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ABSTRACT 

 

 This thesis presents work on advancements and applications of 

methodology for the analysis of biological samples using mass spectrometry. Included 

in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for 

the study of protein structures and mass spectrometry imaging and quantitative 

analysis to study plant metabolites. Applications include using matrix-assisted laser 

desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore 

metabolic heterogeneity in plant tissues and chemical interactions at the interface 

between plants and pests. Additional work was focused on developing liquid 

chromatography-mass spectrometry (LC-MS) methods to investigate metabolites 

associated with plant-pest interactions.  

The first chapter includes an introduction into CXMS and MS-based metabolite 

analysis and the sixth and final chapter includes a brief summary of the work and future 

directions based on the work presented here. 

The second chapter discusses the limitations of chemical cross-linking mass 

spectrometry, and steps taken to overcome these. This includes the incorporation of 

hydrogen-deuterium exchange mass spectrometry (HDX/MS) to identify the presence 

of structural distortion caused by the chemical cross-linking reaction. The use of 

extracted ion chromatograms (XIC) to increase cross-linking detection efficiency is also 

discussed. 
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The third chapter focuses on the application of MALDI-MSI to investigate 

seedling maize leaf tissues. Metabolites related to the photosynthetic process are 

compared at different locations along the leaves of two inbred genotypes. The 

localization and relative abundances of phosphatidylglycerols (PG) and sulfoquinovosyl 

diacylglycerols (SQDG) are described in detail.  

The fourth chapter illustrates how imprinting MSI can be used to study the 

chemical interface between plants and pests. The interaction between soybean aphids 

and soybean leaves was studied using MALDI-MSI on imprints of infested leaves. These 

experiments revealed the spatial distribution of numerous metabolites, including 

compounds involved in the plant-pest interaction.  

The fifth chapter discusses the development of a methodology to determine 

quaternary ammonium compounds (QACs) in plant samples. Hydrophilic interaction 

liquid chromatography (HILIC) mass spectrometry was used to quantitatively and 

qualitatively analyze common bean seed exudates. This work was focused on QACs that 

bacteria are known to uptake for osmoprotection and nutritional benefits. 
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CHAPTER 1 

 INTRODUCTION 

 

This dissertation presents work in two distinct fields of mass spectrometry: 

chemical cross-linking for protein structure and small molecule analysis of plant 

tissues. Therefore, this introduction presents background information on both 

techniques separately. 

 

Chemical Cross-Linking Mass Spectrometry 

Protein structure 

Proteins play an essential role in many biological functions including the 

transport of molecules within and between cells[1], replication of DNA[2], and catalysis of 

metabolic reactions[3]. The ability to carry out these functions depends largely on the 

structural conformation of the protein. Protein structure is often organized into three 

levels: primary structure, defined by the sequence of the linear amino acid chain; local 

secondary structures, such as alpha helices and beta sheets; and the 3-dimensional 

tertiary structure formed through non-covalent interactions such as hydrogen bonding, 

Van der Waals forces, hydrophobic packing, and ionic interactions. Investigating the 3-

dimensional conformation of proteins can provide an insight into how they function. 

Protein conformation studies are largely dominated by x-ray crystallography 

and nuclear magnetic resonance (NMR) spectroscopy[4], which can provide structural 
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information with high resolution (1-2 Å)[5-6]. Over 95% of all protein structures listed in 

the Protein Data Bank were determined by one of these two techniques. Although x-ray 

crystallography and NMR spectroscopy dominate the field of protein structural 

analysis, both have inherent limitations: x-ray crystallography requires high-quality 

protein crystals, while NMR spectroscopy requires relatively large amounts of 

sample[7]. Crystallized proteins or proteins in high abundance are not native conditions 

and sample preparation can be prohibitively difficult using these methods. Moreover, a 

protein’s structure in a crystal may not be reflective of its structure in vivo. The study of 

proteins under native conditions and at native concentrations could provide insight 

into the functional structure of a protein. As a result of these limitations in traditional 

analysis techniques, complementary mass spectrometric techniques have grown in 

popularity. Oxidative labeling[8], hydrogen exchange[9], and chemical cross-linking[10] 

mass spectrometry have all provided structural information for proteins under native 

conditions, albeit at much lower resolutions than available from crystallography or 

NMR spectroscopy. The advantages and disadvantages of these three techniques have 

been discussed in reviews by Konermann[11] and Sinz[12].  

 

Cross-linking 

Chemical cross-linking utilizes reagents consisting of two reactive groups 

separated by a spacer chain to form intramolecular connections in proteins. By 

analyzing the positions of the cross-links, it is possible to determine the maximum 

through-space distance between two amino acid residues. Cross-linking reagents are 
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available with different reactive moieties, spacer arm lengths, solubility, and possible 

enrichment properties, which allows cross-linking experiments tailored to many 

different experimental conditions and sample types. The reactive groups can be specific 

to amino acids, such as N-hydroxysuccinimide (NHS) esters that react with primary 

amines, or maleimide moieties that react with sulfhydryl groups, or non-specific 

reactions, such as aryl azide or diazirine photoreactive groups. Spacer arm lengths 

ranging from 0 Å, as with EDC, to 95 Å, as in SM(PEG)24 are commercially available and 

provide a wide range of distance constraints. Water-soluble and membrane-permeable 

analogs are also commercially available and are suitable for cytosolic or membrane-

bound proteins, respectively.  

 

Mass spectrometry 

Cross-linked proteins can be analyzed by mass spectrometry using approaches 

similar to those established for traditional protein mass spectrometry, which can be 

performed using a top-down or bottom-up approach. In top-down analysis, intact 

proteins are directly fragmented and analyzed inside the mass spectrometer. Bottom-

up analysis is more common and involves proteolysis prior to introducing the sample 

into the mass spectrometer. The resulting peptides are analyzed and their parent 

masses (MS) can be used as a mass fingerprint to identify proteins. Additionally, 

fragmentation (MS/MS) can be performed to obtain more detailed sequence 

information. Analysis of peptide fragments improves the confidence in identification by 

providing the peptides’ amino acid sequences. Protein identification for the bottom-up 
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approach uses protein databases or predicted sequences, against which the fragment 

spectra are searched. A review comparing top-down and bottom-up approaches and 

their advantages and disadvantages is provided by Bogdanov and Smith[13]. 

Typical protein analysis by mass spectrometry uses either matrix-assisted laser 

desorption/ionization (MALDI) or electrospray ionization (ESI) as the ionization 

technique. Both MALDI and ESI are soft ionization techniques and have minimal 

fragmentation of analytes during ionization, which makes them suitable for analysis of 

proteins/peptides. In MALDI, a light-absorbing matrix is applied to the sample and 

cocrystallizes with the analytes. The crystalline sample is then irradiated by a laser. The 

absorbing matrix is heated and desorbed, in turn leading to desorption of the sample 

material. Peptides are ionized either in the sample or in the gas phase[14] and are 

introduced into the mass spectrometer for analysis. ESI is performed by applying a 

voltage to the solvent containing the sample and the resulting aerosol is directed 

toward the mass spectrometer. The aerosol droplets from the spray are charged at the 

surface, and as the droplets get smaller through coulomb fission and desolvation, the 

charge is transferred to the analytes. ESI is advantageous over MALDI for peptide and 

protein analysis in that they may take on multiple charges, thus reducing the mass-to-

charge ratio and extending the detection range of the mass spectrometer.  

Protein identification by mass spectrometry is greatly enhanced by using 

tandem MS to fragment peptides and obtain more detailed sequence information. 

Peptide MS/MS is capable of producing predictable fragmentation patterns, and several 

fragmentation techniques are available. Electron capture dissociation (ECD) and 
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electron transfer dissociation (ETD), both of which reduce the charge state of multiply 

charged cations by introducing anions, tend to produce fragments along the peptide 

backbone between the α-carbon and amine (c and z-type ions)[15]. Collision induced 

dissociation (CID) is also a popular fragmentation method for peptide analysis, and 

works by accelerating and colliding analyte ions with an inert gas, typically N2, He, or 

Ar. Peptides are mostly fragmented at the amide bonds in the peptide backbone, 

producing b and y-type ions[16-17]. CID works well for peptides with a low charge state 

and <20 amino acid residues, while ECD and ETD are superior for intact proteins and 

proteins with labile post-translational modifications[18]. 

 

CXMS detection 

Identification of cross-linked peptides is done in a similar fashion to peptide 

identification; however, finding the low-abundance cross-linked peptides can be 

challenging when they are present in a sample containing a plethora of non-cross-

linked peptides. Much work has been done to overcome the issue of low-abundance 

cross-links, including using the intrinsic properties of cross-linked proteins to enrich 

cross-linked peptides in a sample. Theoretically, peptides cross-linked together should 

be the summed mass and charge state of the non-cross-linked peptides. Because of this, 

strong cation exchange[19] and peptide size exclusion chromatography[20] have been 

used to separate cross-linked peptides in sample mixtures. Incorporating a third 

functional group into the cross-linking reagent can also be used to overcome sample 

complexity. Affinity tags, such as azide-labeled cross-linkers[21] and biotin-labeled 



6 

cross-linkers[22] have been applied to enrich cross-linked peptides. Detection of cross-

linked peptides has also benefitted from using fluorogenic cross-linkers [23], isotope-

labeled cross-linkers[24] and thiol-cleavable cross-linkers[25] in order to distinguish 

cross-linked peptides from non-cross-linked peptides.  

Even with these sample enrichment strategies, data analysis to identify the 

cross-linked peptides can still be challenging. Manual interpretation of data would be 

time consuming and would present the additional challenge of identifying two peptides 

in one spectrum. Instead of seeing b and y fragments of one peptide, the spectra are 

complicated by having fragments from two peptides. Because of these challenges, 

software programs have been developed to improve the detection of cross-linked 

peptides. These programs such as Popitam[26], xQuest[27], and X!Link[28] have automated 

data analysis and improved cross-linking detection efficiency. A discussion of the 

advantages and limitations of these programs is available[29].  

Cross-linking to study protein structure can be viewed as a post-translational 

modification (PTM), and natural PTMS have been shown to induce structural changes in 

proteins. For example, phosphorylation of protein kinases[30] or oxidation of 

immunoglobulin γ1[31] leads to a change in protein conformation. Even the presence of 

cations can induce proteins to change conformations, such as calmodulin in the 

presence of Ca2+ [32]. Since cross-linking experiments modify at least two sites on a 

protein, changing the protein conformation upon cross-linking is a possibility. Previous 

studies have overcome this by limiting cross-linking to one cross-link per protein, 

under the rationale that a single cross-link should have a minimal effect on the native 
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structure and any change in conformation would occur after the cross-linking 

reaction[10]. Therefore, the structure actually probed is that of the unmodified 

conformation. 

 In this work, we discuss advancements to overcome the two major 

shortcomings of chemical cross-linking: low detection efficiency and the possibility of 

structural distortion. We focus our efforts on improving cross-linking detection by 

increasing the number of cross-links attached to each protein, while ensuring that the 

native protein conformation is not disturbed.  

 

Plant Metabolite Analysis by Mass Spectrometry 

Metabolomics 

Metabolomics is the study of small molecule metabolites in biological systems. 

Understanding the identity, location, and quantity of these small molecules inside the 

cells, tissues, or entire biological system can provide valuable information in 

understanding biological processes. Metabolites are classified as either primary or 

secondary metabolites. Primary metabolites are associated with growth, development, 

and reproduction, whereas secondary metabolites have roles in stress response and 

defense against other species. Additional roles for secondary metabolites include 

antioxidants, signaling compounds, and inhibitors to competitor species.  

Thousands of metabolites from a range of chemical classes have been indentified 

in plants. For instance, terpene hydrocarbons, basic alkaloids, and phenolic isoflavones 
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have all shown to act as deterrents to pests. Small organic acids, quaternary ammonium 

compounds, glycosidic compounds, and phospholipids are also prevalent in plants. 

Plant metabolites are also highly dependent on factors such as the life stage of 

the plant, tissue type, and environmental conditions. Metabolites in seeds can differ 

greatly to those found in adult plants. Seeds are abundant in water-soluble nitrogenous 

metabolites that can easily be released during imbibition[33], while mature leaves have a 

protective waxy layer between the plant and the environment[34]. Roots contain 

metabolites associated with establishing a healthy rhizosphere[35-36], while the leaves 

can produce defense compounds specific to herbivores[37]. Even within plant tissues, 

metabolite distribution can vary. Flavonoids that serve as UV protectants are most 

abundant on the adaxial surface of the leaf[38]. Metabolite changes due to environmental 

factors, such as drought or temperature stress have been a focus of numerous 

studies[39-42]. Investigating the highly dynamic world of plant metabolites can provide 

an insight into the metabolic pathways associated with plant growth and response to 

stress conditions.  

 

Mass spectrometry 

Mass spectrometry is an excellent tool for determining metabolites in plants. Its 

versatility allows for analysis of a wide variety of metabolites, and experimental 

parameters and protocols can be modified to suit many different types of analytes. 

Metabolite identification or localization can be performed by qualitative MS analysis 

and quantitative analysis can determine metabolite abundance. The ongoing 



9 

improvement of ion transfer and detection efficiency in instrumentation has allowed for 

metabolite analysis to be expanded to low-abundance compounds. The development of 

multiple sample preparation and introduction techniques and several types of 

ionization modes allow for analysis of a vast range of tissue types and compound 

classes. 

Instrument sensitivity is extremely important when analyzing plant metabolites. 

Many compounds are only present in small quantities in plant tissues. Mass 

spectrometers have routinely achieved femtomole-level analyses[43], and even 

yoctomole levels of detection have been reported[44]. This makes mass spectrometry a 

popular choice for analyzing low abundance compounds in plant tissues. The high 

sensitivity has also made it possible to progress from bulk tissue analysis down to the 

analysis of individual cells[45]. 

The most fundamental requirement for mass spectrometry is the need to ionize 

the analyte . Compounds containing functional groups are usually able to be protonated 

or deprotonated. Even hydrocarbons, which can be challenging to ionize because they 

lack functional groups, can be ionized under certain conditions[46-47]. Most mass 

spectrometers are able to switch polarity between positive and negative ion detection 

modes, either during analysis or between samples, which makes it possible to cover a 

wide range of metabolites. 

Mass spectrometers are routinely coupled with liquid chromatography (LC) for 

analysis of plant extracts. This simplifies analysis by separating analytes from biological 

matrices and other metabolites. LC systems are compatible with atmospheric ionization 
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sources like electrospray ionization, as the samples are introduced in solution. 

Traditional LC analysis on reverse phase columns, suitable for analysis of slightly polar 

to nonpolar molecules, also uses solvents that are typically compatible with mass 

spectrometry analysis. Recent advancements with hydrophilic interaction liquid 

chromatography has also made the analysis of highly polar compounds suitable for LC-

MS analysis, as the solvents used for HILIC separation are also compatible with MS. ESI 

sources have been shown to be useful for ionizing polar analytes in both positive and 

negative mode. Additional ionization sources, employing phenomena such as 

photoionization and chemical ionization, can also be incorporated in order to ionize 

highly nonpolar compounds.  

Quantitative analysis is commonly performed by LC-MS. Detection modes such 

as selected ion monitoring (SIM) and multiple reaction monitoring (MRM) have been 

used to obtain quantitative information for selected metabolites[48]. 

Dried samples may also be analyzed by mass spectrometry by using matrix-

assisted laser desorption/ionizataion (MALDI). Ionization in MALDI is facilitated by the 

matrix. Different organic matrices have been shown to be beneficial for certain classes 

of metabolites, such as α-cyano-4-hydroxycinnamic acid for peptides and proteins[49], 

2,5-dihydroxybenzoic acid for small molecules and carbohydrates[50-51], 9-

aminoacridine for nucleotides[52], and 1,5-diaminonaphthalene for lipids and small 

molecules[53-54]. Nanoparticle matrices have also been shown to be beneficial for harder 

to ionize analytes like terpenoids[55]. New matrices continue to be investigated and can 

provide further optimization for specific experiments. 
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MALDI-mass spectrometry imaging (MSI) has been used widely to show the 

distribution of metabolites in tissues[56-61]. These experiments are performed by 

scanning a region of interest on a surface, collecting spectra at a series of scan positions. 

The intensity for an ion in a spectrum can then be correlated to the x-y position of that 

spectrum. From this type of data, intensity maps can be generated that show the 

distribution of metabolites within tissue.  

MALDI-MSI has been shown to be valuable in detecting and imaging metabolites 

in various plant tissues, such as roots [62], stems [63], leaves [64], and flowers [62]. 

Advancements in sample preparation techniques have helped expand the versatility of 

MALDI-MSI. Not all samples are suitable for direct MALDI-MSI analysis due to sample 

thickness or uneven morphology. Cryosectioning is commonly used to create thin tissue 

sections for the study of internal metabolites. Recent developments have used 

imprinting to extract leaf metabolites to a substrate prior to analysis[65]. These 

advancements have allowed for the analysis of all types of plant tissues. Thoughtful 

selection of sample preparation methodology, matrix, and ion polarity makes MALDI-

MSI a suitable technique for a wide variety of metabolites in plants. 

In this work, we expand on plant metabolite analysis by mass spectrometry. 

MALDI-MSI was used for qualitative analysis of photosynthesis-related metabolites in 

maize seedling leaves. Secondary metabolites associated with the defense response to 

aphids in soybean leaves were also studied. Finally, quantitative LC-MS analysis was 

used to study quaternary ammonium compounds released during germination of 

common bean seeds. 
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Dissertation Organization 

This dissertation is divided into six chapters. The first chapter, seen above, 

serves as an introduction to chemical cross-linking mass spectrometry, as well as the 

use of mass spectrometry-based methods to investigate plant metabolites. Chapter two 

describes the limitations of chemical cross-linking mass spectrometry, and offers 

solutions to improve the detection efficiency and minimize distortions caused by cross-

linking. The third chapter presents the application of MALDI-MSI to maize leaves to 

further understand the distribution of photosynthesis-related metabolites. Chapter four 

describes the application of imprinting MSI to study the plant-pest chemical interface 

on soybean leaves. The fifth chapter details the methodology used to study small polar 

metabolites in seeds that are associated with parasite osmoprotection and nutrition. 

