table 5.3 Summary of simulation results from testing the algorithm on
A20B14A20 at kBT/ε = 1.9.

No. configs Targeted Npoly Nmic Ordering
5 16 micelle bcc 222 16 textbook bcc
5 32 micelle fcc 444 unstable none
5 54 micelle bcc 750 54 textbook bcc
5 108 micelle fcc 1500 unstable none
3 128 micelle bcc 1778 128 textbook bcc
1 128 micelle bcc 1778 136 distorted bcc
3 250 micelle bcc 3472 unstable none
4 432 micelle bcc 6035 unstable none

Table 5.4 Summary of simulation results from testing the algorithm on
A6B7A6 at kBT/ε = 1.1.

is found to be 〈Nagg〉 = 13.875. Again, the bcc micellar crystal is most commonly found, as

shown in the results in Table 5.4. No fcc phases are found at this kinetic temperature.

However, the rate of polymer transfer at kBT/ε = 1.1 is larger than 10% per million steps, so

some additional simulation runs are performed at a slightly reduced temperature kBT/ε = 1.07,

where polymer transfer is slightly reduced. In this case a completely reproducible fcc structure

is found for relatively small system sizes, but no fcc lattices could be stabilized for larger ones

as shown in the results in Table 5.5.
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No. configs Targeted Npoly Nmic Ordering
4 32 micelle fcc 444 32 textbook fcc
1 32 micelle fcc 444 unstable none
2 108 micelle fcc 1500 unstable none
2 108 micelle fcc 1500 103 distorted bcc
1 108 micelle fcc 1500 104 distorted bcc

Table 5.5 Summary of simulation results from testing the algorithm on
A6B7A6 after cooling to kBT/ε = 1.07.

5.4.4 Non-cubic morphologies

It is well known that block copolymer systems form ordered phases other than those with

cubic symmetry [33]. Both lamellar planes (1D) and hexagonal (2D) ordering of cylindrical

micelles are commonly found. With the lower dimensionality, the influence of finite size effects

in distorting the phases is reduced because these systems rotate to fit in the periodic simulation

box. Consequently, hexagonal and lamellar phases are are much simpler to obtain using MD

simulations than cubic phases.

For instance, the A6B7A6 polymer forms a hex phase at a packing fraction of φP = 0.25

every time with no need for multiple runs from different initial conditions. No hex or lamel-

lar phases are found for A10B7A10 or A20B14A20, consistent with experiments for Pluronic

F127 [46]. A4B9A4, not otherwise mentioned in this paper, exhibits all three phases as concen-

tration is increased: cubic, hexagonal, and lamellar, consistent with experiments for Pluronic

P65 [46].

Given that hexagonal and lamellar phases are relatively simple to obtain, we focus our

analysis on micellar crystals with periodicity in three dimensions.

5.5 Dynamics of crystal formation

Molecular dynamics simulations not only allow the prediction of equilibrium phase diagram,

but also describe the dynamics of micelles as they evolve towards thermal equilibrium. In the

simulations presented previously, micelles quickly form from a completely random configuration
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of polymers, and then after a long simulation time (10 to 20 million time steps) order into a

micellar crystal. We now present a quantitative picture of the dynamics of the polymers and

micelles as the system approaches equilibrium. All results in this section are obtained from

the analysis of the simulations of the A10B7A10 polymer.

5.5.1 Polymer transfer is an activated process

Polymer transfer plays an important role in achieving the formation of micellar crystals

in the simulations discussed above. If there is too little, the single micelle degrees of freedom

do not reach equilibrium. Too much pushes the system into a disordered state. Moreover,

the rate of polymer transfer is extremely sensitive to the kinetic temperature. An equilibrated

Npoly = 2134 bcc micellar crystal was taken as an initial configuration for additional simulations

that continued with kBT/ε ranging from 1.0 to 1.3. Figure 5.6 shows the results. The rate of

polymer transfer rPT starts near 0 at kBT/ε = 1.0 and increases exponentially, following an

Arrhenius form

rPT = rO exp(−ΔG�

kBT
) . (5.6)

That is to say that polymer transfer is an activated process. Curve fitting, we find

ΔG� ≈ 10ε . (5.7)

Figure 5.6 also includes results from simulations performed using a Langevin thermo-

stat [81]. It controls the temperature by adding an additional force to every particle �F =

−γ�v+ �Frand where the magnitude of the random force �Frand and γ set the temperature through

the fluctuation dissipation theorem [81]. The results for two different values of γ, which are

plotted in Figure 5.6, show the dependence of the polymer transfer for different drag coeffi-

cients.

In Figure 5.6, the slope of the lines in the inset plot are universal for both thermostats and

both values of γ. The universality of this value implies that the calculated ΔG� is the free

energy barrier between a polymer in a micelle to a transition state between micelles. While their

slopes are universal, the y-intercepts (related to rO) should depend on the diffusion coefficient



71

of the hydrophilic beads, which, from the Einstein relation [82] is inversely proportional to the

drag coefficient. This is reflected in the offsets of the various plots in Figure 5.6, which are

clearly different.
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Figure 5.6 (Color online) Polymer transfer rPT versus temperature cal-
culated from simulation runs of the A10B7A10 polymer at
φP = 0.20 and Npoly = 2134. All simulations start from an
already equilibrated bcc phase. Results are included for the
Nosé-Hoover thermostat and Langevin thermostat with two dif-
ferent values of γ. The inset plots the same data as a plot of
log10(rPT) versus ε/(kBT ) to show that the slopes of the result-
ing lines (−ΔG�) are universal.

The difference in free energy between a polymer within a micelle and in the transition state

entirely surrounded by solvent and hydrophilic beads can be roughly estimated as ΔG� ∼
mexp · ε, where mexp is the number of hydrophobic beads exposed to solvent. If the length

of hydrophobic block is low, mexp ∼ m. Thus for the A10B7A10 polymer analyzed here, it is

expected that ΔG� ∼ 7ε, which is consistent with the measured value. Hydrophobic beads

in polymers with a longer hydrophobic block are expected to form a globule in the transition

state, leading to a slower increase of ΔG� going as mexp ∼ m2/3. Assuming that rO remains

constant as m increases, then maintaining the same rate of polymer transfer rPT will require

increasing the kinetic temperature by the same factor. These considerations agree remarkably
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with the kinetic temperature of kBT/ε = 1.9 selected for the A20B14A20 polymer simulations,(
mnew

mprev

)2/3

· kBTprev/ε =
(

14
7

)2/3

· 1.2 = 1.9

.

However, as the size of the hydrophobic block grows, the transition state should also have

an additional contribution due to the free energy cost of passing a globule through the brush

formed by the hydrophilic coronas. So this simple estimate should eventually break down.

Implicit in our arguments is that polymer transfer accounts for the diffusive behavior in

Figure 5.1. Therefore, the diffusion coefficient can be roughly estimated from the time τPT it

takes a polymer to travel the nearest neighbor micelle distance aL. Comparing this estimate

with the fit to Figure 5.1, a good agreement is obtained:

〈(�r(t) − �r(0))2〉
t

= 1.3 · 10−5 σ2

Δt
(5.8)

a2
L

τPT
= a2

LrPT = 1.1 · 10−5 σ2

Δt
.
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Figure 5.7 (Color online) Number of micelles in the ordered phase Nord as
a function of time for a single simulation run of the A10B7A10

polymer at φP = 0.20 and temperature kBT/ε = 1.2. The
origin of the time axis (t=0) on this plot indicates the time step
where the simulation was started from a random configuration.
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5.5.2 Dynamics of micellar crystal formation

The structure factor S(�q) is sufficient as an order parameter to determine if the entire

system is in an ordered state, but it reveals no information about the dynamics before that

final state is formed. For this, we turn to the bond order analysis [83] and apply it to all

the micelles at every time step in simulation runs performed on the A10B7A10 polymer with

Npoly = 2134. In short, at any given time step where a micellar crystal may have partially

formed, the bond order analysis identifies those micelles belonging to the ordered and the

disordered phases.

One simple way to examine the results is to count the number of ordered micelles Nord

in the simulation box at every time step. An example from one simulation run is shown in

Figure 5.7, plots for all other simulation runs performed are qualitatively very similar, though

the ordered phase appears at different times.

After starting the simulation shown in Figure 5.7 from a random configuration, micelles

quickly form in only a few thousand time steps and single micelle degrees of freedom are

equilibrated before one million time steps have passed. The system then explores configuration

space as polymers are transferred and micelles travel anywhere from a few σ up to 100σ without

any micelles appearing ordered until time step 10 million. At this point, the number of ordered

micelles grows very quickly over the next one million steps until all 128 micelles are in the bcc

lattice and remain there for the duration of the simulation.

During this short time span of Nord growth, only 7% of the polymers in the box are

transferred between micelles, such a small amount that it cannot fully account for the ordering

of all the micelles. During the same time interval, a detailed analysis shows that some micelles

move significantly (up to 10σ) before the ordered phase finishes forming. This may suggest that

micellar crystal formation is a two step process, where first individual micelles are equilibrated

by polymer transfer followed by a second step where polymer transfer becomes irrelevant and

the actual crystal grows via the movement of micelles.

However, some additional simulations performed to test this hypothesis do not support

it. Single micelle degrees of freedom in these tests are first equilibrated at kBT/ε = 1.2 for 5
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million time steps and then the kinetic temperature is quenched to kBT/ε = 1.0 to significantly

reduce polymer transfer and allow micelle movement. None of these simulation runs resulted in

the formation of an ordered phase. We therefore conclude that a significant amount of polymer

transfer remains a critical component in the actual growth of ordered micellar crystals.
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Figure 5.8 (Color online) Structure factor calculated after the lattice
formed for the A10B7A10 polymer simulation run at φP = 0.20,
kBT/ε = 1.2, and Npoly = 2134. The full 3D S(�q) is plotted as
a scatter plot of S(�q) versus |�q|. The multiplicity of the various
peaks can be seen. Vertical dotted lines indicate the location
of identified peaks, and their positions relative to q∗ = 4 · 2π/L

are also noted (the factor of 4 is included because there are 4
unit cells along the box length L).

5.6 Properties of micellar crystals

5.6.1 Structure factor

We calculate the structure factor (Equation 7.7) for the equilibrium state of every simulation

run performed and use it as an order parameter to determine if a micellar crystal is present. In

those systems where the crystal does form it is a perfect single crystal and, correspondingly, a

large number of peaks can be identified in S(�q) as shown in Figure 5.8. Peaks occur in reciprocal

space at discrete points �q = �G, where �G are the reciprocal vectors of the corresponding lattice.
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Figure 5.9 (Color online) Fluctuations in micelle positions vs. temper-
ature calculated for a A10B7A10 polymer simulation run at
φP = 0.20, kBT/ε = 1.2, and Npoly = 900. The micellar crys-
tal was formed at kBT/ε = 1.2 and then cooled to the target
temperature without disrupting the lattice. Simulation runs
heated to a higher temperature do disrupt the lattice and Δr2

becomes ill-defined. Fluctuations on the y-axis are plotted as a
ratio relative to aL, the nearest neighbor distance in the lattice.

Peaks evident in Figure 5.8 decrease in magnitude for larger values of �G. This damping is

expected to follow a Debye-Waller factor [84] approximately described as

S(�q = �G) ∝ exp(−〈Δr2〉|�G|2/3) , (5.9)

where 〈Δr2〉 is the mean square displacement of the micelle center of mass from its ideal lattice

position. A curve fit, shown in Figure 5.8, is in excellent agreement with Equation 5.9. The

Lindemann ratio fL is defined as √
〈Δr2〉 = fLaL (5.10)

where aL is the nearest neighbor distance between micelles. Using the parameters of the curve

fit yields fL ≈ 0.14.

The Lindemann parameter fL can alternatively be computed directly by measuring the

mean square displacement of micelles about their average lattice positions. The results, shown

in Figure 5.9 agree remarkably well with the estimate from the Debye-Waller factor. Further-
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more, it has been established empirically that approximately at fL = 0.13 solids melt into

disordered states [85], a result that is also supported from our simulations as we observed no

micellar crystals form at kinetic temperatures greater than kBT/ε = 1.2
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Figure 5.10 (Color online) Radial density distribution for two nearest
neighbor micelles superimposed with a separation of the near-
est neighbor distance in the bcc lattice. The y-axis plots the
volume fraction of the different beads belonging to a micelle
in the local environment around the micelle. The results were
calculated from a A10B7A10 simulation run at φP = 0.20,
kBT/ε = 1.2, Npoly = 2134 and averaged over all micelles
and time steps after the micellar crystal has formed.

5.6.2 Structure of the lattice of micelles

Micelles in the A10B7A10 polymer system are arranged with the centers of mass sitting

on a bcc lattice with a nearest neighbor spacing of aL = 11.53σ. This number remarkably

agrees with the length of the polymer if stretched completely into a straight line across the

diameter of a circle from the center of one nearest neighbor micelle to the opposite one,

Nmon · r0 = 27 · 0.83σ = 22.41σ ∼ 2aL, where r0 = 0.83σ is the equilibrium bond length.

This suggests that polymers are maximally stretched, either along the diameter or in a bent

configuration. Detailed visual examinations of simulation snapshots indicate that there are a
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significant number of polymers in the bent configuration, but there are also some in the linear

extended configuration. The micellar cores are liquid-like, and over time, a given polymer

constantly switches from linear to bent configurations.

The previous arguments also suggest a significant amount of overlap of the coronas between

two neighboring micelles in the lattice. To examine this more quantitatively we calculate

the micelle density distribution as a function of the radius averaged over all micelles and all

time steps in the simulation after the micellar crystal has formed. Figure 5.10 shows the

results, confirming the overlap. Hydrophilic A beads from one micelle explore the solvent until

occasionally bumping into the hydrophobic core of one of the nearest neighbor micelles.

