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ABSTRACT 

 

Optical microscopy imaging of single molecules and single particles is an 

essential method for studying fundamental biological and chemical processes at the 

molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in 

traditional optical microscopy is governed by the diffraction of light.  However, single 

molecule-based super-localization and super-resolution microscopy imaging techniques 

have emerged in the past decade. Individual molecules can be localized with nanometer 

scale accuracy and precision for studying of biological and chemical processes.  

The obtained spatial resolution for plant cell imaging is not yet as good as that 

achieved in mammalian cell imaging. Numerous technical challenges, including the 

generally high fluorescence background due to significant autofluorescence of 

endogenous components, and the presence of the cell wall (> 250 nm thickness) limit the 

potential of super-resolution imaging in studying the cellular processes in plants. Here 

variable-angle epi-fluorescence microscopy (VAEM) was combined with localization 

based super-resolution imaging, direct stochastic optical reconstruction microscopy 

(dSTORM), to demonstrate imaging of cortical microtubule (CMT) network in the 

Arabidopsis thaliana root cells with 20 – 40 nm spatial resolution for the first time. With 

such high spatial resolution, the subcellular organizations of CMTs within single cells, 

and different cells in many regions along the root, were analyzed quantitatively. 

Nearly all of these technical advances in super-localization and super-resolution 

microscopy imaging were originally developed for biological studies. More recently, 

however, efforts in super-resolution chemical imaging started to gain momentum. New 
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discoveries that were previously unattainable with conventional diffraction-limited 

techniques have been made, such as a) super-resolution mapping of catalytic reactions on 

single nanocatalysts and b) mechanistic insight into protein ion-exchange adsorptive 

separations. Furthermore, single molecules and single particles were localized with 

nanometer precision for resolving the dynamic behavior of single molecules in porous 

materials. This work uncovered the heterogeneous properties of the pore structures. In 

this dissertation, the coupling of molecular transport and catalytic reaction at the single 

molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. 

Most previous studies dealt with these two important phenomena separately. A 

fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent 

resorufin was tested. The diffusion behavior of single resorufin molecules in aligned 

nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).  

To fully understand the working mechanisms of biological processes such as 

stepping of motor proteins requires resolving both the translational movement and the 

rotational motions of biological molecules or molecular complexes.  Nanoparticle optical 

probes have been widely used to study biological processes such as membrane diffusion, 

endocytosis, and so on. The greatly enhanced absorption and scattering cross sections at 

the surface plasmon resonance (SPR) wavelength make nanoparticles an ideal probe for 

high precision tracking. Furthermore, gold nanorods (AuNRs) were used for resolving 

orientation changes in all three dimensions. The translational and rotational motions of 

AuNRs in glycerol solutions were tracked with fast imaging rate up to 500 frames per 

second (fps) in reflected light sheet microscopy (RLSM). The effect of imaging rates on 

resolving details of single AuNR motions was studied.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

Dissertation Organization 

This dissertation starts with a general introduction about super-localization and 

super-resolution microscopy, including introduction, recent advances in instruments, 

recent applications of super-localization and super-resolution fluorescence microscopy, 

three-dimensional (3D) orientation and rotational tracking of nanoparticles. The 

following chapters focus on three research areas: a) super-resolution imaging of 

microtubule structure in plants, b) chemical catalysis at single molecule level, c) 

orientation and rotational tracking of nanoparticles. Each chapters are arranged in such a 

way that published papers be submitted for scientific peer-review.   

The second chapter demonstrates combining variable angle epi-fluorescence 

microscopy (VAEM) with a  localization based super-resolution imaging method, direct 

stochastic optical reconstruction microscopy (dSTORM), for resolving the cortical 

microtubule (CMT) network in Arabidopsis thaliana root cells with sub-50-nm spatial 

resolution. Highly diverse spatial organizations of CMT networks in plant cells at 

different development stages are resolved and analyzed quantitatively.  

Chapter 3 describes our study on the molecular transport in nanopores, catalytic 

reactions on nanocatalysts, and their coupling at the single molecule and single particle 

level in total internal reflection fluorescence microscopy (TIRFM). The life cycle of a 

fluorescent product molecule in a core-shell mesoporous nanocatalyst, including 

generation, diffusion within nanopores, and escapes from the nanopore and evanescent 

field (EF) was tracked and studied with sub-10-nm precision in TIRFM. 
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Chapter 4 reports studies of translational and rotational diffusion of gold nanorods 

(AuNRs) in aqueous solutions of high viscosity. Reflected light sheet scattering 

microscopy with orthogonal alignment to the axial direction of the detection objective 

and sub-micrometer illumination thickness was used to eliminate scattering background. 