The sixth and final chapter is a summary of this work and gives insight into future work 

based on the developed methodologies. 
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CHAPTER 2 

IMPROVING EFFICIENCY IN CHEMICAL CROSS-LINKING MASS 
SPECTROMETRY:  MONITORING STRUCTURAL DISTORTION USING 
HYDROGEN-DEUTERIUM EXCHANGE AND CROSS-LINK DETECTION 

USING EXTRACTED ION CHROMATOGRAMS 
 

 

Adam T. Klein and Young Jin Lee 

 

Abstract 

Chemical cross-linking mass spectrometry has become a valuable technique for 

studying structures of proteins and protein complexes. However, its utility has been 

scrutinized due to the possibility of structural distortion and the low abundance of 

cross-links. In this study we developed two methods that can dramatically increase the 

cross-link detection efficiency. In the first method, we propose to increase the average 

number of cross-links per protein while monitoring potential structural distortion by 

hydrogen-deuterium exchange mass spectrometry. In the case of cytochrome c, we 

demonstrated an average of two cross-links per protein retains virtually no structural 

distortion, in which the number of identified cross-links could be increased about 

twofold. In the second approach, we propose to perform chemical cross-linking 

reactions in two experimental conditions, a mild condition with almost no structural 

distortion but with few  cross-links, and an aggressive condition with many more cross-

links but also with a possibility that some of them might have come from structurally 
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distorted proteins. Cross-linked peptide sequences can be identified in MS/MS at the 

aggressive condition and their presence in the mild condition can be confirmed using 

extracted ion chromatograms (XIC).  

 

Introduction 

Three-dimensional protein structural analysis has been mostly performed by 

NMR or X-ray crystallography, which provides atomic level high-resolution structural 

information. However, these methods have some inherent limitations, such as the 

difficulty to study membrane proteins and macro-protein complexes, as well as proteins 

under native conditions[1]. Mass spectrometry has been applied to overcome some of 

these limitations and provide low-resolution structural information of proteins. Ion 

mobility-mass spectrometry directly accesses conformational space through collisional 

cross section measurements but the interpretation heavily relies on computational 

modeling[2].  

Three other mass spectrometry techniques provide more detailed structural 

information: mass spectrometry combined with hydrogen-deuterium exchange (HDX), 

oxidative labeling, and chemical cross-linking. Hydrogen-deuterium exchange mass 

spectrometry (HDX/MS) has been the most successful with amino acid or peptide level 

structural information[3-6]. Specifically, with electron capture and electron transfer 

dissociation (ECD/ETD), it has become possible to directly obtain amino acid level 

structural information from intact proteins[7-9]. Mass spectrometric analysis of oxidized 

residues, after oxidative labeling, has the advantage of permanently modifying amino 
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acids, which then can be analyzed by a traditional proteomics approach by looking for 

oxidation as a post-translational modification. Oxidative labeling by synchrotron X-ray 

has the advantage of directly producing hydroxyl radicals from solvent radiolysis[10]; 

however, potential structural distortion during the minimum radiation time on a 

millisecond time scale is a major concern.  Recently developed laser flash photolysis of 

hydrogen peroxide, called fast photochemical oxidation of proteins (FPOP), overcame 

this limitation by minimizing the reaction time to a microsecond time scale using a 

nano-second UV laser[11] and was applied to study protein folding dynamics[12] and 

epitope mapping[13].  

Chemical cross-linking followed by mass spectrometric analysis (CXMS) is 

capable of directly providing distance information between amino acid residues[14-15], 

and is especially well suited for studying protein-protein interactions[16]. However, 

CXMS still faces challenges due to the possibility of protein structural distortion during 

cross-linking and the low abundance of cross-linked peptides. To avoid potential 

structural distortion, the average number of cross-links has been commonly limited to 

one cross-link per 10 kDa protein size [17]; i.e. even if there is structural distortion 

induced by chemical cross-linking, the second cross-link, which will probe such 

distortion, will be minimal. This strategy has been widely adopted; however, it has two 

critical limitations in that 1) such minimal cross-linking further limits the resulting 

cross-linked peptides that can be detected and 2) some proteins with two or more 

cross-links are still present in this condition (see Supplementary Figure1). Several 

approaches have been adopted to improve the detection of cross-linked peptides by 



16 

applying enrichment strategies such as affinity tags[18-19], strong cation exchange 

chromatography[20-22], or peptide size exclusion chromatography [23]. However, each 

enrichment strategy has its own limitation of losing some cross-links and it would be 

ideal to develop additional strategies independent of enrichment.  

We have previously developed a shotgun approach to detect cross-links directly 

from MS/MS spectra, using a home-made program called X!Link[24]. This approach is 

much more efficient than comparing with a control in the precursor spectra, for the 

same reasons that shotgun proteomics is much more efficient than peptide finger 

printing[25]. We also developed a probability based scoring algorithm to improve 

confidence in finding these cross-links and minimize human efforts to confirm the 

cross-links[26]. Several other computational algorithms are now available that also allow 

for more efficient cross-link detection including xQuest[20], Popitam[27], and 

CrossWork[28]; yet, none of them increases the abundance of cross-linked peptides 

present in the given sample set. 

One simple way to increase the abundance of cross-linked peptides is to induce 

more cross-linking reactions, i.e. more than one cross-link per protein, but to ensure 

there is no structural distortion in the given experimental condition. In this work, we 

pursue this possibility by adopting HDX/MS as a method to validate the absence of 

structural distortion while we induce more cross-links per protein. We are especially 

inspired by Back et al. who suggested the actual structural distortion in chemical cross-

linking would be very minimal since cross-linking proteins to a resin surface is 

commonly adapted without losing enzymatic activity[29]. Our approach is especially 
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important as we directly probe structural distortion in CXMS, which has not been done 

as far as we are aware. To further improve the cross-link detection, we also developed a 

new method of comparing extracted ion chromatograms (XIC) of mild and aggressive 

cross-linking conditions. In this approach, we propose to find low abundance cross-

links in a mild cross-linking condition without MS/MS spectra, by extrapolating XIC 

from an aggressive cross-linking condition where the MS/MS spectra are identified. 

 

Experimental 

Materials 

Cytochrome c was purchased from Sigma (St. Louis, MO). Disuccinimidyl 

suberate (DSS) was purchased from Thermo Scientific Pierce (Rockford, IL). Trypsin 

endoproteinase was purchased from Promega (Madison, WI). All solvents and buffers 

were purchased from Sigma (St. Louis, MO). 

 

Time dependent cross-linking for HDX 

Three samples of cytochrome c (5 μM in 20 mM HEPES buffer) were cross-linked 

with DSS for the reaction times of 10 min, 30 min, and 60 min, respectively, at 25°C. DSS 

was initially dissolved in dimethyl formamide (DMF) at 25 mM concentration and 

added to the samples for a final concentration of 500 μM, which corresponds to 100:1 

cross-linker to protein molar ratio. The cross-linking reaction was quenched by adding 

ammonium bicarbonate to a final concentration of 50 mM. All samples were then spin 

filtered (Amicon Ultra, molecular weight cutoff of 10 kDa; EMD Millipore, Billerica, MA) 
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with 10 mM ammonium acetate three times, to remove excess cross-linker, exchange 

the buffer, and concentrate the sample. The samples were reconstituted in 10 mM 

ammonium acetate to a final cytochrome c concentration of ~25 μM. 

 The HDX/MS experiment was performed using a three syringe system [9]. 

Syringe 1 contained the 25 μM cross-linked cytochrome c solution and had a flow of 4 

μL/min. Syringe 2 contained a 10 mM ammonium acetate solution in D2O and had a 

flow of 16 μl/min. Syringe 1 and 2 were mixed with a zero-volume tee that allowed the 

hydrogen-deuterium exchange reaction to occur for 5 seconds before being quenched 

by the solution from the third syringe. Syringe 3 contained a quenching solution, a 

mixture of acetonitrile, H2O, D2O, and formic acid at the ratio of 10:18:72:0.4 with pH 

2.5, and was at a flow of 20 μL/min prior to being mixed with the mixture from Syringes 

1 and 2, and introduced into the mass spectrometer. MS data was collected on an 

Agilent QTOF 6540 using a capillary voltage of 3500 V, and a fragmentor voltage of 

175 V, skimmer voltage of 65V, and scanning m/z range of 500–3000. 

 

Mild vs. aggressive cross-linking 

Cytochrome c (5 μM) was cross-linked with DSS in 20 mM HEPES buffer at 

reaction temperatures of 25°C for the mild condition and 45°C for the aggressive 

condition. The DSS concentrations for cross-linking reaction were 100 μM for the 25°C 

reaction temperature, and 500 μM, 2500 μM, and 12.5 mM for the 45°C reaction 

temperature. These concentrations correspond to cross-linker to protein molar ratios 

of 20:1, 100:1, 500:1, and 2500:1, respectively. Reaction times were varied with 
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reaction temperature in an attempt to keep the amount of cross-linking consistent. The 

final reaction times used were 1 hour at 25°C and 30 minutes at 45°C. The cross-linking 

reaction was quenched by adding ammonium bicarbonate to a final concentration of 50 

mM. Buffer was changed to 50 mM ammonium bicarbonate by spin filtering three times, 

removing over 99% of HEPES and excess DSS. Samples were digested overnight by 

adding acetonitrile to 10% and trypsin at a substrate-to-enzyme ratio of 20:1 (w/w). 

After the digestion, the samples were quenched by adding formic acid to 1% and kept at 

-80°C before LC-MS/MS analysis.  

 

LC-MS/MS of cross-linked peptides 

 Digested samples were analyzed using a hybrid linear ion trap Orbitrap high-

resolution mass spectrometer (LTQ-Orbitrap; Thermo, San Jose, CA) coupled with liquid 

chromatography (Paradigm MS4; Michrom Bioresources, Auburn, CA). A home-built 

capillary column (75 μm id x 15 cm) packed with reverse phase packing material 

(C18AQ, 5 μm, 100 Å; Michrom) was used with a 2 hour gradient at 300 nl/min. The 

gradient included a 5 minute loading step at 5% mobile phase B, followed by a linear 

gradient from 5% to 34% B for 70 minutes, a 40 minute gradient from 34% to 80% B, a 

five minute hold at 80% B, and a five minute re-equilibration at 5% B. Mobile phase A 

consisted of 2% acetonitrile and 0.1% formic acid and mobile phase B consisted of 60% 

acetonitrile and 0.1% formic acid. Spray voltage was optimized for each experiment.  

 Precursor scans were acquired with the Orbitrap high-resolution mass 

spectrometer, followed by four data-dependent MS/MS scans with the ion trap mass 
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spectrometer. Dynamic exclusion was used with a repeat count of 1, a repeat duration 

of 30 seconds, an exclusion list of 50, and an exclusion duration of 180 seconds. MS/MS 

of singly and doubly charged ions were excluded, determined from the pre-scan. 

 

Data analysis 

Deisotoping was done with Mascot Distiller (v2.4.2.0; Matrix Science, London, 

UK) with parameters specified previously [24]. Cross-links were identified using X!Link, 

which reports three E-values: one for the cross-linked peptide, and two for each 

individual peptide. Positive identification was based on the maximum E-values of 0.03 

for the cross-linked peptide and 0.3 for each individual peptide. The X!Link program is 

freely available by contacting the corresponding author. 

 

Results & Discussions 

Probing structural distortions using HDX/MS 

 Here, we propose hydrogen-deuterium exchange mass spectrometry (HDX/MS) 

as a tool to investigate structural distortions induced by chemical cross-linking under 

the given cross-linking conditions. HDX/MS is a very attractive structural tool due its 

high sensitivity, ability to probe heterogeneous distributions, and accessibility to 

surface exposed amino acids. As a first step to test the plausibility and develop a 

methodology easily adaptable to complex cross-linked proteins, we studied the 

structural distortion of cytochrome c with the addition of 0%, 5%, 10%, and 20% 

acetonitrile using HDX/MS. Figure 1 shows the 15+ ion of cytochrome c directly 
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eletrosprayed after incubation with deuterium for 5 seconds through a three syringe 

pump system (see experimental section for the details). The most abundant peak 

positions are at m/z 823.52, 823.87, 823.94, and 824.34 for Figures 1A-1D. Considering 

the peak position without HDX is m/z 816.29 (not shown), they correspond to a 

hydrogen-to-deuterium exchange of 108.5, 113.7, 114.8, and 120.8, respectively. This 

suggests that even only 5% organic solvent begins unfolding the cytochrome c from its 

native state, although very slightly (five HDX). Another notable feature in these 

HDX/MS measurements is a wider isotope envelope as the protein becomes denatured, 

as seen in Figures 1C and 1D. This is due to a subpopulation of the sample being 

unfolded to a greater extent. This broadening could be a better barometer to indicate 

the structural distortion compared to the simple peak shift, because it gives information 

about heterogeneous structural distortion in a subpopulation. 

 For the convenience of the data analysis, an exponentially modified Gaussian 

function (EMG), h(x), is adapted to fit the isotope envelope in the spectra[30].  

ℎ(𝑥) =  ∫ 𝐺(𝑦
𝑥

0

)𝐻(𝑥 − 𝑦)𝑑𝑦 

Where G(y) is a Gaussian function and H(x) is an exponential decay function given by, 

𝐻(𝑥) =  
1

𝜏
exp (−

𝑥

𝜏
) 

The amount of tailing in the spectra is mostly determined by the variable τ, which is 

affected by natural isotopic distribution and exchanged deuterium distribution. With all 

other parameters kept constant, the best fitting tau value for the organically denatured 

cytochrome c increases with the amount of denaturant; 14, 21, and 52, respectively, 

from 12 for the undenatured protein. EMG fitting is relatively insensitive to slight 
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structural changes (e.g., Figure 1A vs 1B), whereas very sensitive to subpopulation 

changes (e.g., Figure 1B vs. 1C). This is in contrast to the simple peak shift comparison; 

uptake of 5 additional deuteriums from Figure 1A to 1B, but only one more deuterium 

uptake from Figure 1B to 1C. According to our simulation, EMG fitting can clearly 

differentiate 10% change in FWHM (Supplementary Figure 2).  

 To investigate the utility of HDX/MS in probing structural distortion in cross-

linking, cytochrome c is cross-linked with DSS for various durations to allow for 

different amounts of cross-links to be attached to the protein. DSS is a bifunctional 

cross-linker with an NHS-ester reactive group at the end of each arm. It reacts with the 

primary amines on the lysine side chain or an unmodified protein N-terminus and 

forms amide bonds. DSS has a spacer chain length of 11.4 Å and can cross-link two 

lysines with inter-alpha carbon (Cα-Cα) distance up to 24 Å apart. Considering 

uncertainty in X-ray or NMR measurement, the maximum inter-alpha carbon distance 

between the two cross-linkable lysines could be up to about 27 Å when compared with 

3D protein structures available in a protein database. Rappsilber et al. also suggested 

the maximum distance of 27.4 Å, which is confirmed in their large-scale analysis of RNA 

polymerase II-TFIIF complex[21].  

Figure 2 compares the three spectra of cytochrome c cross-linked with DSS at 

25°C for 10, 30, and 60 minutes, and electrosprayed with on-line deuterium labeling 

using the three syringe pump system[9]. These spectra correspond to an average 

number of cross-linking of 2.1, 3.4, and 3.6, respectively. It should be noted that 12+ ion 

series of cytochrome c were most abundant after cross-linking, due to the modification 
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of some lysine residues, and used in this analysis, instead of 15+ ions in Figure 1. For 

the cytochrome c reacted for 10 minutes (Figure 2A), the non-cross-linked cytochrome 

c was observed, along with up to four cross-links per protein. Each cross-link series 

contain multiple peaks due to the combination of intra-protein cross-links and dead-

end modifications (one end is attached and the other end is hydrolyzed), resulting in 

the protein mass increase of +138Da and +156Da, respectively. Hence, one cross-linked 

protein has two peaks corresponding to 1 cross-link and 1 dead-end, two cross-liked 

protein has three peaks corresponding to 2/0, 1/1, and 0/2 modifications of cross-

link/dead-end, and three cross-linked protein has four peaks corresponding to 3/0, 

2/1, 1/2, and 0/3 modifications of cross-link/dead-end. For longer cross-linking 

reaction times (Figures 2B and 2C), non-cross-linked proteins were not observed and 

the number of cross-links was up to five cross-links per protein or higher.  

To get insight about the possible structural distortions induced by chemical 

cross-linking, the spectra in Figure 2 are fitted with the exponential modified Gaussian 

equation. In Figure 2A, the tau value of 36 could best fit the peak profile for non-cross-

linked cytochrome c, corresponding to the natural broadening of cytochrome c without 

cross-linking. It should be noted that the normal tau value is larger than that of the 15+ 

ions in Figure 1A because the 12+ ion is broader in m/z space. For up to 3 cross-links, 

the same tau value of 36 could be used to fit the profiles, suggesting there is no 

significant structural distortion up to 3 cross-links attached to the protein. However, a 

higher tau value of 65 gives the best fitting for the species containing 4 cross-links. It 

was the same for Figures 2B and 2C; i.e., a tau value of 36 could fit the peak profile up to 
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3 cross-links, whereas the tau value of 65 was needed for 4 and 5 cross-links. In Figure 

2, we did not fit all the tails for simplicity (such as sodium ion adducts). Even when we 

took all these into account, we still could not fit the spectrum with tau value of 36 

(Supplementary Figure 3), indicating 4 or higher cross-links significantly affect the 

protein structure of cytochrome c.  

