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ABSTRACT 
 

 The main goal of the presented research is development of nanoparticle based 

matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This 

dissertation includes the application of previously developed data acquisition methods, 

development of novel sample preparation methods, application and comparison of novel 

nanoparticle matrices, and comparison of two nanoparticle matrix application methods 

for MALDI-MS and MALDI-MS imaging. Chapter 1 presents background information 

about MALDI-MS and a general workflow for MALDI-MS imaging experiments. Chapter 

6 provides a summary of the presented work and possible future directions. 

Chapter 2 describes a “multiplex” MALDI-MS imaging technique applied to study 

latent human fingerprints. In this study, we applied previously developed multiplex data 

acquisition techniques for the detection of endogenous and exogenous compounds with 

structural information in a single MALDI-MS imaging experiment. This study also depicts 

the importance of the sublimation matrix application method for analysis of very delicate 

samples such as latent fingerprints.    

Chapter 3 presents the development of novel sample preparation methods for 

nanoparticle-assisted laser desorption/ionization-mass spectrometry -mass 

spectrometry (NALDI-MS) imaging of metabolites in plant tissues. In this chapter, we 

developed a novel fracturing method for MALDI-MS/ NALDI-MS imaging of rice leaf to 

study a plant-pathogen interactions. We successfully detected and imaged diterpenoids 

produced against the Xanthomonas oryzae pv. oryzae infection in rice leaves. 

Chapter 4 is focused on novel nanoparticle (NP) matrix development for NALDI-

MS of low-molecular weight plant metabolites. This large-scale NP screening was 
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inspired by the success of the metabolite detection/imaging in Chapter 3. In this work, 

we studied three different classes of NPs for desorption/ionization of a wide variety of 

plant metabolites and sought to shed some light on the NALDI mechanism. 

Chapter 5 is a further extension of the study in Chapter 4, in which we compare 

two NP application methods for efficiency of desorption/ionization of plant metabolites 

and homogeneity of application. We compare application of a nanoparticle suspension 

by oscillating capillary nebulizer and solvent-free sputter coating of metal NPs. The work 

presented in Chapters 4 and 5 will be helpful for development of novel matrices for 

analysis and imaging of low-molecular weight metabolites that are difficult to ionize 

using traditional MALDI-MS matrices. 
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CHAPTER 1 

MALDI-MS INTRODUCTION  

 

Background 

  Mass spectrometric imaging is becoming an important technique for detection of 

chemical species with spatial resolution in biological samples. Matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) enables sensitive detection and 

identification of a variety of chemical species from biological samples. MALDI-MS as a 

mass spectrometric imaging (MALDI-MSI) tool combines these capabilities with 

spatially-resolved sampling. MALDI-MSI allows for the two-dimensional visualization of 

the spatial distribution of biomolecules without extraction, purification, separation, or 

labeling of analytes. MALDI-MSI is a unique imaging technique for non-target-specific 

discoveries, since analyte molecules are ablated, ionized, and detected directly from the 

tissue without labeling of any specific targets.  MALDI-MSI has been employed to 

visualize distributions of numerous biomolecules including proteins, peptides, 

metabolites, amino acids, lipids, carbohydrates, and nucleotides in a variety of biological 

systems, various tissue types, and in diverse fields such as medicine, agriculture, 

biology, pharmacology, pathology and forensic science.[1-5] 

This thesis describes efforts to develop new MALDI-MSI techniques for the 

analysis of several different sample types. First, we have demonstrated that MALDI-MSI 

can be utilized as a tool for detection and imaging of various endogenous and 

exogenous compounds in human latent fingerprints. For this study we have utilized a 

previously-developed in-parallel data acquisition methodology (“multiplex MS 
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imaging”)[6] that allows for the collection of high-mass resolution MS and structurally 

informative MS/MS data in a single experiment. This work exhibits the usefulness of 

multiplex MS imaging to explore chemical markers in limited sample specimens such as 

latent fingerprints.[7] 

In plants, metabolism can be significantly different even between adjacent cells 

and tissues; therefore, high-resolution MSI methodologies are of great interest.[8] In a 

typical MALDI-MSI experiment, a cryosectioned tissue is mounted on a MALDI target 

plate, matrix is applied, and the sample is subjected to analysis. In the case of some 

specific tissues like leaves, cryosectioning is very difficult. Therefore, we have adopted 

an imprinting method and developed a novel fracturing method for sample preparation 

and applied them, for the first time, to visualize internal metabolites of leaves by MALDI-

MSI.[6] This study provided localized molecular information for the chemical processes 

occurring during plant-pest interactions. For detection and imaging of internal 

metabolites, we employed nanoparticle-assisted laser desorption/ionization-mass 

spectrometry imaging (NALDI-MSI). In this experiment, we detected low-molecular 

weight phytochemical metabolites produced by rice plants as a defense against 

Xanthomonas oryzae pv. oryzae bacterial infection and could visualize their spatial 

distribution in the tissue. We were also able to detect other common plant metabolites 

present in the leaves. [9-11]  

MALDI-MS or -MSI experiments typically use a low-molecular weight organic 

compound as a matrix. These matrices give strong background signals in the low mass 

region (m/z < ~500) and can interfere with the analysis of small metabolite compounds. 

Additionally, low-molecular weight plant metabolites tend to show a variety of 
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functionalities, and optimal ionization of all potential metabolites of interest by a single 

matrix is difficult. For these reasons, there is great motivation to develop new MALDI-

MS matrices for low-molecular weight compound analysis. One promising avenue of 

research is the use of inorganic nanoparticles as MALDI matrices[12] 

For the development of new matrices and to better understand the NALDI 

mechanism for ionization of low-molecular weight plant metabolites, we have 

investigated three different classes of nanoparticles (NPs): carbon-based, metal, and 

metal oxide. In NALDI-MS, the energy transfer from NPs to analytes has been 

suggested to occur via a thermally-driven process.[13-15] In addition to internal energy 

transfer from NPs to analyte, alternative mechanisms such as phase transition/ 

destruction desorption and significant effects of surface properties on the mechanism 

have also been proposed for NALDI processes.[16] The NALDI processes are still not 

completely understood and in this study we attempted to shed some light on the NALDI 

mechanism.   

Due to the complexity of the process and the wide variety of analytes of interest, 

an empirical study of several NP matrix candidates was needed. In this study, we have 

screened different NPs for the ability to ionize several different classes of low-molecular 

weight plant metabolites. This metabolite screening, combined with the physicochemical 

properties of NP materials and theoretical calculations based on these properties, 

helped us to understand the NALDI-MS ionization mechanism and select appropriate 

nanoparticle matrices to ionize specific classes of metabolites.  
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MALDI-MSI: General Workflow 

The workflow of a typical MALDI-MSI experiment in this dissertation is illustrated 

in Figure 1, and a brief description of the procedures employed herein is provided 

below.[5] Any MALDI-MSI experiment starts with a biological question to be addressed. 

This leads to the type of biological system to be studied and type of samples. The 

sample types determine sample preparation and analytes of interest determine choice 

of matrices.  

For imaging of human latent fingerprints (LFP), sample preparation consisted of 

collection of the LFP on glass slides. For the rice-bacteria interaction, we adopted an 

imprinting sample preparation method and developed a novel fracturing sample 

preparation method. For fracturing, a section of the harvested rice leaf was stuck to 

transparent packing tape. The tape with the leaf section was subjected to vacuum 

drying and was folded over to enclose the section of leaf between the two adhesive 

sides of the tape. The tape and leaf sandwich was then passed through a rolling mill to 

fracture the leaf section. Finally, the two ends of the packing tape were pulled open, 

leaving one surface on each side of the folded tape and exposing the interior tissue. 

For LFP imaging, a traditional organic matrix was applied by sublimation; the 

matrix is heated under vacuum and allowed to deposit onto the sample.  For NP 

matrices for screening and imaging, application can be accomplished by spraying. The 

NP suspension was sprayed onto samples using a homemade oscillating capillary 

nebulizer (OCN).  For the screening comparison between sprayed and physical vapor 

deposited metal NPs, two methods were employed: (1) metal NP suspensions were 
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mixed with standard metabolite solutions and sprayed a homemade OCN and (2) 

metals were sputter coated on standards sprayed by OCN on a glass slide.  

After matrix application, the sample was inserted into a linear ion trap-orbitrap 

mass spectrometer with a MALDI ion source. A series of points over the sample surface 

were irradiated in a raster fashion by a focused laser beam and at each of these points 

a mass spectrum was recorded and stored. After scanning a specific area, an image for 

a specific m/z could be constructed from the signal intensity for an ion of interest at 

each x-y position.  

 

Dissertation Organization 

There are a total of six chapters in this dissertation. Chapter 1, above, provides 

an overview of MSI and our studies to develop and apply novel data acquisition 

methods and sample preparation techniques, and apply previously unused NALDI-MS 

matrices for the analysis of plant metabolites.  Chapters 2 and 3 are reproductions of 

papers published in peer-reviewed journals. Chapter 2 presents an application of a 

“multiplex MALDI-MSI” method to image and detect endogenous and exogenous low-

molecular weight compounds in latent human figure prints while providing structural 

information. Chapter 3 demonstrates novel sample preparation methods and presents 

an application of these methods for better understanding plant-pathogen interactions. 

Chapter 4 is a manuscript under preparation, describing the development of novel 

nanoparticle matrices and an investigation of the NALDI-MS mechanism. Chapter 5 is 

an extension of our nanoparticle matrix development study. In Chapter 5, we have 

compared metal nanoparticles applied by suspension spray and solvent free sputter 
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coating for ionization of various classes of plant metabolites. Finally, Chapter 6 

summarizes all work presented in this dissertation and outlines future directions for 

developments and applications of the described matrices and methodologies. 
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Figure 1: Flow chart of a MALDI-MSI experiment.[5]  
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CHAPTER 2 

MULTIPLEX MASS SPECTROMETRY IMAGING FOR LATENT 
FINGERPRINTS 

 
A paper published in Journal of Mass Spectrometry 

J. Mass Spectrom., 2013, 48, 100-104. 
Reproduced by permission of John Wiley & Sons, Ltd. 

Gargey B. Yagnik, Andrew R. Korte and Young Jin Lee 

 

Abstract 

 We have previously developed in-parallel data acquisition of orbitrap mass 

spectrometry (MS) and ion trap MS and/or MS/MS scans for matrix-assisted laser 

desorption/ionization MS imaging (MSI) to obtain rich chemical information in less data 

acquisition time. In the present study, we demonstrate a novel application of this 

multiplex MSI methodology for latent fingerprints. In a single imaging experiment, we 

could obtain chemical images of various endogenous and exogenous compounds, 

along with simultaneous MS/MS images of a few selected compounds. This work 

confirms the usefulness of multiplex MSI to explore chemical markers when the sample 

specimen is very limited. 

 

Introduction 

Latent fingerprints (LFP) are deposits of sweat components in ridge and groove 

patterns, left after contact of human fingers with a surface.[17, 18] LFP are commonly 

used for personal identification purposes in forensic studies[19, 20] and access control.[21] 

LFP analysis has also been employed for medical diagnosis and drug metabolite 
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detection.[22, 23] Various techniques have been used for analyzing LFP including dusting 

with powders, spraying with reagent solutions for visual observation and spectroscopic 

techniques such as ultraviolet/visible,[24] fluorescence,[18] infrared [25] and Raman.[26] 

Mass spectrometry (MS) has been employed for analysis of sweat components from 

LFP.[27, 28] Compared to other LFP analysis techniques, MS methods offer the major 

advantage of chemically specific detection and identification of various endogenous 

compounds such as lipids and exogenous components from soaps, disinfectants, 

cosmetics, perfumes, drugs metabolites, and food residues in a single analysis. [20] The 

presence and absence of these compounds can be useful for forensic identification 

purposes[19, 20]and medical diagnostic and drug metabolite studies.[22, 23]  

In recent years, MS imaging (MSI) has been used as a LFP imaging 

technique,[17, 24, 29-31] for forensic investigations, LFP left on different surfaces like walls, 

doors, windows, and objects can be lifted using CSI tape and transferred on microscope 

slides for MSI.[24] Successful identification of gender-specific biomarkers in volatile 

compounds of human sweat[32] and peptides and proteins on LFP[33] suggest the 

plausibility of MSI for forensic application. MSI has the additional advantage of providing 

chemical information about the sample with spatial resolution. Various ionization 

techniques such as matrix-assisted laser desorption/ionization MS (MALDI),[17, 24, 29] 

desorption electrospray ionization,[30] surface-assisted laser desorption ionization,[23] 

and secondary ion MS[31] have been applied for chemical imaging of LFP.  

We have recently developed a multiplex MSI methodology utilizing a linear ion 

trap-orbitrap hybrid mass spectrometer.[34] In this approach, each MALDI raster step is 

composed of multiple smaller steps. While the ions produced from the first step are 
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being analyzed by the high mass resolution orbitrap mass analyzer, spectra from 

subsequent steps are acquired by the linear ion trap in either MS or MS/MS mode. 

Multiple ion trap MS scans in parallel to orbitrap MS scans allows ‘high spatial 

resolution’ MS images (in the linear ion trap) and ‘high mass resolution’ MS images (in 

the orbitrap), with significant time savings compared to using entirely orbitrap scans. 

When MS/MS scans are obtained in parallel to orbitrap scans instead of ion trap MS, 

structural isomers can be distinguished, and their distributions can be separately 

visualized, along with their high mass resolution chemical images.[34] More importantly, 

all these data can be acquired in a single imaging measurement, making the technique 

very useful when sample is limited.  

Here, we present a novel application of multiplex MSI to LFP. Oftentimes, LFP 

left over in criminal scene are very limited. Therefore, it is desirable to obtain as much 

chemical information as possible from a single LFP. In this proof of concept experiment, 

we could successfully obtain chemical images of various endogenous and exogenous 

compounds along with structural information through MS/MSI. 

 

Experimental 

Materials and Sample Preparation  

Verapamil hydrochloride (98 %) was purchased from Sigma-Aldrich (St. Louis, 

MO), and 2, 5-dihydroxybenzoic acid (DHB, 99 %) was purchased from Thermo Fisher 

Scientific (Waltham, MA, USA). The LFP was prepared by rubbing the thumb against 

the forehead and then in verapamil powder prior to deposition on glass microscope 

slides.[29] DHB matrix was applied by sublimation as described previously.[35]  
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MSI Data Acquisition 

A linear ion trap-orbitrap mass spectrometer with MALDI ion source (MALDI 

LTQ-Orbitrap Discovery; Thermo Scientific, San Jose, CA, USA) was used for the 

current study. The instrument is modified to use an external frequency tripled, diode 

pumped Nd:YAG laser operating at 355 nm (UVFQ; Elforlight Ltd., Daventry, UK). A 

laser energy of about 2 mJ/pulse and 60 Hz repetition rate were used. The laser spot 

size was estimated to be 40 µm as determined from laser burn marks on a thin film of a-

cyanohydroxycinnamic acid.  

For multiplex MSI, four spiral steps were defined for each raster step with 

TunePlus software (Thermo), and an MS scan event corresponding to each spiral step 

was set up with Xcalibur (Thermo). One orbitrap MS and three ion trap MS/MS scans 

were used in the current study (Fig. 1). The raster step size and spiral step size were 

100 µm and 50 µm, respectively. Each spectrum was collected with five laser shots per 

scan and one scan per spiral step. The orbitrap scans were acquired over an m/z range 

of 200 to 1200. MS/MS scans were acquired with normalized collision energies of 50, 

35 and 45 for verapamil, triacylglycerol (TAG) at m/z 785.66 and at 827.71, respectively, 

with 1.8 Da isolation width. 

 

Data Analysis 

Image Quest software (Thermo) was used to produce chemical images of LFP 

marks. A mass tolerance of 0.01 Da was used for generating orbitrap MS images, and 

0.3 Da was used for MS/MS images. Orbitrap MS images were normalized against total 
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ion count, and for all the images, maximum scale is arbitrarily adjusted to produce best 

images. Qual Browser (Thermo) was used to generate averaged mass spectra. Internal 

calibration was made using a matrix ion at m/z 313.032. 