Bifocal images without angular degeneracy were used for achieving simultaneously 

tracking the locations and orientation changes of AuNRs. Fast imaging speed up to 500 

frames per second (fps) was used to reveal fast rotational behaviors of AuNRs. 

The final chapter (chapter 5) summarizes the work and indicates potential 

directions for future research.  

 

Introduction 

Nowadays, microscopes are used by researchers in different fields to uncover tiny 

things beyond the capability of our bare eyes. Extraordinary discovery takes place every 

day with the aid of microscopes. Optical, electron, and scanning probe microscopy1-3 are 

recognized as the three main micro-imaging methods in modern research. While one is 

often overwhelmed by the complexity of today’s advanced optical microscopes, it is 

surprising how simple but also how brilliant the first compound microscope (a 

combination of few lenses) was.4 

The performance of perfect optics (no spherical or achromatic aberrations) is 

limited by the physical barrier known as the diffraction limit of light. Objects smaller 

than the diffraction limit cannot be resolved in conventional optical microscopes. The 

maximum resolution available in theory was first calculated and predicted by the 

mathematician and physicist Ernst Abbe, who was the second owner of the enterprise 
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invented by the German mechanic Carl Zeiss. The original formula is present as the 

following: 

𝑑 =
1.22𝜆

𝑁𝐴𝑐𝑜𝑛𝑑 + 𝑁𝐴𝑜𝑏𝑗
 

where d is the minimum distance of separation for two objects to be resolved, λ is the 

wavelength of light, and NAcond and NAobj stands for the numerical aperture of the 

condenser and the objective, respectively. The numerical aperture NA = n ∙ sin(α), where 

n is the refractive index of the immersion medium used between the objective and the 

object and α is the opening angle of the objective. The factor 1.22 is related to the 

Rayleigh criterion.  

Two types of optical imaging techniques: total internal reflection fluorescence 

microscopy (TIRFM) and light sheet microscopy (LSM), were used for the majority of 

studies in this dissertation. In both methods, the samples were excited with a well-

confined illumination volume, thus significantly reducing the out-of-focus background 

from fluorescence or scattering.  

TIRFM (Fig. 1c) is arguably the most successful mode of fluorescence 

microscopy for studies of molecular dynamics, including diffusion5-7 and absorption8,9 at 

liquid/solid interfaces. Under TIR illumination the incident angle of light is varied upon a 

medium with a high index of refraction (n1). At angles beyond the critical angle, the 

incident light is completely reflected. An evanescent field (EF) of the same characteristic 

as the reflected light is created in the adjacent medium (n2), which must have a lower 

index of refraction than n1. The intensity of the EF decays exponentially from the 

interface of the two media. This characteristic of EF enables the excitation of only objects 

within a few hundred nanometers from the surface.  Thus the out-of-focus fluorescence 
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background is essentially eliminated. A comprehensive review of TIRFM is available in 

Axelrod’s publication in 2008.10  

The concept of illuminating thick samples with a thin sheet of light aligned with 

the focal plane of the recording objective has led to the development of a whole family of 

LSM techniques11-15 in the past 20 years. Because only a thin layer of sample is 

illuminated by the light sheet, these techniques effectively reduce the background noise 

and sample photodegradation. Moreover, LSM is capable of 3D volume imaging when 

combined with a piezo stage for axial sectioning. LSM is an excellent choice for imaging 

thick samples. Though LSM is mostly used for fluorescence imaging of biological 

processes, one chapter in the dissertation focuses on LSM imaging of nanoparticles in 

solution. 

 

Recent Advances in Instrumentation 

Automated Prism-Based TIRFM. There are two basic types of TIRFM systems 

distinguished by the optics used for producing TIR.  In objective-based TIRFM (Fig. 1c) 

the excitation beam is directed into a high NA objective off-center in order to encounter 

the solid/liquid interface, usually between a coverslip and aqueous solution, with an 

incident angle larger than the critical angle. The excitation beam is completely reflected 

back into the objective. The emission signal is collected by the same objective and then 

focused onto the signal recorder (i.e. camera) by a tube lens. The other type of TIRFM 

system is prism based. The illumination light is directed through a prism on which the 

sample lies. TIR also occurs at the solid/liquid interface, and the emission signal is 

collected by an objective on the other side of the interface. Many variations of 
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configurations for both type of TIRFM are available and have been discussed in other 

reviews.10  

Both types of TIRFM systems have their own advantages. The objective-based 

TIRFM has become a standard module for commercial light microscopes. The main 

drawbacks of this type of TIRFM include the background from the scattered excitation 

light within the objective, the difficulty in determining the exact incident angle, and the 

limitation on the achievable range of incident angle due to the geometry of the objective. 