To conclude, in the case of cytochrome c with the given experimental condition, 

HDX/MS revealed 4 or more cross-links would structurally distort the protein 

structures. One thing to note is there is no apparent structural distortion for up to three 

cross-links in cytochrome c (Figure 2A). Considering significant structural distortion is 

induced by the fourth cross-linking reaction, the proteins with four cross-links could 

still be used for cross-link analysis. Namely, the fourth cross-linking reaction might 

have been probing three cross-link attached proteins, which did not have significant 

structural distortion at the time. Therefore, the cross-linking condition for Figure 2A, 

with the average of two cross-links per protein and up to four cross-links attached, is 

still a reliable experimental condition for cross-link analysis with almost no structural 

distortion. However, the fourth cross-link might have induced significant changes in the 

protein structure afterwards, and five or more cross-link containing proteins are not 

reliable for structural analysis. It should be noted that less than 1.6% of five cross-

linked proteins were present in Figure 2A, which is usually not expected to be a 

problem or could be safely removed from XIC comparison as will be discussed in the 

next section. 
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This result suggests that the commonly adopted guideline of one cross-link per 

10 kDa protein size is unnecessarily tight, and up to two cross-links per protein might 

be acceptable for some proteins. This work also confirms cross-linking does distort the 

protein structures in aggressive reaction conditions, significantly enough that there is a 

noticeable difference in the number of exchangeable hydrogens after cross-linking. Our 

conclusion obtained for cytochrome c should be carefully generalized to other proteins, 

because each protein might be different in terms of their structural sensitivity to 

chemical cross-linking. However, considering cytochrome c is a relatively small protein 

with MW of only 12 kDa and many surface exposed lysines, we suspect it is probably 

one of the more structurally sensitive proteins to cross-linking. Other proteins, 

especially much bigger proteins with larger surface areas, are less likely to be affected 

by chemical cross-linking. Hence, we propose the conclusion obtained in cytochrome c, 

i.e. there is little or no structural distortion up to two cross-links per protein, is a 

relatively safe guideline in most CXMS experiments. 

  

Use of extracted ion chromatograms to improve cross-link detection 

 By using the average of two cross-links per protein as suggested above instead of 

one, the cross-link detection efficiency can be improved about twofold. However, it is 

necessary to improve the efficiency even further, considering a significant amount of 

these cross-links are either dead-end modifications or structurally uninformative 

“close-by” cross-links (e.g., intra-peptide cross-links). To further improve cross-link 

detection efficiency, we propose a simple method based on extracted ion 
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chromatograms. The basic idea came from the fact that many of the low abundance 

cross-links may not be selected for MS/MS data acquisition, in spite of their presence in 

precursor mass spectra. In this approach, the cross-linking reaction would be 

performed in two different reaction conditions; a mild experimental condition and an 

aggressive reaction condition. The former (mild condition) would produce no structural 

distortion but have far less cross-links to detect and the latter (aggressive condition) 

would identify many more cross-links but have some cross-links from structurally 

distorted proteins. For those cross-links identified with MS/MS in the aggressive 

reaction condition but not in the mild condition, the extracted ion chromatograms 

(XICs) would be produced for both the data sets with very narrow accurate mass 

windows (5 ppm). Then, the cross-link is considered to be present in the mild condition 

if the XIC is clearly observed at the same retention time as the aggressive reaction 

condition. This approach would identify low abundance cross-links that are present in 

the precursor MS spectra, but their MS/MS were not obtained or obtained with very 

low quality.  

This methodology is tested with cytochrome c as a model system and DSS as a 

cross-linker. We used a probability based cross-link identification program, X!Link, we 

have previously developed[26]. This algorithm uses three E-values to distinguish true 

cross-links from false positives; one for the entire cross-linked peptide, and the other 

two to confirm each individual peptide. E-values of 0.03 and 0.3 for the cross-link and 

each peptide, respectively, were suggested as effective cutoff values that would remove 

most random matching even in a search against large protein sequence databases. In 
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this proof of concept experiment, we used the mild experimental condition at 25°C for 

60 min with a molar ratio of 20:1, a comparable condition for Figure 2A, and the 

aggressive reaction conditions was at 45°C for 30 min with molar ratios of 100:1, 500:1, 

and 2500:1, similar or more aggressive than the conditions for Figure 2B or 2C.  

Table 1 summarizes the number of identified cross-links in cytochrome c at the 

various cross-linking reaction conditions. Fourteen unique cross-links were identified 

in the mild condition and 18, 24, and 33 unique cross-links were identified at the 

aggressive reaction conditions with molar ratios of 100:1, 500:1, and 2500:1, 

respectively. All the detected cross-links have an inter Cα distance of 23 Å or below 

between the two cross-linked lysines in the mild condition (maximum distance is 18.7 

Å), but some of them are stretched to 23-27 Å in the aggressive condition. It should be 

noted that the inter Cα distance of 23-27 Å is possible but only when the two lysines are 

arranged to stretch out toward each other without significant steric hindrance. Details 

of identified cross-linked peptides are presented in Supplementary Tables 1A-D for 

each experimental condition. 

Figure 3 demonstrates how we detect low abundance cross-links using XIC. In 

this example, XIC of m/z 881.4535 corresponding to the cross-link of 

40TGQAPGFSYTDANKNK55-73KYIPGTK79 (3+ charge state) were compared at the mild 

and aggressive conditions. MS/MS spectra corresponding to TGQAPGFSYTDANKNK-

KYIPGTK were collected under the aggressive condition of 45°C and a molar ratio of 

100:1, but no MS/MS spectra were collected at the mild condition. Although there is no 

MS/MS, the existence of this cross-link at the mild condition is evident from the exact 
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match of the XIC with the harsh condition.  The inset precursor mass spectra are almost 

identical, in the mass values and isotope envelopes, further supporting our claim. 

This method is so sensitive that it may detect some very low abundance cross-links 

from structurally distorted proteins present in extremely low amounts, e.g., five cross-

linked proteins in Figure 2A; however, this possibility could be also carefully 

considered and removed by quantitatively comparing XIC. Using the above XIC 

approach, a total of eight additional cross-links were initially considered to be present 

in the sample cross-linked at the mild condition. Table 2 quantitatively compares XIC 

peak areas of the eight cross-links at the mild and the aggressive conditions. Of the eight 

potential cross-links, three of them (K39-K100, K25-K39, and K39-K86) have extremely 

small peak areas compared to the most aggressive condition (less than 0.5%); these 

three are ignored because of the possibility they may have come from very low 

abundance structurally distorted proteins. Especially, their dramatic increase of ion 

abundance at 2500:1 compared to 500:1 (>20 times signal increase for 5 times more 

cross-linking molar ratio) indicates that they are sensitive to structural distortion.  

Additionally, the absolute ion abundances for the three cross-links are extremely low in 

the precursor mass spectra in the mild condition, less than 0.01% of the uncross-linked 

peptide used for the normalization purpose. Hence, the removal of these three cross-

links can be justified.  It is interesting to find all three cross-links contain K39, and the 

2500:1 condition has many new K39 containing cross-links (Supplementary Table 1D) 

whereas there is no K39 containing cross-links in the mild condition (Supplementary 

Table 1A). K39 forms a beta bridge with T58 through hydrogen bonding (PDB:2B4Z) 
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and the denaturation of the protein seems to break the hydrogen bonding to make K39 

available for cross-linking with other lysines. 

The other five cross-links are present at a much higher abundance without 

abnormalities; i.e., gradual increase or even decrease of XIC peak area as cross-linker-

to-protein molar ratio increases. Gradual increase of XIC is due to more cross-linking 

reactions and the decrease is due to competition with structurally distorted proteins 

that have become available. Table 3 summarizes the detailed information about the five 

additionally identified cross-links. Three of them had MS/MS spectra acquired at the 

mild condition but were rejected due to high E-values. For example, MS/MS spectra 

corresponding to 8KIFVQK13-100KATNE104 (m/z 487.9486 for 3+ charge state) were 

detected in both mild and aggressive reaction conditions. However, E-values in the mild 

condition (E=0.032, E-alpha=0.027, E-beta=0.60) are slightly higher than the cutoff 

values used (E=0.03, E-alpha=0.3, E-beta=0.3) and rejected; its high E-values are 

attributed to its low ion signals and corresponding low quality MS/MS spectra. In 

contrast, the cross-link is validated in the aggressive condition for its low E-values 

(0.0001, 0.0001, and 0.23, respectively). Although its MS/MS spectrum from the mild 

condition cannot validate the presence of KIFVQK-KATNE, the XIC is exactly matching 

(Supplementary Figure 4) with the aggressive reaction condition where the MS/MS is 

validated, confirming its presence. 

Of the five additional cross-links identified, four cross-links had Cα-Cα distances 

between the Lys pairs below 17 Å, which are well within cross-linkable distance (<27 

Å). K79-K88 has a slightly tight distance of 23.4 Å but there is no steric hindrance in the 
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direct path. In addition, XIC peak area for K79-K88 increases only mildly as the cross-

linker-to-protein molar ratio increases, suggesting this is not from structurally 

distorted proteins. The additional identification of five cross-links corresponds to a 

36% increase from the previous 14 cross-links. It should be noted that a total of 32 

cross-links were identified exclusively in the aggressive conditions but only five of them 

were confirmed to be present in the mild condition using the XIC method. The rest of 

the 24 cross-links are considered as either structurally prohibited or simply were not 

cross-linked in sufficient amount in the given mild condition. 

 

Conclusions 

 In this paper, we developed two methods that can dramatically improve cross-

link detection in CXMS without any special labeling agents or enrichment strategies, 

and demonstrated the methods using cytochrome c as an example. In the first method, 

we proposed to use a CXMS experimental condition with more than one cross-link per 

protein but still without structural distortion, confirmed by HDX/MS. In the case of 

cytochrome c, we demonstrated there is almost no structural distortion up to two 

cross-links per protein at 25°C. In the second method, we proposed to perform cross-

linking reactions in mild and aggressive experimental conditions, then identify the 

cross-links with MS/MS at aggressive conditions and confirm its presence at the mild 

condition by comparing XIC. The second method is so sensitive that there is a risk it 

may detect very low abundance cross-links from structurally distorted proteins, which, 

however, can be distinguished from the quantitative evaluations of XIC peak areas at 
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various mild and aggressive reaction conditions. By combining the two methods, we 

expect cross-link detection efficiency can be dramatically increased making CXMS much 

more useful. These methods are independent of chemical reagents or enrichment 

protocols and could be utilized in combination with other protocols, e.g. SCX 

enrichment, if a further increase in cross-linking detection efficiency is desired.  

Furthermore, this is the first direct and rigorous demonstration for the presence 

of structural distortion in aggressive cross-linking conditions and absence of structural 

distortion in a mild condition. Other methods such as circular dichroism or NMR could 

be also used to detect structural distortions, but these techniques may not be sensitive 

to probe minor structural changes occurring in a limited subpopulation.  In contrast, 

HDX/MS could easily characterize low abundance structurally distorted proteins, 

because of the inherent advantage of mass spectrometry in probing heterogeneous 

molecular populations.  
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Figure 1. HDX/MS of denatured cytochrome c. HDX/MS spectra for the 15+ ion of cytochrome c compared with the best 
fitting EMG function. (A) Cytochrome c with no acetonitrile and (B-D) acetonitrile concentration at 5%, 10%, and 20%, 
respectively. The red dashed line (--) corresponds to the best fitting EMG in the control sample (τ = 12), of which the peak 
position is shifted in B-D for comparison. The solid lines (—) in B-D correspond to the best fitting EMG with τ value of 14, 
21, and 52, respectively. Note the second peak corresponds to one sodium addition, [M + 14H + Na]15+.
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Figure 2. HDX/MS of cross-linked cytochrome c. The 12+ series of HD exchanged 
cytochrome c (gray line) after cross-linked with DSS (100:1 molar ratio) for (A) 10 
minutes, (B) 30 minutes, and (C) 60 minutes compared with the best fitted EMG (solid 
line). Best fitting tau values are shown in parentheses. 
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Table 1. Number of identified cross-links. Summary for the number of unique cross-links identified by X!Link at various 
cross-linking reaction conditions.  

Cα distance (Å) 25°C  
20:1 

45°C 
100:1 

45°C 
500:1 

45°C 
2500:1 

Total identified cross-
links 

Total possible cross-
links 

<18 12 16 19 17 28 66 

18-23 2 1 3 7 8 36 

23-27 0 1 2 9 10 38 

> 27 0 0 0 0 0 13 

Total 14 18 24 33 46 153 

 

 Cα distances are between two cross-linked lysines and calculated from the x-ray crystallography structure 

PDB:2B4Z in the PDB database (www.rcsb.org). 

 Total possible cross-links are the number of all the theoretical cross-links between two lysines based on the inter Cα 

distance ignoring any steric hindrance. 

3
4
 

http://www.rcsb.org/
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Figure 3. Extracted ion chromatogram of m/z 881.4535. XIC of m/z 881.4535 
([TGQAPGFSYTDANKNK-KYIPGTK + 3H+]3+) for the data set at (A) 45°C/100:1 and (B) 
25°C/20:1 reaction conditions. Mass tolerance of 0.004 Da was used for XIC generation. 
Zoomed-in inset precursor mass spectra were obtained averaging over the retention 
time of 35-36min. 
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Table 2. Additional cross-links identified at aggressive conditions. XIC peak areas of the cross-links with MS/MS 
validated at aggressive conditions. 

Cross-link 
XIC area at mild 

condition, % 
XIC area at aggressive conditiona, % Mild-to-Aggressive XIC Ratio, % 

100:1 500:1 2500:1 100:1 500:1 2500:1 

K22-K100 
K8-K100 
K53-K73 
K88-K99 

K39-K100b 
K25-K39b 
K79-K88 

K39-K86b 

0.0401 
0.240 

0.0211 
0.351 

3.73x10-3 
9.39x10-4 

0.315 
4.80x10-4 

0.225 
1.14 

0.145 
2.15 

0.0242 
0.0125 
0.710 

3.12x10-3 

0.267 
1.35 

0.228 
4.47 

0.0630 
0.0106 
0.997 

4.70x10-3 

0.0733 
0.252 

0.0423 
10.1 
1.29 

0.228 
0.141 
0.172 

17.8 
21.1 
14.6 
16.4 
15.4 
7.49 
44.4 
15.4 

15.0 
17.9 
9.3 
7.9 

5.92 
8.89 
31.6 
10.2 

54.7 
95.6 
49.9 
3.5 

0.290 
0.412 

224 
0.279 

 

a. XIC peak areas were normalized by non-cross-linked peptide (TGPNLHGLFGR) to correct for run-to-run 

experimental variations. 

b. Considered to have come from structurally distorted proteins and rejected. 

  

3
6
 



37 

Table 3. Additional cross-links at mild conditions. Additionally identified cross-links in the mild cross-linking condition by using 

XIC method. 

Cross-links Cα dist. (Å) Rt at  
mild  

condition 

Rt at 
aggressive 
condition 

E-values in the  
mild  

condition 

Identified E-values  

14CAQCHTVEKGGK25-
100KATNE104 

12.2 60.8 61.3  -- 0.0001, 0.001, 0.0003  

8KIFVQK13- 
100KATNE104 

13.7 25.6 25.4  0.032, 0.027, 0.60 0.0001, 0.0001, 0.23  

40TGQAPGFSYTDANKNK55

-73KYIPGTK79 

 

15.3 35.7 35.8  -- 0.0002, 0.21, 
6.2E-07  

88KGER92- 
93EDLIAYLKK100 

16.4 53.4 50.3  0.043, 0.12, 0.02 0.016, 0.18, 
0.0009  

74YIPGTKMIFAGIK86-
88KGER92 

23.4 50.0 47.8  0.457, 0.10, 0.41 0.005, 0.19, 
0.02  

 

 Bold K in cross-linked peptide sequences represent cross-linked lysine residue. 

 Rt represents LC retention time in min. Rt at aggressive condition is for the data where MS/MS is identified with 

sufficiently low E-values. 

 Evalues are in the order of E-value, E-alpha, and E-beta. Bold E-values in the mild condition are higher than the 

cutoff values (0.03 for E-value and 0.3 for E-alpha and E-beta) and rejected. 

3
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Figure S1. Deconvoluted cross-linked cytochrome c. Deconvoluted cytochrome c ESI mass spectrum obtained in the 
cross-linking condition that gives an average of one cross-link per protein. Two and three cross-links per protein are 
present at 35% and 6% of single cross-linked proteins, respectively. ‘x’ and ‘d’ represent intra-protein cross-links and 
dead-end modifications corresponding to +138Da and +156Da of mass shift, respectively.
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Figure S2. EMG fitting. The mass spectrum for the 15+ ion of cytochrome c (gray line) compared with best fitting EMG 
profile (τ=12, red line) and EMG profiles with 10% narrower (τ=4.5, dot-line) and 10% broader FWHM (τ=19.5, dashed 
line).

820 822 824 826 828 830

m/z

3
9
 



40 

 
Figure S3. EMG fitting of all peaks. Zoomed-in mass spectrum of the 4 cross-link series (gray solid line) in Figure 2C 
compared with EMG profiles using tau values of 36 (red dashed line) and 65 (black dotted line). These EMG profiles were 
generated using a tau value of 36 to take into account all of the contaminant peaks leading up to the peaks of interest.
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Figure S4. Extracted ion chromatogram of m/z 487.9486. Comparison of the XIC of m/z 487.9486, which corresponds 
to the 3+ ion of 8KIFVQK13-100KATNE104 cross-linked peptides at reaction conditions of A) 45°C/500:1 and B) 25°C/20:1. 
Zoomed-in inset precursor mass spectra were obtained averaging over the retention time of 25-26 min.
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Supplementary Table 1A. Identified cross-linked peptide ions in the mild cross-linking condition (25°C/20:1 
molar ratio). 