 

Safety Considerations for Verapamil HCl  

Verapamil is an L-type calcium channel blocker of phenylalkylamine class active 

pharmaceutical ingredient. Verapamil is purchased and used as verapamil HCl salt in 

fine powder form. Therefore, it should be handled in a chemical fume hood to avoid 

inhalation, and fingers should be washed thoroughly with soap water after contacting 

the verapamil HCl powder.[29] 

 

Results and Discussion 

Figure 1 illustrates how multiplex MSI works. In this experiment, we adapted a 

simple raster pattern with four spiral steps for each raster step. First, a set of ions 

produced from the first spiral step is introduced to the orbitrap high-resolution mass 

analyzer located after the linear ion trap. During the orbitrap imaging current 

measurement, the MALDI plate is moved to the next spiral step, and a set of ions from 

the second spiral step are introduced to the linear ion trap for MS/MS. Two more 

MS/MS scans are obtained from the third and fourth spiral steps to complete a raster 

step. The MALDI plate is then moved to the next raster step to start a new set of spiral 

steps. This pattern of four scan events is continuously followed over the entire imaging 

area with 50 mm spiral steps size and 100 mm raster steps. We have chosen m/z 
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455.29 [verapamil+H]+ , 785.66 [TAG(45:1)+Na]+ and 827.71 [TAG (48:1)+Na]+ for 

MS/MS.  

Typical small molecule analysis is performed with chromatographic separations, 

such as GC- or LC-MS, for authentic identification of unknown compounds. However, 

traditional chromatographic separation cannot be used for MSI, making the identification 

of unknown compounds very difficult. Accordingly, alternative information is essential in 

MSI to assist identification of unknown compounds. For this purpose, accurate mass 

information obtained through high-resolution mass spectrometric measurement is very 

useful. Commonly adapted high-resolution mass analyzers for MALDI-MS 

measurements include (reflectron geometry) time-of-flight (TOF), Fourier transform ion 

cyclotron resonance (FTICR) and orbitrap. Among those, orbitrap presents a 

compromise between scan speed and resolving power; it is faster than FTICR but 

slower than TOF and has higher mass resolving power than TOF but lower than FTICR.  

Figure 2 shows the orbitrap mass spectrum averaged over the entire LFP. Most 

of the major signals could be assigned molecular formulas based on accurate mass 

information. The chemical images of a few selected compounds are also shown in Fig. 

2. Several lipid compounds known to be present in fingerprint residue could be 

successfully detected and imaged, including cholesterol (as a water loss at m/z 

369.352; 0.17 ppm), oleic acid (m/z 283.263; 0.70 ppm) and various TAGs (e.g. 

[TAG(45:1)+Na]+ at m/z 785.666 (3.9 ppm) and [TAG(48:1)+Na]+ at m/z 827.713 (3.7 

ppm)). The first inset mass spectrum of Fig. 2 shows a zoomed in view of the m/z 500–

900 range. Most of the peaks from m/z 750 to 900 correspond to various sodiated TAG 

species, and the peaks from m/z 500 to 750 are mostly in-source fragments of TAGs to 
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diacylglycerols (DAGs).[36] LFP are rich in lipids such as TAGs due to the high density of 

eccrine sweat glands on the hands.[20] Because of their high abundance, clear 

fragmentation patterns and variety of structural isomers, we have chosen TAGs as the 

target for the subsequent MS/MSI (Fig. 3, see below).  

We could also detect some exogenous compounds such as benzyl dimethyl 

dodecyl ammonium (BDDA) at m/z 304.300 (0.5 ppm), dimethyl dioctadecyl ammonium 

(DDA) at m/z 550.626 (1.7 ppm) and verapamil at m/z 455.291 (1.1 ppm). Both BDDA 

and DDA have previously been detected in LFP.[24] Verapamil was intentionally applied 

to the finger before deposition as an example of a potential exogenous chemical marker 

for suspect identification or discrimination. DDA is an ingredient in common household 

disinfectants while BDDA is used as an antistatic agent in products like fabric softener, 

cosmetics and conditioners. The latter two compounds were unintentionally left over on 

the fingerprints, suggesting sensitive detection of exogenous compounds is possible by 

MSI.  

The second zoomed-in inset mass spectrum at m/z ~ 550.5 demonstrates the 

power of high-resolution mass spectrometers in distinguishing isobaric ions. Within a 

0.5 Da mass window of m/z 550.629 (DDA), there are three other mass peaks m/z 

550.424, m/z 550.492 (13C isotope of DAG(32:1)) and m/z 551.016 (DHB3Na4). 

Hence, it might not have been possible to distinguish the four peaks with a low-

resolution mass spectrometer, but now they can be clearly distinguished and separately 

imaged in high-resolution orbitrap. 

Figure 3 shows MS/MS spectra of m/z 455.29 [verapamil+H]+ , 785.66 

[TAG(45:1)+Na]+ and 827.71 [TAG(45:1)+Na]+ acquired by multiplex MSI, along with the 
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ion images of a few selected products. MS/MS spectra verified their structures, and the 

images of each product confirmed they have the same spatial distribution. If there are 

two or more LFP overlapping each other with a few chemical compounds present as 

structural isomers, the product ion image might be used to distinguish which chemical 

has come from which LFP. The MS/MS spectrum of verapamil is consistent with the 

known characteristic fragment ions at m/z 150, 165, 260 and 303.[37, 38] The loss of free 

fatty acid (–RCOOH) is commonly observed in MS/MS of TAGs[39] (Fig. 3B and 3C). 

MS/MS spectra of m/z 785.66 (TAG(48:1)+Na) and 827.71 (TAG(45:1)+Na) show peaks 

corresponding to the loss of at least four different free fatty acids each, indicating these 

signals arise from mixtures of two or more isomeric TAG species. TAG(45:1) and 

TAG(48:1) have 19 and 32 known isomers, respectively, according to Lipid Maps (www. 

lipidmaps.org). The presence of a particular fatty acid constituent in a TAG can be 

determined by MS/MS, while MS3 performed in our multiplex imaging set up for 

selected DAG fragments would allow for further investigation of structural details.  

One intriguing feature in Fig. 2 is that LFP images for TAGs are slightly different 

from other lipids and exogenous compounds. In addition to the expected fingerprint 

ridge pattern, TAG images show scattered clusters of higher intensity that do not match 

the pattern. A similar pattern is observed for their product ion images as shown in Fig. 3. 

This distribution exactly matches that of a DHB-sodium cluster, [3DHB-3H+4Na]+ , at 

m/z 551.016. Based on this, we suspect these anomalies in ion intensities may result 

from local accumulation of sodium from sweat on the finger. Namely, intensities of 

sodiated species are dramatically increased where sodium is present in high 
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concentration. Variations in MALDI lipid intensity due to salt concentration differences 

have been previously observed in a rat brain imaging experiment.[40] 

 

Conclusion 

We successfully demonstrated that high-resolution MS combined with tandem 

MS can provide useful information in chemical imaging of LFP. Specifically, the 

multiplex MSI allowed the acquisition of both accurate mass and tandem MS-based 

structural information in a single experiment. This technique would be very valuable 

when the available sample is very limited, as is often the case with LFP. We could 

detect and image the chemical distributions of both endogenous (fatty acids, cholesterol 

and TAGs) and exogenous compounds (BDDA, DDA and verapamil). In the current 

proof of concept experiment, we have chosen only three compounds for MS/MS, but 

one can adapt, for example, nine spiral steps to acquire MS/MS images of five 

additional compounds. One can also incorporate data-dependent scans to obtain 

hundreds of MS/MS spectra on various positions, which can be very helpful for forensic 

identifications. The ability of this method to distinguish isobaric ions with high-resolution 

MS and structural isomers with tandem MS, while facilitating identification of unknown 

compounds adds great potential for chemical marker identification in forensic and 

medical science. 

 

 

 

 



17 

 

 

Acknowledgements 

This work was supported by the U.S. Department of Energy (DOE), Office of Basic 

Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. The 

Ames Laboratory is operated by Iowa State University under DOE Contract DE-AC02-

07CH11358.  



 

 

 

 

Figure 1: Illustration of spiral and raster step movement in multiplex MSI
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Figure 2: The orbitrap mass spectrum averaged over the entire LFP and MS images of 
a few selected compounds.  All the assigned compounds are detected as the 
protonated form, [M+H]+, except cholesterol as a protonated water loss, [M-H2O+H]+, 
and sodium adducts in case of TAGs and DHB cluster ions.  MS images are normalized 
to the total ion count.  
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Figure 3: Ion trap MS/MS spectra of m/z 455.29 (A, verapamil), 785.66 (B, 
[TAG(45:1)+Na]+  and 827.71 (C, [TAG(45:1)+Na]+).  MS/MS ion images of selected 
products are also shown.  
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CHAPTER 3 

INVESTIGATION OF THE CHEMICAL INTERFACE IN THE SOYBEAN-
APHID AND RICE-BACTERIA INTERACTIONS USING MALDI-MASS 

SPECTROMETRY IMAGING 
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Abstract 

 

Mass spectrometry imaging (MSI) is an emerging technology for high-resolution 

plant biology. It has been utilized to study plant-pest interactions but is limited to the 

surface interfaces.  Here we expand the technology to explore the chemical interactions 

occurring inside the plant tissues.  Two sample preparation methods, imprinting and 

fracturing, were developed and applied, for the first time, to visualize internal 

metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI.  This 

is also the first time nanoparticle-based ionization was implemented to ionize 

diterpenoid phytochemicals that were difficult to analyze with traditional organic 
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matrices.  The interactions between rice-bacterium and soybean-aphid were 

investigated as two model systems to demonstrate the capability of high-resolution MSI 

based on MALDI.  Localized molecular information of various plant- or pest-derived 

chemicals provided valuable insight for the molecular processes occurring during the 

plant-pest interactions.  Specifically, salicylic acid and isoflavone based resistance was 

visualized in the soybean-aphid system, and antibiotic diterpenoids in rice-bacterium 

interactions. 

 

Introduction 

In nature, plants encounter diverse pests including pathogens and insects; thus 

the plant-pest interface is a battlefield of continuous chemical attacks and defenses.  

Plants possess an innate immune system that detects conserved pathogen-derived 

molecules and trigger an array of defense responses.  Conversely, these pests deploy 

effector molecules to suppress innate defenses and to manipulate the host metabolism 

for nutritional benefit.[41-44]  Most current work on the chemical interactions between 

plants and pests involves ex situ extraction of metabolic or genetic materials with 

homogenization of various tissues and cell types.[45-48]  This approach has many 

limitations.  Firstly and most importantly, it fails to provide critical information on the 

spatial distribution of chemicals.  Secondly, the homogenization process significantly 

dilutes analytical signals to levels that are sometimes indistinguishable from the 

background (false negative).  Lastly, the lack of spatial information may cause chemical 

responses to non-target stimuli to be misattributed to plant-pest interactions (false 

positive).  
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Laser capture microdissection (LCM) has been applied for metabolic profiling of 

plant tissues.[49, 50]  This method can circumvent the above limitations by precisely 

cutting out specific cells or tissues of interest.  However, it has its own limitations 

including potential delocalization of small molecules during fixation and embedding.  

Most of all, in a typical LCM analysis, tens or hundreds of cells need to be collected, 

resulting in extended sample preparation time and the loss of asymmetric metabolic 

distributions among the same cell types.  Liquid extraction surface analysis mass 

spectrometry (LESA-MS) is another method recently developed to overcome the lack of 

spatial information in traditional metabolic profiling.[51]  In this approach, a robotic arm 

automatically extracts soluble materials from each localized area using a micropipette 

and introduces the sample directly into the mass spectrometer.  This method minimizes 

sample preparation and allows imaging experiments[52]; however, its spatial resolution is 

limited to only about one millimeter size. 

In situ imaging can provide fine details with high-spatial resolution.  However, 

molecular imaging in plants is mostly limited to fluorescence,[53] which provides 

subcellular distributions but only those of macromolecules labeled as targets.  

Accumulation of small molecules is one of the most direct evidences of plant-pest 

interactions but the technology for their in situ chemical imaging is nearly nonexistent.  

Mass spectrometry imaging (MSI) is an excellent tool of choice for imaging small 

molecules.[54]  It provides extremely high sensitivity, down to attomole (10-18 mole) 

levels[55], a high-degree of in situ chemical mixture separation (up to thousands of 

molecules in m/z space), and the ability to characterize novel molecules; thus, it is 
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extremely well-suited for metabolite imaging.  MSI has recently been used extensively 

for imaging plant metabolites [56-58], including our own work.[59-61] 

Most MSI applications for plant materials are made through direct interrogation 

on plant surfaces or thin sections obtained by cryosectioning.[44, 57]  Unfortunately, 

neither method is applicable for visualization of the internal metabolite distributions of 

thin leaves or flower petals along the lateral dimension. Imprinting internal plant 

molecules onto Teflon or silicate surfaces has been proven to be an efficient sample 

preparation method for this purpose[62] and is extensively utilized for desorption 

electrospray ionization (DESI).[57]  However, DESI is limited to polar compounds 

analysis and its spatial resolution is typically ~200 μm[63], although <50 μm resolution 

has been reported[64, 65]. NanoDESI enables up to 10 μm spatial resolution,[66] but is not 

commercially available.  MSI using matrix-assisted laser desorption ionization (MALDI) 

is a versatile alternative as it allows much higher spatial resolution and analysis of wide 

classes of compounds.  Combining cell-transfer by contact printing and carbon-

substrate-based laser desorption ionization, Li et al. profiled and imaged trichome 

specialized metabolites of Solanum habrochaites.[67]  Plant metabolites associated with 

pest defense have been investigated using MALDI-MSI[68, 69], however, no study has 

been made for MSI to interrogate internal metabolites induced by plant-pest 

interactions.  Hamm et al. utilized MSI to image the chemical responses of Cabernet 

Sauvignon after infection by Plasmorpara viticola.[70]  This work analyzed only limited 

target molecules, resveratrol and pterostilbene, on the surface of the leaf by direct laser 

desorption ionization.   
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Two biological systems are used to study the chemical interfaces in plant-pest 

interactions in the current work: soybean-soybean aphids (Glycine max colonized with 

Aphis glycines) and rice-bacterium (Oryza sativa infected with Xanthomonas oryzae pv. 

oryzae (Xoo)).  Soybean aphids are native to Asia and are a recently introduced pest 

affecting soybean plants in North America.  Soybean aphid infestation results in 

changes in the metabolome of soybean plants. Some of these changes include the 

accumulation of phytohormones such as salicylic acid, ethylene, and jasmonic acid that 

can mediate defense responses,[48, 71] changes in amino acids that may modify the 

nutritional capacity of the plant,[72] and changes in chlorophyll content.[73] However, our 

knowledge of the soybean metabolite changes in response to aphid colonization is 

limited, and their spatial distribution is unknown.  Understanding how the metabolites 

are changing during plant-pest interactions can be crucial to understanding a plant’s 

resistance or susceptibility to attack. 

Xoo is the causal agent of bacterial blight of rice.[74]  Many plants, including rice, 

produce secondary metabolites with antimicrobial activity as a part of their defense 

mechanism.[9]  Phytochemicals produced as a defense against pathogen infection by 

rice plants include three types of diterpenoid phytoalexins; phytocassanes, oryzalexins 

and momilactones.[75]  Chemical analysis of these phytochemicals has been mostly 

performed with ex situ extraction followed by MS or NMR analysis and there has been 

no direct in situ analysis nor imaging, although oryzalexins have been localized to 

infected (versus uninfected) leaves.[76]  The diterpenoids produced by the rice plant as a 

part of defense mechanism are very difficult to analyze in MALDI-MS because 
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traditional organic matrices cannot efficiently ionize these unusual phytochemicals, 

presumably due to the lack of ionizable functional groups.   

Here we demonstrate the utility of MALDI-MSI as a tool to investigate plant-pest 

interactions that are not limited to the surface but include the interior of the plant tissues 

where metabolism is significantly altered by the interactions.  Specifically, the plant 

responses to two distinct pest classes, insect (aphid) and bacterium (Xoo), were 

investigated.  To expose internal molecules for interrogation by the laser beam, we 

developed and applied ‘imprinting’ and ‘fracturing’ methods.  The imprinting technique is 

used to squeeze out internal metabolites with minimal delocalization during the process.  

Fracturing is a simple method often used in optical microscopy to expose and visualize 

internal plant tissues, but here we applied this technique, for the first time, for MS 

imaging.  Additionally, we successfully applied nanoparticle-assisted laser desorption 

ionization (NALDI), [77, 78] for characterization of diterpenoids. The soybean-soybean 

aphids (Glycine max colonized with Aphis glycines) study was performed by Adam T. 

Klein. The experimental details, results and discussion for soybean-soybean aphids 

system are submitted in Adam T. Klein’s dissertation.  