A remarkable aspect of micellar crystals found in this work is the stability of the average

aggregation number. If the polymers within the micelle are maximally stretched, the core of

the micellar radius is Rc = mr0σ/2, so the aggregation number can be estimated from

〈Nagg〉 =
4π(mr0/2)3σ3

mr0σ3
=

π

6
m2r2

0 . (5.11)

For the A10B7A10 this yields 〈Nagg〉 = 17.7, in good agreement with the simulation results in

Table 5.1. Aggregation numbers for the other polymers simulated do not agree, implying that

the polymers in those systems are not maximally stretched.

5.7 Conclusions

5.7.1 Summary of results

Cubic micellar crystals of AnBmAn polymers form in MD simulations at sufficiently high

concentrations. In order to form the crystals, high enough kinetic temperatures are needed to

enable polymer transfer between micelles, which is critical for equilibrating the system. The

polymer transfer process is activated and described by transition state theory. It results in

an apparent diffusive behavior of the individual polymers while the lattice of micelles remains

stable. Excessive polymer transfer at even higher kinetic temperatures triggers a disorder

phase transition to a micelle liquid.
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In the process of forming the ordered phase, the system spends a long time in a micellar

liquid phase equilibration period where no ordered nucleates are present. Eventually, a large

nucleation event takes place and the micellar crystal then grows very quickly, filling the entire

simulation box in a relatively short time span. During this growth period, polymer transfer

and movement of micelles are both crucial in the formation of the final micellar crystal. The

preferred ordering near the disordered transition for all triblocks studied in this system is the

bcc lattice. Only at lower kinetic temperatures and for polymers with short hydrophilic groups

(A6B7A6 at kBT/ε = 1.07) is there some evidence for a stable fcc phase. These results are

summarized in Figure 5.11.

kBT
ε

Not accessible by MD
FCC,
BCC

BCC
Disordered
phase

Figure 5.11 Summary of the phase diagram encompassing all simulated
triblocks AnBmAn (all forming cubic phases with long range
order). Near the disorder transition, bcc is always favored and
fcc lattices only begin to appear at lower temperatures. At
even lower temperatures polymer transfer becomes negligible
and MD would require prohibitively long simulations to reach
equilibrium.

All micellar crystals obtained in this work are perfect single crystals displaying a high degree

of order. Even in a periodic simulation box with four unit cells along a side, a single additional

micelle can disrupt the resulting lattice significantly. The number of micelles is controlled by

changing the number of polymers in the box, as the system displays a remarkable stability in the

average aggregation number of the micelles that form. In the equilibrium lattice, micelles are

closely packed with a significant amount of overlap between the coronas of neighboring micelles.

Polymers in the micelles are highly stretched across the liquid hydrophobic core through the

solvent and qualitatively well described within the strongly stretched approximation [77,86].
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5.7.2 Stability of the bcc lattice near the disorder transition

Our simulations results show a strong preference for bcc lattices near the disorder transition.

A similar result has been experimentally observed for PS-PI diblocks [70], where it has been

attributed to the fact that near the disordered phase, micelle aggregation numbers are small.

The phase diagram of f-star polymer systems shows that fcc lattices are only stable for large

number of arms f > 60, while bcc lattices are favored when the number of arms is small [87].

By considering polymeric micelles as f-star polymers, where the number of arms f is given by

f ∼ 2〈Nagg〉 then bcc lattices are favored when the aggregation numbers are small 〈Nagg〉 � 30.

This argument, however, hinges on two key assumptions: the dynamic nature of micelles does

not play a significant role and that the hydrophilic blocks are sufficiently long. The first

assumption is already somewhat problematic given the importance of polymer transfer found

in this work. As for the second assumption, a criteria establishing how long hydrophilic blocks

should be has been put forward in Ref. [73], where it is shown that if the size of the corona

is Lc and the core radius Rc, bcc lattices are favored for Lc/Rc > 1.5. Our results for the

A10B7A10 and A6B7A6 yield Lc/Rc ∼ 0.9 and Lc/Rc ∼ 0.7. It is therefore not possible to

attribute the stability of the bcc lattices observed in our simulations as being a consequence

of the small aggregation numbers 〈Nagg〉 � 30.

It is tantalizing to interpret the stability of the bcc lattice in terms of the Alexander-

McTague (AM) scenario [88], where it was argued that bcc should be generally expected

to be the stable phase near a (weakly first order) disorder transition. Subsequent analysis

however, showed that cubic lattices other than bcc cannot be ruled out near the disorder

transition [89,90]. In Ref. [89,90] it is shown that the characteristic property of bcc lattices is

that their free energy is closer to the disordered state, thus suggesting that bcc lattices follow an

Ostwald step rule [91], where the solid phase that nucleates first is the one whose free energy is

closest to the disordered (or fluid) state. In this case, the complete crystallization process would

require an additional step, where after the bcc crystallites are formed, they gradually evolve

towards the stable thermodynamic phase. Certainly, it follows from our results that fcc lattices

are difficult to obtain by MD for the systems we simulate, but at least in one system (A6B7A6
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at kBT/ε = 1.07) the fcc lattice has been obtained reproducibly, and did not proceed through

an intermediate bcc step. In addition, for this very same system, closer to the disordered state

(kBT/ε = 1.1), no fcc structure was found to be stable. Although not completely conclusive,

our results are more consistent with the bcc as being a stable thermodynamic phase near the

disordered phase.

There are serious limitations in identifying micelles as simple particles, because as the

disordered phase is approached micelle aggregation numbers decrease and polymers become

essentially free. So the disordered phase is not a simple liquid as it is assumed by AM and

all subsequent work. Similar analysis in polymer melts [92], shows that in the vicinity of the

spinodal, the only possible phase with cubic symmetry is bcc. Beyond the spinodal, other

structures are favored [93]. Based on the previous discussion, we attribute the stability of the

bcc phases observed in our simulations as a reflection of the admittedly non-rigorous statement

that bcc phases are usually favored near the disordered transition. We defer to future work

to establish this result within a rigorous framework, where all the nuances involved in micelle

formation are properly taken into account.

5.7.3 Implications for Pluronic systems

The A10B7A10 and A20B14A20 polymers discussed in this paper provide coarse-grained

descriptions of Pluronic F127. All simulations have been carried out in very good solvent

conditions for the A beads and at total volume fractions of 15–20%. Experimental results

in this region of the phase diagram are surprisingly disparate. Simple cubic [94], bcc [95]

and fcc [96] have all been proposed as the structure in this region. Very recently, on the

basis of new experimental data, the situation has been thoroughly reviewed by Li et al. [97]

(although for significantly higher temperatures), see also Ref. [98], but without clear conclusive

results. Our theoretical analysis clearly favors the bcc lattice close to the disorder transition.

The comparison of our results with the experimental F127 system is more accurate at low

temperatures (at 20-25 C), where the water can be considered as a good solvent for PEO, as

discussed in Ref. [24].
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The phase diagram of other Pluronic systems, such as P65 have also been investigated and

compare very well with experimental results, as briefly mentioned previously.

5.7.4 Outlook

We have shown that MD allows a detailed investigation of both the dynamics as well as

the thermodynamic equilibrium of micellar crystals. Many studies have been performed by

modeling micelles as point particles, where the complex structure of the micelles is accommo-

dated through refined two-body potentials, either derived analytically or empirically. While

successful in many situations, two-body potentials do not account for the dynamic nature of

micelles, which play a critical role in determining the phases of the system, particularly near

the disorder transition.

There are a few areas where further work needs to be performed. First, all simulations

in this work have been performed in good solvent conditions. MD with implicit solvents

of different quality are also of great interest, especially to determine the phases of Pluronic

systems over a wide range of temperatures [24]. Next, the largest micellar crystal formed in

this work contains 2134 polymers (57,618 beads). We were unable to find any order in larger

systems, even after running as many as 50 million time steps. It is possible that significantly

longer simulations may be required for larger systems. Also, the range of applicability of MD

is restricted to a relatively narrow range near the disorder transition, as schematically shown

in Figure 5.11. Finally, the role of the solvent will need to be investigated in more detail, as

it is found in the Rouse vs. Zimm dynamics for simple homopolymers [82]. Future studies will

be necessary to completely clarify and expand all these issues.

The relevance of our study goes beyond pure systems. In Ref. [99] for example, Pluronic

polymers have been used to template the growth of an inorganic phase of calcium phosphate,

aimed at creating new polymer nanocomposites with lightweight/high strength properties or

that mimic the structure of real bone. An understanding of the pure systems is clearly a

prerequisite for accurate models of polymer nanocomposites. We hope to report more on this

topic in the near future.
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CHAPTER 6. GENERAL PURPOSE MOLECULAR DYNAMICS

SIMULATIONS FULLY IMPLEMENTED ON GRAPHICS

PROCESSING UNITS

A paper published in the Journal of Computational Physics [3]

Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset

6.1 Abstract

Graphic Processing Units (GPUs), originally developed for rendering real-time effects in

computer games, now provide unprecedented computational power for scientific applications.

In this paper, we develop a general purpose molecular dynamics code that runs entirely on a

single GPU. It is shown that our GPU implementation provides a performance equivalent to

that of fast thirty processor core distributed memory cluster. Our results show that GPUs

already provide an inexpensive alternative to such clusters and discuss implications for the

future.

6.2 Introduction

Fuelled by the dramatic increases in computing power over the years, the impact of com-

putational methods in the traditional sciences has been gigantic. Yet, the quest for new

technologies that enable faster and cheaper calculations is more fervent than ever, as there are

a vast number of problems that are on the brink of being solved if only a relatively modest

increase in computer power were available.

Molecular dynamics (MD) has emerged as one of the most powerful computational tools [81],

as it is capable of simulating a huge variety of systems both in and out of thermodynamic
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Figure 6.1 Performance of CPUs (blue circles) and GPUs (green squares)
over the last few years. Figure courtesy of NVIDIA, and
adapted from Ref. [100].

equilibrium. During the last decade, general purpose MD codes such as LAMMPS [22],

DLPOLY [52], GROMACS [101], NAMD [23], and ESPResSO [102] have been developed to

run very efficiently on distributed memory computer clusters. More recently, Graphics Pro-

cessing Units (GPUs), originally developed for rendering detailed real-time visual effects in

computer games, have become programmable to the point where they are a viable general

purpose programming platform. Dubbed GPGPU for general purpose programming on the

GPU, it is currently getting a lot of attention in the scientific community due to the huge

computational horsepower of recent GPUs, evident in Figure 6.1 [4–7, 103, 104]. The use of

GPGPU techniques as an alternative to distributed memory clusters in MD simulations has

become a real possibility.

Until recently, the only way to make use of the GPU’s abilities was to carefully cast the

algorithm and data structures to be represented as individual pixels being written to an image

via fragment shaders. In addition to the cumbersome nature of programming this way, there

are various other limitations imposed. Perhaps the most severe is that each thread of execu-

tion can only write a single output value to a single memory location in a gathered fashion.

Scattered writes to multiple memory locations are important in implementing a number of



85

algorithms, including parts of molecular dynamics. Likely because of this limitation, all the

early implementations of MD using GPUs have been based on a mixed approach. The GPU

performs those computationally intensive parts of MD that can be implemented in a gather

implementation, and the CPU handles the rest [103, 104]. A typical MD simulation imple-

mented on the CPU spends only 50–80% of the total simulation time performing these gather

operations. So the speedup by using a mixed CPU/GPU approach is limited to a factor of

2 or 3 at most, even though, as shown in Figure 6.1, the GPU has the ability to perform

significantly more floating point operations (FLOPs) per unit time than a CPU, thus leaving

room for a dramatic speedup.

In this paper we provide, to our knowledge, the first implementation of a general purpose

MD code where all steps of the algorithm are running on the GPU. This implementation is made

possible by the use of the NVIDIA R© CUDATM C language programming environment. CUDA

provides low level hardware access, avoiding the limitations imposed in fragment shaders. It

works on the latest G80 hardware from NVIDIA, and will be supported on future devices [100].

Algorithms developed for this work will be directly applicable to newer, faster GPUs as they

become available. After the initial submission of this paper, it came to our attention that

J. A. van Meel et al. [7] submitted a similar work nearly simultaneously, where they also

used CUDA to put all the steps of MD onto the GPU. The differences in implementation and

performance are discussed in subsection 6.3.7.

Early on in the development, it was decided not to take an existing MD code and modify

it to run on the GPU. Any existing package would simply pose too many restrictions on

the underlying data structures and the order in which operations are performed. Instead, a

completely fresh MD code was built from the ground up with every aspect tuned to make the

use of the GPU as optimal as possible. Despite these optimizations, every effort was made to

develop a general architecture in the code so that it can easily be expanded to implement any

of the features available in current general purpose MD codes.

This work includes algorithms for a very general class of MD simulations. N particles, in

either an NVE or NVT ensemble, are placed in a finite box with periodic boundary conditions,
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where distances are computed according to the minimum image convention [15]. Because

our own interests are the simulation of non-ionic polymers [24], non-bonded short-range and

harmonic bond forces are the only interactions currently implemented in our code. Three

major computations are needed in every time step of the simulation: Updating the neighbor

list, calculating forces, and integrating forward to the next time step.

Additional interactions such as angular and dihedral terms do not present new conceptual

challenges, and can be implemented via adaptations of the algorithms presented here. Elec-

trostatic forces are also required in a wide range of MD simulations. A GPU implementation

of the PPPM solver [22] within the current code framework is certainly possible, but left for

future work.

6.3 Implementation details

6.3.1 CUDA Overview

Programming for the GPU with CUDA is very different from general purpose programming

on the CPU due to the extremely multithreaded nature of the device. For an algorithm to

execute efficiently on the GPU, it must be cast into a data-parallel form with many thousands

of independent threads of execution running the same lines of code, but on different data. As

a simple example, consider the pseudocode ai ← bi · ci + di which needs to be calculated for

all i from 0 to N . In a traditional CPU implementation, this instruction would be inside of

a loop that calculates a0, then a1 . . . one after the other. In contrast, one can imagine that

all elements of ai are calculated simultaneously on the GPU as the simplest model of thread

execution. Because of this simultaneous execution, the output of one thread cannot depend

upon the output of another, which can pose a serious challenge when trying to cast some

algorithms into a data-parallel implementation.