K1 K2 Peptide1 Peptide2 Z E-values 

5 8 KIFVQK AcGDVEKGK 3 7.36E-10, 0.0007, 5.19E-06 

5 13 AcGDVEKGK IFVQKCAQCHTVEK 4 2.05E-11, 0.0009, 2.59E-06 

5 13 AcGDVEKGK KIFVQKCAQCHTVEK 5 0.007, 0.185, 0.011 

5 13 AcGDVEKGKK IFVQKCAQCHTVEK 4 0.002, 0.034, 0.020 

5/7 13 AcGDVEKGKK IFVQKCAQCHTVEK 5 0.010, 0.144, 0.014 

5 87 KK AcGDVEKGKK 3 0.0002, 0.053, 0.002 

5 87 KKGER AcGDVEKGKK 3 1.97E-07, 5.81E-05, 0.001 

5 87/88 AcGDVEKGK KKGEREDLIAYLK 4 0.0004, 0.002, 0.002 

5 87/88 KKGER AcGDVEKGK 3 1.01E-08, 0.011, 2.90E-05 

5 87/88 KKGER AcGDVEKGKK 4 1.26E-05, 6.75E-05, 0.002 

5 88 KGER AcGDVEKGK 3 1.32E-07, 0.005, 4.57E-07 

5/7 88 AcGDVEKGKK KGEREDLIAYLK 4 0.002, 0.045, 0.002 

7 27 GKK HKTGPNLHGLFGR 3 7.65E-11, 0.091, 2.43E-11 

7 27 GKK HKTGPNLHGLFGR 4 2.84E-10, 0.009, 3.45E-08 

7 88 KGER AcGDVEKGKK 3 4.48E-06, 0.021, 1.63E-07 

8 87 KK KIFVQK 2 6.60E-06, 0.265, 0.002 
 
 
 
 
 

4
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Supplementary Table 1A continued 

8 88 KKGER KIFVQK 3 4.84E-08, 0.019, 1.77E-05 

25 100 GGKHK KATNE 3 0.023, 0.259, 0.002 

53 79 YIPGTKMIFAGIK TGQAPGFSYTDANKNK 4 0.018, 0.227, 0.027 

55 73 KYIPGTK NKGITWGEETLMEYLENPK 3 4.01E-09, 0.151, 3.28E-11 

55 73 KYIPGTK NKGITWGEETLMEYLENPK 4 5.77E-05, 0.165, 5.83E-07 

72 86 MIFAGIKK GITWGEETLMEYLENPKK 3 3.33E-08, 0.005, 1.15E-11 

72 86 MIFAGIKK GITWGEETLMEYLENPKK 4 6.38E-09, 0.0003, 1.45E-07 

73 86 KYIPGTK MIFAGIKK 3 5.01E-10, 8.96E-05, 4.08E-06 

73 86 KYIPGTK MIFAGIKK 4 4.50E-06, 0.002, 1.97E-05 

73 88 KYIPGTK KGEREDLIAYLK 4 0.0007, 0.0007, 0.001 
 

 If the same cross-linked ions were detected in multiple MS/MS spectra, only the best E-value is listed. 

 K1 and K2 denote cross-linked lysine residue positions in cytochrome c protein sequence. 

 E-values corresponding to cross-link, peptide1, and peptide2 are listed for the cross-links that passed maximum 

filtering values of 0.03, 0.3, and 0.3, respectively.

4
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Supplementary Table 1B. Identified cross-linked peptide ions in the aggressive cross-linking condition of 
45°C/100:1 molar ratio. 

K1 K2 Peptide1 Peptide2 Z E-values 

5 8 KIFVQK AcGDVEKGK 3 2.32E-10, 4.55E-06, 9.21E-06 

5 13 AcGDVEKGK IFVQKCAQCHTVEK 4 1.25E-06, 6.19E-05, 0.008 

5 13 AcGDVEKGK IFVQKCAQCHTVEK 5 6.18E-05, 2.73E-05, 0.018 

5 13 AcGDVEKGK KIFVQKCAQCHTVEK 4 0.0007, 0.002, 0.010 

5/7 13 AcGDVEKGKK IFVQKCAQCHTVEK 5 1.27E-07, 0.005, 5.30E-07 

5 87 KKGER AcGDVEKGKK 3 1.09E-06, 0.0003, 6.70E-07 

5/7 87 KK AcGDVEKGKK 3 3.06E-07, 0.073, 3.96E-05 

5/7 87 KKGER AcGDVEKGKK 4 4.44E-05, 0.003, 0.0007 

5 88 KGER AcGDVEKGK 3 2.91E-06, 0.003, 2.33E-05 

5 88 KKGER AcGDVEKGK 3 1.80E-08, 0.001, 0.0002 

5/7 88 KGER AcGDVEKGKK 3 1.07E-06, 0.0002, 0.0004 

7 13 AcGDVEKGKK IFVQKCAQCHTVEK 4 3.38E-06, 5.24E-05, 0.004 

7 27 GKK HKTGPNLHGLFGR 3 2.76E-12, 0.003, 8.78E-11 

7 27 GKK HKTGPNLHGLFGR 4 1.41E-09, 0.0006, 6.68E-08 

7 73 GKK KYIPGTK 3 0.001, 0.043, 0.014 

8 87 KK KIFVQK 2 0.0004, 0.24, 0.014 

8 88 KIFVQK KKGEREDLIAYLK 4 2.63E-06, 2.01E-05, 3.46E-06 

8 88 KKGER KIFVQK 3 1.60E-09, 0.010, 6.51E-07 

8 100 KATNE KIFVQK 3 0.010, 0.013, 0.066 
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Supplementary Table 1B continued 

13 86 MIFAGIKK IFVQKCAQCHTVEK 4 0.001, 0.0002, 0.250 

13 86 MIFAGIKK IFVQKCAQCHTVEK 5 2.13E-05, 3.57E-05, 0.077 

22 100 KATNE CAQCHTVEKGGK 3 0.004, 0.0009, 00.014 

22 100 KATNE CAQCHTVEKGGK 4 0.0001, 0.0004, 0.013 

53 73 KYIPGTK TGQAPGFSYTDANKNK 3 0.0002, 0.206, 6.25E-07 

53 79 YIPGTKMIFAGIK TGQAPGFSYTDANKNK 3 4.75E-08, 0.019, 1.59E-07 

55 73 KYIPGTK NKGITWGEETLMEYLENPK 3 4.33E-12, 0.0001, 3.02E-09 

55 73 KYIPGTK NKGITWGEETLMEYLENPK 4 7.62E-08, 0.037, 2.94E-08 

72 79 YIPGTKMIFAGIK GITWGEETLMEYLENPKK 4 3.58E-07, 8.41E-05, 1.56E-05 

72 86 MIFAGIKK GITWGEETLMEYLENPKK 3 2.05E-08, 0.017, 7.78E-11 

72 86 MIFAGIKK GITWGEETLMEYLENPKK 4 2.07E-11, 0.0003, 1.81E-11 

72 86 MIFAGIKK GITWGEETLMEYLENPKK 5 0.0003, 0.068, 5.10E-06 

73 86 KYIPGTK MIFAGIKK 3 3.65E-12, 0.0008, 7.37E-06 

73 86 KYIPGTK MIFAGIKK 4 7.66E-05, 0.010, 9.52E-06 

73 88 KGER KYIPGTK 3 2.34E-10, 0.001, 2.71E-07 

73 88 KYIPGTK KGEREDLIAYLK 4 0.006, 1.37E-05, 0.018 

4
5
 



46 

Supplementary Table 1C. Identified cross-link ions in the aggressive cross-linking condition of 45°C/500:1 molar 
ratio. 

K1 K2 Peptide1 Peptide2 Z E-values 
5 8 AcGDVEKGK KIFVQKCAQCHTVEK 3 0.0005, 0.019, 0.0008 
5 8 KIFVQK AcGDVEKGK 3 1.82E-14, 3.24E-06, 5.42E-06 
5 8/13 AcGDVEKGK KIFVQKCAQCHTVEK 4 0.0004, 0.002, 0.007 
5 13 AcGDVEKGK IFVQKCAQCHTVEK 3 0.0002, 0.290, 0.002 
5 13 AcGDVEKGK IFVQKCAQCHTVEK 4 1.54E-06, 0.002, 0.0005 
5 13 AcGDVEKGK IFVQKCAQCHTVEK 5 0.0006, 0.0001, 0.039 
5 13 AcGDVEKGKK IFVQKCAQCHTVEK 4 1.29E-05, 0.016, 0.0005 
5 87 AcGDVEKGK KKGEREDLIAYLK 4 0.003, 0.02, 5.25E-05 
5 87/88 KKGER AcGDVEKGK 3 1.94E-08, 0.0003, 1.97E-05 
5 87/88 KKGER AcGDVEKGKK 4 3.23E-06, 7.37E-06, 1.37E-05 

5/7 87 KKGER AcGDVEKGKK 3 5.50E-08, 2.23E-05, 1.49E-06 
5 88 KGER AcGDVEKGK 3 7.65E-07, 0.004, 7.37E-07 

5/7 88 AcGDVEKGKK KGEREDLIAYLK 4 0.013, 0.012, 6.29E-05 
5/7 88 KGER AcGDVEKGKK 3 3.67E-06, 0.006, 1.10E-05 

7 13 AcGDVEKGKK IFVQKCAQCHTVEK 5 1.39E-05, 0.029, 4.93E-06 
7 27 GKK HKTGPNLHGLFGR 3 1.44E-15, 0.005, 3.39E-11 
7 27 GKK HKTGPNLHGLFGR 4 1.01E-08, 0.075, 1.99E-08 
7 87 KK AcGDVEKGKK 3 5.42E-06, 0.028, 0.006 
8 87/88 KIFVQK KKGEREDLIAYLK 3 5.18E-05, 0.0002, 7.54E-06 
8 87/88 KIFVQK KKGEREDLIAYLK 4 0.002, 0.0004, 0.014 
8 87/88 KKGER KIFVQK 3 3.13E-13, 0.003, 7.43E-07 
8 88 KIFVQK KKGEREDLIAYLK 5 0.020, 0.019, 0.034 

8/13 88 KGER KIFVQKCAQCHTVEK 5 0.007, 0.128, 0.003 
8 100 KATNE KIFVQK 3 0.0001, 0.0001, 0.228 

13 86 MIFAGIKK IFVQKCAQCHTVEK 4 1.31E-08, 1.06E-08, 0.0006 
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Supplementary Table 1C continued 
13 86 MIFAGIKK IFVQKCAQCHTVEK 5 3.08E-07, 3.28E-06, 0.007 
13 87 KKGER IFVQKCAQCHTVEK 4 0.0005, 0.009, 0.004 
13 87 KKGER IFVQKCAQCHTVEK 5 9.68E-05, 0.103, 0.0001 
22 100 KATNE CAQCHTVEKGGK 3 0.0001, 0.001, 0.0003 
25 39 GGKHK KTGQAPGFSYTDANK 3 1.04E-10, 0.054, 7.69E-13 
39 88 KKGER KTGQAPGFSYTDANK 4 0.027, 0.297, 0.028 
39 100 KATNE KTGQAPGFSYTDANK 3 4.62E-09, 0.002, 1.81E-07 
55 73 KYIPGTK NKGITWGEETLMEYLENPK 3 3.67E-06, 0.187, 3.69E-09 
72 79 YIPGTKMIFAGIK GITWGEETLMEYLENPKK 3 0.021, 0.040, 0.017 
72 79 YIPGTKMIFAGIK GITWGEETLMEYLENPKK 4 9.21E-07, 0.002, 2.57E-06 
72 86 MIFAGIKK GITWGEETLMEYLENPKK 3 4.03E-08, 0.047, 9.33E-12 
72 86 MIFAGIKK GITWGEETLMEYLENPKK 4 3.94E-11, 0.0003, 3.91E-09 
72 86 MIFAGIKK GITWGEETLMEYLENPKK 5 0.011, 0.245, 7.81E-05 
73 86 KYIPGTK MIFAGIKK 3 4.16E-09, 5.76E-05, 1.82E-07 
73 86 KYIPGTK MIFAGIKK 4 2.01E-07, 0.0008, 1.81E-05 
73 87 KK KYIPGTK 3 1.65E-06, 0.042, 0.0003 
73 88 KGER KYIPGTK 3 3.43E-08, 0.002, 1.77E-06 
73 88 KYIPGTK KGEREDLIAYLK 4 8.20E-06, 3.08E-05, 4.61E-05 
79 88 KGER YIPGTKMIFAGIK 4 0.005, 0.188, 0.020 
86 88 MIFAGIKK KGEREDLIAYLK 5 4.00E-05, 6.14E-06, 0.023 
88 99 KGER EDLIAYLKK 3 0.016, 0.180, 0.0009 
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Supplementary Table 1D. Identified cross-linked peptide ions in the aggressive cross-linking condition of 
45°C/2500:1 molar ratio. 

K1 K2 Peptide1 Peptide2 Z Evalues 

5 8 KIFVQK AcGDVEKGK 3 4.36E-12, 8.38E-05, 7.23E-06 

5 13 AcGDVEKGK IFVQKCAQCHTVEK 4 0.013, 0.009, 0.023 

5 13 AcGDVEKGKK IFVQKCAQCHTVEK 5 0.0007, 0.0664, 0.0003 

5 25 GGKHK AcGDVEKGK 3 0.0002, 0.016, 0.001 

5 27 AcGDVEKGK HKTGPNLHGLFGR 4 2.83E-06, 0.036, 9.06E-07 

5 73 AcGDVEKGK KYIPGTK 3 0.002, 0.004, 0.019 

5 87/88 AcGDVEKGK KKGEREDLIAYLK 4 0.002, 0.002, 0.0003 

5 88 AcGDVEKGKK KGEREDLIAYLK 4 0.013, 0.016, 0.0005 

5 88 KGER AcGDVEKGK 3 2.62E-06, 0.044, 2.23E-06 

5 88 KKGER AcGDVEKGK 3 7.29E-06, 0.001, 0.0003 

7 27 GKK HKTGPNLHGLFGR 4 3.90E-08, 0.209, 2.51E-07 

7 73 GKK KYIPGTK 3 0.002, 0.089, 0.002 

7 86 GKK MIFAGIKK 3 0.009, 0.078, 0.008 

7 87 KK AcGDVEKGKK 3 8.48E-05, 0.064, 0.002 

7 88 KGER AcGDVEKGKK 3 0.003, 0.221, 0.0004 

13 86 MIFAGIKK IFVQKCAQCHTVEK 4 0.002, 0.0002, 0.292 

13 86 MIFAGIKK IFVQKCAQCHTVEK 5 0.003, 0.0003, 0.069 

13 87 KKGER IFVQKCAQCHTVEK 5 0.007, 0.112, 0.006 

27 39 HKTGPNLHGLFGR KTGQAPGFSYTDANK 4 0.015, 0.247, 0.0003 

27 39 HKTGPNLHGLFGR KTGQAPGFSYTDANK 5 0.008, 0.292, 9.31E-05 
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Supplementary Figure 1D continued 

27 100 KATNE HKTGPNLHGLFGR 3 1.51E-07, 0.0001, 7.18E-08 

39 72 KTGQAPGFSYTDANK GITWGEETLMEYLENPKK 4 0.029, 0.087, 0.005 

39 73 KYIPGTK KTGQAPGFSYTDANK 3 3.63E-06, 0.099, 4.24E-07 

39 86 MIFAGIKK KTGQAPGFSYTDANK 4 0.004, 0.213, 7.13E-05 

39 88 KGER KTGQAPGFSYTDANK 3 1.99E-07, .0078, 8.38E-12 

39 99 GEREDLIAYLKK KTGQAPGFSYTDANK 5 0.002, 0.212, 0.0001 

39 100 KATNE KTGQAPGFSYTDANK 3 5.77E-15, 0.0008, 1.71E-11 

55 73 KYIPGTK NKGITWGEETLMEYLENPK 4 0.011, 0.085, 0.002 

72 79 YIPGTKMIFAGIK GITWGEETLMEYLENPKK 4 0.006, 0.006, 0.0006 

72 100 KATNE GITWGEETLMEYLENPKK 3 4.26E-07, 0.078, 3.24E-10 

73 86 KYIPGTK MIFAGIKK 3 9.60E-07, 0.008, 0.0003 

73 86 KYIPGTK MIFAGIKK 4 0.0003, 0.26, 0.0007 

73 100 KATNE KYIPGTK 3 3.20E-06, 6.70E-05, 0.106 

79 100 KATNE YIPGTKMIFAGIK 3 0.006, 0.002, 8.86E-05 

86 87 KK MIFAGIKK 3 0.023, 0.044, 0.040 

86 88 MIFAGIKK KGEREDLIAYLK 3 6.32E-09, 4.28E-07, 3.30E-07 

86 88 MIFAGIKK KGEREDLIAYLK 5 0.0003, 0.0005, 0.013 

86 100 KATNE MIFAGIKK 3 0.005, 0.075, 0.002 

88 99 KGER EDLIAYLKK 3 0.018, 0.158, 0.0009 

88 100 KATNE KGEREDLIAYLK 3 0.002, 0.005, 0.049 

88 100 KATNE KKGEREDLIAYLK 3 0.002, 0.045, 0.008 

4
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CHAPTER 3 

GENOTYPE AND DEVELOPMENTAL STAGE–DEPENDENT ASSYMETRIC 
LIPID DISTRIBUTIONS IN MAIZE THYLAKOIDS STUDIED BY MASS 

SPECTROMETRY IMAGING. 
 