 

Experimental 

Materials 

Iron (II) chloride tetrahydrate (99.0%) and iron (III) chloride hexahydrate (> 

97.0%) were purchased from Strem Chemicals Inc. (Newburyport, MA, USA).  Ethanol 

(200 proof), nitric acid (Certified ACS Plus- 69.4%), and ammonium hydroxide (Certified 

ACS Plus) were purchased from Fisher Scientific (Waltham, MA, USA). Isopropyl 
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alcohol (LCMS Chromasolv) were purchased from Sigma Aldrich (St. Louis, MO, USA).  

Titanium (IV) n-butoxide (99.0%) was purchased for Acros Organics (Pittsburgh, PA, 

USA).   

 

Bacterial Inoculation in Rice Plant 

The bacterial strain used in this study was Xanthomonas oryzae pv. oryzae strain 

PXO86  and rice plants were IR24 and IRBB10 (Oryza sativa).  IR24 is susceptible to 

PXO86 carrying avrXa10,[79] while IRBB10, which is a near-isogenic line containing 

Xa10 gene in the IR24 genetic background,[80] is resistant to PXO86. All plants were 

grown in a growth chamber at a constant temperature of 28 ℃, relative humidity of 75%, 

and photoperiod of 12h. For bacterial inoculation, PXO86 was grown in nutrient broth 

(Difco Laboratories) at 28 ℃.  The cells were harvested by centrifugation (4,000 rpm), 

washed twice, and re-suspended in sterile water to an optical density of 0.5 at 600 nm.  

Suspensions were infiltrated into rice leaves (3 weeks old) with a needleless syringe 

and the inoculated leaves were harvested 72 hours post inoculation for MSI. 

 

Fe3O4 Nanoparticles Synthesis 

For the synthesis of Fe3O4 NPs, 1 mL of 2 M FeCl2·4H2O and 4 mL of 1 M 

FeCl3·6H2O were mixed together.  Under continuous stirring, 50 mL of 0.5 M NH4OH 

was added drop wise and stirring continued for 30 min.  The resulting solution was then 

centrifuged at 4500 rpm for 10 min and washed with deionized water.  The washing and 

centrifugation steps were repeated until the supernatant was neutral.  After washing 
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with water, the precipitate was washed once with methanol and allowed to dry 

overnight.[81]   

  

TiO2 Nanoparticles Synthesis 

Titanium dioxide nanoparticles were synthesized as described by Shrivas et al.[78]  

Titanium (IV) n-butoxide (17 mL) and ethanol (8 mL) were mixed in a 50 mL round 

bottom flask by stirring for 10 min at room temperature, then cooled in an ice water 

bath.  Concentrated nitric acid (375 μL) was mixed with 8 mL of ethanol and added drop 

wise to the titanium butoxide mixture under vigorous stirring while cooled in an ice water 

bath. Stirring was continued for 30 minutes after the addition was completed.  

 

Nanoparticles Application with Oscillating Capillary Nebulizer 

The synthesized Fe3O4 and TiO2 NPs were suspended in isopropyl alcohol at 5 

mM and 10 mM concentrations respectively, and 500 µL of suspension was sprayed on 

the fractured sample using a home-made oscillating capillary nebulizer (OCN).[59]  The 

procedure for suspension solution application was as follows: (1) fill up the 500 µL 

syringe with suspension, (2) place a blank target plate 8-10 cm below the tip of the 

OCN, (3) start the nebulizing gas (N2) flow and adjust the pressure to ~40 psi, (4) set 

the flow rate of the syringe pump at 50 µL/min and start the flow, (5) monitor the blank 

target plate surface to ensure matrix is being applied and wetting is minimal, (6) stop the 

syringe pump and place the PTFE membrane below the tip of the OCN, and (7) turn on 

the syringe pump and spray 500 µL of suspension that covers a ~2 cm sample 

uniformly.   
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MSI Data Acquisition and Data Processing 

A linear ion trap-Orbitrap mass spectrometer with MALDI ion source (MALDI 

LTQ-Orbitrap Discovery; Thermo Scientific, San Jose, CA, USA) was used for the 

current study.  The instrument was modified to use an external frequency tripled, diode 

pumped Nd:YAG laser operating at 355 nm (UVFQ; Elforlight Ltd., Daventry, UK).  

Laser energy of about 5-7µJ/pulse were used for MSI of rice leaf, at 60 Hz repetition 

rate.  The laser spot size was estimated to be 30~40 µm as determined from laser burn 

marks on a thin film of α-cyanohydroxycinnamic acid.  A raster step size of 100 was 

used for MSI of rice leaf, unless otherwise noted.  Each spectrum was collected with 10 

laser shots per scan and one scan per raster step.  Orbitrap scans were acquired over 

the m/z range of 100 to 1200.  

ImageQuest software (Thermo Scientific) was used to produce chemical images 

from MS imaging data sets.  A mass tolerance of ±0.003 Da was used for generating 

Orbitrap MS images.  All the MS images were normalized against total ion count at each 

pixel and the maximum scale was arbitrarily adjusted to produce the best quality images 

as indicated in the figure caption.  All the image features shown in this manuscript were 

reproduced in at least two or three replicate experiments. 

 

Results and Discussion 

Fracturing Plant Leaf to Expose Internal Tissue. 

For the study of the chemical interactions between rice and bacteria, we initially 

tried the ‘imprinting method’ introduced above, but we could not detect any diterpenes 

or other hydrophobic compounds that are of particular interest in this system.[75]  This is 
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consistent with the results for the soybean-aphid study (see Adam T. Klein dissertation), 

in that only cytoplasmic hydrophilic compounds can be analyzed with the imprinting 

method.  Thus, we have developed and applied a new ‘fracturing method’ for 

visualization of a wider range of compounds in rice-bacterial interactions. 

The overall procedure for the fracturing method applied in the current study is 

summarized in Figure 1.  A section of the harvested leaf was stuck to a piece of 

transparent packing tape (Figure 1A).  The tape with the leaf section was placed under 

vacuum (~150 mtorr) for 4 - 5 hours depending on leaf size (Figure 1B).  After vacuum 

drying, the tape with the leaf was folded over to enclose the leaf or section of leaf 

between the two adhesive sides of the tape (Figure 1C).  The tape and leaf sandwich 

was then passed through a rolling mill (Figure 1D) to fracture the leaf section.  The 

rolling mill pressure knob was kept finger tight and care was taken so that the ends of 

the tape did not pass through the rolling mill.  Finally, the two ends of the packing tape 

were pulled open, leaving one surface on each side of the folded tape (Figure 1E).  The 

leaf section on packing tape was adhered to a MALDI target plate with double-sided 

tape, and subjected to matrix application and MSI data acquisition. 

The intact and fractured leaf surfaces were visually inspected under the 

macrozoom mode of an optical microscope (Zeiss Axio Zoom V16) (Figure 2) and 

scanning electron microscope (SEM; JEOL JSM 5800LV) (Figure 3).  Macrozoom 

images of the leaf surface show distinguishing features before and after the fracturing.  

Particularly, the veins are clearly observed as white lines after fracturing in Figure 2C.  

In the high-resolution SEM image, the presence of protuberances (Figure 3A and 3B) is 

observed on the intact leaf surface, but are absent in the fractured leaf surface (Figure 
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3C and 3D).  In contrast, SEM images on the fractured leaf show hollow tubes 

corresponding to vascular bundles, suggesting the tissues along the veins are most 

fragile and subject to fracture when dried.  Most importantly, the fractured tissues seem 

to maintain their original anatomy relatively well, at least to a resolution of ~10 μm, 

which is sufficient for typical MALDI-MSI.  

 

Rice-Xoo Interaction 

Three week-old leaves of resistant and susceptible rice plants were infiltrated 

with Xoo and incubated for 72 hours, then subjected to NALDI-MSI after fracturing 

(Figure 1).  Figure 4 shows metabolite images of these resistant and susceptible rice 

leaves acquired using NALDI-MSI with Fe3O4 NPs.  The compound assignments were 

based on accurate mass searched against the Metlin database, available literature, and 

also MS/MS spectra when available (Figures 6 and 7).  The ion with m/z 614.238 is 

tentatively assigned as a chlorophyll-a fragment, derived from in-source fragmentation 

of the phytyl group (C20H39 side chain),[82] and MS/MS analysis of extracted chlorophyll-

a supports this assignment (Figure 6).  We initially tried various organic matrices and 

nanoparticles, but only Fe3O4 and TiO2 NPs were able to efficiently ionize the diterpene 

compounds from Xoo infected rice leaf tissues.  TiO2 NPs gave similar images to Fe3O4 

NPs (Figure 5).  It will be further investigated in the future as to why TiO2 and Fe3O4 

NPs are the only matrices that can ionize diterpenoids; however, a possible explanation 

is that they can be heated up to a very high temperature before exploding to form a 

laser plume because of their high heat capacity.  Most of the diterpenes have high 

melting and/or boiling points compared to other small metabolites (e.g. the m.p. is 242 
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°C for momilactone B and 160-180 and 117-120 °C for sucrose and chlorophyll-a, 

respectively) and may not be easily evaporated by other matrices.  As supporting 

evidence for this hypothesis, we noticed much higher laser energy is required for these 

NPs compared to organic matrices and increased molecular fragmentation was often 

observed in control analyses of authentic standards.  Similar trends were observed in 

our systematic study of applying various nanoparticles to a wide range of plant 

metabolites. 

The left four chemical images in Figure 4 represent common plant metabolites 

such as a phosphocholine, disaccharide (e.g. sucrose), chlorophyll-a and 

monogalactosyldiacylglycerol (MGDG).  Phosphocholine ion signals have some 

contribution from fragmentation of phosphatidylcholine, but we cannot distinguish the 

fragments from naturally occurring phosphocholine.  Phosphatidylcholines are 

completely fragmented in NALDI with TiO2 or Fe3O4 NPs according to the standard 

analysis (data not shown) presumably due to the high temperature in NALDI conditions.   

In susceptible plant leaves, decreased levels of phosphocholine and disaccharide were 

observed, especially at the site of infection, in comparison to resistant plants, whereas 

the changes in ion abundances for chlorophyll-a fragment and MGDG are relatively 

minimal or ignorable.  Similar results were observed for the second most abundant 

membrane lipid in plants, digalactosyldiacylglycerol (DGDG).  Semi-quantitative 

comparison was made as shown in Figure 8, which depicts a significantly higher 

abundance of sucrose and phosphocholine in resistance rice, with no or minimal 

differences in other major lipids or metabolites. 
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The most notable observation in NALDI-MSI of Xoo-infected rice is the high 

abundance of phytoalexins, momilactones and phytocassanes, at the site of infection on 

resistant plant leaf samples (Figures 4 and 5).  In contrast, the momilactones and 

phytocassanes are mostly absent in the susceptible rice.  This is consistent in the semi-

quantitative comparison presented in Figure 8.  Identification of these phytoalexins are 

mostly based on accurate mass information, but also supported by MS/MS analysis, 

although phytocassanes A, D, and E are structural isomers and could not be 

distinguished (Figure 7).  The production of these antimicrobial compounds in Xoo 

infected resistant rice plants has been reported by GC-MS analysis of leaf extracts, but 

not otherwise localized.[75]  Further study is needed to better understand this rice-

bacterial pathogen interaction, but this finding suggests a dynamic and complex nature 

for the production of diterpenoid phytoalexins by rice.   

 

CONCLUSIONS 

In this work, we have demonstrated that MSI can be a very useful tool to study 

the chemical interfaces in plant-pest interactions.  Sample preparation is a critical 

bottleneck because it is almost impossible to cross-section thin leaves in the planar 

dimension.  For the visualization of metabolites across the leaf, the imprinting and 

fracturing methods have been developed to expose internal metabolites of plant leaves.  

The two sample preparation methods are complementary to each other.  Imprinting is 

efficient for the analysis of cytoplasmic hydrophilic compounds that can be squeezed 

out.  The greatest advantage of this method is its versatility. It can be applicable to 

almost any plant leaves, regardless of their size or surface roughness.  This method, 
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however, has a critical limitation that membrane-bound molecules, membrane lipids, or 

other hydrophobic compounds cannot be analyzed.  Another limitation is the possible 

loss of spatial resolution during the imprinting process; however, this seems to be 

relatively minimal for most tissues.  The fracturing method is effective for compounds 

that are present on the fracture-opened surface including phospholipids and 

chlorophylls that cannot be analyzed with the imprinting technique.  One limitation is 

that we cannot control which layer will fracture-open.  In the case of rice leaf, the 

mesophyll layers surrounding the veins seem to be most fragile and vulnerable to 

fracturing.  Another limitation is that it is difficult to apply to a large size leaf, such as 

soybean leaf, because it tends to partially crack before it is completely dried.  In-parallel 

control experiment with an uninfected leaf would be important in such experiments due 

to the possible metabolic turnover during sample processing. 

Efficient ionization is often a critical obstacle in MSI depending on what types of 

analytes are the target molecules of interest.  As is well known, the classes of 

compounds that can be ionized by MALDI are greatly affected by the matrix of choice.  

We have successfully developed and demonstrated the use of Fe3O4 and TiO2 

nanoparticles to efficiently ionize diterpenoid phytoalexin compounds that cannot 

otherwise be analyzed.  We are currently screening various nanoparticles for a wide 

range of plant metabolites, to further understand ionization mechanisms and apply this 

to analyses of diverse classes of plant metabolites. 

The demonstrated approach of using MSI to study the chemical interfaces of 

plant-pest interactions has many advantages compared to traditional metabolic profiling, 

especially in providing precise localization information with high sensitivity.  The current 
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work demonstrates the power of this technology and we envision that application of this 

approach will open new opportunities in plant pathology.   
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Figure 1: Step by step procedure for fracturing method. 
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Figure 2: Macrozoom images of intact rice leaf surface (A, B) and fractured rice 
leaf surface (C, D).  (B) and (D) are 3D constructed images. 
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Figure 3: The SEM images of intact rice leaf surface (A, B) and fractured rice leaf (C, 
D).  The scale bar corresponds to 200 μm for A and C and 20 μm for B and D. 
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Figure 4: NALDI-MSI of fractured leaf section of three-week old resistant and susceptible rice infected by Xoo analyzed 
with Fe3O4 NPs.  (A) Optical image of the rice leaf with the black circle representing the inoculated region.  MSI images 
are shown for (B) phosphocholine (Pcho, m/z 184.074, 3.9 ppm; 5.0x10-2), (C) disaccharide, most likely sucrose, (m/z 
381.079, 0.6 ppm; 2.5x10-1), (D) chlorophyll-a fragment (m/z 614.238, 1.5 ppm; 5.0x10-2), (E) MGDG (m/z 813.492, 1.2 
ppm; 5.0x10-2), (F) momilactone-A (m/z 353.152; 1.6 ppm; 1.0x10-2), (G) momilactone-B (m/z 369.147; 1.1 ppm, 1.0x10-2), 
(H) phytocassane-A, D or E (m/z 355.167; 1.0 ppm, 1.0x10-2), (I) phytocassane-B (m/z 373.178; 1.1 ppm, 1.0x10-2), and 
(J) phytocassane-C (m/z 357.183; 1.3 ppm, 1.0x10-2). Phosphocholine was detected as a molecular cation (M+) and the 
chlorophyll-a fragment was detected as the protonated ion ([M- C20H39 + H]+.).  All other compounds were detected as 
potassiated ions ([M+K]+).  A’ to K’ correspond to those in a susceptible rice leaf as a control.  The scale bar corresponds 
to 0.5 mm. 
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Figure 5: NALDI-MSI of fractured leaf section of three-week old resistant and susceptible rice infected by Xoo analyzed 
with TiO2 NPs.  (A) Optical image of the rice leaf with the black circle representing the inoculated region.  MSI images are 
shown for (B) phosphocholine (m/z 184.074, 2.6 ppm; 1.0x10-3), (C) sucrose (m/z 381.079, 1.3 ppm; 2.0x10-1), (D) 
Chlorophyll-a fragment (m/z 614.238, 1.3 ppm; 1.0x10-2), (E) MGDG (m/z 813.494, 3.3 ppm; 2.5.0x10-2), (F) momilactone-
A (m/z 353.152; 1.3 ppm; 2.5x10-3), (G) momilactone-B (m/z 369.147; 1.1 ppm, 2.5x10-3), (H) phytocassane-A, D or E 
(m/z 355.167; 1.4 ppm, 2.5x10-3), (I) phytocassane-B (m/z 373.178; 0.57 ppm, 2.5x10-3), and (J) phytocassane-C (m/z 
357.183; 1.6 ppm, 2.5x10-3). Phosphocholine was detected as a molecular cation (M+) and the chlorophyll-a fragment was 
detected as the protonated ion ([M- C20H39 + H]+.).  All other compounds were detected as potassiated ions ([M+K]+).  A’ to 
K’ correspond to those in a susceptible rice leaf as a control.  The scale bar corresponds to 0.5 mm. 
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Figure continued 

 

 

Figure 6: MALDI-ion trap MS/MS spectra of common plant metabolites phosphocholine, 
sucrose, MGDG, DGDG, and chlorophyll-a fragment[82] obtained directly on the 
fractured ‘Xoo’ infected rice leaf surfaces. MS/MS spectra are matching with the 
standards (phosphocholine, sucrose), chlorophyll extract (chlorophyll-a fragment), or 
expectation (MGDG, DGDG).  
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Figure continued 

 

Figure 7: MALDI-ion trap MS/MS spectra of momilactone-A and B, and phytocassane-
A/D/E, B, and C obtained directly on the fractured rice leaf surfaces after infection with 
‘Xoo’. The MS/MS spectra are matching with the standard analysis of isolated 
diterpenes from the rice leaves. 
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Figure 8: Semi-quantitative comparison of metabolite ion signals shown in Figure 4.  
Ion signals are integrated over the boxed region around the infected area with 
approximately 1:1 ratio between in- and outside the circle.  Y-scale represents 
integrated ion signals normalized to the total ion count.  Error bar represents standard 
deviation from three biological replicates. Diterpenoids are not detected in susceptible 
rice. 
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ABSTRACT 

Nanoparticles have been applied in various fields of science due to their unique 

properties. These applications include many spectroscopic branches of analytical 

chemistry for a wide variety of analytical measurements. In the present study, thirteen 

nanoparticles have been compared with three popular organic matrices for 

nanoparticle/matrix-assisted laser desorption/ionization-mass spectrometry for the 

detection of low-molecular weight compounds. The chosen nanoparticles are potential 

matrices for detection of low-molecular weight compounds because of their absorptivity 

at the laser wavelength, low volatility, matrix homogeneity, and low background signal. 