This can negatively influence the detection sensitivity and the axial localization accuracy 

of fluorescent probes.  

All of these drawbacks are avoided in prism type TIRFM. However, the 

performance of prism-type TIRFM system strongly relies on achieving ideal illumination 

conditions at different incident angles with high accuracy. A time-consuming calibration 

process is often necessary to accomplish the goal.  

To fully harvest the benefits of using prism-type TIRFM, a dual-color auto-

calibrated scanning-angle (SA) TIRFM setup with an optimized system layout and an 

automatic high-precision calibration procedure had been demonstrated in our laboratory. 

A computer program developed in-house is used to calibrate the incident angles in the 

full range with an interval as small as ~0.1°.16,17 The entire auto-calibration procedure can 

be finished within minutes. With this setup, localization of fluorescent beads in gels had 

been determined with nanometer precision in the axial direction.16 This unique automated 

SA-TIRFM has also been employed for high-precision 3D tracking of non-blinking 

quantum dots.18  
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Variable-angle Epi-fluorescence Microscopy (VAEM). The EF provides a shallow 

illumination depth of a few hundred nanometers from the interface. Therefore, it 

essentially eliminates out-of-focus fluorescence background. TIRFM has been widely 

used for the purpose of improving the detection sensitivity. However, the limited 

illumination depth in TIRFM is not suitable for imaging large, thick samples. To 

overcome this limitation, the incident angle of illumination beam is operated at 

subcritical angles that are smaller than but yet very close to the critical angle. This 

illumination strategy was given names under variable-angle epi-fluorescence microscopy 

(VAEM),19 also known as highly inclined thin illumination (HILO) microscopy,20 or 

simply pseudo-TIRFM (Fig. 1b,d).17 The effective excitation depth can be extended a few 

tens of micrometers into the sample. However, the excitation volume is still much thinner 

in VAEM compared to epi-illumination (Fig. 1a). Like in real TIRFM, the small 

illumination volume reduces the out-of-focus excitation thus achieving higher detection 

sensitivity. In VAEM, the sample is actually illuminated by light with title angles. 

Therefore, the thickness of excitation volume grows as the imaging depth increases.  

Light sheet microscopy. Light sheet (Fig. 2) is an alternative excellent optical 

sectioning method beside TRIFM. Although Siedntopf and Zsigmondy published the first 

version of the light sheet microscope over a century ago,21 the concept was not truly 

expanded upon until the early 1990s. The first modern LSM called orthogonal-plane 

fluorescence optical sectioning (OPFOS) used a beam 30 μm thick at the waist to section 

a sample that was placed in a rotatable holder.13 Since the emergence of optical 

sectioning, LSM has seen a profound growth in application and variability. LSM is 

commonly used for tissue imaging. New variations have now achieved super-resolution 
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within single cells, making LSM one of the fastest growing and most powerful imaging 

techniques in biologically relevant microscopy today. Convenient innovations such as 

objective-coupled planar illumination (OCPI)22,23  and inverted selective plane 

illumination microscopy (iSPIM)24 are accessible additions to standard microscopes. The 

versatility and customization that is intrinsic to the light sheet tomography techniques 

allow for current and future investigators to pick and choose necessary and preferred 

components for their own work.12 However, most of the current LSM techniques utilize 

microscope objectives with long working distance and low NA. Therefore the excitation 

volume is relatively large and it is not optimal for single molecule detection. More 

recently, reflected LSM (RLSM) had been demonstrated and used for imaging single 

molecules with high signal to noise ratio (SNR) in nucleus of mammalian cells.25,26 

Super-resolution Fluorescence Microscopy. Fluorescence microscopy is 

commonly used in biological studies. However, conventional techniques suffer a 

significant drawback, that is, the diffraction limit of light. (See equation 1). Breaking this 

diffraction limit has become a seemingly insurmountable challenge. However, during the 

past two decades the emergence of super-resolution imaging techniques (Fig. 3), 

including stimulated emission depletion (STED) microscopy,27-30 structured illumination 

microscopy (SIM),31,32 stochastic optical reconstruction microscopy (STORM)33 also 

known as photoactivated localization microscopy (PALM)34 or fluorescence 

photoactivation microscopy (FPALM),35 enabled diffraction-unlimited imaging using the 

same diffraction-limited far-field optics as in conventional fluorescence microscopy. 