 

Adam T. Klein, and Young Jin Lee 

 

Abstract 

Maize has Kranz anatomy, where photosynthetic functions are asymmetrically 

distributed among two different photosynthetic cell types. We have recently shown 

differential localization of phosphatidylglycerols depending on fatty acid side chains 

between mesophyll and bundle sheath cells of B73 leaf tissue sections using high-

spatial resolution mass spectrometry imaging. Here we expand the previous work, and 

compare the localizations and relative abundances of two major acidic lipids in 

thylakoid, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG), at 

three different points across B73 and Mo17 inbred maize leaves. SQDGs were equally 

distributed in both the photosynthetic cells regardless of developmental stage, fatty 

acid, and genotype. However, the quantitative difference was noted between the two 

genotypes, especially the increase of SQDG 32:0 in Mo17 and decrease in B73. Similarly, 

PG 32:0 increases in Mo17 as plants develop whereas 16:1 containing PGs increase in 

B73. Most interestingly, 16:1 containing PGs contribute to thylakoid membranes in the 

mesophyll cells of B73 while bundle sheath cells are mostly composed of 16:0 
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containing PGs. In contrast, as 16:1 fatty acid containing PGs are deficient in Mo17, PG 

32:0 is used to build thylakoid membranes of both mesophyll and bundle sheath cells. 

 

Introduction 

Thylakoid membranes play an important role in maintaining structural integrity 

of photosystem complexes[88]. Nishihara et al. studied the lipid molecular species of 

thylakoid membranes and showed significant differences for their fatty acyl chains 

depending on the lipid types[89]. Monogalactosyldiacylglycerol (MGDG) and 

digalactosyldiacylglycerol (DGDG) are dominated by 18:3/18:3 fatty acyl chains, 

whereas the major species in sulfoquinovosyldiacylglycerol (SQDG) is 16:0/18:3 

followed by 16:0/18:2. Phosphatidylglycerol (PG) is most unique in that its molecular 

species are vastly different depending on the plant species and even between mesophyll 

and bundle sheath of maize. Specifically, PGs with a 16:1 fatty acid at the sn-2 position, 

such as PG 32:1 and PG 34:4, were highly enriched in the mesophyll and PG 32:0 is 

mostly localized in the bundle sheath[89]. PG is also known for its correlation with 

chilling sensitivity; i.e., the plants with high level of disaturated thylakoid PGs are 

sensitive to chilling[90]. 

 Mass spectrometry imaging (MSI) has become a valuable tool for analyzing 

molecular distributions of a wide range of compounds directly on plant or animal 

tissues[56-61]. Several different ionization techniques have been adopted for MSI; 

however, matrix assisted laser desorption ionization (MALDI) is the most attractive in 

terms of high spatial resolution, sensitivity, and chemical versatility, which is essential 
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for on-tissue single cell resolution imaging. The spatial resolution of MALDI-MSI has 

become routinely available down to the size of 20-30 μm and demonstrated as low as 

2.5 μm[91].  

Recently, we have visualized various metabolite distributions in the cross-

section of a maize leaf using MALDI-MSI[38]. The cell-type specific asymmetric 

distribution of PG obtained by Nishihara in bulk chloroplast analysis was confirmed in 

our single cell level direct analysis. Minor differences for PG 34:2 and PG 34:3 were 

attributed to the high abundance of the 16:1 fatty acyl group in the older plant, which 

favors mesophyll, as we used 14 day old seedlings and they used 45 day old mature 

leaves. It is in accord with Roughan who reported the absence of 16:1 fatty acyl group in 

PG from the emerging portion of maize leaves and the increase toward the distal end[90].  

Based on these precedents, in this work we explored quantitative fatty acyl 

distributions of PG and SQDG at three different locations across the maize leaves of two 

inbreds, B73 and Mo17, to understand the role of fatty acid compositions in the 

development and asymmetric distributions of thylakoid membranes of photosynthetic 

cells.  

 
 

Experimental 
 
Plant growth and sample preparation 

Maize seeds (Zea mays, L. inbred B73 and inbred Mo17) were planted in soil and 

grown in a controlled environment in a greenhouse, with daily watering. Plant seedlings 

were harvested 13 days after planting for B73, and 15 days after planting for Mo17 
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during daylight hours (~1 PM). B73 has a faster growth rate and the difference in 

harvest time was to achieve similar growth heights, where the leaves were 15-20 cm 

long from ligule 2 to the tip of the leaf. Sections of the third true leaf were collected 

from three plants of each genotype at the proximal end of the exposed leaf (~2 cm 

above ligule 2), at the midpoint of the leaf, and at the distal end of the leaf (2-3 cm from 

the leaf tip).  

 Tissue samples were cryosectioned as described previously[54]. Briefly, plant 

tissues were submerged in gelatin and immediately frozen with liquid nitrogen. 

Transverse plant tissue sections were collected using a cryostat (Leica, CM1850, Leica 

Microsystems, Buffalo Grove, IL, USA) at a thickness of 10 μm. Due to the fragility of the 

tissue sections, the cryosectioned tissues were attached to adhesive tape windows to 

prevent metabolite delocalization. The leaf sections were dried and gradually warmed 

under moderate vacuum (~100 mtorr). Optical images of the dried tissues were 

collected before the application of matrix. 1,5-diaminonaphthalene (DAN, 97%, Sigma-

Aldrich, St. Louis, MO, USA) was used as a matrix and applied by sublimation (~50 

mtorr, 140°C, 4 minute heating time). The sublimation procedure is described in more 

detail elsewhere[92]. 

 

Mass spectrometry analysis 

Data was collected on a MALDI-linear ion trap-Orbitrap mass spectrometer 

(Thermo Scientific, San Jose, CA, USA). The instrument was modified to use an external 

355 nm frequency tripled Nd:YAG laser (UVFQ; Elforlight Ltd., Daventry, UK). Laser 
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energy was 4-5 μJ/pulse at a 60 Hz repetition rate. A 10x beam expander (Thorlabs, 

Newton, NJ, USA) was incorporated in the laser beam path prior to introduction into the 

mass spectrometer, which reduced the laser spot size to 9-10 μm. Tune Plus and 

Xcalibur (Thermo Scientific) were used to set the imaging acquisition parameters and 

data acquisition. Images were acquired using a 10 μm raster step size and 10 laser shots 

per step. Spectra were acquired in negative mode using the Orbitrap mass analyzer 

with a resolution of 30,000 and a m/z scan range of 100-1000. 

MS/MS imaging was performed for selected ions in the same condition as above, 

but with an ion trap analyzer and a m/z scan range of 200-800. An isolation width of 2.0 

Da and normalized collision energy of 35 were used. All images were generated using 

MSiReader[93] with a mass window of +/- 5 ppm and normalized to the total ion count 

(TIC) for MS images, and a mass window of +/-0.2 Da and no normalization for MS/MS 

images. 

Additional analysis of selected tissues was performed using multiplex imaging 

with a 4 step spiral raster[94]. The first step collected a high resolution mass spectrum 

with the Orbitrap analyzer. MS/MS spectra were collected in steps 2-4 using the ion 

trap analyzer for the three most intense ions from the pre-loaded precursor mass list of 

common molecules of interest. Dynamic exclusion was used with a repeat count of 2, a 

repeat duration of 30 s, and an exclusion duration of 180 s.  

Quantitative comparison was made by averaging metabolite intensities over a 

region of the maize leaf that contained both mesophyll and bundle sheath cells. Six 
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replicate regions of the same plant were analyzed, and the average of the six regions 

was reported.  

 

Results and Discussion 

The third true leaves from B73 and Mo17 inbreds were harvested and 

cryosectioned at three points along the leaf. The first section was collected at the point 

the leaf began unfolding and is exposed to light, herein described as the proximal end. 

The second section was collected at the midpoint between section 1 and the distal end 

of the leaf. The third section was collected ~2 cm from the distal end of the leaf.  

 The chemical images of various species of PG and SQDG are compared at the 

three different leaf cross-sections of B73 and Mo17 as shown in Suppl. Figures 1 and 2 

along with three major metabolites closely related with photosynthesis (chlorophyll a, 

plastoquinone/plastoquinol, and carotene). Three representative lipids (PG 32:0, PG 

32:1, and SQDG 34:3) are shown in Figure 1. The acidic lipid compounds of the 

thylakoid membrane (SQDG and PG) are most abundant at the midpoint of both 

inbreds. As we have previously reported[38], PG 32:0 (Figures 1D-F) and PG 32:1 

(Figures 1G-I) are mostly localized in the bundle sheath cells and mesophyll cells, 

respectively, in the case of B73, whereas SQDG 34:3 is present in both the 

photosynthetic cells (Figures 1J-L). Mo17, however, shows slight differences with B73. 

SQDG has the same localization, but a lower abundance. PG 32:1 is nearly absent in 

Mo17 (Figure 1H’) and PG 32:0 has a broader distribution (Figure 1E’), as discussed in 

more detail later. 
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Sulfoquinovosyldiacylglycerol distribution  

SQDG is a chloroplast membrane lipid and is known to be present in both 

mesophyll and bundle sheath cells[38, 95]. Kenrick has reported that the majority of fatty 

acids that make up SQDGs are 16:0 and 18:3[96]. This is consistent with SQDGs detected 

in this study, as the most abundant SQDGs contain combinations of these two fatty 

acids; i.e., SQDG 32:0, 34:3, and SQDG 36:6 (See Suppl. Fig. 3 for MS/MS). Quantitative 

analysis was performed by averaging mass spectra in each MALDI-MSI dataset, then 

comparison was made between the same or similar class of compounds. Figure 2 shows 

the relative abundances of individual SQDGs with different fatty acid constituents at the 

three different locations of the leaf. SQDG 34:3 is most abundant across the entire leaf 

for both B73 and Mo17, and makes up over 60% of total SQDGs. Its relative abundance 

is least at the midpoint of B73, 63% compared to 74 or 79% at the proximal or distal 

end, mostly due to the increase of SQDG 36:6. The abundance of SQDG 32:0 is of 

interest, as the relative abundance increases from the proximal to distal ends in Mo17, 

but decreases in B73.  

 

Phosphatidyl glycerol distribution 

Roughan has shown that the most abundant PGs in younger parts of maize 

leaves predominantly have fatty acid compositions of 16:0, 18:2, and 18:3[90]. Figure 3 

shows the relative abundance of PGs with different fatty acid constituents at each 

position along the leaf. The majority of PGs at the proximal side of the leaf are PG 32:0, 
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PG 34:2, or PG 34:3 for both B73 and Mo17. This observation agrees with that of 

Roughan as we confirmed their fatty acid compositions as 16:0/16:0, 16:0/18:2 and 

16:0/18:3, respectively (Suppl. Figure 4). These three PGs are still the most abundant at 

the midpoint of the leaf (Figure 3B); however, the relative abundance of PG 32:0 is 

nearly doubled in both B73 and Mo17. This is accompanied by a significant decrease of 

PG 34:2 in B73 and PG 34:3 in Mo17.  

At the distal end of the Mo17 leaf, PG 32:0 is enhanced even more extensively, 

which was accompanied by the decrease of PG 34:2 and 34:3. Overall, PGs with 

unsaturated fatty acyl chains decrease with leaf development while the disaturated PG 

increases, correlating well with the chilling sensitivity of Mo17[96-97]. The trend of PG 

32:0 in Mo17 also correlates well with SQDG (Fig. 2); i.e., the increase of SQDG 32:0 

from the proximal end to the distal end. In contrast, PG 32:0 at the distal end of B73 is 

decreased to the level of the proximal end along with the increase in PG 34:3 and 34:4. 

This is an opposite trend with Mo17, in agreement that B73 has lower chilling 

sensitivity than Mo17[98]. Interestingly, PG 32:1 is further increased from the level at the 

midpoint, which is in good correlation with the high levels of PG 34:3 and 34:4 

compared to high levels of PG 34:2 and 34:3 at the proximal end. Namely, the 16:1 fatty 

acid component of PG is increasing in B73 as plants mature, similar to the ‘Golden 

bantam’ inbred in Roughan’s work, contributing to the increase of PG 32:1, PG 34:3, and 

PG 34:4. 

To further verify that 16:1 fatty acyl component of PG is increasing in B73 and 16:0 is 

increasing in Mo17, we performed MS/MS of PG 34:3 for all three places of B73 and 
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Mo17 leaves, and their relative composition of fatty acyl chains is summarized in Figure 

4. There are two possible fatty acyl compositions in PG 34:3, 18:3/16:0 or 18:2/16:1. 

The portion of PG 18:2/16:1 is much more enhanced at the midpoint and distal part of 

B73, but PG 18:3/16:0 remains dominant in Mo17. This is also visualized in MS/MS 

imaging of PG 34:3 at the midpoint of leaves as shown in Figure 5, demonstrating 16:0 

is dominant in Mo17 whereas 16:1 is quite comparable with 16:0 in B73.  

The lack of 16:1 fatty acid in PG of Mo17 raises a question about the cellular localization 

of the lipid in mesophyll vs bundle sheath. Namely, if the increase of 16:1 component in 

PG is a general trend as plants grow, as shown for maize ‘Golden bantam’ and a few C3 

plants by Roughan and maize B73 in this work, and also if 16:1 fatty acid of PG plays an 

important role in the mesophyll thylakoid membranes, as shown for maize ‘Honey 

buntum’ and a few C3 plants by Nishihara et al and B73 in this work (PG 32:1 of Fig. 1), 

what would be the fatty acid composition of PG in mesophylls of Mo17 where 16:1 is 

deficient? To answer this question, we carefully compared the images of PG 32:0, PG 

32:1, PG 34:2, and PG 34:3 overlayed with the optical image at the midpoint of B73 and 

Mo17 leaves as shown in Figure 6. In B73, PG 32:1 is localized in the mesophyll, 

whereas the other three PGs are mostly localized to the bundle sheath. PG 34:3 is 

mostly localized to the bundle sheath in spite of the fact that it contains significant 

amount of PG 18:2/16:1. This is in contrast to Nishihara et al., where PG 18:2/16:1 is 

more abundant in the mesophyll, and attributed to the difference in genotype (B73 vs 

‘Honey buntum’) or age (13 days vs 45 days). In Mo17, PG 32:1 is almost absent as 

shown in Figure 6B, consistent with the relative quantifications in Figure 3B. To 
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accommodate this deficiency, PG 32:0 is present in the mesophyll as well as bundle 

sheath (Figure 6D). The other two PGs, PG 34:2 and PG 34:3, are localized in the bundle 

sheath in Mo17, the same localizations as in B73.  

 

Conclusions 

 Fatty acid compositions in membrane lipids have various important roles, 

including special cellular or subcellular compartmentalization. In this study, we have 

assessed the quantitative and localization change of major acidic lipids in the thylakoid 

membranes of maize leaves as plants develop, and highlighted the difference between 

the two genotypes. Overall, Mo17 shows the increase of 16:0 containing PGs and SQDGs 

as plants develop, most notably 16:0/16:0, an opposite trend with B73. The 16:1 

containing PGs play an important role in B73 as plants develop, similar to what is 

known for other maize or some C3 plants. More specifically, PG 32:1 is a major 

thylakoid membrane lipid in the mesophyll of B73, whereas other PGs constitute 

bundle sheath cells. In contrast, the lack of PG 32:1 in Mo17 resulted in having PG 32:0 

constitute mesophyll as well as bundle sheath cells. MALDI-MSI was chosen as the tool 

of choice in this study and we clearly demonstrate the power of this technology for the 

sophisticated analysis of single cell level high spatial resolution localization of lipids and 

metabolites.  
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Figure 1. MALDI-MSI of selected metabolites. MALDI-MSI of the proximal, 
midpoint, and distal sections of maize leaf from inbred B73 (Top panel) and Mo17 
(Bottom panel). Images shown are the optical images (A-C, A’-C’) and chemical 
images of (D-F, D’-F’) PG 32:0 (m/z 721.503; max = 3000), (G-I, G’-I’) PG 32:1 (m/z 
719.487; max = 1200), and (J-L, J’-L’) SQDG 34:3 (m/z 815.501 max = 3000). Each 
analyte ion signal is normalized by the total ion count at each pixel, and the max 
values for color scheme were adjusted for the best comparison across the sections 
and between the genotypes. Scale bars represent 100 μm for each optical image. 
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Figure 2. SQDG composition in maize leaves. The composition of each SQDG with 
different fatty acid constituents at (A) the proximal end, (B) midpoint, and (C) distal end 
of maize leaf for B73 and Mo17 inbreds. 
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Figure 3. PG composition in maize leaves. The % of total PGs detected for individual 
PGs with different fatty acid constituents at (A) the proximal end, (B) midpoint, and (C) 
distal end of maize leaf for B73 and Mo17 inbreds. 
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Figure 4. Relative abundance for MS/MS of PG 34:3. Relative abundance of 16:0 and 16:1 fragments from MS/MS of PG 
34:3, m/z 743.49, in B73 and Mo17 maize leaves.
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Figure 5. MS/MS images of PG 34:3. Chemical images of structural isomers of PG 34:3 at the midpoint of B73 and Mo17 
leaves and corresponding optical images (A). The images for structural isomers were constructed from MS/MS images of 
the sum of major fragment ions corresponding to the fatty acid chains; (B) PG 18:3/16:0 (m/z 487.4 for [M−16:0]-, m/z 
505.2 for [M-(16:0 – H2O)]-, m/z 413.4 for [M-(16:0+glycerol)]-, and m/z 255.5 for 16:0), and (C) PG 18:2/16:1 (m/z 489.4 
for [M−16:1]-, m/z 507.2 for [M-(16:1-H2O)]-, m/z 415.4 for [M-(16:1+glycerol)]-, and m/z 253.3 for 16:1). Scale bar 
corresponds to 100 μm in each optical image.  