We tested three deferent classes of nanoparticles including metals, metal oxides and 

carbon-based nanoparticles to desorb/ionize a variety of plant metabolites. This 

empirical study will be helpful for future selection of particular nanoparticle matrices for 

ionization of wide and/or particular classes of low-molecular weight compounds. Along 

with an empirical screening of nanoparticles, we employed physical properties to 

calculate desorption temperatures for nanoparticles and adapted the existing thermal 
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model. This study will shed some light on the nanoparticle-assisted laser 

desorption/ionization-mass spectrometry mechanism. 

 

Introduction 

  Over the last three decades, nanoparticles (NPs) have found a wide range of 

chemical  applications, including the conservation of art works, information storage, gas 

sensing, light-emitting devices, fuel and solar cells, and biomedical applications[83]. NPs 

have found some of their most significant applications as catalysts in synthetic organic 

chemistry and in the field of analytical and bioanalytical chemistry[83-85].   Zamborini et al. 

discuss recent developments in nanotechnology that have enabled the production of 

NPs with unique optical, electronic, magnetic, chemical, mechanical, and catalytic 

properties that can be tuned by the size, shape, and composition of the NPs. [86]  

The unique properties and increased surface area of nanoparticles have given 

rise to several potential applications of NPs in analytical chemistry measurements[86].   

These measurement techniques include various spectroscopic branches and sub-

branches of analytical chemistry such as surface plasmon resonance spectroscopy, 

localized surface plasmon resonance spectroscopy, fluorescence spectroscopy,[87] 

surface-enhanced Raman spectroscopy, nuclear magnetic resonance (NMR) 

spectroscopy, magnetic resonance imaging, infrared (IR) spectroscopy and mass 

spectrometry. [84, 86] NPs have also proven useful in electrochemical detection, 

chemiresistive sensors, immunoassays, DNA detection and various chromatographic 

and electrophoretic separations.[84, 86] NP applications in mass spectrometric analysis 

have focused primarily on enrichment of particular analytes of interest and use as laser 
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desorption/ionization matrices. [88,12,15]  Since the development of matrix-assisted laser 

desorption/ionization-mass spectrometry (MALDI-MS), NPs have been employed as 

matrices to aid desorption/ionization[15], and the unique properties of nanoparticle 

surfaces also enables the functionalization of NPs for selective capturing and MALDI-

MS analysis.[89] 

MALDI-MS enables sensitive detection of various chemical species from a solid 

surface.[1-5] MALDI-MS imaging (MALDI-MSI) combines this capability with spatially-

resolved sampling and data acquisition. MALDI-MSI allows for the two-dimensional 

visualization of the spatial distribution of biomolecules without extraction, purification, or 

separation of analytes.[3] MALDI-MSI is a unique imaging technique for non-target 

specific discoveries since analyte molecules are ablated, ionized, and detected directly 

from tissue without labeling on any specific targets.[5]  MALDI-MSI has been employed 

to visualize distributions of several biomolecules, including proteins, peptides, 

metabolites, amino acids, lipids, carbohydrates, and nucleotides, in various tissue 

samples and in diverse fields such as medicine, agriculture, biology, pharmacology, and 

pathology.[2, 3]  

Low-molecular weight organic compounds, such as 2,5-dihydroxybenzoic acid 

(DHB) 1,5-diaminonaphthalene (DAN), 9-aminoacridine (9-AA), etc. are common 

MALDI-MS matrices. These MALDI-MS matrices tend to give strong background signals 

in the low mass region (m/z < ~500) and can interfere with analysis of small metabolite 

compounds.[12] In addition, low-molecular weight metabolites span a variety of chemical 

functionalities, and optimal ionization of all metabolites of interest by a single matrix is 
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almost impossible. For these reasons, the development of new MALDI-MS matrices for 

the analysis of low-molecular weight compounds is receiving a great deal of interest.   

The use of nanoparticles as matrices instead of organic compounds, referred to 

as nanoparticle-assisted laser desorption ionization (NALDI-MS), is receiving increased 

interest because nanoparticles typically exhibit high laser absorptivity, low volatility, 

matrix homogeneity, and low background signals.[12],[90],[91]  Recent developments in 

nanotechnology have made NPs of various sizes, shapes and compositions 

commercially available or easily synthesizable.[12] Three popular classes of NPs 

adopted in NALDI-MS include metals such as Pt,[14, 92, 93] Au,[14, 90-92, 94-100] Ag[14, 59, 101-103] 

and Cu,[14] metal oxides such as WO3,
[104] ZnO,[105] SiO2,

[92] TiO2,
[78, 92, 104, 106-109] and 

Fe3O4
[77, 92, 110]

 and carbon-based nanoparticles made of diamond,[16, 108, 111]  

graphite/colloidal graphite,[16, 112] and graphene oxide.[113-118] The NPs in this study were 

selected based on the literature search and absorbance at 355 nm (3.47eV), as the 

system used for this study uses a frequency-tripled Nd:YAG laser operating at 355 nm. 

In NALDI-MS, NPs absorb the incident photons and transfer energy to analytes, 

which leads to desorption and ionization of the analyte.[91] Most NPs give significantly 

reduced or no background signals compared to organic matrices, due to the high 

melting/boiling point of these inorganic materials. There are many variables that affect 

performance of NPs in NALDI: intrinsic properties such as chemical composition, heat 

capacity, and band gap; extrinsic properties such as size and morphology; and 

experimental variables such as laser fluence and the concentration, pH and ionic 

strength of the sample solutions.[91] . Ideal NPs should strongly absorb photons at the 

laser wavelength and transfer energy effectively to analytes for desorption and 
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ionization, while minimizing background signal and fragmentation of analyte 

molecules.[91] Some NPs have specific functionalities that can selectively capture and 

ionize certain analytes.[91] Ag and Au NPs, for example, are effective for thiol-containing 

molecules due to their strong adsorption to Ag and Au surfaces, while TiO2 and Fe3O4 

NPs are effective for enediol groups and phosphate groups respectively.[91] 

The energy transfer from NPs to analytes is thought to occur via a thermally-

driven process,[13, 14] similar to the “rapid heating” mechanism proposed by Tanaka et 

al.[15] The temperature at the sample surface peaks at the end of the laser pulse and 

depends on the laser fluence, absorption properties of the particles, and heat diffusion 

over the duration of the laser pulse.[13]  Theoretical calculations can be performed to 

compare the relative peak temperatures for different nanoparticle matrices. In the 

previous calculations, the heat transport that takes place between the nanoparticles and 

the surroundings is neglected. [13, 14]  Because this calculation assumes complete 

absorption of the incident light by the particle surface and neglects heat loss to the 

underlying MALDI plate or surrounding gas, these calculations are useful mostly as 

relative comparisons and fail to explain the relative effectiveness of one NP type over 

others.   

In addition to internal energy transfer from NPs to analyte, alternative desorption 

mechanisms have also been proposed for NALDI processes.[16] The different binding 

affinities between analytes and NPs results in different partitioning of internal energy. 

The surface properties of the NPs affect desorption and ionization by lower-energy 

processes.[119] Also, phase transitions or destruction of the NPs are involved in the 

desorption mechanism(s) of metal oxides.[16] The amount of energy required to disrupt 
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the NP’s surface structure affects their ionization ability.[112] In the case of metal NPs, 

the melting point affects the ionization efficiency.[14, 120] The processes involved in 

nanoparticle-assisted laser desorption/ionization are still not completely understood and 

in this study seeks to better understand the NALDI mechanism.  However, because of 

the complexity of the process and the wide variety of analytes of interest, an empirical 

study of several NP matrix candidates is needed. 

In this study, we have performed a large-scale screening of different 

nanoparticles for their effectiveness in ionization of a wide variety of plant metabolites. 

The nanoparticles we used for the screening include: metal nanoparticles (Au, Ag, Pt, 

Cu), metal oxide nanoparticles (TiO2, SnO2, ZnO, AZO [aluminum-doped zinc oxide], 

Fe3O4, WO3), and carbon-based nanoparticles (boron doped nano-diamond, graphite, 

graphene oxide). Plant metabolites used for the screening include: small organic acids 

(malic acid, vanillic acid, ascorbic acid phosphoenolpyruvic acid, glycerol 3-phosphate, 

phosphocholine), sugars (sucrose, glucose 6-phosphate), amino acids (glutamic acid, 

isoleucine, asparagine), biotin (vitamin H) co-enzyme A, glycerolipids (including 

phospholipids), fatty acid (oleic acid), and terpene (parthenolide).The molecular 

structures of all the metabolites are shown in Figures 1 and 2 as water-soluble and 

water-insoluble compounds. We expect that this metabolite screening will improve our 

understanding of the NALDI-MS ionization mechanism, by comparing our empirical 

results with corrected calculations employing the physical and chemical properties of 

NPs.  
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EXPERIMENTAL 

Materials   

Iron (II) chloride tetrahydrate (99.0%), iron (III) chloride hexahydrate (> 97.0%), 

tin (II) chloride dehydrate (98%), and zinc (II) acetate dehydrate (98%) were purchased 

from Strem Chemicals, Inc. (Newburyport, MA, USA).  Ethanol (200 proof), nitric acid 

(Certified ACS Plus- 69.4%), sodium hydroxide, methanol (Certified ACS Plus) and 

ammonium hydroxide (Certified ACS Plus) were purchased from Fisher Scientific 

(Waltham, MA, USA). Isopropyl alcohol (LCMS Chromasolv®), chloroform (HPLC 

Chromasolv® Plus), 2,5-dihydroxybenzoic acid (98.0%), 1,5-diaminonaphthalene 

(97.0%) and 9-aminoacridine hydrochloride monohydrate  (98.0%) were purchased from 

Sigma Aldrich (St. Louis, MO, USA). Titanium (IV) n-butoxide (99.0%) was purchased 

from Acros Organics (Pittsburgh, PA, USA).   

Commercially available NPs were purchased. Metal oxide NPs aluminum-doped 

zinc oxide (AZO; zinc oxide NPs doped with 2 wt% aluminum oxide, 99.99%, 15 nm) 

and tungsten oxide (WO3; 99.95%, 23- 65 nm), metal NPs Au (99.95%, 15 nm), Ag 

(99.99%, 20 nm), and Cu (99.90%, 40 nm), and boron doped nano-diamond (BDND) 

NPs (Carbon conc.  >98.3%, doped with 3wt% boron, 3-10 nm) were purchased from 

US Research Nanomaterials, Inc. (Houston, TX, USA). The BDND NPs have various 

functional groups (OH, CN, C=O, COOH, C-O-C) attached to the carbon atoms on their 

surfaces. Pt NPs (97.0%, 3-7 nm) were obtained from Strem Chemicals, Inc. 

(Newburyport, MA, USA). Colloidal graphite (5 wt% in isopropanol, aerosol spray) was 

purchased from Alfa Aesar (Ward Hill, MA, USA). The colloidal graphite has a wide size 

distribution; the majority of particles are between 400 and 1000 nm. The graphene oxide 
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(0.5 wt% in water; N002-PS-0.5) was purchased from Angstron Materials Inc. (Dayton, 

OH, USA) and contains ≥ 46% of carbon, ≤ 46% of oxygen, ≤ 3 % of hydrogen and ≤ 

0.5 %of nitrogen.  The average thickness is 1.0 – 1.2 nm and the average size is ~554 

nm. It commonly contains -OH, C=O, COOH and C-O-C functional groups. 

The metabolite standards malic acid, glucose, glucose 6-phosphate, sucrose, 

asparagine, glutamic acid, isoleucine, coenzyme-A trilithum salt, biotin (vitamin-H), 

glycerol tripalmitate, vanillic acid (Fluka) and oleic acid (Fluka) were purchased from 

Sigma Aldrich (St. Louis, MO, USA). Ascorbic acid was purchased from Fisher Science 

Education (Nazareth, PA, USA). Phosphoenolpyruvic acid monopotassium salt was 

purchased from Alfa-Aesar (Ward Hill, MA, USA). Rac-Glycerol 1-phosphate disodium 

salt hexahydrate was purchased from Santa Cruz Biotechnology, Inc. (Dallas, Texas, 

U.S.A.). Phosphocholine chloride sodium salt hydrate was purchased from Tokyo 

Chemical Industry Co. Ltd (TCI, Philadelphia, PA, USA). Parthenolide was purchased 

from Tocris Bioscience (Bristol, United Kingdom). Phospholipid mixture [L-α-

Phosphatidylcholine, 20% (Soy) (Soy Total Lipid Extract)] was purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL, USA). 

  

Fe3O4 Nanoparticle Synthesis 

  For the synthesis of Fe3O4 NPs, 1 mL of 2 M FeCl2·4H2O and 4 mL of 1 M 

FeCl3·6H2O were mixed together under continuous stirring, 50 mL of 0.5 M NH4OH 

were added drop wise and stirring continued for 30 min. The resulting solution was then 

centrifuged at 4500 rpm for 10 min and washed with deionized water. The washing and 
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centrifugation steps were repeated until the supernatant was neutral. After washing with 

water, the precipitate was washed once with methanol and allowed to dry overnight.[6, 81] 

 

TiO2 Nanoparticle Synthesis 

Titanium dioxide nanoparticles were synthesized as described by Shrivas et al.[78]  

Titanium (IV) n-butoxide (17 mL) and ethanol (8 mL) were mixed in a 50 mL round 

bottom flask by stirring for 10 min at room temperature and then cooled in an ice/water 

bath.  Concentrated nitric acid (375 μL) was mixed with 8 mL of ethanol and added drop 

wise to the titanium butoxide mixture under vigorous stirring while being cooled in an 

ice/water bath. Stirring was continued for 30 minutes after the addition was 

completed.[6],  

 

SnO2 Nanoparticle Synthesis 

Tin (II) chloride dihydrate (2.50 g) was added to deionized water (400 mL) and 

stirred at room temperature for 2 days. The material was precipitated out by 

centrifugation (4500 rpm, 10 min) and the precipitate washed with each water and 

ethanol (200 proof) twice. 