In CUDA, these independent threads are organized into blocks which can contain anywhere

from 32 to 512 threads each, but all blocks must be the same size. Any number of blocks can

be run on the device, though optimum performance requires more than a hundred blocks

executing in parallel. Each block executes identical lines of code and is given an index starting
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from 0 to identify which piece of the data it is to operate on. Within each block, threads are

numbered from 0 to identify the location of the thread within the block. Using this indexing

scheme, the pseudocode mentioned above could be implemented by using i ← bid · M + tid,

where bid is the block index, M is the number of threads per block and tid is the index of the

thread within the block.

While the simultaneous picture of thread execution on the GPU is illustrative in a concep-

tual way, implementing efficient algorithms on the GPU requires understanding a little more

in detail how the hardware actually executes all N threads. After all, any real hardware can

only have a finite number of processing elements that operate in parallel. In particular, a single

8800 GTX GPU contains 16 multiprocessors. A single multiprocessor can execute a number

of blocks concurrently (up to resource limits) in warps of 32 threads. For instance, let’s say

that there are 3 blocks on a multiprocessor with 128 threads each. In this case, there are 12

warps available for execution. At any given moment, the hardware examines which warps are

ready to execute and chooses one. The current instruction of this warp is then executed on

the multiprocessor and it moves on to another warp. In this manner, the execution of threads

on the device is not so much simultaneous as it is interleaved.

There are two important consequences of this execution model. First is that the smallest

unit of execution on the device is the warp. All 32 threads in the warp must execute the same

instruction in a data-parallel fashion. Branches (if statements and loops) in the code can lead

to different threads executing different instructions. As long as the entire warp follows the

same branch, everything is fine. If different threads in the same warp follow different branches,

however, the device must serialize this divergent warp in an inefficient manner resulting in less

than optimal performance. One way that this can be avoided is through the use of predicated

instructions. If the compiler deems a branch in the code is short enough, it will generate

instructions such that all threads in the warp follow both branches, but the instructions have

a predicate that prevents incorrect output from being generated.

The second consequence is that the device is able to hide memory access latencies. The

GPU sits on an expansion board with its own memory (referred to as global or device mem-
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ory) separate from the normal RAM accessible by the CPU. Device memory has a very high

bandwidth available, over 70 GB/s, but also has a fairly high delay from the time a memory

address is requested to the time it is available. During this latency period, hundreds of arith-

metic operations can be performed on a multiprocessor. Thus, the advantage of the interleaved

warp execution is that warps which have read their data can be performing computations while

other warps running on the same multiprocessor are waiting for their data to come in from

global memory, effectively hiding the latency entirely.

On the subject of global memory, there is one additional detail critical to obtaining optimal

performance. All memory access within a warp should be arranged such that thread w within

the warp accesses the array element base+w, where base is a multiple of the warp size. In other

words, threads within a warp must access elements along a row of a matrix in global memory

which has been created with a padding to ensure that the base address is a multiple of the

warp size down the columns. When all of these requirements are met, the global memory read

is said to be coalesced. If the requirements are not met, the application still runs correctly, but

memory access performance is reduced by a factor of 10–20. For example, the simple pseucode

above has coalesced memory accesses as long as M is a multiple of 32.

Using a coalesced global memory read is the fastest, most efficient way to read device

memory, but not all algorithms can be adapted to read memory in such a regular pattern.

For random access memory patterns, the hardware provides a texture unit, so called because

it is used to paint two dimensional images (textures) across three dimensional surfaces when

the GPU is used as a graphics output device. Every multiprocessor has its own small texture

cache to handle random memory access patterns faster than non-coalesced global memory

reads. Textures are just another way of reading global memory and elements can be accessed

with one or two dimensional indices. In this work, only one dimensional textures are used and

reads are denoted by tex1Dfetch().

The last aspect of CUDA to be aware of for the purposes of this work is that not all threads

are really executed independently from one another. Only blocks are completely independent.

For the threads within a single block, there are a few mechanisms by which they can commu-
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nicate. First is a barrier mechanism named syncthreads(). Any thread in the block is delayed

at this synchronization point until all other threads in the block reach it. Second, each block is

given a small area of shared memory that exists on the multiprocessor. Any thread in the block

can access this shared memory area without the latency associated with global memory reads.

There are still a few performance pitfalls even with shared memory though, as it is accessed

via 16 banks. For the full details on this and many other aspects of GPU programming not

discussed here, interested readers are referred to the CUDA Programming Guide [100].

Most current MD codes developed for execution on a distributed memory cluster [22,52,101]

use the Message Passing Interface (MPI) library to perform their computations across many

nodes. MPI is similar to NVIDIA’s CUDA in some sense: both allow a developer to write one

bit of code that is executed many times in parallel on a grid. The similarities end here, how-

ever. MPI provides a number of routines for very efficient communication and synchronization

between individual processes in the grid. CUDA threads cannot even communicate with each

other, and synchronization can only be performed by allowing the kernel call to finish, except

for the limited block shared memory and synchronization. Still, many parallel programming

concepts commonly used in MPI programming can be applied to a CUDA kernel. Additionally,

CUDA and MPI do not need to be considered as two different options for the implementation

of a code. A cluster of nodes, each with a GPU, could be constructed and MD code developed

that uses CUDA on each GPU with a message passing library to communicate between the

nodes. J. E. Stone et al. [6] are working on this using NAMD. In this work, we focus on the

core algorithms of MD and optimize them to be as fast as possible on a single GPU.

6.3.2 Short range non-bonded forces

Short range pair forces define the force between any pair of particles as a function of the

displacement vector separating them, cutoff to 0 for distances greater than rcut. The forces on

all such pairs must be summed to produce the final net force on each of the N particles in the

simulation. The standard algorithm [15, 22, 105, 106] is to employ a data structure that lists

interacting pairs, the neighbor list, which has already been calculated.
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Algorithm 1 Calculate pairwise forces: CPU implementation.

Require: �Fk is initialized to �0 for all k

Require: NBLji only stores neighbors where i < k

for all particles i do
�A ⇐ �Ri

for j = 0 to NNi − 1 do
k ⇐ NBLji

�B ⇐ �Rk

d�r ← minimum image of �B − �A

if |d�r| ≤ rcut then
�C ← force(d�r)
�C + �Fi ⇒ �Fi

−�C + �Fk ⇒ �Fk

end if
end for

end for

The neighbor list contains particles k that are less than some distance rmax from particle

i, where rmax ≥ rcut. Neighbor list entries are stored in a matrix NBLji ← k with the list of

neighbors for each particle i going down a column of the matrix. The number of neighbors in

each list varies from particle to particle, so an auxiliary structure NNi stores the number of

neighbors of particle i. Using a matrix to represent the neighbor list deviates from standard

practice [15, 22] where a linked list is typically used instead. The matrix is used here because

the neighbor list will need to be read in a coalesced way in parallel on the GPU, which is

impossible with a linked list.

The calculation of the forces on all N particles is implemented on the CPU following

Algorithm 1. Focusing on this CPU implementation for the moment, Newton’s third law is

used to increment to the forces on particle i and k at the same time, reducing the number of

floating point calculations that need to be performed by half. However, doing so requires that

the all of the scattered memory locations k are accessed via a read-modify-write operation

inside inner loop for each particle i. The price of the increased number of memory accesses

and their random nature is to drop performance increase from the saved computations down

to approximately 1.5 times faster from a maximum of 2 on the CPU.
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When designing algorithms on the GPU, the tradeoffs between memory access complexity,

number of memory accesses, and number of computations performed are even more significant,

since the price of scattered memory access vs. coalesced access is so high. Given this sensitivity,

care is taken in writing the pseudocode to call attention to main memory reads (RAM on the

CPU, device memory on the GPU), denoted by ⇐, and writes, denoted by ⇒. Reads and

writes from local registers are similarly denoted respectively by ← and →.

For clarity of presentation, only a single pair force is calculated for all particles. It is,

of course, easy to read in particle type identifiers and use different coefficients in the force

calculation depending on what the type pair is.

Algorithm 2 Calculate pairwise forces: GPU implementation

Require: bid is the index of this block
Require: tid is the index of this thread within the block
Require: M is the number of threads in each block
Require: �N/M� blocks are run on the device
Require: NBLji stores all neighbors of each particle
1: i ← bid · M + tid
2: �Fsum ← �0
3: �A ⇐ tex1Dfetch(�Ri)
4: Nneigh ⇐ NNi

5: for j = 0 to Nneigh − 1 do
6: k ⇐ NBLji

7: �B ⇐ tex1Dfetch(�Rk)
8: d�r ← minimum image of �B − �A

9: �C ← force(d�r)
10: if |d�r| > rcut then
11: �C ← �0
12: end if
13: �Fsum ← �C + �Fsum

14: end for
15: �Fsum ⇒ �Fi

Casting this calculation into a data-parallel algorithm for the GPU is easily done. Each

thread simply calculates the total force on a single particle. Algorithm 2 lists the pseudocode

for this implementation. Line 1 defines the indexing scheme for particles, which is the same

as used in the simple example in subsection 6.3.1. The choice of this indexing scheme is
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important as it sets later lines up for coalesced memory reads, like Line 4, which reads the

number of neighbors of particle i. Each thread now needs to loop over all of the neighbors of

particle i starting on line 5. Not all particles have the same number of neighbors, so this loop

will produce divergent warps. Fortunately, testing shows that the performance loss from this

inefficient use of the device is only about 10%.

Moving on to the inner loop, line 6 reads in the index of the neighboring particle from

global memory. Since i increases with stride 1 as the thread index increases and i indexes

along a row of NBLji this read is coalesced as long as the proper padding is chosen for the

matrix. Line 7 reads the position of the neighboring particle k using the texture unit to take

advantage of the texture cache for this random read. The memory access performance of this

line is highly dependent on the nature of the layout of the particles in memory. If the neighbors

k of particle i are randomly distributed from 1 to N there will be a high cache miss rate and

the performance of this memory read can suffer by up to a factor of 4, see Figure 6.3. Such a

randomly ordered neighbor list is to be expected in a long running simulation. A solution to

this problem is to reorder the particles in memory to improve data locality and the cache hit

rate, see subsection 6.3.3.

Continuing, line 9 calculates the force between this pair of particles i, k and adds it to the

total in line 13. If this pair of particles is further apart than the cutoff, lines 10 and 11 ensure

that the force sum is not modified. With such a simple statement (assigning 0 to a variable)

inside the branch, the compiler generates predicated instructions for this operation, verified by

reading the assembly output, thus avoiding the performance penalty of divergent warps here.

Benchmarks show that this kernel is memory access bound, so any time wasted performing the

comparison is hidden within the memory latency.

Options in the implementation of force(d�r) are to calculate it directly using floating point

operations or to use lookup tables via a texture. With Lennard-Jones potentials directly

calculated, performance measurements show that this algorithm’s performance is bound by the

number of memory accesses it makes. Thus, using a lookup table that introduces more memory

reads would slow performance. Potentials with more computationally intensive functional
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forms, such as those used in Ref. [6], may perform better when using lookup tables.

Finally, the total force summed for particle i is written to global memory in a coalesced

manner at line 15. Notice that the GPU algorithm does not take advantage of the Newton’s

third law optimization used on the CPU. First of all, doing so would require atomic read-

modify-write operations on the GPU which are not present for floating point numbers in

current hardware. If such features did exist, the increment of �Fk inside the inner loop still

requires a scattered memory access pattern which would slow performance significantly. The

additional read and write of �Fk introduced also leads to an increase in the total number of

memory accesses performed in an algorithm that is already memory bound. So even if they

could be performed at full speed, the performance of the algorithm using Newton’s third law

would still be slower in the end.

6.3.3 Particle sort

Algorithm 2 reads memory in a random pattern determined by the distribution of the

neighbors k of particle i, which are uncorrelated in a long running simulation. If the memory

space taken up by the positions of the particles in the system exceeds the cache size, nearly

every memory access will then result in a cache miss, requiring the GPU’s texture unit to

constantly read scattered data from the device memory.

Several sorting techniques have been proposed to solve this issue [105, 107] for MD on the

CPU. These solutions rearrange the order in which particle positions are stored in memory

so that neighboring particles are also nearby each other in memory. GPART [107] is based

on a graph partitioning technique. It arranges particles so that the memory read patterns

performed by Algorithm 1 are optimized for the L1 CPU cache. For instance, if the cache line

size were such that 4 positions fit in a single cache line, GPART might produce the following

neighbor list for a particle: 2 3 4 8 9 10 11 100 101 102 103 . . . .

Ideal for the serial CPU algorithm, it turns out that GPART generates a poor memory

access pattern for the GPU implementation which reads neighbors of M particles simultane-

ously, a fact that GPART does not take into account. This actually leads to worse performance
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than randomly ordered data for N < 20, 000. While it may be possible to develop a modified

version of GPART, there is a simpler approach. Early testing of Algorithm 2 was performed on

systems of particles in nicely arranged simple cubic arrays. Performance tests showed memory

transfers approaching device limits, and a successful sort algorithm was developed that mimics

this pattern for arbitrary systems. An even better option is to reorder the particles based on

the path of a space filling curve [108, 109], which have received a lot of attention lately for

efficient database searches on multi-dimensional data sets. The Hilbert curve is chosen for

this work because it has the best locality preserving properties [108]. Ref. [107] mentions the

possibility of using a Hilbert curve for the data sort algorithm, but ignores it as a viable option

in favor of another algorithm, RCB.

Ref. [109] discusses, in detail, a recursive algorithm for generating the Hilbert curve on the

fly and assigning an index to each point in a point cloud. This index is then used as the primary

key in a database record. The algorithm avoids ever computing the entire Hilbert curve so that

large data sets which do not fit into system RAM can be indexed. In this work, all particles

do fit in memory, so a simpler approach can be adopted, which we call the space-filling curve

pack (SFCPACK) algorithm. SFCPACK consists of the following steps.