Optical

PG 

18:3/16:0

PG 

18:2/16:1

Mo17

A’

B’

C’ min

max

B73

B

C

6
5
 



66 

 
Figure 6. Overlay of optical image with PGs. Overlay of optical image with (A and B) PG 32:1, (C and D) PG 32:0, (E and 
F) PG 34:3, and (G and H) PG 34:2 at the midpoint of B73 and Mo17 maize leaves.
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Figure S1. MSI of B73 maize leaf metabolites. MS images of PGs, SQDGs, and three 
photosynthesis related metabolites at the proximal, midpoint, and distal sections of B73 
inbred maize leaf. Each analyte ion signal is normalized by the total ion count at each 
pixel, and the max values for color scheme were adjusted for the best comparison 
across the sections and between the genotypes. Chl: chlorophyll a (sum of fragments at 
m/z 592.267 (pheophorbide a), 613.232 (chlorophyllide a), and 870.566 (pheophytin 
a)). PQ: plastoquinone/plastoquinol.  
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Figure S2. MSI of Mo17 maize leaf metabolites. MS images of PGs, SQDGs, and three 
photosynthesis related metabolites at the proximal, midpoint, and distal sections of 
Mo17 inbred maize leaf. 



69 

 

 
Figure S3. MS/MS of SQDG 32:2, 34:3, and 36:6. MS/MS spectra of (A) SQDG 32:0, (B) 
SQDG 34:3, and (C) SQDG 36:6 measured at the midpoint of B73 maize leaf. Major 
fragment ions are the loss of the 16:0 and 18:3 fatty acid side chains. 
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Figure S4. MS/MS of PG 34:3 and PG 34:2. MS/MS spectra of (A) PG 32:0, (B) PG 34:2, 
and (C) PG 34:3 from the proximal section of Mo17 maize leaf. Although the FA 18:2 
anion was detected in PG 34:3, this is most likely due to the presence of other 
phospholipid species (i.e. PE 36:2) within the isolation width used for MS/MS. PGs are 
more likely to fragment at the sn-2 position[99], which is the location of 16:0 and 16:1 
FAs[100-101], and 16:1 would be a better indication for the presence or absence of PG 
18:2/16:1.
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CHAPTER 4 

INVESTIGATION OF THE CHEMICAL INTERFACE IN THE SOYBEAN-
APHID INTERACTION USING MALDI-MASS SPECTROMETRY IMAGING 

 

A part of a paper published in Analytical Chemistry 

Anal. Chem., 2015, 87 (10), pp 5294-5301 
Reproduced by permission of The American Chemical Society 

 

Adam T. Klein, Gargey B. Yagnik, Jessica D. Hohenstein, Zhiyuan Ji, Jiachen Zi, Malinda D. 
Reichert, Gustavo C. MacIntosh, Bing Yang, Reuben J. Peters, Javier Vela, and Young Jin 
Lee 

 

Abstract 

Mass spectrometry imaging (MSI) is an emerging technology for high-resolution 

plant biology. It has been utilized to study plant-pest interactions but is limited to the 

surface interfaces. Here we expand the technology to explore the chemical interactions 

occurring inside the plant tissues. Two sample preparation methods, imprinting and 

fracturing, were developed and applied, for the first time, to visualize internal 

metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This 

is also the first time nanoparticle-based ionization was implemented to ionize 

diterpenoid phytochemicals that were difficult to analyze with traditional organic 

matrices. The interactions between rice-bacterium and soybean-aphid were 

investigated as two model systems to demonstrate the capability of high-resolution MSI 

based on MALDI. Localized molecular information of various plant- or pest-derived 

compounds provided valuable insight for the molecular processes occurring during the 
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plant-pest interactions. Specifically, salicylic acid and isoflavone based resistance was 

visualized in the soybean-aphid system, and antibiotic diterpenoids in rice-bacterium 

interactions. 

 

Introduction 

In nature, plants encounter diverse pests including pathogens and insects; thus 

the plant-pest interface is a battlefield of continuous chemical attacks and defenses. 

Plants possess an innate immune system that detects conserved pathogen-derived 

molecules and trigger an array of defense responses. Conversely, these pests deploy 

effector molecules to suppress innate defenses and to manipulate the host metabolism 

for nutritional benefit.[102-105] Most current work on the chemical interactions between 

plants and pests involves ex situ extraction of metabolic or genetic materials with 

homogenization of various tissues and cell types.[106-109] This approach has many 

limitations. Firstly and most importantly, it fails to provide critical information on the 

spatial distribution of compounds. Secondly, the homogenization process significantly 

dilutes analytical signals to levels that are sometimes indistinguishable from the 

background (false negative). Lastly, the lack of spatial information may cause chemical 

responses to non-target stimuli to be misattributed to plant-pest interactions (false 

positive).  

Laser capture microdissection (LCM) has been applied for metabolic profiling of 

plant tissues.[110-111] This method can circumvent the above limitations by precisely 

cutting out specific cells or tissues of interest. However, it has its own limitations 
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including potential delocalization of small molecules during fixation and embedding. 

Most of all, in a typical LCM analysis, tens or hundreds of cells need to be collected, 

resulting in extended sample preparation time and the inability to measure asymmetric 

metabolic distributions among the same cell types. Liquid extraction surface analysis 

mass spectrometry (LESA-MS) is another method recently developed to overcome the 

lack of spatial information in traditional metabolic profiling.[112] In this approach, a 

robotic arm automatically extracts soluble materials from each localized area using a 

micropipette and introduces the sample directly into the mass spectrometer. This 

method minimizes sample preparation and allows imaging experiments[113]; however, 

its spatial resolution is limited to only about one millimeter size. 

In situ imaging can provide fine details with high-spatial resolution. However, 

molecular imaging in plants is mostly limited to fluorescence,[114] which provides 

subcellular distributions but only those of macromolecules labeled as targets. 

Accumulation of small molecules is one of the most direct evidences of plant-pest 

interactions but the technology for their in situ chemical imaging is nearly nonexistent. 

Mass spectrometry imaging (MSI) is an excellent tool of choice for imaging small 

molecules.[115] It provides extremely high sensitivity, down to attomole (10-18 mole) 

levels[116], a high-degree of in situ chemical mixture separation (up to thousands of 

molecules in m/z space), and the ability to characterize novel molecules; thus, it is 

extremely well-suited for metabolite imaging. MSI has recently been used extensively 

for imaging plant metabolites[60, 117-118], including our own work.[62, 119-120] 
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Most MSI applications for plant materials are made through direct interrogation 

on plant surfaces or thin sections obtained by cryosectioning.[105, 117] Unfortunately, 

neither method is applicable for visualization of the internal metabolite distributions of 

thin leaves or flower petals along the lateral dimension. Imprinting internal plant 

molecules onto Teflon or silicate surfaces has been proven to be an efficient sample 

preparation method for this purpose[121] and is extensively utilized for desorption 

electrospray ionization (DESI).[117] However, DESI is limited to polar compounds 

analysis and its spatial resolution is typically ~200 μm[122], although <50 μm 

resolutions have been reported[123-124]. NanoDESI enables up to 10 μm spatial 

resolution,[125] but is not commercially available. MSI using matrix-assisted laser 

desorption ionization (MALDI) is a versatile alternative as it allows much higher spatial 

resolution and analysis of wide classes of compounds. Combining cell-transfer by 

contact printing and carbon-substrate-based laser desorption ionization, Li et al. 

profiled and imaged trichome specialized metabolites of Solanum habrochaites.[65] Plant 

metabolites associated with pest defense have been investigated using MALDI-MSI[126-

127], however, no study has been made for MSI to interrogate internal metabolites 

induced by plant-pest interactions. Hamm et al. utilized MSI to image the chemical 

responses of Cabernet Sauvignon after infected by Plasmorpara viticola.[128] This work 

analyzed only a few target molecules, resveratrol and pterostilbene, on the surface of 

the leaf by direct laser desorption ionization.  

Two biological systems are used to study the chemical interfaces in plant-pest 

interactions in the current work: soybean-soybean aphids (Glycine max) colonized with 
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Aphis glycines and rice-bacterium (Oryza sativa) infected with Xanthomonas oryzae pv. 

oryzae (Xoo). Soybean aphids are native to Asia and are a recently introduced pest 

affecting soybean plants in North America. Soybean aphid infestation results in changes 

in the metabolome of soybean plants. Some of these changes include the accumulation 

of phytohormones such as salicylic acid, ethylene, and jasmonic acid that can mediate 

defense responses,[109, 129] changes in amino acids that may modify the nutritional 

capacity of the plant,[130] and changes in chlorophyll content.[131] However, our 

knowledge of the soybean metabolite changes in response to aphid colonization is 

limited, and their spatial distribution is unknown. Understanding how the metabolites 

change during plant-pest interactions can be crucial to understanding a plant’s 

resistance or susceptibility to attack. 

Here we demonstrate the utility of MALDI-MSI as a tool to investigate plant-pest 

interactions that is not limited to the surface analysis, but includes the interior of the 

plant tissues where metabolism is significantly altered by the interactions. Specifically, 

the plant responses to two distinct pest classes, insect (aphid) and bacterium (Xoo), 

were investigated. To expose internal molecules for interrogation by the laser beam, we 

developed and applied ‘imprinting’ and ‘fracturing’ methods. The imprinting technique 

is used to squeeze out internal metabolites with minimal delocalization during the 

process. Fracturing is a simple method often used in optical microscopy to expose and 

visualize internal plant tissues, but here we applied this technique, for the first time, for 

MS imaging. Additionally, we successfully applied nanoparticle-assisted laser 
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desorption ionization (NALDI),[136-137] for characterization of diterpenoids. The rice 

bacteria interaction portion is included in the dissertation of Gargey B. Yagnik. 

 

Experimental 

Materials 

Methanol (LCMS Chromasolv) and 1,5-diaminonaphthalene (DAN, 97%) were 

purchased from Sigma Aldrich (St. Louis, MO, USA). Dihydroxybenzoic acid (DHB, 

99.0%) was purchased for Acros Organics (Pittsburgh, PA, USA). Porous 

polytetrafluoroethylene (PTFE) sheets were 45 to 50% porous with 7-14 µm pore size 

(Porex Corporation, Fairburn, GA, USA).  

 

Soybean plant growth 

Aphid-susceptible soybean plants (Glycine max (L.) Merr.) cv. SD01-76R were 

grown in a growth chamber at a constant temperature of 25°C with a 16 light: 8 dark 

photoperiod. Seeds were surface sterilized overnight using chlorine gas as previously 

described.[138]  In each pot, two seeds were planted in steam sterilized Metro-Mix® 900 

soil (Sun Gro Horticulture, Vancouver, BC, Canada) and after one week, seedlings were 

thinned to one per pot. For the duration of the experiment, plants were watered twice 

weekly and additionally fertilized once per week with a 1:1 mixture of all-purpose 

Miracle-Gro Excel (21-5-20, The Scott’s Company LLC, Marysville, Ohio, USA) and 

Miracle-Gro Professional (15-5-15, The Scott’s Co.) applied at a 12.5 mL L-1 in water. 

Plants were infested at V2 stage. 
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Insect material and aphid infestation 

Soybean aphids [Aphis glycines Matsumura (Hemiptera: Aphididae); biotype 1] 

were obtained from a laboratory colony maintained on SD01-76R plants at Iowa State 

University. Experimental plants were infested by transferring 30 mixed-age apterous 

aphids to the abaxial side of the center leaflet using a small paintbrush. To prevent 

movement, aphids were confined using clip cages (BioQuip products, Rancho 

Dominguez, CA, USA). Clip cages were fastened on both experimental and control plants 

to mimic any environmental changes caused by the cage. Aphids were allowed to feed 

and reproduce on the leaflet for seven days. 

  

Sublimation of organic matrix 

DHB was applied on the PTFE sheet by sublimation, as described by Hankin et 

al.[139], and subjected to MALDI-MSI. Sublimation was performed by placing 500 mg 

DHB into the bottom of the apparatus and placing it on a hot plate or heating mantle. 

The imprinted sample was adhered to a microscope slide with double-sided tape, which 

was attached to the condenser part of the apparatus with tape. The apparatus was 

sealed and evacuated to ~150 mtorr. Once the pressure stabilized, ice water was added 

to the condenser and the heating mantle was turned on to 230 °C. Heat was applied for 

5-7 minutes, until matrix sublimation was visually observed on the sides of the 

apparatus and the bottom of the condenser. The apparatus was removed from the 

heating mantle and allowed to cool. The ice bath was warmed to room temperature by 

adding more water to prevent condensation when the apparatus was opened. The 
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matrix-coated PTFE membrane was removed and subjected to MALDI-MSI data 

acquisition.  

 

Matrix application with oscillating capillary nebulizer 

We have previously demonstrated diaminonaphthalene (DAN) is a good matrix 

for small molecules in negative mode[54]. For the negative ion mode of soybean-aphids 

interactions, DAN was dissolved in methanol at 10 mM concentration and 300 µL of 

solution was sprayed on the imprinted sample using a home-made oscillating capillary 

nebulizer (OCN).[62] The procedure for matrix solution application was as follows: (1) 

fill up the 500 µL syringe with matrix solution, (2) place a blank target plate 8-10 cm 

below the tip of the OCN, (3) start the nebulizing gas (N2) flow and adjust the pressure 

to ~40 psi, (4) set the flow rate of the syringe pump at 50 µL/min and start the flow, (5) 

monitor the blank target plate surface to ensure matrix is being applied and wetting is 

minimal, (6) stop the syringe pump and place the PTFE membrane below the tip of the 

OCN, and (7) turn on the syringe pump and spray 500 µL of matrix solution that covers 

a ~2 cm sample uniformly.  

 

Imprinting leaf metabolites to porous PTFE 

Aphids were removed from the leaf using forceps, a brush, and air duster. The 

leaf was removed from the plant and promptly included in the imprinting setup. The 

imprinting of the plant leaf on a porous polytetrafluoroethylene (PTFE) sheet was 

performed as described by Thunig et al.[121] As shown in supplementary information 
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(Figure S1) the plant leaf or leaf section was placed with the abaxial side toward the 

porous PTFE sheet. The leaf was covered with three laboratory wipes in order to absorb 

any excess liquid extracted during imprinting. Three additional laboratory wipes were 

placed behind the porous PTFE sheet to absorb any liquid that is squeezed through the 

PTFE sheet. This was then placed between two metal plates and inserted in a vise. The 

vise was hand tightened and kept under pressure for 3-4 minutes. Under pressure the 

wipes absorb excess water and leaf material released during the imprinting process. 

After the defined time interval the porous PTFE sheet and leaf were removed from the 

vise. Control samples were also imprinted to account for any artifacts that may occur 

during sample preparation.  

 

MSI data acquisition and data processing 

A linear ion trap-Orbitrap mass spectrometer with MALDI ion source (MALDI 

LTQ-Orbitrap Discovery; Thermo Scientific, San Jose, CA, USA) was used for the current 

study. The instrument was modified to use an external frequency tripled, diode pumped 

Nd:YAG laser operating at 355 nm (UVFQ; Elforlight Ltd., Daventry, UK). Laser energy of 

about 4-5µJ/pulse and 5-7µJ/pulse were used for MSI of soybean leaf and rice leaf, 

respectively, at 60 Hz repetition rate. The laser spot size was estimated to be 30~40 µm 

as determined from laser burn marks on a thin film of α-cyanohydroxycinnamic acid. A 

raster step size of 100 µm and 150 µm was used for MSI of rice leaf and soybean leaf, 

respectively, unless otherwise noted. Each spectrum was collected with 10 laser shots 
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per scan and one scan per raster step. Orbitrap scans were acquired over the m/z range 

of 100 to 1200.  

ImageQuest software (Thermo Scientific) was used to produce chemical images 

from MS imaging data sets. A mass tolerance of ±0.003 Da was used for generating 

Orbitrap MS images. All the MS images were normalized against total ion count at each 

pixel and the maximum scale was arbitrarily adjusted to produce the best quality 

images as indicated in the figure caption. All the image features shown in this 

manuscript were reproduced in at least two or three replicate experiments. 

 

Results and Discussion 

Imprinting of plant leaves for MALDI-MSI 

The imprinting of plant leaves, as far as we are aware, has not been used for 

MALDI-MSI to visualize internal metabolites. DESI-MSI has been widely used for this 

purpose but MALDI-MSI is expected to provide superior spatial resolution. Its high 

spatial resolution, however, would be useful only if the localization of plant metabolites 

is retained during the brute force squeezing process. To study the extent of metabolite 

delocalization during the imprinting procedure, we have obtained MALDI-MSI of a 

soybean leaf with a 30 μm raster step after imprinting to a PTFE surface. Spatial 

resolution of 20-30 μm can be routinely obtained in most commercial MALDI-MSI 

instruments, while most DESI-MSI is performed at the size of 200-300 μm. Figure 1 

shows MS images of a few representative metabolites. High image quality suggests the 

localization information is mostly retained during the imprinting.  
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The ion intensity profiles of choline and phosphocholine are constructed across 

the x-axis at a fixed y-position of Figure 1, as shown in Figure 2. Some half bandwidths 

are as narrow as ~50 μm (e.g. red arrow) and some rising or falling half widths are as 

narrow as ~20 μm (e.g. purple arrow). Considering inherent metabolite distributions, 

the broadening originating from the sample preparation and mass spectrometric 

measurement must be narrower than 50 μm, including the delocalization of metabolites 

during imprinting and the laser beam sampling size (~30 μm for this particular data 

set). Hence, we estimate a spatial resolution as high as 20-30 μm is potentially 

achievable using the imprinting sample preparation in MALDI-MSI. The raster step size 

of 150 μm was used for the rest of the imprinting experiments because of the wide 

imaging area that had to be covered, which is still better than that of typical DESI-MSI. It 

should be noted that we cannot discard the possibility that there might be more 

delocalization of metabolites on the thicker part of tissues such as midrib due to the 

greater pressing force.  