 

ZnO Nanoparticle Synthesis 

 Zinc (II) acetate dihydrate (0.66 g) was dissolved in ethanol (200 proof) and 

stirred for 15 min. Sodium hydroxide (1.5 g) was added and the solution stirred for 6 h at 

room temperature. The material was precipitated by centrifugation (4500 rpm, 10 min) 

and washed two times with methanol.  
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Sample Preparation for Plant Metabolite Standard Analysis 

For analysis, nanoparticles were suspended at concentrations ranging from 50 

µM to 460 mM in isopropanol (see Optimization of Nanoparticle Concentrations), and 

these suspensions used to determine the optimal NPs concentration for the study. Each 

NP suspension was mixed with a standard solution containing either water-soluble 

standards (malic acid, vanillic acid, ascorbic acid, phosphoenolpyruvic acid, glycerol 3-

phosphate, phosphocholine, glucose, sucrose, glucose 6-phosphate, glutamic acid, 

isoleucine, asparagine, biotin [vitamin H] and co-enzyme A) in water or water-insoluble 

standards (glycerol tripalmitate, assorted phospholipids, oleic acid and parthenolide) in 

chloroform. All standard compounds were present at 100 µM final concentration. The 

mixture of NPs and metabolites was sprayed onto a stainless steel MALDI target using 

a home-made oscillating capillary nebulizer.[121]  

 

Nanoparticle Application with Oscillating Capillary Nebulizer 

The details of matrix application using oscillating capillary nebulizer (OCN) is 

described in our recent method paper[121] and only briefly described here. Water-soluble 

and water-insoluble standards were dissolved in water and chloroform, respectively. 

Each NP suspension prepared in isopropyl alcohol was mixed with either of the 

standards in 10:1 volume ratio, to have 100 µM final concentration for standards. The 

metabolite standard and NP suspension mixture was sprayed on stainless steel MALDI 

target plates using a modified airbrush as OCN.[6], [121]  The typical procedure for NP 

application was as follows: A 500 µL syringe was filled up with a mixture of NP 
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suspension and metabolite standards and  a blank target plate was placed  ~8 cm 

below the tip of the OCN.  The nebulizing gas (N2) flow was started and pressure was 

adjusted to ~40 psi. The flow rate of the syringe pump was set at 50 µL min-1 and the 

blank target plate surface was monitored to ensure matrix is being applied and wetting 

is minimal. The pump was stopped and blank plate was replaced by the MALDI target 

plates below the tip of the OCN. Finally the syringe pump was turned and spray 500 µL 

of suspension and mixture of 100 µM standards sprayed that covers a ~2 cm 

uniformly.[6], [121]  

 

Optimization of Nanoparticle Concentrations 

To find optimal NP concentrations for water-soluble and water-insoluble 

metabolite standards in both positive and negative mode, we tested various 

concentrations of NPs at 100 µM final concentration for metabolite standards. The soy 

lipid extract is a mixture of various phospholipids and the final concentration of soy lipid 

extract was kept at 0.1 mg mL-1. The NPs were suspended in isopropyl alcohol for 

various concentration ranges selected based on preliminary experiments and/or from 

the literature. The metal oxide concentrations screened were 0.25, 0.50, 1.0, 2.5, 5.0, 

and 10.0 mM; the concentrations studied for BDND NPs were 0.1, 0.25, 0.50, 1.0, 2.5, 

5.0, 10.0, 25.0, 50.0, 100 and 200 mM; those for graphene oxide were 0.50, 1.0, 5.0, 

10.0, 25.0, 50.0, 100.0 and 150 mM; and those for colloidal graphite were 5.0, 10.0, 

25.0, 50.0, 100.0, 150.0, 200 and 462 mM.  

 In the initial study of metal NPs, we employed colloidal solutions of Pt (10 ppm), 

Au (20 ppm), Ag (20 ppm), and Cu (10 ppm) form Purest Colloids 
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(www.purestcolloids.com). The optimum concentration is, however, higher than the 

original concentrations. Therefore, we tried NP aqueous dispersions of Pt (1000 ppm), 

Au (1000 ppm), Ag (2000 ppm), and Cu 40 nm from US Research Nanomaterials 

instead. The NP aqueous dispersions, however, required surfactants to be remain 

dispersed in water, which produced significant backgrounds in low mass region (m/z < 

500). This was overcome by employing Pt NPs (3-7 nm obtained from obtained from 

Strem Chemicals, Inc.) and Au (15 nm), Ag (20 nm) Nano-powder from US Research 

Nanomaterials, Inc. The concentration studied for the metal NPs were 0.1, 0.25. 0.50, 

1.0, 2.5, 5.0, 10.0, 20.0 and 40.0 mM.  

For MS analysis, three replicates of 250 spectra were collected from two 

standard samples with each NP concentration. Table 1 summarizes the optimum NP 

concentrations determined and used for the main study.  It should be noted that minor 

changes in NP concentration do not affect the final results. 

 

MS Data Acquisition 

A linear ion trap-orbitrap mass spectrometer with MALDI ion source (MALDI 

LTQ-Orbitrap Discovery; Thermo Scientific, San Jose, CA, USA) was used for this 

study.  The instrument was modified to use an external frequency-tripled, diode-pumped 

Nd:YAG laser operating at 355 nm and 60 Hz (UVFQ; Elforlight Ltd., Daventry, UK). 

Conditions such as laser energy and number of shots were individually optimized for 

each type of NP (Table 2), and 250 spectra were collected with 3 replicates each from 

two independent samples for each NP concentration. The laser spot size was estimated 

to be ~20 µm as determined from laser burn marks on a thin film of α-
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cyanohydroxycinnamic acid. Orbitrap scans were acquired over the m/z range of 50 to 

1200.  

 

Optimization of Laser Energy 

The laser energy was individually optimized for each type of NP. For optimization 

best suitable concentration found in the preliminary experiments was used. Laser 

energy was optimized by scanning over an area of the sprayed mixture of NPs and 

standard plant metabolites and increasing the energy stepwise over the course of the 

scan. The energy was optimized for water-soluble and water-insoluble plant metabolites 

in both positive and negative mode.  For each NP, the laser pump diode energy was 

increased from 80% to 90% in increments of 0.5% at 10 laser shots per MS scan and 

each energy setting was maintained for 1 min (~ 50 scans). The pulse energies were 

measured at the laser aperture and due to some inevitable energy loss at each of the 

beam steering and focusing elements, the actual fluences at the sample surface are 

expected to be slightly lower.[122] Table 2 summarizes the threshold and the optimum 

laser energy for both positive and negative mode and both water-soluble and water-

insoluble used for plant metabolites analysis for each type of nanoparticle employed in 

this study. 

 

RESULTS AND DISCUSSION 
Results 

In positive mode, most metabolite standards were detected as alkali metal 

adducts, primarily [M+Na]+ and [M+K]+. Some compounds also showed appreciable 

lithium adduct signal, [M+Li]+, likely due to the lithium present as a counter-ion in the co-
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enzyme A standard. In the case of Ag NPs, some metabolites were also detected as the 

[M+Ag]+ species. For ion yield comparisons in positive mode, alkali adduct and 

protonated signals were summed. Experiments were performed in two stages. First, we 

optimized experimental conditions for each NP matrix, namely finding optimal laser 

energy and concentration. The final data set was acquired using the optimized 

experimental conditions in three additional replicate experiments. Experiments for 

water-soluble and water-insoluble standard compounds were performed separately from 

one another. 

Table 3 summarizes ion intensities for positive-mode screening of water-soluble 

and water-insoluble metabolite standards. For water-soluble compounds, Fe3O4, AZO, 

BDND, and Cu NPs were most effective for a broad range of compounds. Fe3O4 NPs, in 

particular, gave the broadest coverage for the investigated classes. BDND NPs showed 

the next broadest coverage, comparable to Fe3O4 NPs except for ascorbic acid and 

phosphates, probably due to excess energy transfer to labile compounds. In contrast, 

graphene oxide NPs provided strong signals for phosphorylated compounds, even 

slightly better than Fe3O4 NPs. AZO and Cu NPs are comparable, better than the rest of 

other NPs but inferior to Fe3O4 or BDND NP. It is important to note that the organic 

matrices DHB and DAN were largely ineffective for small molecules except for 

phosphocholine and choline, the only standards detected as protonated species. This is 

attributed to the competition of matrix molecules with analytes for alkali ion adduct 

formation. Figure 3 shows NALDI/MALDI-MS spectra for water-soluble standards 

obtained with selected Fe3O4, AZO, WO3, BDND, graphene oxide, Ag NPs and DHB in 

positive mode. 
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In the analysis of water-insoluble compounds, TiO2 NPs were most efficient for a 

wide range of compounds, including parthenolide, a terpenoid which is very difficult to 

detect using any organic matrices. Parthenolide could also be effectively detected by 

BDND and graphene oxide NPs, but they were virtually ineffective for most other water-

insoluble compounds. TiO2 and Fe3O4 NPs were efficient for glycerolipids but they are 

complementary to each other; Fe3O4 NPs were more effective for TAG and PA, and 

TiO2 NP was more effective for DAG. WO3 NPs were effective for some compounds 

including biotin and coenzyme A, but appear to cause extensive fragmentation for 

glycerolipids, as apparent from high fragment ion signals for DAG and PC. Other NPs 

were mostly ineffective for water-insoluble compounds. The organic matrix DHB 

outperformed all NPs for PC but was comparable with Fe3O4 NP for PA.  

Table 4 summarizes ion intensities for negative-mode screening of water-soluble 

and water-insoluble metabolite standards. In negative-mode analyses, all compounds 

were detected as the deprotonated form, [M-H]-. WO3 NPs were not used for negative 

mode screening because they generate significant background peaks with almost no 

analyte ion signals in negative mode according to a preliminary study. Metal oxide NPs 

were generally not efficient in negative mode. Parthenolide, a terpene compound 

difficult to ionize using any other matrices, was weakly detected with TiO2 NP; however, 

its ion signal was two orders of magnitude lower than in positive mode. Among carbon-

based NPs, BDND and colloidal graphite produced good signals for amino acids, biotin, 

and low-molecular weight acids (LMWA; i.e., malic and vanillic acids), while graphene 

oxide showed effectiveness for phosphate compounds, fatty acid, and adenine fragment 

of coenzyme-A. Among metal NPs, silver was most effective for phosphate compounds, 
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ascorbic acid, oleic acid, and lyso-PI, suggesting it is more effective overall then other 

NP matrices for fragile compounds. By comparison, the organic matrix DAN was found 

to be the most efficient matrix for a wide class of compounds. It is noteworthy that some 

NPs are comparable to DAN for select classes of compounds (i.e., BDND for LMWA 

and amino acids; silver for phosphate compounds, ascorbic acid, oleic acid, and lyso-PI; 

and colloidal graphite for biotin and oleic acid), suggesting they can be used for 

selective detection of certain classes of compounds.  

Overall, Fe3O4 and BDND NPs offer the best performance in positive mode, while 

TiO2 and graphene oxide NPs are better for selected compounds. These NP matrices 

outperformed the organic matrix DHB, except for the phosphocholine and phospholipid 

standards. In negative mode, however, the organic matrix DAN is superior to NP 

matrices overall, although carbon-based NPs and silver NPs are as effective for 

selected compounds. It is worth mentioning the possibility of ion suppression effects in 

the mixtures of standards, which were not investigated in this study. For example, ion 

suppression of TAG by PC is well known with DHB matrix. This ion suppression effect 

was easily overcome by Fe3O4 NP showing high TAG signal, probably because it does 

not produce ion signals for PC. Figures 3, 4, 5 and 6 show spectra for the best-ionizing 

NPs and organic matrices in positive mode and negative mode for both water soluble 

and water-insoluble plant metabolites. 
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Discussion 

Carbon Nanoparticles.  

Carbon exists in different allotropic forms and diverse types of synthetic substrate 

materials with different physicochemical properties, such as thermal conductivity, 

specific heat capacity, and melting point.[123, 124],[124]  A rapid laser-induced heating of 

substrates, leading to the desorption/ionization of analytes, is widely regarded as the 

NALDI mechanism.[16] A study by Tang et al. suggests diamond NPs, with the highest 

extent of internal energy transfer, induce significant fragmentation of the 

benzylpyridinium thermometer ion. They proposed that the higher ionization energies of 

diamond NPs (6.9-8.07 eV) relative to graphite NPs (4.39eV)[16] might lead to diamond’s 

high ionization efficiency for LMW metabolites (< m/z 500) and lower ionization 

efficiency for lipids due to greater ion fragmentation. This hypothesis is supported by our 

observation of lower glucose 6-phosphate signal with BDND in comparison to graphene 

oxide.  The results of the Tang et al. study also indicated that increased internal energy 

transfer is not the only factor behind increased desorption/ionization efficiency. This 

further confirms that the thermal desorption mechanism can only partly account for the 

ionization efficiency of NPs.[16] 

Graphite was found to produce a high carbon cluster background in comparison 

to BDND and graphene oxide in both positive and negative mode (Figures 7 and 8). 

This might be due to the lower laser fluence threshold for graphite ablation 

(approximately 4 times lower than that for diamond).[125] The weaker bonding/interaction 

(i.e. sp2-hybridized carbon with interlayer π-π interaction in colloidal graphite vs. strong 

three-dimensional sp3-hybridized carbon-carbon bond network in diamond NPs) might 
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favor the phase transition/destruction of NPs upon laser irradiation[16], which also 

produces a high carbon cluster background in the m/z <500 region. This high carbon 

cluster background significantly reduces the usefulness of colloidal graphite as a matrix 

below m/z 500. Additionally, the phase transition/destruction of NPs dissipates the laser 

energy and results in decreased internal energy transfer,[16] which might explain the 

lower ionization efficiency of colloidal graphite for LMW metabolites.  

The electrical and thermal conductivity of graphene oxide have been suggested 

to aid the ionization efficiency.[115] Similar to colloidal graphite, graphene oxide has sp2-

hybridized carbon, which might favor the phase transition/destruction of NPs upon laser 

irradiation.[16] The carboxylic acid and hydroxyl groups at the surface of graphene oxide 

NPs facilitate proton transfer to and from analytes, similar to organic acid matrices. 

Interestingly, graphene oxide produced significantly lower carbon cluster background in 

comparison to colloidal graphite in both positive and negative modes. The reason for 

this low background is not fully understood. The greater phase transition/destruction of 

NPs upon laser irradiation and lower internal energy transfer in comparison to BDND 

NPs may explain graphene oxide’s lower efficiency for LMW metabolite ionization and 

higher efficiency for more labile, higher MW lipids.  This is further supported by the 

higher signals observed for labile LMW metabolites such as glucose 6-phosphate, 

phosphoenolpyruvic acid and glycerol 3-phosphate  

 

Metal and Metal Oxide Nanoparticles.  

Crystalline nanoparticles (metals and semiconductor metal oxides) absorb light, 

which can be transformed to and released as heat. A laser optically excites electrons in 
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either metals or semiconductor NPs, and the energy thus gained turns into heat that 

diffuses away from the nanocrystals leading to an increase in the temperature of the 

surrounding medium. For metal nanoparticles such as silver, gold and copper, in the 

region of plasmon resonance, heat generation is strong due to the combined motion of 

many electrons in metals.[126, 127],[127] For semiconductor metal oxide NPs such as 

titanium dioxide (TiO2), tin dioxide (SnO2), zinc oxide (ZnO), aluminum-doped zinc oxide 

(AZO), iron(II,III) oxide (magnetite) (Fe3O4) and tungsten trioxide (WO3), heat 

generation is due to excitation of electrons from the valence band to the conduction 

band,[108], [126]  followed by radiation-less deactivation (thermalization), which significantly 

increases the local temperature of the NP surface.[108] This heat or internal energy 

generated at the NP surface is then transferred to the analytes that are in contact with 

the NP surface, causing desorption/ionization.[108] In positive mode ionization, this 

causes the formation of adducts between the analytes and alkali metal ions. 

In negative mode, the analytes are usually thought to lose H+ (proton) to the 

photo-ionized matrix.[108] In our experiments, none of the nanoparticle matrices were as 

efficient in ionizing plant metabolites in negative mode as the organic matrix DAN, which 

we have previously shown to be an effective matrix for LMW metabolites.[122] The likely 

reason for the effectiveness of DAN is the presence of two primary amine groups, which 

readily deprotonate analyte molecules. By comparison, the surface of semiconducting 

metal oxide NPs do not typically feature functionalities that could readily deprotonate 

analytes. Furthermore, metal oxides such as TiO2 and WO3 (Figure 9) produce a high 

background of oxide clusters. These oxide clusters suppress ionization of metabolite 

standards and generally result in very low-intensity signals. Among metal NPs, Ag was 
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the most efficient negative mode NALDI-MS matrix. The use of Au and Pt NPs was 

complicated by their tendency to aggregate and settle out of suspension during the 

application process. Further investigations of these materials using sputter-coating for 

deposition are discussed in Chapter 5. 