Depend on how the fluorophores are modulated, these super-resolution imaging 

techniques can be divided into two approaches: SIM/STED use illumination light patterns 
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to spatially address the modulation, whereas STORM/PALM/FPALM rely on the 

stochastic nature of single- molecule switching. In STORM/PALM/FPALM 

photoactivatible fluorophores are switched randomly between a fluorescent state (on-

state) and a dark state (off- state) or any other form that is non-fluorescent at the same 

wavelength. Subsets of fluorophores are isolated and their positions are localized by 

fitting the intensity distributions of images from a single fluorophore with a point spread 

function (PSF) or with a Gaussian function as a close estimate. The enhancement of the 

spatial resolution using these techniques depends on the precision with which individual 

fluorescent molecules can be localized. While the principle underneath this approach of 

super-resolution microscopy is essentially the same, differences exist.  STORM utilizes 

organic dyes as fluorescent probes rather than fluorescent proteins, and generates images 

with better spatial resolution due to more collected emission photons during each 

switching cycle. However, the results also largely depend on the accuracy of tedious 

immunostaining processes. On the other hand, such drawbacks are avoided in 

PALM/FPALM since the photoactivatable fluorescent proteins are genetically expressed 

in cells.  

Fundamentally, fluorescence images are composed of coordinates of fluorescent 

probes. Two probes with a separation distance smaller than the diffraction limit (a few 

hundred nanometers) can no longer be resolved in conventional fluorescence images. 

Though shapes and sizes of molecules cannot be determined using conventional 

fluorescence microscopy, the centroids of individual fluorescent molecules can be 

localized with high precision by fitting the fluorescence intensity distribution. The 

localization precision, in brief, is inversely proportional to the square root of photons 
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(√N) collected from a single fluorescent molecule.36,37 For example, molecules emitting 

several thousand photons can be localized with nanometer precision under this standard. 

Combined with the stochastic switching properties, the shape of a photoswitchable 

fluorescent probe can be rendered as the distribution of positions within nanoscale areas. 

Lots of these positions can then be used to reconstruct the structure of interest with a 

resolution beyond the diffraction limit.  

Though there are many applications based on localizing the molecular or particle 

positions with nanometer accuracy, the majority of the work in this dissertation focuses 

on studying biological structures, chemical reactions and molecular motions.  

  

Recent Applications of Localization-based Super-resolution 

Fluorescence Microscopy  

Imaging biological processes. Almost all the super-resolution imaging techniques 

were originally developed for biological studies. In the aspect of 

STORM/PALM/FPALM, they were first used to resolve simple biological structures33-35 

such as nearby fluorescent probes separated by 135 base pairs on DNA strands (~46 nm). 

Later on, more complicated systems such as the cellular network (microtubule and actin 

network) and subcellular organelle (for example mitochondrion), and their colocalization 

were also well studied using multi-color super-resolution imaging microscopy.38 3D 

super-resolution microscopy resolves biological structure with nanometer resolution in all 

three dimensions39,40 shortly after the emergence of these techniques. Early localization-

based super-resolution imaging techniques require a long-term imaging collection 

process. Therefore, fast dynamic information of many biological processes is not 
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available due to the slow temporal resolution. Nevertheless, advances in mechanic 

capabilities41 (faster imaging rate with more advanced camera), performance of 

fluorescent probes42 (faster switching rates from newly developed fluorescent protein 

molecules or synthesized dyes), and mathematic algorithm modifications43 have already 

and will continue to help scientists to look at dynamic processes at video rates. 

Nearly all of these advances in super-resolution imaging were performed with 

mammalian cells. Very few reports exist of the study of cellular structures with such high 

resolution in plant samples due to numerous technical challenges,44 including the 

generally high fluorescence background due to significant autofluorescence of 

endogenous components, and the presence of the cell wall (> 250 nm thickness). The 

former leads to low signal to noise ratio (S/N) for single molecule detection and therefore 

low localization accuracy and low spatial resolution. The latter contributes to a higher 

background due to additional layers with mismatched refractive indices (causing more 

severe scattering and spherical aberration) and restricts the use of TIR illumination. 