1. Divide the simulation box into cells ≈ 1σ wide.

2. Place each particle into its corresponding cell.

3. Generate a traversal over the cells using the recursive algorithm in Ref. [109]

4. Loop over the cells in this traversal order, making an ordered list of particles visited

5. Reorder the particles based on the list

6.3.4 Neighbor list generation

The objective of the neighbor list generation algorithm is to examine the current positions

of all N particles and build a list for each containing those particles separated by a minimum

image distance [15] less than the cutoff. This can be trivially done by an all vs. all comparison,
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but doing so requires O(N2) execution time making simulations of large systems prohibitively

time consuming. Algorithmic improvements on the CPU have reduced the time to scale as

O(N) in the average case [22, 105, 106]. Implementing this more complicated neighbor list

algorithm on the GPU poses the biggest challenge in developing a general purpose MD code

running fully on the device. It requires the building of variable length lists using scattered

memory writes, which cannot be realized with the fragment shader approach, but can be

easily performed using CUDA.

To improve the overall performance of the entire system, MD codes such as LAMMPS [22]

employ a standard trick. The cutoff distance for the neighbor list is chosen as rmax, greater

than the value of rcut used for the pair forces. Then, the neighbor list only needs to be updated

when any particle has moved a distance more than 1
2 (rmax − rcut), which is usually every 10

or more time steps.

Actually updating the list in O(N) time involves looping through the N particles and

placing them into Ncell cells of width rcell, called binning the particles. When building the

neighbor list, only the particles in the set of neighboring cells need to be considered [105,106].

When rcell is chosen to be equal to rmax, 27 bins need to be read for each particle, but a

significant fraction of these particles will not make it into the neighbor list. Floating point

computations can be saved at the cost of increased memory accesses (125 neighboring cells need

to be accessed, many of which are empty) by choosing rcell = 1
2rmax [105, 106]. Performance

tests were made on the GPU, showing that the additional memory accesses cost more than the

extra floating point operations, so rcell will be fixed at rmax for this work.

After the particles have been placed in their cells, updating the neighbor list matrix is ac-

complished on the CPU with the pseudocode in Algorithm 3. It is included so that comparisons

can be drawn with the GPU implementation.

The first portion of the algorithm, binning the particles, is challenging to implement effi-

ciently on the GPU. Our implementation copies the particle positions from the device, bins

them on the CPU and then copies the resulting cell lists back to the device. The binning pro-

cess is slow and the overhead from the memory copies to and from the device is appreciable.
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Algorithm 3 Neighbor list build: CPU implementation

for all particles i do
�A ⇐ �Ri

Acell ← cell containing �A

Nneigh ← 0
for all 27 cells C in the neighborhood of Acell do

for all particles j in cell C do
�B ⇐ �Rj

d�r ← minimum image of �B − �A

if |d�r| ≤ rmax and i �= j then
j ⇒ NBLNneigh,i

Nneigh ← Nneigh + 1
end if

end for
end for

end for
Nneigh ⇒ NNi

But, the whole operation only needs to be performed once approximately every 10 time steps,

reducing the total overhead in a full simulation to 6%.

There are two methods that can be used to move this step to the GPU. First, the newer

generation G92 graphics cards add the ability to perform read-modify-write operations atomi-

cally, which could be used to implement the binning on the GPU. Lacking one of these GPUs,

we could not try this method. Another method involving double buffered partial updates of

the cell list is presented in Ref. [7]. There was not sufficient development time available to

try this method here before publishing. Either of the two could significantly reduce the 6%

overhead mentioned previously, a reasonable but not significantly large speedup.

The implementation of the second step on the GPU is listed in Algorithm 4. Each block

executed on the device handles the calculation of all of the neighbor lists for particles i of a

single cell. The advantage of this layout is that all particles in a given cell must be compared

against the same set of particles in neighboring cells. Thus all of the memory operations

reading particle positions need only be done on a per block basis and then accessed via shared

memory. Line 1 of the algorithm starts this off by reading in the particle index i from the



97

CELLa,C array in main memory. Like the neighbor list matrix NBLji, CELLa,C is a matrix

listing the particles j belonging to bin C. The difference is that the particle indices are listed

along the rows of the matrix so that the reads on lines 1 and 6 will be coalesced (as long as

the matrix has the correct padding).

Algorithm 4 Neighbor list build: GPU implementation

Require: bid is the index of this block
Require: tid is the index of this thread within the block
Require: M is the number of threads in each block
Require: M ≥ the largest number of particles in any given cell
Require: Ncell blocks are run on the device
Require: �Bj and Kj are stored in shared memory
1: i ⇐ CELLtid,bid

2: Nneigh ← 0
3: �A ⇐ tex1Dfetch(�Ri)
4: for all 27 cells C in the neighborhood of bid do
5: syncthreads()
6: Ktid ⇐ CELLtid,C

7: �Btid ⇐ tex1Dfetch(�RKtid
)

8: syncthreads()
9: if not empty(i) then

10: for j = 0 to M − 1 do
11: if empty(Kj) then
12: break
13: end if
14: �C ← �Bj − �A

15: d�r ← minimum image of �B − �A

16: if |d�r| < rmax and Kj �= i then
17: Kj ⇒ NBLNneigh,i

18: Nneigh ← Nneigh + 1
19: end if
20: end for
21: end if
22: end for
23: Nneigh ⇒ NNi

Line 3 reads in the position of particle i for which this thread is going to build the neighbor

list. As the loop on line 4 goes over all of the neighboring cells, the particle indices Kj and

positions �Bj are loaded into shared memory on lines 6 and 7. Particle positions are read using
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the texture unit to take advantage of the cache. The synchthreads() barriers surrounding these

memory reads are needed to ensure that there are no race conditions when accessing shared

memory. Line 9 skips computations if the particle i is actually an empty entry in the cell. This

statement will produce divergent warps, but it prevents a large number of FLOPs from being

wasted on empty cell elements. It cannot be placed any earlier in the code, since all threads

in the block need to participate in the data loading done on lines 6 and 7.

Continuing on, line 10 starts a loop over all particles in cell C. This loop is done in every

thread because every particle i must be checked against every other particle in the neighboring

cells for inclusion into the neighbor list. Line 11 immediately checks if the current particle

index Kj is an empty value, quitting the loop on line 10 if it is. Performing this early-out

check inside the loop is important for performance, since a typical cell may have 30 particles

in it, but the maximum has 60. Finally, lines 14 through 18 check the current pair of particles

for inclusion into the neighbor list. All threads in any given warp in the block are reading the

same indices of Kj and �Bj simultaneously, so the shared memory broadcast will be invoked

and there are no bank conflicts to slow shared memory read performance [100]. Scattered

writing to the neighbor list on line 17 is not coalesced and thus will not perform optimally on

the device. Fortunately, the bottleneck in this algorithm is the floating point operations so the

inefficient memory write does not change its overall performance significantly.

6.3.5 Integration

The explicit Nosé-Hoover integration method from Ref. [110] is implemented on the GPU

to move particle positions and velocities forward one time step in the NVT ensemble. Imple-

mentation of this method is straightforward and not provided here. It is important, however,

that this step is done on the GPU, even if the computation takes very little time on the CPU.

When done on the CPU, forces calculated on the GPU must be copied to the CPU, the inte-

gration performed, and then the new particle data copied to the GPU. All of these memory

copies amount to a significant fraction of the simulation time, as they are done on every time

step. Additionally, the speedup factor of 20 executing on the GPU prevents the execution time
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of the integration on the CPU from becoming a bottleneck.

The NVE ensemble is similarly implemented using a velocity Verlet method [22].

Multiple time step methods [111] can be used to reduce computational cost in some types

of MD simulations containing both slowly and quickly varying forces. Such methods can be

implemented on the GPU in a straightforward manner, identical to any CPU implementation.

None are implemented or benchmarked for this work. However, any relative reduction in

computational cost on the CPU by using one of these methods would translate in a similar

reduction on the GPU.

6.3.6 Bond forces

Harmonic bond forces are implemented on the GPU for the same reasons as the integration.

Algorithm 2 is modified to read a different NBLji that includes a list of all particles k bonded to

i instead of the neighbor list. Speedups of a factor of 75 compared to the CPU implementation

are achieved.

Angle and dihedral terms are not implemented in this work, but could be achieved in a

similar fashion requiring only a slightly more complicated list structure. Similar speedups are

expected.

6.3.7 Brief comparison to other recent works

Refs. [6, 7] also implement Molecular Dynamics using CUDA on the same hardware as is

used here. Both work around the complexity of generating a neighbor list by storing particle

positions in a cell data structure and using that directly in the pair force computation on the

GPU.

J. E. Stone et al. [6] target large biomolecule simulations with their implementation. It only

computes pair forces on the GPU, leaving all other tasks for the CPU. The pair potential they

use is much more computationally intensive than the simple Lennard-Jones potential we use

here. So instead of performing the computations directly on the GPU, they use a texture as

a lookup table to interpolate pre-calculated terms. No performance comparisons can be made
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with this work because the potentials and systems benchmarked vary significantly. Another

notable difference in their work is that they have linked their CUDA implementation of MD

directly into NAMD and can thus distribute jobs across a cluster of nodes with GPUs.

The implementation by J. A. van Meel et al. [7] is closer to our own, modeling simple

Lennard-Jones particles and fully implementing every step of MD on the GPU. A direct per-

formance comparison can be made to quantify the tradeoffs between the neighbor list and cell

based approaches. At parameters relevant to our work, ρ = 0.4σ−3 and N = 100, 000 they

report 0.02 seconds of computation time per step, or 50 time steps per second. Configuring

our software to implement the Lennard-Jones liquid with identical parameters, we measure

160 time steps per second, 3.2 times faster.

6.4 Performance Measurements

6.4.1 Hardware

All single CPU / GPU benchmarks are run on a Dell Precision Workstation 470 with

a 3.0 GHz 80546K Xeon processor and 1 GB of RAM. The original graphics card in this

system was upgraded to a NVIDIA GeForce 8800GTX manufactured by EVGA R© with the

standard core clock speed of 575 MHz. The system dual boots Microsoft R© Windows R© XP and

Gentoo Linux running the latest 2.6.21 AMD64 kernel. CUDA 1.1 is installed in both operating

systems. Under Windows, code is compiled using Visual Studio Express 2005 with the compiler

optimization options “/arch:SSE2 /Ox /Ob2 /Oi /Ot /Oy /fp:fast”. Linux executables are

produced with gcc version 4.1.2 using compiler optimization options “-march=nocona -O3

-funroll-loops”.

CPU benchmarks are approximately 20% faster in Linux compared to Windows. GPU

benchmarks are approximately 5% faster in Windows compared to Linux. The fairest com-

parison possible is given in this work by presenting CPU benchmark results obtained in Linux

and GPU benchmark results obtained in Windows.

Lightning, a cluster on the ISU campus, is used for the LAMMPS cluster benchmarks. It

has 90 compute nodes, each of which contain two dual-core AMD OpteronTM 280 processors
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Figure 6.2 Time to calculate Lennard-Jones forces for all N particles on the
CPU plotted vs. system size. Results are shown with various
sorting algorithms applied to the particles.

and 8 GB of RAM. Nodes are interconnected with a high speed, low latency InfiniBand R©

network. PathScaleTM 2.4 is used to compile LAMMPS on Lightning. In order to get the

best performance possible out of LAMMPS for the fairest comparison, the new optimized

Lennard-Jones routines from style opt are used.

6.4.2 Lennard-Jones force calculation

To test the performance of Algorithm 1 and Algorithm 2 in computing Lennard-Jones forces,

particle systems are created with N particles randomly placed in a box with side lengths chosen

so that the number density of particles is n = 0.382σ−3. The force cutoff is set to rcut = 3.0σ,

which is typical in coarse-grained simulations [24] and rmax is set to a reasonable value of 4.0σ.

Relative GPU/CPU performance differs little for various values of rmax, so the precise value

is irrelevant. The random placement of the particles is to emulate a typical time step in a

simulation of a Lennard-Jones liquid. With the chosen cutoff values, there are 102 neighbors

for each particle on average. While the particles are randomly placed, the same random seed

is used each time so that the GPU and CPU benchmarks at the same N are calculating forces

on exactly the same system of particles. Timing is performed by generating the neighbor list
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once and then running the force calculation repeatedly until five seconds have elapsed or the

calculation has been done five times, whichever comes first.

Benchmark runs are performed on the CPU with the particle data unsorted, sorted by

GPART [107], and sorted by SFCPACK. Results are plotted in Figure 6.2. Performance is

improved greatly with the sorting algorithms applied, especially for large N due to the more

effective use of the memory cache. It is also worth noting that the much simpler SFCPACK

algorithm beats the performance of GPART [107].

On the GPU, the performance of Algorithm 2 is sensitive to the choice of the block size M .

Even though the same number of calculations and memory accesses are performed regardless,

memory access patterns, register read after write dependencies, and the warp occupancy of the

kernel running on the device can all change the running time [100]. It is impossible to predict

which block size will lead to the best performance, so benchmarks on the GPU are performed

at all possible block sizes from 32 to 448 in steps of 32, and the fastest time is chosen for the

benchmark result. It would make no sense to select a value for M that is not a multiple of 32

since that is the smallest unit of execution on the device. The fastest block size for each system
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size is recorded in Figure 6.5. When performing actual MD simulations of a specific system,

these results can be used to determine which block size to use for the best performance.