 

Theory for Thermal Desorption Model:  

As discussed in the introduction, the energy transfer between matrix and analyte 

that is required for NALDI is thought to occur via a thermally driven process. The 

temperature on the NP surface after laser pulse, ΔT, can be calculated by the following 

equation (1). [13]   

ΔT = EP/(ρAdCp) =       EP/(ρVCp)   (1) 

  Ep: laser energy  

 A: area of the laser spot 

 Ϲp: heat capacity of the nanoparticle material 

 ρ: density of the nanoparticle material 

 d: depth of the area heated during laser irradiation  

 V: volume of heated material under laser spot (A*d) 

 

The physical properties of the nanomaterial such as heat capacity, heat 

conductivity and bulk density can be obtained from the literature (Table 5). The volume 

of the heated area is affected by several factors: the penetration depth of the laser light, 

the heat diffusion length of the nanoparticle material, and the heat diffusion length of the 

underlying steel substrate.  Heat diffusion length (ddiff) is defined as “within a 
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homogeneous medium, the distance heat applied as a pulse (e.g. a laser pulse) will 

diffuse over a given time”.[128] The heat diffusion length can be calculated using laser 

pulse length as the diffusion time, thermal conductivity, density and specific heat 

capacity of the NP material (Table 5).[13] The heat diffusion length equation for a single 

material is presented below: 

ddiff = 2 (τλ/ρCp)
1/2        (2) 

 τ: laser pulse duration (~ 4ns) 

 λ: heat conductivity of the nanoparticle material 

 Ϲp: specific heat capacity of the nanoparticle material 

 ρ: density of the nanoparticle material 

 

Performing these calculations for the nanoparticle matrix material alone, 

however, neglects the penetration of incident laser irradiation beneath the matrix 

surface and subsequent heat transfer to the stainless steel support. In our ultraviolet 

(UV) absorption study (data not shown), we were able to measure transmission at the 

optimal concentration of NPs used for NALDI-MS analysis indicating that not all the 

incident 355 nm light was absorbed. Additionally, some amount of light will be 

scattered/reflected by the nanoparticle surface.  Because of these major omissions, 

which neglect heat loss to the underlying MALDI plate and overestimate the deposited 

energy, preliminary calculations gave very high temperature estimates for all NPs, 

failing to explain why some NPs are better at ionizing plant metabolites.  
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We therefore developed a refined thermal desorption model by modifying 

Schoenberg’s model [13]. We made the following corrections in the model to account for 

additional factors.  

1)  We did not assume that all the laser energy was absorbed by the first layer of 

NPs and using the bulk property we found the absorbance coefficient, ɛ, for the 

nanoparticle material. From the absorbance coefficient (ɛ), the laser penetration 

depth can be calculated (1/ɛ). We summed the heat diffusion length (ddiff) and half 

of penetration depth (1/2ɛ) to calculate volume of the area heated after laser 

pulse to solve equation 1.   

2) The thickness of the NPs suspension sprayed on the stainless steel target plates 

can be calculated using concentration, volume, and density of the NPs sprayed, 

and the area covered by the OCN spray. Table 6 gives the thickness calculated 

for each NP at the optimal concentration.  

3) There are the following two cases for change in temperature (ΔT) after the laser 

pulse.    

a. Thickness of sprayed NPs is higher than sum of half of penetration depth 

(1/2ɛ) and heat diffusion length (ddiff) of NPs 

b. Thickness of sprayed NPs is lower than sum of penetration depth half of 

(1/2ɛ) and heat diffusion length (ddiff) of NPs 

4) If the thickness is higher than the sum of heat diffusion length (ddiff) and half of 

penetration depth (1/2ɛ) then the volume heated after each laser pulse can be 

calculated using equation 1, using the sum of ddiff and 1/2ɛ as the ‘d’ term. 

ΔT’ = EP/(ρAdCp) =       EP/(ρVCp)   (1) 
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  Ep: laser energy  

 A: area of the laser spot 

 Ϲp: heat capacity of the nanoparticle material 

 ρ: density of the nanoparticle material 

 d: the sum of ddiff and 1/2ɛ 

5) If the thickness is less than the sum of heat diffusion length (ddiff) and half of 

penetration depth (1/2ɛ), thermal energy will be dissipated to the stainless steel 

plate. The use of half the penetration depth rather than the full depth provides a 

more accurate approximation of the amount of heat diffused to calculate the 

heated volume. The temperature increase after each laser pulse can then be 

calculated by the following equation; 

ΔT” =       EP/[(ρVCp)NPs+ (ρVCp)SS]   (4) 

 (ρVCP)NPs: density, volume, and heat capacity of NPs 

(ρVCp)SS: density, volume, and heat capacity of stainless steel 

6) To calculate (ρVCp)SS we have to calculate volume of stainless steel plate 

heated, and for that the heat diffusion length for stainless steel (ddiffSS) needs to 

be calculated. This  can be calculated by the following equation; 

ddiff,ss = 2 (τ2λ/ρCp)
1/2        (5) 

τ2: Laser pulse duration (4nS) – τ1; duration of dissipation of heat into 

stainless steel 

λ: heat conductivity of the stainless steel: 46  W/m K 

Ϲp: specific heat capacity of the stainless steel: 500 J/kg K 

ρ: density of stainless steel: 7889 kg/m3 
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7) The time required for the laser energy to penetrate the nanoparticle layer and 

diffuse to the surface of the plate can be calculated by the following equation: 

τ1 = d1
2 ρCp/

 4λ        (5) 

d1: difference between thickness of sprayed NPs and laser penetration 

depth (1/ɛ) 

λ: heat conductivity of the NP material 

Ϲp: specific heat capacity of NP material 

ρ: density of the NP material 

Following the above steps, we have corrected the thermal model. New 

temperature values ΔT' and ΔT'' and are listed for each NP matrix in table 7. The laser 

energy used for calculations was 0.5 µJ, which in this instrument yields fluences typical 

of MALDI processes.[129, 130] The temperature increase for colloidal graphite and 

graphene oxide was not calculated because absorbance coefficients could not be found 

in the literature.  

As shown in Table 7, the calculation for WO3 gives very high local temperatures 

(3013 K) upon laser irradiation, leading to extensive fragmentation (and thus low intact 

ion yield) for various plant metabolites. TiO2 shows a ΔT value of 1920 K, which also 

produces significant amount of fragmentation along with the highest intensity signal for 

terpene compound among all other metal oxides. The ΔT value for Fe3O4 is 1260 K, 

correlating to a typical MALDI temperature and possibly explaining why it appears to be 

the best NP for desorption/ionization of most metabolites in positive mode. The high 

ionization energy, electronegativity, and electron affinities of all metal oxides (Table 5) 

make them less suitable as negative mode matrices. The boron doped nano-diamond 
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(BDND) produces significantly better signal in comparison to other carbon based NPs 

which might be attributed to the presence of functionalities such as OH, CN, C=O, 

COOH, C-O-C and the reduced background due to the stable sp3 structure.  

Among the metal NPs, Cu works best for m/z < 500 in positive mode. Ag works 

well for both positive mode and negative mode and forms an [M+Ag]+ adduct at 

unsaturation sites of parthenolide and oleic acid.  Au and Pt were not efficient matrices 

due to the fact that they are difficult to keep suspended in solution during sample 

preparation. Physical vapor deposition of metal NPs and a comparison of this technique 

to the NP suspension spray technique used here is presented in Chapter 5.   

  

CONCLUSIONS 

In this study, we employed thee different types of nanoparticles for the NALDI-

MS screening including metal nanoparticles, metal oxide nanoparticles and carbon-

based nanoparticles.  The empirical screening and corrected thermal 

desorption/ionization model employing the physical and chemical properties improves 

our understanding of the NALDI-MS ionization mechanism. The revised model 

presented here provides a more accurate calculation of the desorption temperature 

range, enabling rational selection of NP matrices for the thermally-driven NALDI 

process. 

The empirical results of NP screening show that Fe3O4, BDND, TiO2 and 

graphene oxide NPs are relatively better for ionizing plant metabolites in comparison to 

other NPs and traditional organic matrices.  The better desorption/ionization efficiency 

of Fe3O4 and TiO2 are supported by the revised thermal model. Future work will be 
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focused on theoretical calculations for comparison of carbon-based NPs and 

understanding the thermal desorption mechanism employing the corrected model.  In 

negative mode, the organic matrix DAN is superior to NP matrices overall, although 

BDND graphene oxide NPs and silver NP are as effective for selected compounds. 

Interestingly, TiO2 produces the highest signal intensity for parthenolide in negative 

mode and this is behavior is unique among all NPs and organic matrices.   

In addition to screening the matrices for their general utility in plant metabolite 

analysis, we used the most suitable NPs for NALDI-MSI of bacterial infections in plant 

tissue. This study provides information about plant-pathogen interactions, including 

localized information about metabolic changes and defense responses, and will 

hopefully assist in controlling the loss of feed-crops due to pathogen infection.[6]   
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Figure continued  

  

Figure 1: Molecular structure of water-soluble plant metabolites used in this study.  
 

 

 

  

 
 
*** Major fragments detected in water-soluble compounds and shown in Table 1. 
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Figure 2: Molecular structure of low-molecular weight water-insoluble plant metabolites  
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*** Major fragments detected in water insoluble compounds and shown in Table 2. 
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Figure continued  

 
Figure 3: NALDI/MALDI-MS spectra for water-soluble standards obtained with selected 
NPs and DHB in positive mode. Water-soluble metabolite ions are primarily detected as 
alkali metal adducts [M+Na]+, [M+K]+ and [M+Li]+. Low-molecular weight acids, amino 
acids, vitamin H and coenzyme A fragments are also detected as di-alkali metal 
adducts. *Cho, *CoA, *CoA’, VA, MA, AA, Ile, Asn, Glu, Glc, Suc, G6P and Biot 
represent choline fragment of phosphocholine, adenine fragment of co-enzyme A, slide 
chain fragment of fragment of co-enzyme A, vanillic acid, malic acid, ascorbic acid, 
isoleucine, asparagine, glutamic acid, glucose, sucrose, glucose 6-phosphate, and 
biotin (vitamin-H), respectively. The phosphate fragments with alkali metal adducts were 
observed and are represented by ●. The contamination pack from is represented by +.  
BPI is base peak intensity. 
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Figure continued  

 
Figure 4: NALDI/MALDI-MS spectra for water-soluble standards in negative mode 
obtained with selected NPs and DAN. All water-soluble metabolites ions are detected as 
[M-H]-.  *CoA, VA, MA, AA, Ile, Asn, Glu, G6P, Biot and CoA represent adenine 
fragment of co-enzyme A, vanillic acid, malic acid, ascorbic acid, isoleucine, 
asparagine, glutamic acid, glucose 6-phosphate  biotin (vitamin-H) and co-enzyme A, 
respectively. The phosphate fragments with alkali metal adducts were observed and are 
represented by ●.  BPI is base peak intensity. 
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Figure continued  

 
Figure 5. NALDI/MALDI-MS spectra for water-insoluble standards in positive mode 
obtained with selected NPs and DHB. Water-insoluble metabolite ions are primarily 
detected as alkali metal adducts [M+Na]+, and [M+K]+. Par, *DAG, TAG, PA and PC 
represent parthenolide, diacylglycerol fragments, triacylglycerol, phosphatidyl-
ethanolamine and phosphatidylcholine, respectively.  BPI is base peak intensity. 
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Figure continued  

 
Figure 6: NALDI/MALDI-MS spectra for water-insoluble standards in negative mode 
obtained with selected NPs and DAN. All water-insoluble metabolites ions are detected 
as [M-H]-.   PA PE, PG, PI and Lyso-PI represent phosphatidic acid, 
phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and lyso-
phosphatidylinositol, respectively. BPI is base peak intensity. 
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Figure 7: NALDI-MS spectra for water-soluble standards in positive mode obtained with 
three carbon-based NPs. Water-soluble metabolite ions are primarily detected as alkali 
metal adducts [M+Na]+, [M+K]+ and [M+Li]+. Low-molecular weight acids, amino acids, 
vitamin H and coenzyme A fragments are also detected as di-alkali metal adducts. 
*Cho, Glc, Suc and Biot represents choline fragment of phosphocholine, glucose, 
sucrose, and biotin (vitamin-H), respectively. The high carbon clusters background 
C10H2, C11H2, C14, C15…etc. was observed with colloidal graphite. In graphene oxide 
high intensity phosphate fragments with alkali metal adducts were observed and are 
represented by ●. BPI is base peak intensity. 
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Figure 8: NALDI-MS spectra for water-soluble standards in negative mode obtained with 
three carbon-based NPs. *CoA, VA, MA, AA, Ile, Asn, Glu, G6P, Biot and CoA 
represent adenine fragment of co-enzyme A, vanillic acid, malic acid, ascorbic acid, 
isoleucine, asparagine, glutamic acid, glucose 6-phosphate  biotin (vitamin-H) and co-
enzyme A, respectively. The high carbon clusters background C9, C10H, C11…etc was 
observed with colloidal graphite and graphene oxide. BPI is base peak intensity. 
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Figure 9: NALDI-MS spectra using WO3 NPs as matrices to compare ionization 
efficiency for standard water-soluble metabolites in positive mode and negative mode. 
In positive mode water-soluble metabolite ions are primarily detected as alkali metal 
adducts [M+Na]+, [M+K]+ and [M+Li]+. Low-molecular weight acids, amino acids, vitamin 
H and coenzyme A fragments are also detected as di-alkali metal adducts. *Cho, *CoA, 
*CoA’, VA, MA, AA, Ile, Asn, Glu, Glc, Suc, G6P and Biot represents choline fragment 
of phosphocholine, adenine fragment of co-enzyme A, slide chain fragment of fragment 
of co-enzyme A, vanillic acid, malic acid, ascorbic acid, isoleucine, asparagine, glutamic 
acid, glucose, sucrose, glucose 6-phosphate, and biotin (vitamin-H). In negative mode 
high background of oxide cluster such as WO4H, WO5, W2O6, W2O7H, W3O8, W3O9H2, 
W3O11 etc. observed. BPI is base peak intensity. 
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Table 1: Optimized nanoparticle concentrations used in this study 

Nanoparticles 
Water Soluble Water Insoluble 

Positive Negative Positive Negative 

WO3 5.0 - 5.0 - 

TiO2 5.0 5.0 10.0 5.0 

Fe3O4 5.0 5.0 5.0 5.0 

ZnO 10.0 5.0 10.0 5.0 

AZO 5.0 10.0 10.0 10.0 

SnO2 10.0 10.0 10.0 10.0 

BDND 100.0 100.0 100.0 100.0 

Colloidal Graphite 150.0 150.0 150.0 150.0 

Graphene Oxide 10.0 10.0 10.0 10.0 

Platinum 10.0 2.5 10.0 5.0 

Gold 10.0 5.0 10.0 10.0 

Silver 5.0 5.0 2.5 2.5 

Copper 20.0 5.0 20.0 20.0 

  
 

Table 2: Threshold and optimum laser energy for each NP.  Energy defined by % of 
maximum pump diode current.  