Nevertheless, several super-resolution imaging techniques have been tested for imaging 

plant samples. The structure of perinuclear actin in live tobacco cells was visualized with 

a lateral resolution of 50 nm by combining PALM imaging with optical sectioning.45 The 

organization of cellulose microfibrils on the outer side of the cell wall in live onion 

epidermal cells has been studied by STORM imaging with a lateral resolution of 100 

nm.46 Structured illumination microscopy, which uses specially designed illumination 

patterns to spatially modulate fluorophores,32 was used for imaging the dynamics of 

endoplasmic reticulum, plasmodesmata, and cortical microtubules in live cells with a 

two-fold improvement in the spatial resolution (~ 100 nm) over traditional fluorescence 
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microscopy techniques.47,48 Stimulated emission depletion (STED) microscopy has also 

been used to measure the size of protein clusters on the lateral plasma membrane of plant 

cells with a lateral resolution of 70 nm.49  

Imaging chemical reactions at single turn-over resolution. More recently, super-

resolution imaging techniques have brought new discoveries in chemical reactions such 

as super-resolution mapping of catalytic reactions on single nanocatalysts50-60 and 

mechanistic insights into protein ion-exchange adsorptive separations.61 According to 

what kinds of fluorescent probes are used, these studies can be divided into two 

strategies62 (Fig. 4). In the first strategy, fluorescent probes are involved in the chemical 

reaction during which the bond forming or breaking happens on the probe molecule to 

induce a sharp change of fluorescent properties such as fluorescence emission 

wavelength shifting, fluorescence quenching. The chemical reaction events are detected 

when the changes of fluorescent properties happen. In the other type, the fluorescent 

probes work as a spectators which do not change their chemical structures during the 

reaction processes. The chemical reaction is detected by the change of locations of 

fluorescent probes (for example, association-dissociation with reagents on surface) 

indicating the presence of target reagents. However, fluorescent properties of probes such 

as color, intensity, and lifetime may also change. Usually, the chemical reaction rate at 

the single particle level is slow and the particle density f on the sample slide is small, so 

individual events can be identified both temporally and spatially. All of these advanced 

studies prove the potential to study chemical reactions at the temporary resolution of 

single turn-over and the spatial resolution of nanometers 
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Characterize the heterogeneous inner structure of porous nanomaterials with 

nanometer resolution. Advances in super-localization based imaging methods are used 

for single particle, single molecule tracking. Motions of single fluorescent molecules 

have been tracked with one-nanometer precision (FIONA).63 FIONA was successfully 

used to resolve the hand-over-hand walking mechanism of kinesin and dynein motor 

proteins on microtubules.64,65 Efforts in studying other types of mechanically biological 

processes were also made using the same method.66 More recently, single molecule 

tracking methods were used to visualize the porous networks, interconnectivities of 

channels and diverse diffusion behaviors of molecules in host-guest system (Fig. 5).67-70 

The pore size of these channels is only few nanometers in diameter. Therefore it is 

critical that molecular positions of fluorescent probes are localized with nanometer 

precision in order to reveal the heterogeneity of inner structures in the porous material.     

 

Three-dimensional Orientation and Rotational Tracking of 

Nanoparticles 

Many biological activities, such as DNA polymerization,71 stepping of motor 

protein,64,72 self-rotation of ATP synthase,73 involve motions of sub-micrometer scale. To 

fully understand the fine mechanisms of these biological events requires not only 

visualizing the translational movement but also uncovering the rotational motions. For 

deciphering the rotational motion of biological molecules, fluorescence polarization 

spectroscopy72,74,75 is commonly used taking the advantage of coupling the interaction of 

polarized excitation with well-defined dipole of fluorescent probes and splitting 

anisotropy emissions from the dipole orthogonally.  
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Anisotropic gold nanoparticles of excellent optical and chemical stability76-79
  are 

widely used for orientation and rotational tracking. A few techniques (Fig. 6) have been 

developed to resolve the orientation angles of gold nanorods (AuNRs) in the focal plane 

including dark-field (DF) polarization microscopy,80 photothermal heterodyne imaging 

(PHI),81,82 and differential interference contrast (DIC) microscopy.83-87 These imaging 

methods have been well demonstrated to decipher the in-plane angle of AuNRs either 

simply on a coverslip or in live cell. However, the out-of-plane angle is either unavailable 

(PHI) or ambiguous because of low angular resolution (DF, DIC). Furthermore, the 

angular degeneracy resulting from the symmetric cylindrical shape of AuNRs limits their 

abilities to differentiate the orientation of nanorods in the four quadrants of the Cartesian 

coordinate system. 