Like the results obtained on the CPU, performance of the Lennard-Jones force calculation

on the GPU is sensitive to the order of the particles in memory, so benchmarks are performed

with particles sorted by the various algorithms as before. Additionally, and unlike the CPU,

performance is also sensitive to the order of particles in the neighbor list. When the neighbor list

is generated by the simple O(N2) method, NBLji < NBLj+1,i ∀j. Even though the neighbors k

may be randomly distributed from 0 to N−1, this forced ordering in the neighbor list improves

the locality of memory reads over a randomly ordered neighbor list. On the contrary, the more

efficient O(N) neighbor list does not generate ordered neighbor lists. Instead, it generates 27

independent sorted sequences in NBLji as j goes from 0 to NNi − 1. While it is possible to

use merge sort techniques to generate a fully ordered neighbor list here, the performance hit is

significant. In order to evaluate the tradeoffs between an ordered neighbor list vs. an unordered

one, the force computation is benchmarked using each on the GPU. Timing results for all these

cases are provided in Figure 6.3. The same trend seen on the CPU (SFCPACK is faster than

GPART which is faster than unsorted) is repeated here. As expected, force computations

done using ordered neighbor lists are faster than with unordered ones. Although, with the

SFCPACK sort the difference is only a few percent. With these results in hand, the clear

choice for implementing the fastest MD on the GPU is to use the fast, unordered neighbor list

generator and the SFCPACK sort.

The fastest evaluations of the pair force calculations for the CPU and GPU, obtained

with the SFCPACK sorted particles, are compared in Figure 6.4. At 60 times faster for

large enough systems, the GPU is an incredibly powerful tool for performing the pair force

computation. While crunching numbers in the linear performance region (N > 15000), the

device is reading and writing memory at a rate of 60–70 GB/s which is close to theoretical

peak device capability [100]. At the same time, only about 100 GFLOP/s are performed which

is far from its theoretical peak of 340 GFLOP/s indicating that many of the multiprocessors

sit idle with all of the active warps waiting on the global memory access latency. Thus, short
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range pair forces that require more floating point operations than Lennard-Jones could also be

implemented in Algorithm 2 without a significant loss in performance compared to the values

presented here.

6.4.3 Neighbor list generation

The neighbor list generation code in Algorithm 3 and Algorithm 4 is benchmarked on the

same random particle systems used to benchmark the pair forces. The parameter rmax is not

changed from 4.0σ. Removing the checks that only update the neighbor list when a particle

has moved a sufficient distance, the same neighbor list is generated over and over again until

five seconds has elapsed or the neighbor list has been generated five times. As the neighbor

list generation algorithms read particle positions randomly from the data arrays based on

the cell list, they also benefit from the particle data sort. Timings for these benchmarks are

plotted in Figure 6.6 and Figure 6.7, which show the total time taken to bin the particles and

update the neighbor list matrix. Execution time clearly increases linearly for both the CPU

and GPU implementations with the total speedup on the GPU hovering around 30, as shown
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in Figure 6.4. While not quite as impressive a speedup as with the Lennard-Jones forces, the

neighbor list generation is still significantly faster on the GPU.

6.4.4 Benchmark of MD simulations

For a practical comparison with an existing software solution, benchmarks of the full MD

simulation are run using both the GPU implementation on a single GPU and LAMMPS [22]

running on the Lightning computer cluster. It should be expected that some differences might

be obtained by testing other general purpose MD packages, but in this paper all comparisons

are done with LAMMPS as this is the code we use in our applications.

The neighbor list generation and pair force computations algorithms interact with rmax

in different ways. If the value is chosen too small, the neighbor list will need to be updated

every other time step, slowing performance significantly. A larger value leads to fewer neighbor

list updates, but then the length of the neighbor list gets larger and more forces need to be

computed slowing down overall performance again. In all benchmarks presented here, short

test runs with rmax varying in steps of 0.1 are performed to determine the optimal value.
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6.4.4.1 Lennard-Jones liquid

A full simulation of a Lennard-Jones liquid is implemented with the GPU algorithms pre-

sented in this work. Initial conditions are prepared by starting from a random arrangement

of N particles at density n = 0.382σ−3, then running the simulation in the NVT ensemble at

kBT
ε = 1.2 for 50,000 time steps to equilibrate the system. An additional 50,000 time steps are

then timed for the benchmark. The timed runs for both the GPU and LAMMPS both start

from the same prepared initial condition. For all simulations, rcut = 3.0σ.

On the GPU, the optimal value of rmax is found to be 3.8σ for this system. Additionally,

the block size for the force computation is chosen from Figure 6.5 and SFCPACK is used to

resort the particles every 1,000 time steps. LAMMPS performed best with rmax = 3.4σ and

was timed running on various numbers of processor cores up to 40.

Results of these tests are shown in Figure 6.8 and summarized in Table 6.1. As expected

from the previous comparisons, Figure 6.4, the GPU performs at the same speed as around 36

processor cores on Lightning.

6.4.4.2 Coarse-grained polymer systems

To show the versatility of our GPU implementation, another test case is implemented that

uses a portion of the polymer model from Ref. [24]. In short, polymers are built with A and B

particles connected by harmonic bonds to form a chain: A10B7A10. Non-bonded interactions

are implemented with forces derived from Lennard-Jones potentials:

UAA(r) = 4ε
(σ

r

)12

UBA,BB(r) = 4ε
[(σ

r

)12 −
(σ

r

)6
]

Preparation and timing of these systems is performed as before with the Lennard-Jones liquid,

with all parameters identical.

The benchmark timings for various system sizes are plotted in Figure 6.9 and summarized

in Table 6.1. On the GPU, absolute performance numbers are slightly lower when compared to

the Lennard-Jones liquid system from the resulting overheads of the bond force sum. LAMMPS
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Figure 6.8 Benchmark of LAMMPS simulating the Lennard-Jones liquid
model for various system sizes on Lightning. The dotted lines
mark the performance of the GPU running the same simulation.

System Lennard-Jones liquid Polymer model
Density 0.382σ−3 0.382σ−3

Average neighbors per particle 43.2 43.2
CPU time / particle / time step (LAMMPS) 2.64 μs 2.34 μs

GPU time / particle / time step 0.0778 μs 0.0806 μs

Table 6.1 Average performance results summary.

on the other hand is actually slightly faster at executing the polymer system. Examination

shows that the Lennard-Jones liquid requires significantly more time spent on inter-node com-

munication. These two effects combine to bring the overall comparative performance of the

GPU down a bit to 32 processor cores on Lightning.

6.5 Numerical precision tests

Current GPUs only offer support for single precision floating point arithmetic, and not all

operations meet the IEEE 754 standards [100]. It may be argued that the precision of results

obtained via MD simulation on the GPU are thus suspect. To demonstrate that this is not

the case, simulations of the polymer system are performed on the CPU and GPU using single
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Figure 6.9 Benchmark of LAMMPS simulating the polymer model for var-
ious system sizes on Lightning. The dotted lines mark the per-
formance of the GPU running the same simulation.
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Figure 6.10 Deviation of simulation trajectories from a baseline generated
by LAMMPS running on a single processor. Single and double
precision modes on the CPU and the single precision GPU cal-
culations are compared to the baseline. Data from a LAMMPS
run on four processors is also presented. Two of the four curves
have their 0’s artificially shifted to visually separate them from
their counterparts.
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precision math, on the CPU using double precision math, and using LAMMPS on Lightning.

Identical initial conditions are used in all runs. The equilibrated initial condition is produced

via the same method used in subsection 6.4.4 with N = 24, 300, and then all test cases continue

the simulation from that point. LAMMPS and the code developed for this work use different

implementations of the NVT integrator and thus cannot be compared. Continuation runs are

instead performed in the NVE ensemble, where both codes use a Velocity Verlet integrator [22].

Particle positions are dumped every 100 time steps in each simulation run performed. The

〈(Δ�r/σ)2〉 deviation is computed between the particle positions of two different simulations at

identical time steps. Using a LAMMPS double precision run on a single processor as a baseline

for comparison, Figure 6.10 shows the results. Initially, LAMMPS and the code developed in

this work do indeed calculate the same trajectory. Using double precision computations on

the CPU, 2000 time steps are performed before the trajectories start to differ significantly.

Single precision calculations on the CPU are slightly less precise with the trajectories starting

to diverge at 1000 time steps. The GPU single precision implementation is no worse than the

CPU, diverging at exactly the same point.

To demonstrate what one should expect of a precise MD trajectory, the same simulation

run is performed using LAMMPS again, but this time on 4 processor cores in parallel. In

this case, the trajectory starts to deviate at 2000 time steps, which is no different from the

double precision calculation on the CPU. These two simulations starting from identical initial

conditions can vary so drastically even when executed with the same code because forces on the

particles are summed in a different order on 1 CPU vs. 4 CPUs. With floating point arithmetic,

summing identical values in a different order can produce different results. The slightest

difference in a computed force introduces a difference in the particles’ positions between the

two simulations at the next time step. These differences then compound time step after time

step until the trajectories vary significantly. A typical MD simulation will integrate millions

of time steps, so a deviation at 1000 vs. 2000 steps is irrelevant.

Energy conservation during an NVE simulation run is a more rigorous metric to measure

the precision of MD simulations. We check that energy is conserved on the GPU, but do
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not provide a detailed quantitative study here. Future GPUs will include support for double

precision [100], so the capability will eventually be there for those simulations that need the

extra precision.

6.6 Conclusions

We have presented a general purpose MD simulation fully implemented on a single GPU.

We have compared our GPU implementation against LAMMPS running on a fast parallel

cluster, see Figure 6.8, and we have shown that the GPU performs at the same level as up to

36 processor cores. Smaller, less power hungry, easier to maintain, and inexpensive compared

to such a cluster, GPUs offer a compelling alternative. And this is only the beginning. As

Figure 6.1 shows, the trend towards faster GPUs is inexorable, allowing a simple component

upgrade to enable even more demanding MD simulations. The fact that all future NVIDIA

GPUs will support the CUDA environment [100] warrants the generality of the implementation

presented here.

Current technology allows even faster MD simulations in a single workstation. Up to four

GPUs can be hosted in a single workstation potentially bringing the the power of a 144 core

cluster to the desktop at a fraction of the cost. While GPUs do not currently provide a viable

alternative to supercomputers able to simulate systems with more than a million particles, we

expect that GPUs will very soon become a commonplace tool for smaller simulations. The

only major element missing for many types of simulations is the implementation of electrostatic

forces, which we leave for future work.
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CHAPTER 7. DESIGN OF POLYMER NANOCOMPOSITES IN

SOLUTION BY POLYMER FUNCTIONALIZATION

A paper currently in progress that will be submitted for publication soon

Joshua A. Anderson and Alex Travesset

7.1 Abstract

Polymer nanocomposites, materials combining polymers and inorganic components such as

nanoparticles and nano-sized crystallites, have attracted significant attention in recent years.

A successful strategy for designing polymer nanocomposites is polymer functionalization via

attaching functional groups with specific affinity for the inorganic component. In this paper,

a systematic investigation of polymer functionalization for nanocomposite design in solution

combining molecular dynamics simulations and theoretical arguments is presented. Optimal

polymer architectures and concentrations are identified appropriate for different applications,

along with in-depth analysis on the origin and stability of the resulting phases.

7.2 Introduction

Polymer nanocomposites, materials combining polymers and inorganic components such as

nanoparticles and nano-sized crystallites, have been identified as suitable candidates for novel

photovoltaic and hydrogen fuel cells, membranes for gas (e.g., CO2) separation, self-healing

coatings, novel materials for drug delivery, sensing and in vivo imaging, fabrication of artificial

bone matrix as well as smart materials with novel mechanical, rheological, optical and other

properties [2]. One of the most fundamental challenges in polymer nanocomposite design is
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to achieve control of the orientation and location of both the inorganic components and the

polymer so that the resulting material will exhibit the desired properties.

Block copolymer melts with dispersed nanoparticles provide the most investigated exam-

ples of polymer nanocomposites both experimentally [112–121] and theoretically [122–128].

Despite some remarkable successes, some major issues remain open as discussed, for example,

by Ganesan [129]. One of them is the long equilibration times involved, which often results

in the system being trapped in a long lived metastable state. A possibility to overcome this

problem is to disperse the soluble inorganic components into a thermoreversible polymeric gel

(in solution), with examples such as calcium phosphate [99,130] and silica nanoparticles [98] in

a Pluronic [33] gel. In this latter case, the thermoreversibility of the gel allows thermodynamic

equilibrium to be reached as the nanoparticles and polymer are mixed at low temperatures

where the solution has low viscosity and short equilibration times.

In this paper, soluble inorganic components dispersed into a gel-forming block-copolymer

consisting of hydrophilic (soluble) and hydrophobic (insoluble) blocks are studied. In a simple

scenario, the inorganic components added into the solution do not have any affinity for the

hydrophilic blocks, but attract each other (due to van der Waals or chemical interactions). In a

previous paper [12], it is established that such a system will not self-assemble into a composite.

Either the inorganic components freely diffuse within the solvent or, if their mutual attraction

becomes strong enough, phase separate from the polymer matrix. There is no intermediate

regime where the polymeric matrix is able to coerce the aggregation of the inorganic phase

sufficiently to impose order on it. Therefore, some affinity between the inorganic component

and the hydrophilic blocks of the polymer is necessary in order to successfully assemble a

composite from solution. A recent study using different interaction potentials has reached the

same conclusions, providing more evidence for this result [131].

There has been a remarkable progress on nanoparticle design in recent years [132]. In

many cases, the nanoparticles themselves are functionalized with short polymers in order to

solubilize and/or prevent agglomeration. In previous papers [12, 13], a strategy is proposed

where the polymer is functionalized with the addition of end blocks having a high affinity for
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the inorganic component. While there is a considerable repertoire of functional groups that can

be attached to polymers, Pluronics [8] in particular, polymer functionalization has not received

as much attention as nanoparticle functionalization. Yet based on previous results [12, 13] as

well as the ones presented in this paper, an approach where the polymers are functionalized

for specific nanoparticles or other inorganic components is a very promising pathway to enable

the design of polymer nanocomposite materials.