Nanoparticles 
Threshold Energy Optimum Energy 

Positive Negative Positive Negative 

WO3 80.50  - 82.50 - 

TiO2 80.50  81.00  83.0  83.50  

Fe3O4 80.00 80.00 82.50   83.50  

ZnO 80.50  81.00  82.50 85.00 

AZO 80.00 80.00 82.50  83.50 

SnO2 80.50 83.00 85.00 85.00  

BDND 81.00  80.50 83.00 84.00 

Colloidal Graphite 80.00  80.00  83.00 84.00 

Graphene Oxide 80.50  80.00 82.00  83.00  

Platinum 80.50  81.50 85.00 87.50  

Gold 81.50  82.00 85.00  87.50  

Silver 80.00  80.50  83.00  84.00  

Copper 80.50  81.00 83.50  84.00  

 
  



 

 

Table 3: Summary of nanoparticle screening in positive mode. Ion signals are compared and presented in a heat 
map with the maximum ion signal in red for each analyte. All compounds are detected as alkali metal adducts, except PC, 
phosphocholine, and choline fragments in a molecular ion form and DAG fragment as a protonated form. Low-molecular 
weight acids, amino acids, vitamin H and Co-enzyme-A fragments are also detected as di-alkali metal adducts. All ion 
signals from various proton and alkali metal adducts are summed into a single value. * represents fragment ions. PA: 
phosphatidic acid, PC: phosphatidylcholine, TAG: triacylglycerol, AZO: aluminum-doped zinc oxide, DHB: 2,5-
dihydroxybenzoic acid, DAN: 1,5-diaminonaphthalene.  
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Table 4: Summary of nanoparticle screening in negative mode, presented in a heat map with the maximum ion signal 
in green for each analyte. All compounds are detected as a deprotonated form. PE: phosphatidylethanolamine, PG: 
phosphatidylglycerol, PI: phosphatidylinositol.
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Table 5: Nanoparticle size used in this study and bulk physical properties. [131-143] 

NPs 
Size  
(nm) 

ɛ  
Absorbance  
Coefficient  

Energy 
Gap 
(eV) 

Densit
y  

(ρ)  
 kg/ m3 

Heat 
Capacity  

(ϹP)  
J /kg  K 

Heat 
Conductivit

y (λ) 
 W/ m  K 

Meltin
g 

Point  
K 

Ionizatio
n  

Energy  
K  J/mol 

Electro- 
negativit

y 

Electro
n 

Affinity  
K  

J/mol 

WO3 23-65 4.00E+04 3.20 7160 318 1.63 1746 20592 6.6 321 

TiO2 10 1.77E+05 3.20 4300 683 11.7 2116 9269 5.8 418 

Fe3O4 11 3.60E+05 2.20 5170 653 27.4 1870 - - - 

ZnO 5-6' 1.60E+05 3.20 5600 497 23.4 2248 2770 5.7 415 

AZO 15 1.00E+05 3.35 5600 497 23.4 2248 714 - 396 

SnO2 2 1.00E+05 3.47 6950 349 40 1903 9295 5.8 463 

BDND 3-10' 5.00+E04 3.5-5.5 3500 509 42 3823 1087 2.6 122 

Coll. 
Graphite 

1000  
(Flake

) 
- 0.40 2200 686 470 3970 1087 2.6 122 

Graphene 
Oxi. 

554  
(1-1.2) 

- 0.40 1900 686 470 3970 1087 2.6 122 

Platinum 3-7' 8.77E+05 
4.70-
5.74 

21500 133 71.6 2042 870 2.3 205 

Gold 15 6.12E+05 2.38 19300 129 317 1338 890 2.5 119 

Silver 20 5.02E+05 3.10 10500 235 429 1235 731 1.9 126 

Copper 40 6.62E+05 2.10 8960 385 401 1357 746 1.9 223 
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Table 6: Thickness calculation for each nanoparticle at their optimal concentration. 

NPs 
Concentration  

(mM) 
Volume 

(mL) 
Density 

(μg/cm3
 ) 

Area 
 (cm2) 

Molecular  
Weight (g) 

Mass 
 ( μg) 

Volume 
(cm3) 
M/ρ 

Thickness 
(μm) 

WO3 5.00 0.5 7.16E+06 2.54 231.84 5.80E+02 8.09E-05 0.318 

TiO2  10.00 0.5 4.30E+06 2.54 79.87 3.99E+02 9.29E-05 0.365 

Fe3O4 5.00 0.5 5.17E+06 2.54 231.53 5.79E+02 1.12E-04 0.440 

ZnO  10.00 0.5 5.60E+06 2.54 81.41 4.07E+02 7.27E-05 0.286 

AZO  10.00 0.5 5.60E+06 2.54 81.41 4.07E+02 7.27E-05 0.286 

SnO2 10.00 0.5 6.95E+06 2.54 150.71 7.54E+02 1.08E-04 0.426 

Diamond 100.00 0.5 3.50E+06 2.54 12.00 6.00E+02 1.71E-04 0.674 

Coll. Graphite 150.00 0.5 2.20E+06 2.54 12.00 9.00E+02 4.09E-04 1.608 

Graphene Oxi. 10.00 0.5 2.20E+06 2.54 28.00 1.40E+02 6.36E-05 0.250 

Platinum 10.00 0.5 2.15E+07 2.54 195.08 9.75E+02 4.54E-05 0.178 

Gold 10.00 0.5 1.93E+07 2.54 196.97 9.85E+02 5.10E-05 0.201 

Silver 5.00 0.5 1.05E+07 2.54 107.87 2.70E+02 2.57E-05 0.050 

Copper 20.00 0.5 8.96E+06 2.54 63.55 6.35E+02 7.09E-05 0.279 
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Table 7: Temperature calculations using revised thermal model. Nanoparticles for which the sum of heat diffusion length 
and half the penetration depth (ddiff + 1/2ɛ) is higher than thickness of spared NPs are in bold.  ΔT' is the temperature 
calculated using NP thickness as depth, while ΔT” is the temperature calculated using the sum of heat diffusion length 
and half the penetration depth as depth 

NPs 
Heat Diffusion  

Length Ddiff (um) 

Penetration 
Depth 1/ɛ  

(um) 

Ddiff + 1/2ɛ  
um 

Thickness of 
 Sprayed 
NPs (μm) 

ΔT' 
(K) 

Δ T" 
(K) 

WO3 0.107 0.250 0.232 0.3183 3013 - 

TiO2 0.252 0.057 0.281 0.3651 1930 - 

Fe3O4 0.360 0.028 0.374 0.4402 1260 - 

ZnO 0.367 0.063 0.398 0.2858 - 741 

AZO 0.367 0.100 0.417 0.2858 - 741 

SnO2 0.514 0.100 0.564 0.4263 - 667 

BDND 0.614 0.200 0.714 0.6740 - 624 

Coll. Graphite 2.232 - - 1.6084     

Graphene Oxi. 2.402 - - 0.2502     

Platinum 0.633 0.011 0.639 0.1784 - 739 

Gold 1.427 0.016 1.435 0.2006 - 722 

Silver 1.668 0.020 1.678 0.0505 - 870 

Copper 1.364 0.015 1.371 0.2788 - 597 

.
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CHAPTER 5 

SOLVENT-FREE METAL NANOPARTICLE APPLICATION AND 
COMPARISON FOR NANOPARTICLE-ASSISTED LASER 

DESORPTION/IONIZATION-MASS SPECTROMETRY OF PLANT 
METABOLITES 

 
Gargey B. Yagnik and Young Jin Lee 

 

Abstract 

We have compared two metal nanoparticle (NP) application techniques – 

solvent-free sputter coating (physical vapor deposition [PVD]) and spraying using an 

oscillating capillary nebulizer (OCN) – for nanoparticle-assisted laser 

desorption/ionization-mass spectrometry (NALDI-MS) to detect low-molecular weight 

(LMW) plant metabolites and for eventual application to NALDI-MS imaging. This study 

shows that metal nanoparticles such as gold have a strong tendency to aggregate, 

which limits their efficiency in desorption/ionization of various classes of plant 

metabolites. Solvent-free argon sputter coating was found to be an effective and 

homogeneous method for NP application that avoided this aggregation problem. It was 

also found that intermediate-pressure sputter coating oxidized some metals such as 

copper, and reduced their efficacy as matrices. Overall, this study serves as an 

extension of our empirical matrix screening to find effective matrices to ionize particular 

classes of plant metabolites which are difficult to ionize using traditional organic 

matrices.  It also provides insight into the NALDI-MS ionization mechanism. 
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Introduction 

As discussed in the previous chapter (Chapter 4), various nanoparticles (NPs) 

have been utilized for NALDI-MS for the detection of low-molecular weight (LMW) 

compounds.  Compared to conventional matrices such as 2,5-dihydroxybenzoic acid 

(DHB) 1,5-diaminonaphthalene (DAN), and 9-aminoacridine (9-AA), advantages of NP 

matrices include: low background signal, higher absorptivity, non-volatility, and 

homogeneous applicability. In our previous study we performed a large-scale screening 

of NPs for their effectiveness in ionizing a wide variety of low-molecular weight plant 

metabolites. The NPs in our previous study include various metal, metal oxide, and 

carbon-based NPs. The standard metabolite compounds used for the screening in that 

work represent various classes of plant metabolites such as small organic acids, 

sugars, amino acids, a vitamin, a co-enzyme, glycerolipids (including phospholipids), 

fatty acids and terpenes. 

As an extension to this prior work, the work described here compares metal NPs 

applied as a suspension to metal NPs deposited on a sample via sputter coating 

(physical vapor deposition, PVD). As mentioned in Chapter 4, metal NPs such Au[14, 92] 

[90, 91, 94-98, 100], Ag[14, 59, 101-103], and Cu[14] have become popular nanoparticle matrices, 

and in some studies, metal NPs such as Ag[144, 145] and Au[29, 146, 147] have been applied 

by sputter coating. To our knowledge there has been no comparative study between 

metal NPs applied as a liquid suspension and metal NPs applied by sputter coating. In 

NALDI-MS and NALDI-MS imaging analysis, it is difficult to keep NPs suspended in 

solution and apply them homogeneously to the sample surface. Metal NPs like gold 
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tend to aggregate at the bottom of the suspension during the spraying process. PVD 

circumvents this suspension and enables homogeneous application of metal NPs.  

The metals employed in this study for NPs are gold (Au), silver (Ag) and copper 

(Cu). Plant metabolites used for the screening are the same as those in Chapter 4, 

which include: small organic acids (malic acid, vanillic acid, ascorbic acid 

phosphoenolpyruvic acid, glycerol 3-phosphate, phosphocholine), sugars (sucrose, 

glucose 6-phosphate), amino acids (glutamic acid, isoleucine, asparagine), biotin 

(vitamin H), co-enzyme A, glycerolipids (including phospholipids), a fatty acid (oleic 

acid), and a terpene (parthenolide). We expect that this metabolite screening 

comparison of metal NPs applied via two different methods, in conjunction with the 

physical and chemical properties of the metal nanoparticles, might also be helpful in 

further understanding the NALDI-MS ionization mechanism.  

 

Experimental 

Materials   

Metal NPs Au (99.95%, 15 nm), Ag (99.99%, 20 nm), and Cu (99.90%, 40 nm) 

were purchased from US Research Nanomaterials, Inc. (Houston, TX, USA). The metal 

sputtering targets gold (99.99% Au, Ø57mm x 0.1mm), silver (99.99% Ag, Ø57mm x 

0.1mm) and copper (99.99% Cu, Ø57mm x 0.1mm) were purchased from Ted Pella, 

Inc. (Redding, CA, USA). The organic matrices 2,5-dihydroxybenzoic acid (98.0%), 1,5-

diaminonaphthalene (97.0%) and 9-aminoacridine hydrochloride monohydrate  (98.0%) 

were purchased from Sigma Aldrich (St. Louis, MO, USA).  The metabolite standards 

malic acid, glucose, glucose 6-phosphate, sucrose, asparagine, glutamic acid, 
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isoleucine, coenzyme-A trilithum salt, biotin (vitamin-H), glycerol tripalmitate, vanillic 

acid (Fluka) and oleic acid (Fluka) were purchased from Sigma Aldrich (St. Louis, MO, 

USA). Ascorbic acid was purchased from Fisher Science Education (Nazareth, PA, 

USA). Phosphoenolpyruvic acid monopotassium salt was purchased from Alfa-Aesar 

(Ward Hill, MA, USA). Rac-Glycerol 1-phosphate disodium salt hexahydrate was 

purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Phosphocholine 

chloride sodium salt hydrate was purchased from Tokyo Chemical Industry Co. Ltd 

(Philadelphia, PA, USA). Parthenolide was purchased from TORIS Bioscience (Bristol, 

United Kingdom). Phospholipid mixture [L-α-Phosphatidylcholine, 20% (Soy) (Soy Total 

Lipid Extract)] was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA) 

 

Sample Preparation for Plant Metabolite Standard Analysis 

Nanoparticle Suspension and Plant Metabolite Standard Application 

For analysis, metal nanoparticles were suspended at various concentrations in 

isopropanol to determine optimal NP concentration. Optimal concentrations are 5 to 10 

mM for Au NPs, 2.5 to 5 for Ag NPs mM, and 20 mM for Cu NPs (Chapter 4). Each NP 

suspension was mixed with a standard solution containing either water-soluble 

standards (malic acid, vanillic acid, ascorbic acid, phosphoenolpyruvic acid, glycerol 3-

phosphate, phosphocholine, glucose, sucrose, glucose 6-phosphate, glutamic acid, 

isoleucine, asparagine, vitamin H (biotin) and co-enzyme A) in water, or water-insoluble 

standards (glycerol tripalmitate, assorted phospholipids, oleic acid and parthenolide) in 

chloroform.  The NP suspensions were mixed with standard solutions at a 10:1 volume 

ratio, yielding a 100 µM final concentration of standards. The metabolite standard and 
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NP suspension mixture was sprayed onto stainless steel MALDI target plates using a 

modified airbrush as an oscillating capillary nebulizer (OCN).   

Complete details of the application are presented in Chapter 4, and a more 

detailed description of the OCN has been published previously.[121] Briefly, the NP-

standard mixture was sprayed onto a stainless steel sample plate from a distance of 8-

10 cm, with a nebulizing gas (N2) pressure of 40 psi and a flow rate of 50 µL/min. A total 

of 500 µL of the NP-standard mixture was applied for each sample, providing uniform 

coverage of an area ~2 cm in diameter. 

 

Metal Sputter Coating on Plant Metabolite Standard 

For application of metals via physical vapor deposition, 45µL of 1.0 mM water-

soluble standards in water or 45µL of 1.0 mM water-insoluble standards in chloroform 

were first sprayed by the OCN onto a glass slide. Metals were then applied using a 

Cressington 108 auto sputter coater instrument from Ted Pella, Inc. (Redding, CA, 

USA). As shown in the schematic diagram (Figure 1), the distance between the metal 

target and the sample was ~5 cm during sputtering. The chamber was flushed with 

argon gas twice before sputtering to remove oxygen. Sputtering current and argon 

pressure were set at 40 mA and at 0.04–0.05 mbar, respectively. Sputtering time was 

individually optimized for each type of nanoparticle. Various sputter coating times were 

studied for each metal. The time range for each particular metal was based on reported 

optimal sputtering times in the literature.  Times tested were 5, 10, 15, 20 and 25 

seconds for gold ; 5, 10, 20, 30, 40 and 50 seconds for silver; and 20, 30, 40, 50, 60, 70 

and 80 seconds for copper.  Absolute ion intensities for metabolite standards were 
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compared, and the optimal sputtering times were found to be 5-10 seconds for Au and 

40-50 seconds for Cu.  In the case of Ag NPs, optimal sputtering time was found to be 

different for water-soluble standards (5-10 seconds) and water-insoluble standards (50 

seconds). 

 

MS Data Acquisition and Analysis 

A linear ion trap-orbitrap mass spectrometer with a MALDI ion source (MALDI 

LTQ-Orbitrap Discovery; Thermo Scientific, San Jose, CA, USA) was used for the 

current study.  The instrument was modified to use an external, frequency-tripled, diode-

pumped Nd:YAG laser operating at 355 nm and 60 Hz (UVFQ; Elforlight Ltd., Daventry, 

UK).  Conditions such as laser energy and number of shots were individually optimized 

for each type of NP, and 250 spectra were collected in raster fashion with 100 µm step 

size. Three replicates were collected from two independent samples for each NP 

concentration (Chapter 4) and for each sputtering time.  The laser spot size was 

estimated to be ~20 µm as determined from laser burn marks on a thin film of α-

cyanohydroxycinnamic acid.  Orbitrap scans were acquired over the m/z range of 50 to 

1200. The signal was then averaged over the entire scan and samples were compared 

based upon their absolute intensities for ions of interest. 

 

SEM Imaging 

Au and Ag NPs were imaged by SEM using an FEI Quanta 250 in the Materials 

Analysis and Research Laboratory at Iowa State University. For SEM imaging of NPs 

applied by OCN, 500 µL of NP suspension (2.5 mM Ag or 10 mM Au) was sprayed onto 
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a silicon chip attached to a carbon stub. For SEM imaging of nanoparticles deposited by 

PVD, Ag was sputtered for 5s and 50s, while Au was sputtered for 10s. All application 

conditions (e.g. nebulizing pressure, flow rate, Ar pressure, and sputter current) were 

the same as described above.  

   

Results and Discussion 

Results 

In positive mode, most metabolite standards were detected as alkali metal 

adducts, primarily [M+Na]+ and [M+K]+. Some compounds also showed appreciable 

lithium adduct signal, [M+Li]+, likely due to the lithium present as a counter-ion in the co-

enzyme A standard. In the case of Ag NPs, oleic acid and parthenolide were also 

detected as the [M+Ag]+ species. For ion yield comparisons in positive mode, alkali 

adduct and protonated signals were summed. In negative-mode analyses, all metabolite 

standards were detected as [M-H]-. 