 Another method called defocused orientation and position imaging (DOPI)88,89 

has been developed to determine the 3D orientation of a tilted single dipole in a single 

image frame without angular detergency. The core idea is essentially based on electron 

transition dipole approximation and the fact that the dipole emission exhibits an angular 

anisotropy. Therefore, the direct detection of the spatial distribution of the scattered or 

emitted field of single dipoles becomes possible when deliberately applying an aberration 

(defocusing) in the imaging system. It often requires switching back and forth between 

defocused and focused imaging for more precise position and orientation determination 

in DOPI. Because of this limitation, DOPI is more suitable to study the angular 

information of stationary probes.  

A method called focused orientation and position imaging (FOPI) was previously 

demonstrated, which overcame the drawbacks of both polarization based in-focus 
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imaging methods or the DOPI method.84 The core idea is coupling the effects of the 

supporting substrate (a gold film in this case) with the far-field scattering patterns of 

plasmonic nanoparticles. The in-focus imaging pattern is used to resolve the absolute 3D 

orientation of tilted AuNRs (within 15 nm from the substrate) with high signal to noise 

ratio. Nevertheless, the necessary interaction between the AuNRs and gold film substrate 

limits its potential applications.  

A dual-color total internal reflection scattering (TIRS) imaging method was also 

developed to determine the 3D orientation angles of AuNRs on lipid membranes. 

Combining with super-resolution mapping locations of AuNRs, it reveals in-plane 

rotational motions without angular degeneracy. This technique has been used to 

characterize distinct binding patterns of AuNRs on the synthetic lipid membrane. 

Because of the exponential decay of intensity in EF of TIRS, it is mainly used to 

determine rotational motions of AuNRs within a thin layer on the substrate surface.  

 

Dissertation Focus 

This dissertation focuses mainly on applying single molecule localization-based 

fluorescence microscopy for tissue imaging and chemical imaging, and developing 

reflected light sheet scattering microscopy for particle tracking. These studies can be 

separated in three directions: a) STORM imaging under the VAEM illumination scheme 

to resolve the microtubule network in cells of intact root sample with sub-50-nm spatial 

resolution. Details of microtubule organization were therefore uncovered and quantified. 

The variations of microtubule organization at different cellular developmental stages 

were correlated with their growing activities. b) Studying mass transport and chemical 
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reaction in nanopore environment with a 3D multilayer mesoporous catalyst. This part of 

work sets up the platform for systematic investigations to understand how factors, 

including size, structure, and molecular transport, affecting the catalytic properties and 

efficiency. c) Developing reflected light sheet scattering microscopy. Translational and 

rotational motions of gold nanorods were tracked simultaneously. 3D orientation changes 

of gold nanorods were revealed at the same time in a home-built dual-view imaging 

system. 
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Figures  

 

Figure 1. Various TIRFM and VAEM configurations. (a) Epi-fluorescence. (b) 

Objective-based VAEM. (c) Objective-based TIRFM. Adapted with permission from ref 

19. Copyright 2008 Blackwell Publishing Ltd. (d) Prism-based VAEM. The objective 

scanner facilitates vertical sectioning of the sample. Adapted with permission from ref 

17. Copyright 2011 Elsevier. The components are not drawn to scale. 
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Figure 2. Schematic of a typical LSM. Laser illumination passes through a beam 

expander (BE), shaped by the cylindrical lens (CL), and passes through the sample (S). 

Emitted light is collected by the objective (OBJ) and recorded by the camera (CCD). 

Boxed region is a close-up of the sample holder depicting its degrees of freedom during 

image acquisition. Adapted with permission from ref 15. Copyright 2013 American 

Chemical Society. 
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Figure 3. Super-resolution microscopy. Upper panel: Principles of super-resolution 

microscopy techniques. Lower panel: Confocal and super-resolution images of 

fluorescent protein labeled microtubules in living cells, showing SIM of EGFP-tubulin in 

a living Drosophila S2 cell (adapted with permission from ref 31. Copyright 2009 Nature 

Publication Group), confocal and STED microscopy of mCitrine-tubulin in a living PtK2 

cell (adapted with permission from ref 30. Copyright 2008 National Academy of 

Sciences), and STORM/PALM/FPALM of mEos2-tubulin in a living 

Drosophila S2 cell (adapted with permission from ref 15. Copyright 2013 American 

Chemical Society), respectively. All images are shown with the same magnification. 