The goal of this paper is to present a systematic study of polymer functionalization for

nanocomposite design, combining molecular dynamics (MD) and theoretical arguments to

provide a thorough understanding of the opportunities and limitations that polymer function-

alization brings. Particularly, the focus is on the effects of polymer architecture and concen-

tration, while also exploring the full region of parameter space corresponding to all inorganic

component affinities. At high affinities the inorganic component results in a unique form of

crystalline order not found before.
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7.3 Simulation Details

7.3.1 Model

Polymers and inorganic particles are modeled with coarse-grained beads in an implicit

solvent. Individual polymers are CAnBmAnC symmetric block polymers, where the A and C

beads are hydrophilic and B beads are hydrophobic. Harmonic bonds connect the monomers

of the polymer into a linear chain.

Additionally, Lennard-Jones like pair potentials are applied between all non-bonded pairs

of beads. Hydrophobic interactions are attractive, with a potential energy given by

UBB = 4εP

[(σ

r

)12 −
(σ

r

)6
]

, (7.1)

while hydrophilic interactions are purely repulsive with

UAA,AB,CA,CB = 4εP

(σ

r

)12
, (7.2)

where r is the distance between the two beads in the pair.

The inorganic particles I are modeled by single beads. Alone, the inorganic particles are

assumed to have a tendency to aggregate with a characteristic energy scale εN, so they are

modeled with an attractive potential

UII = 4εN

[(σ

r

)12 −
(σ

r

)6
]

, (7.3)

and they have an affinity to the functional end blocks of the polymer C with a different energy

scale εF

UIC = 4εF

[(σ

r

)12 −
(σ

r

)6
]

. (7.4)

Other interactions between the polymer and inorganic beads are purely repulsive

UIA,IB = 4εP

(σ

r

)12
. (7.5)

For more details and justification of this model, see our previous publications [12,24]. A visual

summary of the parameters is given in Figure 7.1.
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All of these pair potentials are cut off at rcut = 3.0σ. The value of εP is fixed at 1
1.2ε

while εF and εN are free parameters over which phase diagrams are computed. The remaining

unknown quantities, ε and σ, define the two fundamental units of energy and length in the

simulation with the mass of the particles making the third.

Npoly polymers and Ninorganic I beads are initially placed randomly in a cubic simulation

box with periodic boundary conditions. Molecular dynamics simulations are carried out from

this initial configuration in the NVT ensemble via Nosé-Hoover dynamics [17]. Some runs are

performed at a constant kinetic temperature kBT/ε = 1.0, but most are started higher and

slowly cooled to this point to improve equilibration.

Early simulations in this work are performed using the LAMMPS [22] software package,

while HOOMD [3] is used for the most recent.

7.3.2 Observables

The concentration of polymers in solution is calculated from the polymer packing fraction

φP defined by

φP =
πNpolyNmon

6(L/σ)3
, (7.6)

where Nmon is the number of monomers in each polymer chain and L is the length of each

side of the cubic simulation box. Note that φP is defined only as a function of the polymers in

the simulation box and does not depend on the number of inorganic particles Ninorganic. This

is done so that comparisons can directly be made between phase diagrams of polymer only

systems and those with inorganic particles. The total packing fraction will be larger than φP

when Ninorganic > 0.

Polymer stretching is analyzed by directly computing the distance re2e between the two end

beads of each polymer chain in the simulation and over many saved configurations at equilib-

rium. All computed re2e values are presented in a histogram where any preferred configurations

are visible as peaks.

The presence of ordered phases is tested by checking for the presence of peaks in the
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calculated structure factor

S(�q) = C0

〈∣∣∣∣∣∣
Nbeads∑

j=1

ei�q·�rj

∣∣∣∣∣∣
2〉

, (7.7)

where �rj is the real-space position of the j’th bead in the sum, �q is a discrete 3 dimensional

reciprocal space vector where each component is a multiple of 2π
L to obey the periodic boundary

conditions, C0 is chosen so that S(0) = 1 and the angle brackets 〈〉 denote a time average.

Nbeads is the number of beads over which the structure factor is being calculated, typically

either the hydrophobic beads B or the inorganic particles I. Calculating this sum directly is

computationally expensive, so a Fast Fourier Transform technique [79] is used allowing nearly

instant analysis of any simulation run.

Plots of density along a line are prepared by first continuing the simulation of the phase

in question and dumping snapshots every 10,000 time steps. Then the simulation box is split

into 1σ wide cubes and the packing fraction of each bead type in each cube is computed by

averaging. Finally, the packing fraction along a given line can be plotted via cubic interpolation

of the densities from this grid.

7.4 Phase diagram of pure systems

A previous paper discusses the phases of the pure system [64], but the details need to be

elaborated here further in order to understand the effect of the inorganic components. In order

to rationalize the phase diagrams obtained, it is convenient to classify polymer architectures

as “hairy” when n � m, and “cross-cut” when n � m. Also, while this study focuses on

functionalized triblocks, the results should also qualitatively apply to functionalized diblocks

CAnBm/2 at the same concentration φP. The only difference in free energy between the two

systems is the entropy loss associated with the linking of the two diblocks to form a triblock,

which is presumably small.

7.4.1 Systems without inorganic components

The B block in the polymer is hydrophobic and drives the system to form micelles. The

micelle core consists of hydrophobic monomers in a radius Rc. The corona consists of hy-
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drophilic monomers and solvent in a thickness Rh. In the dilute regime where micelles are

almost non-interacting and the hydrophilic blocks are in good solvent conditions, micelles are

spherical with a finite aggregation number Nagg. The aggregation number depends on a bal-

ance of stretching, several free energies, and the interfacial tension [77], the details of which

do not enter quantitatively into the discussion here. For increasing concentration, micelles

interact with each other, eventually forming a gel.

7.4.1.1 Cross cut architecture

When n is much less than m, Rc/Rh � 1 and the corona will be insensitive to the curvature

of the core. The A blocks will form a planar brush with grafting density σbrush (not to be

confused with the length scale σ) independent of Rc. As polymer concentration is increased,

micelles interact with the potential of a compressed planar brush [133]. Most relevant is that

the free energy of interaction grows linearly with the contact area among micelles. Therefore,

the minimum free energy is attained by the phase that minimizes the contact area, the lamellar.

That is to say, under general conditions cross-cut micelles can only exhibit lamellar phases at

high concentrations.

7.4.1.2 Hairy architectures

Hairy architectures are defined by n/m � 1 which implies that Rc/Rh � 1. In this case,

the stretching free energy of the hydrophilic A blocks is sensitive to the curvature of the core. It

grows logarithmically with n for a spherical micelle [134], linearly with n for a planar one [133],

and with an intermediate power (nα, α < 1) for a cylindrical one. So in the hairy case, the

penalty for stretching hydrophilic blocks to form cylinders or lamellar phases is high and only

spherical micelles are possible. Therefore, disordered phases of spherical micelles and cubic

micellar crystals are generally favored, although symmetries other than cubic are possible.
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7.4.1.3 The intermediate case

The intermediate case, where 2n ∼ m, is more difficult to analyze. In the more general

case, spherical micelles will remain stable beyond the gelation point and micellar crystals may

form. As polymer concentration is increased, micelles will interact more strongly. By the

same arguments as discussed for the cross-cut case, the free energy contribution minimizing

the contact area will directly compete with the stretching of the A blocks, and a hexagonal

phase of cylindrical micelles results. Further increasing the concentration leads to the lamellar

phase. Depending on the actual values of n and m either the cubic (for n � m/2) or the

lamellar phase (for n � m/2) may be absent. Extensive phase diagrams for Pluronic systems

support the entire previous analysis [46].

Extensive literature in melts [135] finds bicontinuous phases between the hexagonal and

lamellar. Typically the phase is a gyroid, but others are possible [128]. It is therefore very

reasonable to expect bicontinuous phases between hexagonal and lamellar phases in solution

as well. Indeed, gyroid phases are occasionally found in Pluronics [136], but their domain of

stability is very narrow.

7.5 Results

Previous studies have looked at a single polymer architecture (CA5B7A5C ) and investi-

gated the phase diagram of these polymers combined with inorganic particles as a function of

both polymer and inorganic particle concentration, inorganic particle size [13] and affinity [12].

This work expands the horizon to a more general polymer architecture CAnBmAnC.

However, as the number of hydrophobic beads only determines the kinetic temperature

where micellization occurs [64], the value of m will be fixed at 7. There is some loss of

generality by making this choice even for pure systems without inorganic components, as the

phase diagram is not a function only of the relative fraction of B to A monomers (see ref. [137]

for a counterexample). But this nuance only changes the phase diagram in relatively minor

ways that can be ignored for the purposes of this study.
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Figure 7.2 Phase diagram obtained from the simulation runs of
CA5B7A5C at φP = 0.20. Symbols indicate points where sim-
ulations are carried out and are filled where the inorganic par-
ticles form a crystalline phase. For a legend, see Figure 7.3

7.5.1 General procedures for simulations with inorganic particles

To begin the simulations, Npoly = 800 polymers are initially randomly placed in the simu-

lation box. Following the work in ref. [12], two inorganic particles are added for each polymer

end bead resulting in Ninorganic = 3200 I beads. Simulations at each point in the phase diagram

initially start with kBT/ε set to the maximum of εF, εN and 3.0. As time progresses, the sys-

tem is slowly cooled over 20 million time steps to the final kinetic temperature of kBT/ε = 1.0

and run for an additional 20 million time steps. Trajectories of the entire simulation run are

analyzed visually to identify the equilibrium phases. Additional quantitative analyses, includ-

ing structure factor calculations, diffusion coefficient determination, etc. . . , are performed on

specific runs when needed. When needed, runs are performed from several different initial

conditions or at different system sizes to asses possible metastable states or problems related

to finite-size effects.
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Figure 7.3 Phase diagrams obtained from the simulation runs of
CAnBmAnC at φP = 0.25. Symbols are filled where the in-
organic particles form a crystalline phase.
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7.5.2 Phase diagrams of CAnB7AnC

Figures 7.2 and 7.3 show the phase diagrams of CAnB7AnC obtained via simulation at

φP = 0.20 and 0.25 respectively. At φP = 0.20 there is a wide region where the polymers

and inorganic particles phase separate (roughly when εN � εF). The square columnar phase

dominates the rest of the phase diagram while the hexagonal phase only shows up at a few

scattered points. At this concentration the polymer architecture does not significantly change

the phase diagram up to n = 9.

At φP = 0.25 the large region of phase separation still exists for CA5B7A5C. However, the

square columnar phase is replaced by an even larger gyroid phase. Increasing εF � 5.0 drives

the system into a lamellar phase where the inorganic particles are in a crystalline state. As n

is increased to 7 and then 9, the lamellar phase disappears with the gyroid phase becoming

dominant. A further increase of n to 13 results in a small square columnar phase along with a

large region of disordered micelles. Finally, at n = 20 the square columnar phase disappears,

replaced completely by disordered micelles.

Figure 7.10 plots densities of the beads in the simulation along lines passing through features

in the various phases. Without the presence of the I beads, there is a significant amount of

interdigitation between the hydrophilic blocks of polymers from neighboring micelles. When

added, the I beads colocate with the functionalized ends C and place themselves between these

polymers forcing parts that were interdigitated to separate.

7.6 Structural properties of the phases

7.6.1 Hexagonal phase

At a few discrete points on the phase diagram of those polymer with n = 5, 7, and 9 both

at φP = 0.20 and 0.25, a hexagonal phase is found. Hydrophobic B beads form cylindrical

cores which pack in a hexagonal pattern and are surrounded by the hydrophilic A beads. The

inorganic I beads form a honeycomb structure flowing between the cylinders where the polymer

end beads C are also found. Figure 7.4 is a snapshot of this equilibrium phase. While this
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Figure 7.4 Snapshot of the hexagonal phase obtained in the CA5B7A5C

simulation run at φP = 0.20, εN = 1.0, and εF = 2.0. B beads
are blue and I beads are purple. A and C beads area not shown
to improve clarity. All snapshots in this work are created in
VMD [19] and raytraced with Tachyon [138]

.
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Figure 7.5 Snapshot of the square columnar phase obtained in the
CA5B7A5C simulation run at φP = 0.20, εN = 1.0, and
εF = 4.0. Coloration is the same as in Figure 7.4, except that
U, L, and fully stretched polymers are highlighted in red to
demonstrate these preferred orientations.

phase appears either very narrow or even metastable at the parameters chosen for this work,

it is likely to be more stable with a higher concentration of I beads as is found in ref. [13].

7.6.2 Square columnar phase

A wide region of the CA5B7A5C phase diagram at φP = 0.20 is covered by the square

columnar phase [13]. It also appears at φP = 0.25 with the polymer CA13B7A13C. Hydropho-

bic beads B arrange in cylindrical micelles which order on a square lattice while the inorganic

particles I aggregate into cylindrical collections on an offset square lattice. Interestingly, the

micelles formed here take on a rectangular (as opposed to a circular or square) cross-section as

can be seen in Figure 7.5. The elongation of the cross-section increases as εF and εN increase.

The polymer end to end distance distribution, plotted in Figure 7.6, has a distinct multi-

model shape that indicates the polymers tend to sit in preferred orientations. By highlighting
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Figure 7.6 Polymer end to end distance distributions obtained from vari-
ous phases found in the the CA5B7A5C simulation runs.

and tracking the motions of individual polymers in the movie of the simulation, these orien-

tations are identified and correlated with the peaks. First, the peak near re2e = 2σ in the

distribution corresponds to polymers in a U configuration where the two end beads are con-

nected to the same inorganic particle cylinder. Second, the peak near re2e = 7σ matches up

with polymers in a L configuration where the hydrophobic B block is in one of the hydrophobic

cylinders with the two halves of the polymer each stretching out to a different inorganic cylin-

der making a L shape. Lastly, the peak at re2e = 11σ corresponds to polymers that have fully

stretched into a straight line with end blocks buried in opposite inorganic particle cylinders,

as shown in Figure 7.5.