Absolute ion intensities for positive-mode screening of water-soluble and water-

insoluble metabolite standards are presented in Table 1. The Au sputter coating 

produced high signal for LMW acids, amino acids, sugars, biotin (vitamin H) and TAGs 

in positive mode. The Au NP suspension did not produce high-intensity signal for any 

metabolites in positive mode. Ag suspension and sputter coating produced comparable 

signals.  In contrast to results obtained for Au, Cu suspension produced high signals for 

LMW acids, sugars, amino acid and biotin (vitamin H) in positive mode (see Figure 3, 

Chapter 4) and Cu sputter coating did not produce high signal for any metabolite 

standard in positive mode. Figures 2 and 3 compare spectra between Au suspension 
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and sputter coating for water-soluble and water-insoluble metabolites in positive mode. 

The positive mode results for both Ag PVD and NPs suspension spray show silver 

adduct for oleic acid and parthenolide. Further studies will be conducted for analysis of 

wax ester standards to understand silver adduct formation at the unsaturation site of 

molecules.  

Absolute ion intensities for negative-mode screening of water-soluble and water-

insoluble metabolite standards are presented in Table 2. Both Ag suspension 

application and Ag sputter coating produced high signals for LMW acids, phosphate 

sugars and acids. Figure 4 and 5 present a comparison of spectra obtained from Ag 

suspension and sputter coating for water-soluble and water-insoluble metabolites in 

negative mode. From Table 2 it is clear that Au sputter coating produces high signal for 

LMW acids, relative to suspension spraying in negative mode also. Cu did not efficiently 

desorb/ionize plant metabolites in negative mode by either application method. The 

organic matrix DAN was found to be the most efficient matrix in ionizing LMW acids, 

phosphate compounds, sugars, amino acids, vitamin H (biotin), and co-enzyme-A. 

Gold sputter coating is more effective in ionizing LMW plant metabolites vs. NP 

suspensions and other metal NPs because gold NPs aggregate and are difficult to keep 

in suspension, while sputter coating applies Au homogenously over samples. Figures 6 

and 7 show a comparison of SEM images of sputter coated and OCN-sprayed 

nanoparticles on silicon chips. The SEM images shows that for both Au and Ag, sputter 

coating applied NPs in a homogeneous layer. This homogeneous application increases 

NP efficiency and minimizes sweet spot[2] formation in NALDI-MSI. Silver PVD and NPs 

are similarly effective in ionizing LMW water-soluble plant metabolites. Relative to all 
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other NPs, Ag suspension produces high intensity signals for phospholipids in negative 

mode. Interestingly, sputter coated silver does not produce high intensity signals for 

phospholipids. The reason for this unusual result is unknown and requires further 

investigation. Copper suspension outperforms sputter coated copper for all analytes, 

possibly due to copper oxide formation as a result of trace oxygen in the sputtering 

chamber. 

 

Conclusion 

We have compared solvent-free sputter coating and suspension spraying by 

OCN as methods of application of nanoparticle matrices for NALDI-MS. This study 

shows sputter coating is very effective for homogenous application of noble metal 

nanoparticles. This is preferable to spraying because metal NPs such as gold have a 

strong tendency to aggregate, settling out of suspension. This aggregation of Au NPs is 

a limiting factor for NALDI-MS efficiency as it complicates application and can lead to 

‘sweetspots’ on the sample surface. It was also found that intermediate-pressure sputter 

coating is not suitable for transition metal NPs like Cu, as it can lead to oxidation of the 

metal surfaces.  

Future efforts will extend this study to other noble metals such as platinum and 

transition metals like iron. It is expected that iron sputter coating under intermediate 

pressure will form iron oxide. We have previously found magnetite (Fe3O4) to be the 

most efficient of several tested nanoparticle matrices for analysis of both water-soluble 

and water-insoluble plant metabolite in positive mode (Chapter 4). The sputter coating 
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will be helpful for homogeneous application of iron and trace oxygen present in the 

sputtering chamber should oxidize the iron to iron oxide.  

Overall, sputter coting is a very homogeneous application technique for noble 

metal NPs and transition metal oxide NPs. The future studies with various metals will be 

helpful developing novel sputtered metal matrices for NALDI-MS and –MSI. 
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Figure 1: Schematic Diagram of 108auto sputter coater from Ted Pella, Inc. 
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Figure 2: NALDI-MS spectra using gold NPs (Au Suspension) and gold sputter coating 
(Au PVD) as matrices to compare ionization efficiency for standard water-soluble 
metabolites in positive mode. Water-soluble metabolite ions are primarily detected as 
alkali metal adducts [M+Na]+, [M+K]+ and [M+Li]+. Low-molecular weight acids, amino 
acids, vitamin H and coenzyme A fragments are also detected as di-alkali metal 
adducts. *Cho, VA, MA, AA, Ile, Asn, Glu, Glc, Suc and Biot represent choline fragment 
of phosphocholine, vanillic acid, malic acid, ascorbic acid, isoleucine, asparagine, 
glutamic acid, glucose, sucrose and biotin (vitamin-H), respectively. The phosphate 
fragments with alkali metal adducts were observed and are represented by ●. The 
contamination peak from DAN is represented by +.  BPI denotes the base peak 
intensity. 
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Figure 3: NALDI-MS spectra using gold NPs (Au Suspension) and gold sputter coating 
(Au PVD) as matrix to compare ionization efficiency for standard water-insoluble 
metabolites in positive mode. Water-insoluble metabolite ions are primarily detected as 
alkali metal adducts [M+Na]+, and [M+K]+. Par, *DAG and TAG represent parthenolide, 
diacylglycerol fragments and triacylglycerol, respectively.  Contamination ions are 
represented with +. BPI denotes the base peak intensity. 
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Figure 4: NALDI-MS spectra using silver NPs (Ag Suspension) and silver sputter 
coating (Ag PVD) as matrix to compare ionization efficiency for standard water-soluble 
metabolites in negative mode. All water-soluble metabolites ions are detected as [M-H]-.  
*CoA, VA, MA, AA, Ile, Asn, Glu and G6P represent adenine fragment of co-enzyme A, 
vanillic acid, malic acid, ascorbic acid, isoleucine, asparagine, glutamic acid and 
glucose 6-phosphate, respectively. Phosphate fragments with alkali metal adducts were 
observed and are represented by ●.  BPI denotes the base peak intensity. 
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Figure 5: NALDI-MS spectra using silver NPs (Ag Suspension) and silver sputter 
coating (Ag PVD) as matrix to compare ionization efficiency for standard water-insoluble 
metabolites in negative mode. All water-insoluble metabolites ions are detected as [M-
H]-.   PA PE, PI and Lyso-PI represent phosphatidic acid, phosphatidylethanolamine, 
phosphatidylinositol and lyso-phosphatidylinositol, respectively. Contamination ions are 
represented with +. BPI denotes the base peak intensity. 
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Figure 6: SEM images A and B are 50 seconds sputter coated Ag on silicon chip and 
2.5 mM suspended Ag NPs 500 µL sprayed on silicon chip, respectively. 
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Figure 7: SEM images A and B are 10 seconds sputter coated Au on silicon chip and 
10 mM suspended Au NPs 500 µL sprayed on silicon chip, respectively. 
. 
 
 



 

 

 

Table 1: Absolute ion signal intensity comparison of standard water-soluble and water-insoluble metabolites for NP 
screening in positive mode. Water-soluble metabolite ions are primarily detected as alkali metal adducts [M+Na]+, [M+K]+ 
and [M+Li]+. Water-insoluble metabolite ions are detected mostly as alkali metal adducts [M+Na]+ and [M+K]+. 
Parthenolide and oleic acid are also detected as [M+Ag]+ in silver NP spectra. Low-molecular weight acids, amino acids, 
vitamin H and Co-enzyme-A fragments are also detected as di-alkali metal adducts. This table represents the sum of all 
signals from different alkali metal adduct ions and includes the (typically weak) protonated ion species. Phosphocholine 
and choline fragments are detected as molecular ions. In water-insoluble metabolite standards, phosphocholine fragments 
and phosphatidylcholine are also detected as molecular ions and DAG fragments ions are detected as protonated 
species. PA represents phosphatidic acid and the metabolite fragments ions are represented with *.  
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Cu Suspension 6E+04 6E+04 1E+04 2E+03 2E+05 1E+04 7E+04 4E+04 3E+06 6E+06 1E+06 1E+05 3E+05 8E+04 1E+05 3E+06 9E+04 4E+03 2E+02 2E+05 9E+01 4E+02 4E+02 9E+04
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Lipids

Water Soluble Water Insoluble
Positive LMW Acid Phospho Metabolites Sugars Amino Acids Co Enzyme

1
1
0
 



 

 

 

Table 2: Absolute ion signal intensity comparison of standard water-soluble and water-insoluble metabolites for NP 
screening in negative mode. All metabolite ions are detected as [M-H]-. . PA PE, PG and PI represent phosphatidic acid, 
phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol, respectively. 
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTION 

 

Multiplex Imaging of LFP 

In Chapter 2, we have successfully demonstrated the utility of multiplex MS 

imaging that combines high-resolution mass spectrometry with tandem mass 

spectrometry for chemical imaging of latent fingerprints (LFP).  This technique is 

valuable when the available sample is limited, which is often the case with LFP.  We 

could detect and image the chemical distributions of both endogenous and exogenous 

compounds.   In this experiment we have chosen three compounds for MS/MS, but 

structural information for more compounds can be obtained by utilizing nine spiral steps 

to acquire more MS/MS images and/or one can also incorporate data-dependent scans 

to obtain MS/MS spectra of non-targeted compounds for identification in LFP for 

forensic and medical purposes.  

 In addition to molecular accurate mass information from high-mass resolution 

MS and structural information from MS/MS, we were also able to resolve partially 

overlapped fingerprints. Figure 1 shows an experiment where two partially overlapped 

LFP were deposited on a glass slide, one with tobacco snuff and one without. As shown 

in figure 1A, we were able detect exogenous compounds BDDA, DDA, and nicotine, in 

figure 1B, we were able to detect endogenous compounds cholesterol, palmitoleic acid, 

DAG and TAG, and in figure 1C, we were able to create combination images of DDA 

and nicotine, DAG and nicotine, and TAG and nicotine on LFP.  In the future, different 

matrices can be used for MSI of a variety of endogenous and exogenous compounds. 
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Recently, gender-specific and individual-specific compounds have been detected in 

sweat[32]. In future experiments with different matrices (including nanoparticles) we can 

image a variety of chemically and forensically interesting compounds. 

  

Fracturing and Imprinting Sample Preparation Methods 

In Chapter 3, to study the chemical interfaces in plant-pest (rice-Xoo) 

interactions, we have adopted and developed novel sample preparation methods: 

imprinting and fracturing. These methods were developed with this particular application 

in mind, but imprinting is efficient for the analysis of a range of cytoplasmic hydrophilic 

compounds that can be “squeezed out” of the tissue under pressure. The advantage of 

this method is its applicability to almost any plant leaves, regardless of their size or 

surface roughness. The critical limitation, however, is that membrane-bound molecules 

or other hydrophobic compounds cannot be analyzed because they are not efficiently 

extracted. To analyze hydrophobic diterpenes produced against Xoo infection, we 

applied the fracturing method. This method is effective in exposing compounds 

underneath the leaf surface in plant tissue, including phospholipids and chlorophylls that 

cannot be analyzed with the imprinting technique.  In rice leaf, we exposed the 

mesophyll layers surrounding the veins; therefore, this fracturing method can be 

applicable to study other plant pathogen interaction and/or other metabolites 

underneath the leaf surface. This can also be applied to fracture open other types of 

tissues, which are too thin to reliably cryosection.    

The selection of matrices that can ionize the analyte of interest efficiently is the 

most critical factor in MS imaging. In this study, we demonstrated the use of Fe3O4 and 
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TiO2 nanoparticles to efficiently ionize diterpene compounds that cannot be detected 

using traditional matrices. This application and effectiveness of nanoparticles as 

NALDI–MSI matrices to ionize specific classes of plant metabolites was the main 

motivation for development of nanoparticle matrices.  The above results led us to 

perform a large-scale screening of various nanoparticles from different classes using a 

wide range of plant metabolites as standards, to further understand ionization 

mechanisms and provide empirical information for rational selection of matrices.  

 

Nanoparticle Screening for NALDI-MS of Plant Metabolites 

The use of nanoparticles as matrices instead of organic compounds is receiving 

increased interest because nanoparticles typically exhibit high laser absorptivity, low 

volatility, matrix homogeneity, and low background signals.[12],[90],[91] The developments 

in nanotechnology have made NPs of various sizes, shapes and compositions 

commercially available or easily synthesized.[12]. In addition to that, we have 

successfully developed and demonstrated the use of Fe3O4 and TiO2 NPs to efficiently 

ionize diterpenoid phytoalexin compounds that cannot otherwise be analyzed (Chapter 

3).  This study was the main motivation behind the empirical nanoparticle screening for 

desorption/ionization of low molecular weight compounds. We employed thirteen NPs of 

three common classes (metal, metal oxide semiconductors and carbon-based), and 

compared them with three common organic matrices (DAN, DHB and 9-AA) for 

nanoparticle/matrix-assisted laser desorption/ionization-mass spectrometry for the 

detection of low molecular weight metabolites. Plant metabolites used for NP screening 

include: small organic acids and sugars (including phospho metabolites), amino acids, a 
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vitamin, a co-enzyme and various lipids. In addition to this empirical screening of 

nanoparticles, we calculated desorption temperatures for NPs using physical properties 

and corrected the existing thermal model.  

The screening results of NPs showed that Fe3O4, BDND, TiO2 and graphene 

oxide NPs are the most efficient for desorption/ionization of plant metabolites. The 

extensive fragmentation of metabolites with WO3 NPs and desorption/ionization 

efficiency of Fe3O4 and TiO2 were supported by this revised thermal model. In negative 

mode, BDND, graphene oxide and silver NPs were effective for selected classes of 

metabolites. Future work will be focused on theoretical calculations for comparison of 

carbon-based NPs and understanding the thermal desorption mechanism employing the 

corrected model. The revised thermal model presented here provides a more accurate 

calculation of the desorption temperature range, enabling rational selection of NP 

matrices for the thermally-driven NALDI process. We expect that this empirical study, 

along with the theoretical calculations, will be very helpful for future selection/prediction 

of particular nanoparticle matrices for ionization of low-molecular weight compounds. 

 

Suspension vs. Physical Vapor Deposition 

This work was an extension of the nanoparticle screening study in Chapter 4. 

Here, we compared two metal nanoparticle application techniques for nanoparticle-

assisted laser desorption/ionization-mass spectrometry to detect low-molecular weight 

plant metabolites – solvent-free sputter coating (physical vapor deposition) and spraying 

using an oscillating capillary nebulizer. One critical observation from Chapter 4 was that 

gold and platinum nanoparticles were difficult to keep suspended and they settled down 
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to the bottom of the syringe. The strong tendency of gold NPs to aggregate was 

confirmed by SEM imaging of the sprayed gold suspension. This significantly limits the 

efficiency of these NPs to desorb/ionize plant metabolites. The SEM imaging results 

confirmed that solvent-free argon sputter is an effective and homogeneous method for 

NP application and the screening results show gold NPs are the most efficient matrix 

among metal NPs. It was also found that intermediate-pressure sputter coating oxidized 

some metals such as copper, and reduced their efficacy as matrices. Future efforts will 

extend this study to other noble and transition metals. The theoretical calculation for 

Chapter 4 indicated that platinum nanoparticles have the potential to be an effective 

matrix if they can be applied homogeneously. The finding from Chapter 4 also shows 

magnetite (Fe3O4) to be the most efficient of several tested NPs matrices for analysis of 

both water-soluble and water-insoluble plant metabolite in positive mode. Therefore, we 

propose to use sputter coating for homogeneous application of iron with trace oxygen 

present in the sputtering chamber.  It is hoped that this will create a homogenous layer 

of iron oxide on the sample surface. This homogeneous application of efficient matrix 

will be helpful developing novel sputtered metal and metal oxide matrices for NALDI-MS 

imaging.  

The results of Chapter 4 and 5 will be helpful to develop novel matrices and 

adopt homogeneous application methods for MALDI/NALDI-MS imaging of low- 

molecular weight plant metabolites which are difficult to desorb/ionize otherwise. These 

developments will be helpful to study a wide variety of plant tissues to solve important 

biological questions.  

  



 

 

 

 

 

 
Figure 1: Partially Overlapped LFP With and Without Tobacco Snuff 
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