Scale bars: 2 μm. 
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Figure 4. Principles of single molecule microscopy in chemical reaction imaging. 

Organic fluorophore (F) as participants (a) and spectator (b) for indicating events of 

chemical reactions. Adapted with permission from ref 62. Copyright 2014 Nature 

Publication Group. 
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Figure 5. Single molecule microscopy in studying porous materials. Structure defects, 

pore network, and interconnectivity of channels (inserted images) were revealed by single 

molecular trajectories (green lines) within which the molecular positions were determined 

with nanometer precision. HRTEM images composed the background; two types of pore 

structures were presented. Adapted with permission from ref 67. Copyright 2011 Royal 

Society of Chemistry. 
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Figure 6. Optical imaging techniques for nonfluorescent nanoparticles. (a) Dark-field 

microscopy. (b) Differential interference contrast (DIC) microscopy. The arrows show 

the vibration directions of the light beams at different locations. Adapted with permission 

from ref 15. Copyright 2013 American Chemical Society. (c) Photothermal. Adapted 

with permission from ref 80. Copyright 2005 American Chemical Society. 
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Abstract 

Super-resolution fluorescence microscopy has generated tremendous success in revealing 

detailed subcellular structures in animal cells. However, its application to plant cell biology 

remains extremely limited due to numerous technical challenges, including the generally high 

fluorescence background of plant cells and the presence of the cell wall. In the current study, 

stochastic optical reconstruction microscopy (STORM) imaging of intact Arabidopsis thaliana 

seedling roots with a spatial resolution of 20-40 nm was demonstrated. Using the super-

resolution images, the spatial organization of cortical microtubules in different parts of a whole 

Arabidopsis root tip was analyzed quantitatively, and the results show the dramatic differences in 

the density and spatial organization of cortical microtubules in cells of different differentiation 

 

§ Reprinted with permission from Scientific Reports, 2015, 5:15694. Copyright 2015 Nature 

Publish Group 
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stages or types. The method developed can be applied to a wide range of plant cell biological 

processes, including imaging of additional elements of the cytoskeleton, organelle substructure, 

membrane domains and other structures currently only accessible by electron microscopy. 

 

Introduction 

The emergence of far-field super-resolution microscopy techniques1,2 has provided 

researchers with new opportunities for further insights into subcellular structures. The diffraction 

limit for light microscopy of about half of the wavelength of light is overcome in super-

resolution techniques through spatial or temporal modulation of fluorophores. A group of 

techniques, named stochastic optical reconstruction microscopy (STORM),3-5 photoactivated 

localization microscopy (PALM),6 and fluorescence photoactivation localization microscopy 

(FPALM),7 relies on the stochastic nature of single molecule switching. Photoactivatible 

fluorophores are switched randomly between a fluorescent state (on-state) and a dark state (off-

state) or any other form that is non-fluorescent at the same wavelength, and isolated fluorescent 

molecules are localized by fitting with a point spread function (PSF) or with a Gaussian function 

as a close estimate. The enhancement of the spatial resolution using these techniques depends on 

the precision with which individual fluorescent molecules can be localized. This is in reverse 

relation to the square root of the photon number detected from a single molecule burst.8,9 

Therefore, single molecule detection with sufficiently high signal-to-noise ratio (S/N) is 

commonly required to achieve nanometer-scale localization accuracy. Total internal reflection 

(TIR) illumination was adapted to meet such requirements. Its thin illumination volume (a few 

hundred nanometers from the interface) greatly reduces the out-of-focus background.10 Clearly, 

however, this also restricts the imaging depth. Various strategies, such as combining epi-
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excitation and two-photon activation or using multiple imaging planes simultaneously, have been 

demonstrated to extend the super-resolution imaging depth to whole cell and tissue samples.11-14  

Nearly all of these advances in super-resolution imaging were performed with 

mammalian cells. Very few reports exist of the study of cellular structures with such high 

resolution in plant samples due to numerous technical challenges,15 including the generally high 

fluorescence background due to significant autofluorescence of endogenous components, and the 

presence of the cell wall (> 250 nm thickness). The former leads to low S/N for single molecule 

detection and therefore low localization accuracy and low spatial resolution. The latter 

contributes to a higher background due to additional layers with mismatched refractive indices 

(causing more severe scattering and spherical aberration) and restricts the use of TIR 

illumination.  