7.6.3 Gyroid phase

At φP = 0.25, a wide region of the phase diagram is covered by the gyroid phase. This

phase is characterized by the hydrophobic beads forming one interconnected network of tubes

across the simulation box. The inorganic particles form another interconnected network of

tubes interwoven within the first, and the two networks do not touch. Figure 7.7 shows

the network of hydrophobic beads. Structure factors are calculated and the peak positions

inspected, verifying that this configuration is indeed a gyroid.
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Figure 7.7 Snapshot of the gyroid phase obtained in the CA5B7A5C sim-
ulation run at φP = 0.25, εN = 1.0, and εF = 2.5. B beads are
blue. A, C and I beads area not shown to improve clarity.

As with the square columnar phase, polymers are found in preferred orientations. The end

to end distance distribution in Figure 7.6 includes only 2 peaks corresponding to the U and

fully stretched conformations.

7.6.4 Disordered micelle phase

The phase diagram of CA19B7A19C is dominated by a region of disordered micelles. A

structure factor analysis is performed on each and every simulation run in this phase to look

for the possibility of cubic micellar crystals [64]. Peaks indicating an ordered structure are

only observed in a single run, the one at φP = 0.25, εN = 2.0, εF = 3.5. A lattice of micelles

is present offset from a lattice of spherical aggregates of inorganic particles, similar to the

cubic phase found in ref [13]. Due to the extreme amount of computer time that would be

required [64], no attempt is made to ascertain the boundaries of this ordered cubic phase or

it’s reproducibility.
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Figure 7.8 Snapshot of the lamellar phase obtained in the CA5B7A5C

simulation run at φP = 0.25, εN = 2.0, and εF = 4.0. B beads
are blue, I beads are purple and C beads are orange. A beads
area not shown to improve clarity.

7.6.5 Lamellar phase with crystallized inorganic component

The lamellar phase shows up at φP = 0.25 when the value of of εF is high and the length of

the hydrophilic block is short (n = 5). It is characterized by large planes of hydrophobic beads

alternating with planes of inorganic ones. In combination with the polymer end blocks C, the

I beads display additional in-plane crystalline order. The crystal alternates beads ICICIC as

on a checkerboard in order to achieve the lowest potential energy UIC.

The end to end distance of the polymers in this phase is plotted in Figure 7.6. There are two

dominant peaks, one at small re2e corresponding to the U conformation and one at re2e = 11σ

corresponding to the fully stretched conformation. A number of smaller peaks is also present

at small re2e. These correspond to the two end beads of the polymer being separated by a

varying number of beads in the crystal plate.
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Figure 7.9 Snapshot of the disordered micelle phase obtained in the
CA19B7A19C simulation run at φP = 0.25, εN = 2.0, and
εF = 5.0. Coloration is the same as in Figure 7.8

7.6.6 Disordered micelles with inorganic platelets

A number of other points in the phase diagram show up with randomly oriented crystallized

plates of inorganic particles and polymer end blocks, similar to those found in the lamellar

phase. These plates are much smaller in width (10’s of σ) and the overall system exhibits no

long range order, as depicted in Figure 7.9.

7.7 Discussion on the origin and stability of the phases

7.7.1 Addition of inorganic components

Inorganic components introduce two characteristic energies, inter-particle attraction (εN )

and their affinity for the functionalized end-blocks (εF ). When both energies are below the

characteristic thermal energy scale of kBT , inorganic particles behave like solvent. When

particle attraction is strong (εN/εF � 1), the inorganic component inevitably phase separates

from the polymeric matrix. Therefore, a successful nanocomposite is only possible when εN �
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εF . There are two cases, categorized based on whether the inorganic component crystallizes:

• The curved regime (εF /(kBT ) > 1)

• The flat regime (εF /(kBT ) � 1)

Based on the simulation results, the boundary between the two regimes is roughly at εF /(kBT ) ∼
5 (see Figure 7.3).

7.7.1.1 The curved regime

In the curved regime, inorganic particles attract each other but do not crystallize. The

phases induced by the addition of inorganic particles are dependent on polymer architecture.

At high concentrations, systems of cross-cut micelles form lamellar phases only. Therefore, the

inorganic particles will colocate with the functionalized end blocks, resulting in ordered inor-

ganic structures following the existing lamellar polymer matrix. While cross-cut architectures

do result in a successful composite, they are restricted to lamellar phases.

For hairy micelles, the free energy required to stretch polymers will be exceedingly large,

and spherical micelles will remain stable even in the presence of inorganic components. If

the attraction of the inorganic components is strong enough, they may aggregate into larger

entities much like large nanoparticles. Ordered phases such as the lamellar catenoid (referred

to as layered hexagonal in ref. [13]) or CsCl are possible in these types of systems [13]. The

phase diagram of the CA19B7A19C system shown in Figure 7.3 is well explained from these

arguments.

The discussion on pure systems identifies that intermediate polymer architectures (m ∼
2n), neither cross-cut nor hairy, allow transitions between spherical, hexagonal, lamellar and

bicontinuous phases controlled via polymer stretching. In the presence of the inorganic compo-

nent these phases remain present (see Figure 7.3), offering a rich set of possibilities for polymer

nanocomposite design.

The role of polymer stretching in this intermediate regime is revealed by the density profile

analysis of the CA5B7A5C architecture shown in Figure 7.10. In the absence of inorganic
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particles, a hexagonal phase forms. The A and C beads taken together conform to a textbook

compressed brush [133]. When inorganic particles are included, they move to a location mid-

way between neighboring hydrophobic cores. The hydrophilic A blocks form a brush and the

functionalized end beads localize in the surface defined by the inorganic particles. The A blocks

are more localized in space as compared with the situation in the absence of inorganic particles,

so they become more stretched. Therefore, cylindrical micelles can transition to bicontinuous

or lamellar morphologies.

Focusing further on the CA5B7A5C architecture, micelles remain cylindrical at low con-

centrations (see Figure 7.2) where a square columnar phase is found. The same phase is also

found in systems with large nanoparticles as reported in Ref. [13]. Based on other findings

in that work, the square columnar phase found here should also become unstable towards a

hexagonal phase for higher inorganic particle concentrations.

Upon increasing polymer concentration, phases that favor minimum contact area at the

expense of some polymer stretching should be favored by the same arguments as discussed for

pure systems. Indeed, a gyroid phase is found (see Figure 7.3). Given how difficult stabilizing

gyroid phases is in pure systems, it is quite remarkable how wide the domain of stability is in

the presence of inorganic components.

For increasing hydrophilic length n, the stretching energy necessary to stabilize the gyroid

phase becomes unfavorable, and the square columnar phase should be recovered at the same

polymer concentration. Indeed, CA13B7A13C at φP = 0.25 does go to a square columnar

phase.

7.7.1.2 The flat regime

In the flat regime the inorganic phase crystallizes, thus favoring flat structures consisting

of a square lattice where I and C beads alternate as on a checkerboard. The square lattice is

preferred because a triangular lattice would induce frustration and a curved structure is higher

in energy due to buckling. Therefore, only architectures that form lamellar phases are naturally

compatible with the tendency of the inorganic component to induce flat structures and exhibit
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long range order (see Figure 7.8). For other architectures, the tendency of the inorganic phase

to favor flat structures will be frustrated by the stretching of the underlying polymer matrix.

A phase of disordered micelles with dispersed small size flat crystallites results as shown in

Figure 7.9 . These arguments explain the flat regime of the phase diagrams in Figure 7.3.

7.8 Conclusions

7.8.1 Summary of results

Designing polymer nanocomposites for new materials presents substantial challenges. The

tendency of the inorganic components to phase separate is one of the most recognized difficul-

ties. In many cases, the inorganic component is functionalized in different ways [132] so as to

inhibit particle attraction. The extensive analysis presented in this paper, combined with pre-

vious results [12, 13] show that polymer functionalization is a viable and powerful alternative

for polymer nanocomposite design.

For symmetric triblocks, this study has identified architectures with n ∼ m as providing

the richest variety of phases with inorganic component showing different tunable morphologies.

The case where n � m (cross cut) is suitable for designing a composite where ordered planes

of crystallized inorganic particles (see Figure 7.8) are required. In the opposite case, n � m,

small crystallites form which may be suitable for systems where nano-sized crystallites are

required to be dispersed into a polymeric matrix. Following previous discussions, all these

results should also apply for functionalized diblocks of the form CAnBm/2.

The different composites are not only dependent on polymer architecture, but on the affinity

between I and C blocks, which is parameterized by the energy scale εF. When εF/kBT � 5,

the composite contains some degree of crystalline order and in some cases, mesoscopic order as

well. While for εF/kBT � 5, the inorganic particles are liquid-like, but the systems display a

far richer degree of mesoscopic order. In addition, this analysis establishes that the polymers

are always strongly stretched [86] (but not described by the strong segregation limit, as the

A–B interface is not sharp) and that the balance between stretching and affinity determines

the stability of the different phases observed.



133

7.8.2 Experimental implications

At high inorganic/polymer affinity, our results suggest a new mechanism to assist crystal-

lization of inorganic components by using a suitable choice of functionalized polymers. This

leads to a situation where the polymer end blocks bridge the inorganic components, as shown

in figures 7.8 and 7.9.

At lower affinity, this study suggests a new method for creating polymer nanocompos-

ite materials in situ, where the nanoparticles are not necessarily spherical. For example, in

the square columnar phase (Figure 7.5) the inorganic components are liquid, but by further

lowering temperature they might be induced to crystallize, thus forming a composite with

cylindrically shaped nanoparticles.

The most widely studied polymer nanocomposite is that of a diblock (AnBl) polymer

melt with dispersed nanoparticles. Usually, the phase diagram is presented as a function of

nanoparticle selectivity determining whether the nanoparticles have an affinity for either the A

or B blocks respectively [122,123,129]. Non-selective nanoparticles have no attraction for either

the A or B blocks. In those studies, the original lamellar order of the pure system remains,

although some quantitative parameters, such as the lamellar spacing change. There has been a

recent interest in systems of “active” nanoparticles [119], where the resulting composite exhibits

a different type of order than the original pure polymer system. Polymer functionalization as

shown in this work is a strategy where nanoparticles are “active” by this definition. The

inorganic components do not simply accommodate to the mesoscopic order of the polymer

matrix in the absence of inorganic components, but actively modify the original phase so that

the final mesoscopic order is dictated by both the polymer and the inorganic component. The

investigation of diblock or triblock copolymer melts with functionalized polymers is a promising

new direction that we expect will be the subject of future experiments.

Experimental examples of functionalized systems are presented in ref. [130]. The Pluronic

polymer used is F127, PEO99PPO65PEO99, an example of a hairy system. The polymer is

functionalized with different groups that have affinity for calcium phosphate in an attempt to

synthesize a material similar to natural bone. Detailed imaging and X-ray experiments show
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that calcium phosphate crystallized, usually forming nanometer sized platelets but without

mesoscopic order. This bears a distinct similarity to the phase shown in Figure 7.9. However,

a direct comparison between theory and experiment becomes difficult as it is not clear to what

extent the experimental results are in equilibrium nor to what extent the approximation that

calcium phosphate is non-selective to Polyethylene oxide.

There has been a significant amount of theoretical and experimental work on tethered

nanoparticles, nanoparticles with attached polymer chains. The functionalized polymers in

this work reduce to tethered nanoparticles in the limit of 1) large affinity εF and 2) the addi-

tional restriction that only one inorganic bead can be attached to a functional group. Indeed,

phase diagrams of tethered and functionalized systems show considerable similarities, such as

the presence of a gyroid phase, but a detailed comparison of both systems will be left for a

subsequent study. [139]

Certainly, there are other mechanisms for polymer nanocomposite design besides polymer

functionalization. For example, the nanoparticle radius can be tuned to be similar to the micelle

radius. Then the nanoparticles will be unable to diffuse through a cubic micellar crystal, and a

low concentration of such nanoparticles might remain ordered located in the interstitial spaces

of a micellar gel. In this case, nanoparticle repulsion may help stabilize such phases, as it should

distribute nanoparticles more evenly during the gelation process. The effects of nanoparticle

size is studied via simulation in ref. [13], and no successful nanocomposites where observed

without functionalization. However, the largest nanoparticle size studied was considerably

smaller than micelle radius. [140]

There are a number of parameters that this study has not addressed. Most notably the

influence of inorganic concentration and effects related to inorganic particle size. These effects

were analyzed systematically in a previous paper [13] showing additional phases not found

in this study, such as the layered hexagonal phase. It remains for a future publication to

complement the systematic study of polymer architecture with these additional parameters.
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CHAPTER 8. NUMERICAL ERRORS IN MOLECULAR DYNAMICS

8.1 Introduction

Any numerical calculation performed using finite precision floating point arithmetic is sub-

ject to error [141] simply from the limited precision of the values stored. IEEE-754 single

precision arithmetic, the standard implemented on most computers and NVIDIA GPUs, stores

binary floating point numbers as s · mp where s is a 1-bit value representing the sign of the

number, m is the 23-bit mantissa and p is the 8-bit exponent. The mantissa is large enough to

represent roughly 6 decimal significant digits of precision. Double precision increases the bits

in the mantissa to 52 and those in the exponent to 11, making roughly 15 decimal significant

digits of precision available and a wider range of numbers can be represented.

The result of this finite precision has many consequences [141] that must be taken into

consideration to reduce errors when writing any numerical computer program. The most

important type of error for the purposes of the following discussion is called round-off error.

To put it simply, in finite precision floating point arithmetic 1 + ε is evaluated to be exactly

1 for all ε < εm where εm is called the machine epsilon. One can see this more clearly on

numbers with larger exponents; Adding 1 · 107 + 1 in base 10 with only a finite 6 significant

figures leaves the 1 off the end and the resulting value is still 1 · 107.