 

Application of imprinting method for soybean-aphid interactions 

The imprinting method developed above was applied to study the chemical 

interactions between soybean and aphids. Soybean leaves had been infested with 

aphids for 7 days prior to MALDI-MSI analysis. The aphids were kept inside a clip-cage 

on the center of the leaf to restrict aphid movement and identify the region where 

feeding occurred. At 7 days, aphids were removed and leaf metabolites were 

transferred to a porous PTFE membrane by the imprinting method described in the 
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experimental section. Uneven leaf surfaces are often difficult to be directly probed by a 

laser beam because surface roughness may result in the loss of the depth of field and 

insufficient laser flux for some local areas. The flat surface of the membrane provides 

uniform laser energy over the entire sampling area regardless of original surface 

roughness due to veins or trichomes. Sample handling is also simplified with imprinting 

by eliminating the long drying process required for a large leaf and minimizing cracking 

and curling during the drying process.  

The PTFE imprints were analyzed with dihydroxybenzoic acid (DHB) as a matrix 

in positive ion mode and with 1,5-diaminonaphthalene (DAN) as a matrix in negative 

ion mode. Figure 3 shows positive ion m/z images of various compounds. The MALDI-

linear ion trap-Orbitrap mass spectrometer used in this experiment provides accurate 

mass information in the Orbitrap and structural information by MS/MS in the linear ion 

trap, allowing positive identifications for many compounds directly on tissue. The 

compound assignments were based on Metlin metabolite database searches 

(http://metlin.scripps.edu/) with mass tolerance of 3 ppm. MS/MS experiments were 

performed using the ion trap to further support the assignments as shown in the 

supplementary data for oligosaccharides, phosphocholine, and arginine (Figure S2 and 

S3). Other ions either did not have sufficient signals for MS/MS or produced almost no 

fragments.  

Hexose sugars ranging from one to four monomer units were detected as 

potassiated ions ([H2O(C6H10O5)n+K]+, n=1-4) and localized to the caged aphid region of 

the leaf, as seen in Figure 3B-3E. We hypothesize that the images of these sugars 

http://metlin.scripps.edu/


83 

correspond to honeydew deposited on the surface of the soybean leaf. Although 

soybean plant cells contain all these hexose sugars including raffinose (tri-hexose) and 

stachyose (tetra-hexose), raffinose and stachyose are normally not detected in soybean 

leaves.[140-141] It has been shown that aphids are able to reduce the osmotic pressure in 

their gut through the activity of a sucrase-transglucosidase enzyme[142] that transforms 

the glucose moiety of sucrose into oligosaccharides that are then excreted in the 

honeydew together with glucose and sucrose.[143-144] Glucose, fructose, sucrose, maltose 

and erlose have previously been found in soybean aphid honeydew.[145] To evaluate this 

hypothesis, we briefly rinsed off the soybean leaf surface with water prior to 

imprinting. As shown in Figure S4, the hexose sugars mostly disappeared after the rinse 

consistent with this explanation. Only di-hexose, most likely sucrose which is abundant 

in plant leaves, is barely visible in spite of ten times higher intensity scales than in 

Figure 3. 

Figures 3G-3L show that the nucleobases (adenine, guanine, cytosine), 

phosphocholine, and amino acids (glutamine, arginine) are co-localized but do not 

share the spatial distribution of honeydew. Instead, their pattern aligns with the dark 

spots in the optical image (Figure 3A), which likely correspond to dead cells. Interaction 

of aphid saliva effectors with defense-related plant phenolics or reactive oxygen species 

(ROS) may result in leaf tissue browning and chlorosis, and eventually necrosis.[146] This 

cell death could lead to metabolite leakage from cells that would explain the pattern 

observed. Alternatively, these patterns of metabolite accumulation could be related to 

metabolic modifications induced by aphids. In compatible interactions, aphids can 
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modify nitrogen metabolism and amino acid accumulation, to enhance the nutritional 

value of colonized leaves.[130, 147] Further study is necessary to better understand the 

obtained metabolite distributions. 

Figure 4 shows a comparison of negative mode ion images for soybean leaves 

with and without aphids. The compound assignments were based on Metlin database 

searches with 3ppm mass tolerance and literature searches. MS/MS were performed 

directly on the PTFE surface for the shown compounds; however, some of them had 

significant interference within ±0.5 Da and could not obtain meaningful MS/MS spectra 

(Figure S5). Figure 4B and 4B’ shows kaempferol-rhamnoside-glucoside with and 

without aphids (see MS/MS in Figure S5). Kaempferol glycosides normally accumulate 

in mature soybean leaves, and their major role is UV protection. Accordingly, the same 

distributions were observed across the entire leaf, regardless of the presence of aphids, 

suggesting that most housekeeping metabolites are not affected by aphids.  

Figure 4C, m/z 128.071 tentatively assigned as deprotonated pipecolic acid 

(Pip), shows a similar image to that of the protonated form in positive ion mode (Figure 

3F) in that both are distributed in the non-vein area within the cage. This assignment is 

based on the accurate mass and the recent report of Pip in Arabidopsis and tobacco as a 

positive regulator for systemic acquired resistance.[148-149] Pip is a catabolite of lysine 

and can be easily protonated or deprotonated, consistent with its observation in both 

positive and negative ion mode. It was consistently detected in the aphid region but was 

always absent in the control (Figure 4C’) for several replicate experiments, confirming 

it is a result of aphid-infestation, and not an experimental artifact.  
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Another supporting evidence for Pip is the accumulation of salicylic acid (SA) in 

the caged region of the leaf infested by aphids (Figure 4D) but not in the control (Figure 

4D’). The assignment of SA is supported by MS/MS for its characteristic CO2-loss 

(Figure S5). Unlike Pip, SA was observed only in negative ion mode, as expected from its 

low proton affinity. SA-mediated plant defense response is well known and reported for 

the soybean-aphids system.[109, 129] In Figure 4D and 4D’, however, SA is also observed 

in the veins on the proximal side in both leaf samples. While more work is needed to 

understand this observation, it is important to note that both control and aphid-infested 

plants were grown in close proximity in the same growth chamber. This experimental 

setup may have been conducive to the development of priming in control plants, 

manifested as an accumulation of SA in the phloem. It was shown that the main soybean 

volatile induced by soybean aphid infestations is Methyl-SA,[150] and this compound is a 

strong inducer of priming.[151] Moreover, evidence of priming in the experimental setup 

used here has been described before.[109]  

Figures 4E and 4F show m/z 267.066 and 253.050, tentatively assigned as 

formononetin and dihydroxyflavone (e.g. daidzein), respectively; isoflavones known to 

be induced in soybean leaves by insects.[152] They are both localized to the caged region 

on the leaf with aphids, and are not detected in control plants (Figures 4E’ and 4F’). 

Several soybean aphid resistance quantitative trait loci (QTL) have been mapped to 

regions that also contain QTL for high isoflavonoid content, and higher content of 

isoflavonoids, especially daidzein, has been found for soybean leaves with aphids.[153] 

Quantitative analysis is currently being performed to confirm the change of isoflavone 
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levels with the feeding of aphids (a separate manuscript is in preparation as a part of 

systematic soybean-aphid interaction study), and preliminary data are consistent with 

the current result. It is interesting to note that, except SA, Pip and isoflavone-responses 

are all localized to the feeding sites, and does not occur in the veins, suggesting they are 

specific local responses.  

 

Conclusions 

In this work, we have demonstrated that MSI can be a very useful tool to study 

the chemical interfaces in plant-pest interactions. Sample preparation is a critical 

bottleneck because it is almost impossible to cross-section thin leaves in the planar 

dimension. For the visualization of metabolites across the leaf, the imprinting and 

fracturing methods have been developed to expose internal metabolites of plant leaves. 

The two sample preparation methods are complementary to each other. Imprinting is 

efficient for the analysis of cytoplasmic hydrophilic compounds that can be squeezed 

out. The greatest advantage of this method is its versatility. It can be applicable to 

almost any plant leaves, regardless of their size or surface roughness. This method, 

however, has a critical limitation that membrane-bound molecules, membrane lipids, or 

other hydrophobic compounds cannot be analyzed. Another limitation is the possible 

loss of spatial resolution during the imprinting process; however, this seems to be 

relatively minimal for most tissues. The fracturing method is effective for compounds 

that are present on the fracture-opened surface including phospholipids and 

chlorophylls that cannot be analyzed with the imprinting technique. One limitation is 
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that we cannot control which layer will fracture-open. In the case of rice leaf, the 

mesophyll layers surrounding the veins seem to be most fragile and vulnerable to 

fracturing. Another limitation is that it is difficult to apply to a large size leaf, such as 

soybean leaf, because it tends to partially crack before it is completely dried. In-parallel 

control experiment with an uninfected leaf would be important in such experiments 

due to the possible metabolic turnover during sample processing. 

Efficient ionization is often a critical obstacle in MSI depending on what types of 

analytes are the target molecules of interest. As is well known, the classes of 

compounds that can be ionized by MALDI are greatly affected by the matrix of choice. 

We have successfully developed and demonstrated the use of Fe3O4 and TiO2 

nanoparticles to efficiently ionize diterpenoid phytoalexin compounds that cannot 

otherwise be analyzed. We are currently screening various nanoparticles for a wide 

range of plant metabolites, to further understand ionization mechanisms and apply this 

to analyses of diverse classes of plant metabolites. 

The demonstrated approach of using MSI to study the chemical interfaces of 

plant-pest interactions has many advantages compared to traditional metabolic 

profiling, especially in providing precise localization information with high sensitivity. 

The current work demonstrates the power of this technology and we envision that 

application of this approach will open new opportunities in plant pathology.  
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Figure 1. Imprinting MSI with 30 μm raster size. Imprinting MALDI-MSI of a soybean leaf with 30 μm raster step size 
obtained in positive ion mode. (A) Optical image of imprinted PTFE surface, and chemical images for (B) choline (m/z 
104.107), (C) phosphocholine (m/z 184.073), (D) kaempferol (m/z 287.055), (E) hexose (m/z 219.027), and (F) di-hexose 
(m/z 381.079). Each analyte ion signal was normalized by the total ion count at each pixel and the max values were 
arbitrarily adjusted for the best image quality. The scale bar corresponds to 1 mm. Choline and phosphocholine were 
detected as the molecular cation (M+), kaempferol as the protonated form ([M+H]+), and hexose and di-hexose as the 
potassiated form ([M+K]+). 

8
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Figure 2. Choline and phosphocholine ion profiles. Top: Selected ion profiles for 
choline (thick green) and phosphocholine (thin blue) at the y-position of 1,320 μm in 
Figure 1. Bottom: Zoomed-in profiles for x-range of 5,000-6,000 μm. 
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Figure 3. Positive mode MALDI-MSI of imprinted soybean leaf. (A) Optical image of 
imprinted PTFE surface with the red circle representing the caged aphid region. 
Chemical images for (B) hexose (Hex, m/z 219.027, 1.3ppm; 1x10-3), (C) di-hexose 
(Hex2, m/z 381.079, 0.8ppm; 1x10-2), (D) tri-hexose (Hex3, m/z 543.131, 2.8ppm; 5x10-

3), (E) tetra-hexose (Hex4, m/z 705.184, 2.2ppm; 2 x10-3), (F) pipecolic acid (Pip, m/z 
130.086, 0.2ppm; 7x10-4), (G) adenine (m/z 136.062, 1.8ppm; 4x10-3), (H) guanine (m/z 
152.057, 0.9ppm; 2x103), (I) cytosine (m/z 112.051, 0.1ppm; 8x10-4), (J) 
phosphocholine (PCho, m/z 184.073, 2.6ppm; 4x10-2), (K) glutamine (Gln, m/z 147.076, 
1.7ppm; 6x10-4), and (L) arginine (Arg, m/z 175.119, 2.0ppm; 1x10-3). Each analyte ion 
signal is normalized by the total ion count at each pixel and the max values used in 
generating images are shown within parenthesis along with the experimental m/z 
values and mass errors. The amino acids, pipecolic acid, and nucleobases were detected 
as protonated ions ([M+H]+), the hexoses as potassiated ions ([M+K]+), and 
phosphocholine as a molecular cation (M+). The scale bar corresponds to 5mm. 
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Figure 4. Negative mode MALDI-MSI of imprinted soybean leaf with and without 
aphids. (A) Optical image of imprinted PTFE surface with the green circle representing 
caged aphid region. Chemical images for (B) kaempferol-rhamnoside-glucoside (m/z 
593.150, 1.9ppm; 1.25x10-1), (C) pipecolic acid (m/z 128.071, 0.4ppm; 8x10-4), (D) 
salicylic acid (m/z 137.024, 0.2ppm; 4x10-3), (E) formononetin (m/z 267.066, 2.5ppm; 
1x10-2), (F) dihydroxyflavone (m/z 253.050, 2.4ppm; 1x10-2); all detected as 
deprotonated ions ([M-H]-). A’ to F’ correspond to optical and chemical images in 
control without aphids. Each imprinted sample was analyzed in two sections to 
minimize the oxidation of DAN during long acquisition times. The two sections were 
merged together to create the images. The scale bar corresponds to 5mm. 
 



93 

 
Figure S1. Soybean imprinting setup. The layers from top to bottom are: metal plate, laboratory wipes, soybean leaf, 
imprinting substrate, laboratory wipes, and metal plate.  

9
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Figure S2. MS/MS of saccharides. MALDI-ion trap MS/MS spectra of three 
oligosaccharides shown in Figure 3 ([Hex2+K]+, [Hex3+K]+, [Hex4+K]+), obtained directly 
on the PTFE surface after the imprinting of an aphids-infested soybean leaf. Water-loss 
(-18 Da), methanol loss (-32 Da), and glucose monomer loss (-C6H10O5 or –C6H12O6, -162 
Da/-180 Da) are common fragmentations of oligosacchardies. MS/MS of monomer 
([Hex+K]+) does not have significant fragmentation and not shown. *: An unknown 
peak, most likely contamination from MS/MS of a near-by peak within 1 Da. 
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Figure S3. MS/MS of phosphocholine and arginine. MALDI-ion trap MS/MS spectra of phosphocholine and arginine 
shown in Figure 3, obtained directly on the PTFE surface after the imprinting of an aphids-infested soybean leaf. MS/MS 
spectra are matching with the standards.
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Figure S4. Imprint MSI after washing. Positive mode MALDI-MSI of the PTFE surface after washing and imprinting of an 
aphids-infested soybean leaf. (A) Optical image of imprinted PTFE surface with the green circle representing caged aphid 
region. Each analyte ion signal is normalized by the total ion count at each pixel and the molecular images are scaled with 
the max values shown in the parentheses for (B) hexose (1x10-4), (C) di-hexose (1x10-3), (D) tri-hexose (5x10-4), (E) tetra-
hexose (2x10-4); all detected as potassiated ions ([M+K]+). The scale bar corresponds to 5mm. 

A	 B	 C	 D	 E	
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Figure S5. Negative mode MS/MS of soybean metabolites. MALDI-ion trap MS/MS 
spectra of kaempferol-rhamnoside-glucoside, salicylic acid and dihydroxyflavone, 
obtained directly on the PTFE surface after the imprinting of an aphids-infested 
soybean leaf. Kaempferol-rhamnoside-glucoside shows characteristic fragmentation of 
the side chain sugar units. CO2-loss is a characteristic fragment ion of salicylic acid 
according to standard compounds analysis and Metlin. Major products in MS/MS of 
dihydroxyflavone are matching with those of daidzein in Kang et al. (Rapid Commun 
Mass Spectrom. 2007;21(6):857-68), and 2’,6-dihydroxyflavone in MassBank 
(www.massbank.jp).
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CHAPTER 5 

QUANTITATIVE ANALYSIS OF QUATERNARY AMMONIUM 
COMPOUNDS IN COMMON BEAN SEEDS BY HYDROPHILIC 

INTERACTION LIQUID CHROMATOGRAPHY MASS SPECTROMETRY 
 

A part of a paper being prepared by Michael Millican and Gwyn Beattie 

 

Adam T. Klein, Michael Millican, Gwyn A. Beattie, and Young-Jin Lee 

 

Abstract 

 Quaternary ammonium compounds (QACs) are present in plant tissues and 

can be used by pathogens for nutrition and osmoprotection. Much work has been 

done to study the uptake and catabolism of QACs in bacteria, such as pseudomonas 

syringae pv. syringae, as well as qualitative analysis of plant tissues for the presence 

of QACs. Here we developed a method to quantify QACs present in seed exudates of 

common bean (Phaseolus vulgaris L.). The method was targeted toward the 

detection and quantification of carnitine, which has only been detected in a handful 

of plant tissues. Quantitation of major plant QACs choline and phosphorylcholine 

was also performed on the seed exudates. The method has exceptional sensitivity 

for choline and carnitine, as they were able to be quantified down to 0.05 µM and 

0.003 µM, respectively. This is the first report to be able to detect and quantify 

carnitine released during the germination of common bean seeds. 
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Introduction 

Pseudomonas syringae pv. syringae infect common bean (Phaseolus vulgaris 

L.) and are able to benefit from the chemical environment of the plant. Exogenous 

compounds including quaternary ammonium compounds (QACs) can provide 

nutritional benefits as well as serve as an osmoprotectant for the bacteria[154]. 

Although P. syringae are capable of synthesizing osmolytes[155-157], it is much more 

energetically favorable to uptake QACs from host species[158]. Glycine betaine, which 

cannot be synthesized by P. syringae, is an effective osmoprotectant. It and its 

precursors in the betaine catabolic pathway can be readily taken up from the 

environment [159-160]. P. syringae has multiple transporters that can uptake choline 

and its ester phosphorylcholine. Choline and phosphorylcholine are abundant 

metabolites released in germinating seeds of Phaseolus vulgaris and have been 

shown to support P. syringae growth[161-162]. 