Errors resulting from finite numerical precision are not the whole story, however. Computer

simulations are typically performed as approximate solutions to a problem when no analytical

one exists [16]. Errors specific to the problem and type of approximation used are also very

important, and often times much greater than any errors introduced from performing calcula-

tions in finite precision arithmetic. Such errors are sometimes called truncation errors because

they result from the truncation of an infinite series. [142]
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8.2 Sources of numerical errors in molecular dynamics

Every approximation made in the derivation of molecular dynamics is a potential source

of error. First and foremost, molecular dynamics is an iterative solution of 3 · N coupled

ordinary differential equations, where N is the number of particles in the simulation. The

solution is evaluated only at discrete points in time tn · δt where tn is an integer and δt is

the step size. Discretizing a continuous solution to an ODE introduces an approximation

with error in O(δtm) where m is the order of the integrator being used [16]. Second, most

molecular dynamics simulations (including all those presented in this thesis) have an additional

approximation that the potential energy V (r) between pairs of particles is cutoff to 0 when

r ≥ rcut. Additional errors can be introduced by this.

Molecular dynamics is pretty well-behaved as far as errors from finite precision arithmetic

go. There are few areas where serious problems, such as cancellation errors, occur except

in extremely large simulations of hundreds of millions of particles. The biggest problems that

show up in small and medium sized simulations are round-off errors resulting from an improper

choice of the step size δt. The simple Euler integrator [16] illustrates this problem simply. In

it, the velocity is moved forward a single time step by the calculation �v(t+δt) = �v(t)+�a(t) ·δt.
This is identical to the form of round-off errors discussed in section 8.1, with �a(t) · δt playing

the role of ε. Thus, it is clear that if δt is chosen too small, round-off errors will result.

However, with the truncation error proportional to δtn, choosing too large of a step size is also

problematic. An actual evaluation of the error at various step sizes must be performed in order

to choose one with an acceptable margin of error (see section 8.4).

8.3 Minimizing numerical errors in molecular dynamics

The best way to minimize round-off errors is to use the highest precision calculations

that the hardware makes available. Typically in standard CPU applications, this means using

double precision at an insignificant performance loss vs. the same calculation in single precision.

On current NVIDIA GPUs, however, the performance loss for switching completely to double

precision can be as much as a factor of 2–8, which would negate many of the great performance
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gains obtained in chapter 6.

To get the best of both worlds, some algorithms currently being implemented on GPUs

are using multi-precision methods [143] where single precision is used in most of the algorithm

for performance reasons and double precision is only used where absolutely necessary. Such

applications result in the same error levels as their fully double precision counterparts, but

without any significant performance loss. A detailed analysis of errors in single vs double

precision molecular dynamics is performed in section 8.4 and it is hoped that the results will

aid in future work developing a multi-precision implementation on the GPU.

To reduce the errors introduced by cutting off the potential, some existing molecular dy-

namics applications, such as NAMD [23] and GROMACS [101], introduce a smoothing func-

tion to smoothly vary both V (r) and the force to 0 at r = rcut. Specifically, NAMD [23]

uses the XPLOR smoothing function that modifies the Lennard-Jones potential function to be

S(r) · VLJ(r) with

S(r) = 1 r < ron (8.1)

= (r2
cut−r2)2·(r2

cut+2r2−3r2
on)

(r2
cut−r2

on)3
ron ≤ r ≤ rcut (8.2)

= 0 r > rcut (8.3)

. Where VLJ(r) is the original Lennard-Jones potential. When ron is chosen to be large, say

2/3 ∗ rcut, then the effect on the overall shape of the potential is minimal. The benefit is that

the resulting V (r) has C2 continuity with both the potential and force going to 0 smoothly at

r = rcut. No in-depth analysis could be found in the literature quantifying the benefits of this

somewhat expensive smoothing operation, so one is performed here in section 8.4

8.4 Quantifying errors in molecular dynamics

8.4.1 Errors over short runs

Ref. [15] suggests that errors in molecular dynamics can be quantified by performing a series

of relatively short simulations and examining the fluctuation of quantities that should be con-

served. To perform this evaluation, a configuration of N = 32000 particles is first equilibrated
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CPU/single and CPU/double are runs of identical code on the
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in a NVT ensemble with T ∗ = 1.0. Then, starting from this same initial configuration each

time, NVE dynamics are continued for a time of 50τ (for an overview of units, see section 3.6)

with varying step sizes δt and with the software configured in various ways. All of these sim-

ulations are performed with rcut = 3.0σ. For each run, the total system energy Etot(tj) is

calculated every 10 time steps for a total of M samples. A root mean square fluctuation of the

energy per particle is then calculated by

ERMS =

⎡
⎣ 1

M

M∑
j=1

(
Etot(tj) −

(
1
M

M∑
k=1

Etot(tk)

))2
⎤
⎦1/2

/N

.

Results are shown in Figure 8.1. In the entire region where δt/τ > 0.001 the magnitude of

the error is virtually identical for all software configurations. This shows that there is nothing

significantly “inferior” about the non IEEE-754 compliant single precision arithmetic on the

GPU. It also shows that neither the double precision nor the use of the smoothing function

result in smaller errors of energy conservation. For values of δt ≤ 0.001, the double and single
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precision calculations split with the single precision experiencing an upturn in the error. This

is a classic example of round-off error in action [16], as previously discussed. The double

precision runs can continue with a lower error at a lower δt because the value of machine

epsilon is smaller for double precision. There should eventually be an upturn of the double

precision runs, too, but a significant amount of computation time is needed to run simulations

at that small of a step size so they are not performed.

We can learn a little about the source of the errors from Figure 8.1. The black best fit line

plotted has a slope of 2 on the log-log plot providing a good indication that the errors result

from the approximation made in the velocity-verlet integration algorithm used to implement

NVE simulations in this software (which has error proportional to O(δt2) [15]).

Step sizes larger than a δt of 0.01 were not stable. Such a large step size can result in two

particles moving very close together from one step to the next. Now at a very small r, the force

from the hard core repulsion in the Lennard-Jones potential becomes extremely high, sending

the particle an even farther distance on the next step where it is likely to end up very close

to yet another particle. After a few repeated steps like this, eventually something bad, like

a divide by 0 happens and the whole calculation becomes garbage. The key parameter that

causes this unstable behavior is the distance any given particle moves in a time step, which

is approximately v(t) · δt. Thus, systems with a higher temperature may need to be run at a

smaller time step to keep this distance small so that the entire system remains stable.

While this intuitive description of instability is what occurs in practice, a rigorous analysis

determining the stability of any numerical integrator can be performed [142]. In short, insta-

bilities occur from the propagation of errors from one time step to the next in such a way that

the calculated solution deviates from the real solution exponentially in time. A quantifiable

criterion exists (related to the step size δt) that provides a hard line separating stable solutions

from unstable ones, as seen in the simulations above where the simulations were unstable for

δt > 0.01.
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8.4.2 Errors over long runs

When it comes to predicting phase diagrams of polymer systems, or any of the other

applications of molecular dynamics, 50τ is only a very brief simulation. Simulations lasting

for 5 · 105τ or even longer are not uncommon. To see how numerical errors result in the drift

of conserved quantities over these long time periods, initial conditions are prepared as in the

previous section but this time the continuing runs are performed at a fixed δt = 0.005, for a

total time of 25000τ and varying values of rcut. Total system energy and momentum are both

examined for any amount of drift over time by performing best line fits to the quantities vs.

time and plotting the calculated slopes. Results are in Figure 8.2.

For the shifted but not smoothed potentials, the energy drift is significantly higher for

smaller values of rcut. This is expected as the magnitude of the discontinuity in the force

grows as rcut is decreased (and is still kept above the minimum of the potential at r = 21/6σ).
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Including the smoothing function on the single precision GPU runs reduces the energy drift

at small rcut, but provides no additional benefit at larger (and more reasonable) values of rcut

when compared to the GPU runs with shifted potentials and even the CPU runs in full double

precision with shifted potentials. Other cutoff potentials with a larger force magnitudes at

r = rcut, such as those needed in certain lipid bilayers [144], should benefit more from this

smoothing than Lennard-Jones.

What is surprising are the results from the CPU double precision runs with smoothed

potentials. In these, the energy drift is reduced by several orders of magnitude. In particular,

the drift is so small for the run at rcut = 3.2σ that the calculated RMS fluctuation for this run

is the same as the RMS calculated from the comparable 500 times shorter runs performed in

subsection 8.4.1. Clearly, some combination of double precision integration and in the force

calculation results in superior energy conservation over long runs. This isn’t to say that the

energy conservation of the single precision calculations is bad. In fact, it is small enough

that all of the polymer model simulations performed on the GPU in this thesis run without

problems and validate against all cross-checks performed on the CPU in double precision using

a different software package (LAMMPS [22]). Only a few specialized uses of MD, such as

perhaps free energy calculations which requires a very precise calculation of the total energy,

might not be possible with drift induced by the reduced precision.

Momentum conservation is a different story. Calculations in single precision result in a

significant drift in the entire system momentum over long runs. The drift rate is more than 10

orders of magnitude higher than the same calculations in double precision. The causes of this

drift are not obvious and will be looked into further in the future. Fortunately, there is a simple

and effective way to work around the problem. Every so often, say 500τ , calculate the average

momentum of the system and subtract if from each particle. This prevents the drift from

reaching a stage where it is so large that simulation results are changed from what they should

be. Additionally, the total energy energy removed from the system by this operation is still

well within the existing RMS fluctuation of the energy per particle: p2

2m = (500τ/0.005τ/step ∗
10−10 mσ

τ /step)2/(2m) = 5 · 10−11ε.
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8.5 Conclusions

Errors resulting from finite precision arithmetic and approximations in the molecular dy-

namics algorithms are present in every simulation run. It is important to understand what

these errors are and know an estimation of their magnitude so there are clear expectations of

the precision when beginning any simulation. Figures 8.1 and 8.2 are the main results present-

ing this information. Most importantly in the context of the polymer simulations presented in

this thesis, an appropriate step size can be chosen from Figure 8.1 that is stable and within

an acceptable error margin, but not so large that calculations become unstable and result in

divide by 0 problems (note that 0.005 is used in most of the work presented here). Other types

of errors found, such as the energy drift, do not significantly effect the results of the polymer

simulations.

Fortunately in this new era of GPU computing, errors when molecular dynamics is per-

formed on GPUs are not significantly higher than corresponding simulations done in double

precision on the CPU (or can be worked around in the case of the momentum problem).

Hopefully the analysis presented here will be only the first step in a future work expanding

the GPU computation with multi-precision arithmetic, bringing the error magnitudes down

so that GPUs can be an effective tool even for those in the broader community performing

specialized molecular dynamics simulations that really need extremely small errors.
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CHAPTER 9. CONCLUSION

9.1 Polymers

Systems of polymers in solution exhibit a wide variety of phases. This thesis studies many

of these phases in great detail from a theoretical perspective using molecular dynamics simu-

lations. First, a number of new advances are made in technique, such as the parameterization

of solvent quality in chapter 4 and the equilibration method for cubic morphologies in chap-

ter 5. These new techniques expand the applicability of molecular dynamics to the study of a

wider range of polymer systems. With the solvent quality parameterization, the temperature

dependence on hydrophobicity that is present in many real monomers can now be included

in coarse-grained simulations. It has already been adapted for Monte Carlo simulations and

used by others in the field [145]. The exhaustive analysis of micellar crystals having cubic

symmetries in chapter 5 results in an efficient and general technique that can be applied to

any future simulations involving similar phases. Such phases occur often in polymer systems,

so it should prove useful to much of the community studying polymers with MD.

However, the research goal set out in the introduction was not only the creation of new

techniques. A solid understanding of the behavior of polymers in ordered phases is also gained

from chapters 4 and 5. Quantities from the dynamics of the phase formation to detailed

calculations of the density fluctuations, micelle properties, and many more all come together

in the big picture and help provide a simple intuitive description of these phases.

Much of this work on pure polymer systems is a critical step for the subsequent study

of polymer-inorganic composite materials completed in chapter 7. This detailed study lays

out how challenging it can be to form a successful composite material. Without some affinity

between the polymer and the inorganic particles, successful composites do not form as the
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inorganic component either diffuses freely or phase separates from the polymer. Functionaliza-

tion is introduced as a viable strategy to circumvent this problem. A wide region in parameter

space is analyzed, detailing the effects of the strength of the affinity and polymer architecture.

It is hoped that this detailed study will be useful as a roadmap to guide future experiments

towards developing the new generation of polymer nanocomposite materials.

9.2 GPU Computing

The development of data-parallel algorithms implementing molecular dynamics on the

graphics card in chapter 6 is a another major accomplishment of this thesis that impacts a

large community of MD users in many fields of science. This thesis is being written two years

after the initial work began on the GPU computing project. Since then, it has evolved into

HOOMD (Highly Optimized Object-oriented Molecular Dynamics), an open source software

project available to everyone online. It is currently being used around the world, by research

groups at the University of Illinois at Urbana-Champaign, the University of Pennsylvania, the

University Michigan, the University of Virginia, the Naval Research Laboratory, and many

more. The drug company Pfizer has even made a few inquires about it. While HOOMD is

already a useful tool for many, it has a bright future ahead as I will be continuing development

during the next step in my professional career.

Also since the paper was published, NVIDIA has released a new generation of GPUs that

run HOOMD 50% faster than their predecessors. With yet another new generation on the hori-

zon, significantly faster performance will soon be obtainable again with just a cheap hardware

upgrade. Combined with the new hardware, a number of algorithmic performance improve-

ments have also been made since the paper was published. The current fastest NVIDIA GPU

running the latest development version of HOOMD is now roughly 63 times faster than a single

CPU core (compared to a current generation Opteron 2356). All ideas for optimization have

not even been fully explored yet, and there are plans currently for at least another 10–20%

performance improvement.

We are now in a new era of accelerated computing that enables bigger, faster, and cheaper
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simulations than ever before. The last point has perhaps been underemphasized. As of the

writing of this thesis, a mere $350 can buy a graphics card capable of running HOOMD at

roughly the same level of performance as a cluster of eight dual quad-core machines connected

with a fast (and expensive) network. With the performance of GPU outpacing their CPU

counterparts, it seems inevitable that GPU computing is the future of scientific computing.
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