Carnitine is another QAC that certain strains of P. syringae are able to uptake 

and catabolize for osmoprotection[160, 162]. Only about half of the P. syringae strains 

are capable of utilizing carnitine; however, it is a significant promoter of bacterial 

growth in these situations[162]. P. syringae pv. syringae is one strain which can utilize 

carnitine, but no reports have been made to confirm the presence of carnitine in 

Phaseolus vulgaris. Carnitine is a common metabolite in animal tissue, but is rarely 

detected in plant tissue[162-163], possibly due to the lack of sensitive quantitative 

methods for the analysis of QACs in plants[164]. Even choline and phosphorylcholine, 
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which are known to be released during seed germination, have not been quantified 

during the germination process.  

High performance liquid chromatography (HPLC) coupled with mass 

spectrometry (MS) has been proven to be a valuable technique for analyzing 

complex biological samples with sensitive detection[165-169]. HPLC simplifies complex 

samples by separating analytes of interest and minimizing endogenous matrix 

effects. Hydrophilic interaction liquid chromatography (HILIC) has grown in 

popularity recently because of its use of MS-compatible solvents and the ability to 

separate very polar molecules[170-173]. MS detection adds another dimension of 

separation, improving specificity for the desired analytes and allowing for high-

throughput analysis. Quadrupole MS detectors are able to scan quickly, allowing 

multiple spectra to be collected during the elution of an analyte. This high sampling 

frequency is important for accurate quantitation of the eluting compounds.  

In this study, we use HILIC MS to analyze QACs released by germinating 

seeds. Our focus is on developing a method sensitive enough to detect and quantify 

carnitine, as well as quantify the major QACs choline and phosphorylcholine 

throughout the seed germination process.  

 

Experimental 

Materials 

Acetonitrile (LCMS Chromasolv), ammonium hydroxide (28%), formic acid 

(~98%), choline chloride (>99%), and L-carnitine hydrochloride (>98%) were 
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purchased from Sigma Aldrich (St. Louis, MO, USA). Phosphorylcholine chloride 

sodium salt hydrate was purchased from Tokyo Chemical Industry Co. Ltd (TCI, 

Philadelphia, PA, USA). Water (Optima, LCMS) was purchased from Fisher Scientific 

(Waltman, MA, USA). 

 

Mobile phase preparation 

A 10 mM ammonium formate solution was prepared by combining 0.61 g of 

ammonium hydroxide and 377 µL of formic acid in 1000 mL of water. Additional 

formic acid was added to adjust the pH to 3.5. 

Mobile phase A was prepared by combining 900 mL of the 10 mM 

ammonium formate solution was combined with 100 mL of acetonitrile. Mobile 

phase B was prepared by combining 100 mL of the 10 mM ammonium formate 

solution with 900 mL acetonitrile. Both mobile phase solutions were sonicated and 

degassed prior to use. 

 

Standard preparation 

Calibration standards were prepared by individually dissolving choline 

chloride, L-carnitine chloride, and phosphorylcholine chloride magnesium salt in 

water at 100 mM. Further dilutions were made using mobile phase B to prepare 

standards from 0.05 – 10 μM for choline, 0.01 – 0.3 μM for carnitine, and 2.5 – 25 μM 

for phosphorylcholine. The standards were prepared as a mixture of the three 
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metabolites, as described in Table 1, in order to minimize the number of standards 

needed to construct calibration curves. 

 

Seed exudate germination 

Bean seeds (Bush Blue Lake 274) were surface-sterilized by submersion in 70% 

ethanol for 1 min, in 10% bleach for 1 min, and in sterile water until the bleach 

smell was no longer detected. Surface-sterilized seeds were then placed in multi-

well tissue culture plates, with one seed and 1 ml of sterile water per well. The 

plates were subjected to a 16-h light/8-h dark photoperiod under plant growth 

lights, and the seeds were allowed to germinate for 0, 1, 2, or 3 days. At various 

stages of seed germination and growth, the liquid around the germinated seed was 

removed and diluted with water to a final volume of 1 ml; this seed solution was 

washed over the germinated seed 3X to maximize recovery of the seed exudate. 

  

LCMS analysis 

Aqueous seed exudate samples were diluted 1:4 with mobile phase B prior to 

LCMS analysis. Samples were analyzed on an LCMS 2020 (Shimadzu, Columbia, MD, 

USA) quadrupole mass spectrometer with a Zorbax HILIC Plus, 2.1x50 mm, 3.5 μm 

column (Agilent, Wilmington, DE, USA). LabSolutions (Shimadzu) software was used 

to define the acquisition parameters. The autosampler was kept at 4°C. Flow rate 

was set at 0.5 mL/min with a gradient elution as follows: 90% mobile phase B at 0 

minutes, ramped to 75% at 1 minute, 20% at 3 minutes, held at 20% until 5 
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minutes, and re-equilibrated at 90% from 5 to 7 minutes. Data were collected using 

positive mode electrospray ionization and two scan events:  the first event collected 

selected ion monitoring (SIM) scans for choline (m/z 104.1), carnitine (162.1), and 

phosphorylcholine (184.1) and the second scan event collected a full MS scan from 

m/z 50-500. The first scan event was used for quantification of the metabolites of 

interest, whereas the second scan event was used for qualitative analysis of any 

possible interfering metabolites.  

Integration was performed on the SIM scan chromatograms and the peak 

area was used for quantification. The signal-to-noise ratio (s/n) was also measured 

for each sample to establish a limit of quantitation (LOQ). 

 

Results and Discussion 

Standard analysis 

HPLC separation was performed using a gradient and a hydrophilic 

interaction liquid chromatography (HILIC) column. The metabolites of interest are 

all small polar molecules, and are difficult to retain on a traditional reverse phase 

C18 column. Using a HILIC column, with a gradient that starts with a high 

percentage of organic solvent (90% acetonitrile) and finishes at 20% acetonitrile 

allows for separation of choline, carnitine, and phosphorylcholine. Figure 1 shows a 

chromatogram for Standard 4 (5 μM choline, 0.1 μM carnitine, and 15 μM 

phosphorylcholine). Choline, carnitine and phosphorylcholine have retention times 

of 1.5, 2.2, and 2.7 minutes, respectively. The three analytes of interest are baseline 
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resolved and have full width half maximum (FWHM) values of 0.09, 0.12, and 0.19, 

respectively. The broad peak for phosphorylcholine led to challenges in 

quantification at very low levels. Since phosphorylcholine is a major QAC released 

during germination and of secondary interest in this study, however, no further 

optimization was performed.  

Calibration standards were analyzed prior to and after each set of seed 

exudate samples. Bracket standards used for normalization were also analyzed 

every ten samples. Although the samples were kept at 4°C during analysis, 

degradation did appear to occur when comparing the pre-run and post-run 

standards (data not shown). The degradation was most prevalent for 

phosphorylcholine, but choline and carnitine were also seen to degrade over long 

sample runs. As a result, only the initial standards were used for the calibration 

curves. Figure 2 shows the calibration curves for choline, carnitine, and 

phosphorylcholine. Choline has the largest dynamic range, with a linear range from 

0.05 µM to 10 µM. The linear range for carnitine and phosphorylcholine only 

covered 1 order of magnitude; however, the range covered was suitable for analysis 

of seed exudates. The slope, y-intercept, and R2 values for the calibration curves are 

listed in Table 2. R2 values obtained for choline, carnitine, and phosphorylcholine 

were 0.97, 0.99, and 0.93, respectively. 
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Seed exudate samples 

Exudates from Phaseolus vulgaris seeds were analyzed to determine the 

abundance of choline, carnitine, and phosphorylcholine released during 

germination. The germination stages span the stages of growth from initial seed 

imbibition to the formation of lateral roots. Four germination stages were defined 

based on visual inspection: an imbibed seed with no visible radicle (stage 1), a 

visible radicle but no visible greening (stage 2), visible greening without visible 

lateral roots (stage 3), and the presence of visible lateral roots (stage 4).  

Figure 3 shows the SIM scans for choline, carnitine, and phosphorylcholine. 

Retention times match those of the standards. An additional peak was seen in the 

SIM scan for carnitine (m/z 162.1), but the additional peak elutes at 1.4 min and 

does not interfere with the elution of the carnitine peak at 2.2 minutes (Figure 3B). 

Qualitative analysis was performed with the full MS scan of m/z 50-500 to confirm 

no other significant metabolites or sample matrix compounds were co-eluting with 

the analytes of interest. Seed exudate chromatograms from all germination stages 

were investigated since metabolites will change during the germination of the seed. 

Average mass spectra that correlate with the retention times for choline (1.4-1.6 

min), carnitine (2.1-2.3 min), and phosphorylcholine (2.6-2.8 min) from a seed 

exudate at germination stage 3 are shown in Figure 4. Choline is the major 

compound that elutes at 1.5 min (Figure 4A). The spectrum for the carnitine elution 

window has a base peak with m/z of 175.1, which most likely arises from the amino 

acid arginine. The peak at m/z 59.0 is also relatively abundant and is thought to 
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come from the aqueous mobile phase solvent, as it increases in abundance with the 

increase in percent aqueous phase. It is the base peak for the spectra correlating 

with the elution of phosphorylcholine. Besides the peak at m/z 59.0 from the mobile 

phase, no other significant peaks are seen to co-elute with phosphorylcholine. 

 

Quantification of seed exudates 

Bracket standards were used to correct for possible degradation during 

sample analysis. Standard 4 was analyzed every ten samples to provide bracket 

standards. This was performed using the following equation: 

𝑃𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗
𝐶𝑎𝑙𝑆𝑡𝑑

1
2⁄ (𝐵𝑆1 + 𝐵𝑆2)

 

where PAmeasured is the measured peak area in the sample, CalStd is the peak area of 

the pre-run calibration Standard 4, and BS1 and BS2 are the bracket standards 

immediately before and after the sample. This corrects for the degradation of 

metabolites over time, as it normalizes the measured peak area to the initial 

standards analyzed at the beginning of the sequence. The concentration of the seed 

exudate samples was then calculated using the normalized area values and the 

calibration curves generated from all standard analyses. The dilution factor during 

sample preparation was also taken into account for the final concentration 

calculation. The limit of quantitation (LOQ) was determined using the peak area and 

s/n ratio of the seed exudate samples. The sample that had the largest integrated 

area with a s/n <10 was used to calculate the LOQ, which was calculated using the 

raw peak area and calibration curves. For carnitine and phosphorylcholine, the LOQ 
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was calculated to be 0.003 µM and 3.66 µM respectively. Choline, on the other hand, 

was not detected with a s/n <10, so the lowest standard concentration analyzed was 

used for the LOQ, which was 0.05 µM. It should be noted that the LOQ is reported 

later on at four times higher than mentioned here due to the dilution factor of the 

samples during analysis. 

Figure 5 shows the individual and average QAC concentrations for each seed 

germination stage. As seen in Figure 5A, carnitine concentration is highest at the 

onset of germination and decreases as germination progresses. The same trend can 

be seen for choline (Figure 5B). It should be noted that even though choline and 

carnitine have similar trends throughout seed germination, the choline 

concentration is over 100 times greater than that of carnitine. The choline 

concentration was 24.3 μM at stage 1 of germination, where the carnitine value was 

only 0.14 μM. The phosphorylcholine abundance remained relatively constant 

throughout seed germination and was the most abundant of the three metabolites of 

interest, having a concentration between 25 and 40 μM during germination. The 

high levels of choline and phosphorylcholine can be explained by the fact they are 

used in the synthesis of phosphatidylcholines, which are major components of cell 

membranes, and as such are expected to be highly abundant in all tissues[174]. 

Carnitine on the other hand, is a transporter of fatty acids across cell membranes 

during fatty acid metabolism[175]. 
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Conclusions 

 We were able to develop a quantitative method for the analysis of 

hydrophilic metabolites important to the nutrition and survival of Pseudomonas 

syringae pv. syringae. The method provides good chromatographic separation of 

choline, carnitine, and phosphorylcholine, and offers a working concentration range 

suitable for seed exudate samples. The method is sensitive to small quantities of 

choline and carnitine, with LOQs of 0.05 and 0.003 µM, respectively. 
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Table 1. Concentration of metabolites in calibration standards. 
Calibration 

standard 
Choline 

concentration (μM) 
Carnitine 

concentration (μM) 
Phosphorylcholine 
concentration (μM) 

Standard 0 0 0 0 
Standard 1 0.05 0.01 2.5 
Standard 2 0.1 0.03 5 
Standard 3 1 0.07 10 
Standard 4 5 0.1 15 
Standard 5 10 0.3 25 

 

 

Table 2. Calibration curve slope, y-intercept, and R2 values. 

QAC Slope Y-intercept R2 

Choline 357112 116831 0.97 
Carnitine 1427184 24497 0.99 

Phosphorylcholine 23414 -56175 0.93 
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Figure 1. SIM scan LCMS chromatogram. Overlay of the SIM scans of choline, m/z 
104.1 (black); carnitine, m/z 162.1 (pink); and phosphorylcholine, m/z 184.1 (blue) 
from a standard run. 
 
 

 
Figure 2A. Choline calibration curve. Calibration curve for choline using 
standards ranging in concentration from 0.05 μM to 10 μM.
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Figure 2B. Carnitine calibration curve. Calibration curve for carnitine using 
standards ranging in concentration from 0.01 μM to 0.3 μM. 
 
 

 
Figure 2C. Phosphorylcholine calibration curve. Calibration curve for 
phosphorylcholine using standards ranging in concentration from 2.5 μM to 25 μM.
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Figure 3. SIM scan of a seed exudate sample. Chromatograms of m/z values of (A) 104.1 (choline), (B) 162.1 (carnitine), 
and (C) 184.1 phosphorylcholine. 
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Figure 4. Seed exudate mass spectra. Average spectra at the elution times 
corresponding with the elution times of (A) choline, (B) carnitine, and (C) 
phosphorylcholine.  
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Figure 5A. Abundance of carnitine in seed exudates. Individual data points are shown in green, the average value is in 
black, and the LOQ is shown as a red line.
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Figure 5B. Abundance of choline in seed exudates. Individual data points are shown in green, the average value is in 
black, and the LOQ is shown as a red line.
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Figure 5C. Abundance of phosphorylcholine in seed exudates. Individual data points are shown in green, the average 
value is in black, and the LOQ is shown as a red line. 
 

0

40

80

120

160

1 1 2 2 3 3 4 4 5

C
o

n
c

e
n

tr
a

ti
o

n
 (
μ

M
)

Germination Stage

1 2 3 4

PC

1
1
6
 



117 

CHAPTER 6 

SUMMARY AND OUTLOOK 

 

Summary 

 The work outlined in this dissertation has sought to expand applications and 

methodologies for mass spectrometry of biological samples. New methodologies were 

used to determine when structural distortion is occurring due to cross-linking, as well 

as increasing the detection efficiency in chemical cross-linking MS. MALDI-MSI was 

applied to sections of maize leaves to better understand the distribution of 

photosynthetic related metabolites across a leaf tissue and between genotypes. 

Soybean-aphid interactions were also investigated with MALDI-MSI by applying 

imprinting, which is used primarily with DESI-MSI. Finally a quantitative method was 

developed using HILIC-MS to quantify QACs released during seed germination, with the 

ability to detect low abundance metabolites. 

 

Outlook 

 

Biological mass spectrometry is a broad field and has a wide variety of 

applications. Advancements have been made to instrumentation, sample preparation, 

sample analysis techniques, and software, and improvements continue to be made. 

More sensitive mass spectrometers, 3-dimensional imaging software, and new matrices 

and cross-linkers are some examples of the advancement of biological mass 

spectrometry. 
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The work presented in this dissertation, although only focused on a small slice of 

biological mass spectrometry can be beneficial to future experiments. The work in 

Chapter 2 can be combined with the other techniques, like enrichment strategies, to 

greatly improve detection efficiency. Applying the strategy mentioned in Chapter 2, 

where HDX is applied to CXMS experiments, to other proteins can confirm the cross-

linking reaction is not distorting the protein conformation.  

Understanding metabolite distributions in plants can help bridge the gap 

between metabolomics and genomics to provide a better overall picture of their 

biological systems. The MALDI-MSI work in Chapter 3 on maize leaves provides insights 

into different metabolite distributions between genotypes. This work can be expanded 

to other genotypes of maize leaves to better understand the differences in metabolite 

distribution. One genotype of interest is the intercross recombinant inbred Mo17xB73, 

which has been shown to produce larger ears of corn with bigger kernels than the 

inbred types. The application of MS/MS imaging of phospholipids also proves to be 

beneficial, especially if the differences in fatty acid saturation play a role in the 

construction of the C4 photosynthetic pathway. 

 The expansion of the plant-pest interaction studies from Chapter 4 is ongoing 

and has many potential applications. Studies to understand the metabolic distribution 

in secondary leaves of an infested plant will help identify the global changes in soybean 

plants during infestation. Work is also being performed to determine how defense 

compounds get distributed throughout the plant, and the affects increased levels of 

isoflavones have on infestation. This work can also be applied to other biological tissues 

that are prone to plant infestation. 
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Investigating additional QACs, as discussed in Chapter 5, can provide even more 

insight into how bacteria benefit from host plants. Using the developed method can help 

detect low abundance metabolites that can’t be detected using other methods. As 

carnitine has only been reported in a few plant tissues, this quantitative method could 

be applied to other tissue types to possibly detect carnitine in the tissue. 

The objective of this work was to advance methodology and applications for 

biological mass spectrometry. This work is a small part of biological mass spectrometry, 

however, these applications can be expanded to further the work mentioned here, or 

used to explore other biological systems. 
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