Several super-resolution imaging techniques have been tested for imaging plant samples. 

The structure of perinuclear actin in live tobacco cells was visualized with a lateral resolution of 

50 nm by combining PALM imaging with optical sectioning.16 The organization of cellulose 

microfibrils on the outer side of the cell wall in live onion epidermal cells has been studied by 

STORM imaging with a lateral resolution of 100 nm.17 Structured illumination microscopy, 

which uses specially designed illumination patterns to spatially modulate fluorophores,18 was 

used for imaging the dynamics of endoplasmic reticulum, plasmodesmata, and cortical 

microtubules in live cells with a two-fold improvement in the spatial resolution (~ 100 nm) over 

traditional fluorescence microscopy techniques.19,20 Stimulated emission depletion (STED) 

microscopy has also been used to measure the size of protein clusters on the lateral plasma 

membrane of plant cells with a lateral resolution of 70 nm.21 Despite all of these recent advances, 
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imaging cellular structures deep in plant cells, such as those of intact Arabidopsis root tips, with 

a spatial resolution below 50 nm remains a challenge.  

Plant cells have highly anisotropic shapes that are important to cell function and 

multicellular development.22 The cortical microtubule array is one of the key factors in 

determining plant cell morphogenesis. In rapidly expanding plant cells, cortical microtubules are 

often densely aligned parallel to each other with a transverse orientation to the direction of 

growth. Several models including the cellulose synthase constraint hypothesis,23-25 templated-

incorporation model,26 and the microfibril length regulation hypothesis27 have been established 

or proposed to explain the role of cortical microtubule arrays during cell expansion. Detailed 

quantitative information on the structure and organization of cortical microtubules is critical to 

an understanding of the mechanism of cell expansion and directional growth. We therefore use 

the cortical microtubule array as a test case in the present study to develop techniques for super-

resolution imaging within whole-mount seedling root tips. We successfully demonstrated a 

spatial resolution of 20-40 nm in whole plant tissue imaging by combining direct STORM,28 

which is essentially STORM without an activator fluorophore, with variable angle epi-

fluorescence microscopy (VAEM).29,30 Such high spatial resolution is crucial to resolve the 

dense cortical microtubule structures in the active elongation zone of the plant root. Quantitative 

data including microtubule density and orientation have been obtained for intact Arabidopsis 

seedling roots. 
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Results and Discussion 

Comparison of the background between epi-illumination and VAE illumination 

The evanescent field generated by TIR illumination excites samples within a few hundred 

nanometers of the solid-liquid interface.31 The thin illumination volume largely rejects the out-

of-focus background, thereby offering an ideal optical sectioning method for imaging with high 

S/N, and has been frequently used for super-resolution imaging in animal cells3,6. However, the 

application of TIR illumination is restricted to the surface because of its shallow illumination 

depth, limiting its use with plants due to the presence of the thick cell wall. To overcome this 

limitation, VAE illumination32 was developed to extend the illumination depth to a few tens of 

micrometers when the incident angle is operated at subcritical angles (smaller than but still very 

close to the critical angle), while the S/N is still several fold higher than that of epi-illumination 

(Fig. 2B, C). The features of VAE make it an excellent choice for imaging cortical microtubules 

in plant root cells.  

Cortical microtubules of young Arabidopsis seedling root cells were labeled with the 

photoswitchable dye Alexa Fluor 647 through immunostaining with tubulin antibodies. The 

excitation (660 nm) laser and the activation (405 nm) laser were collimated and operated at 

subcritical angles at the interface of the root sample and the coverslip (Fig. 1 and Fig. 2). The 

background is greatly reduced with the confined excitation volume under VAE illumination (Fig. 

3). The cross-sectional profiles along the elongation direction of the root cells show that dense 

microtubules are much better resolved in images under VAEM than under epi-illumination (Fig. 

3E). The light intensity profile on the sample side is shown in Fig. 2D. Within 10 of the critical 

angle, the light intensity is higher than the incident beam. This feature is also important for 
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STORM imaging experiments, in which turning off fluorescent molecules to a ‘dark’ state 

usually requires high illumination light intensity. 

 

Imaging cortical microtubule arrays in plant cells with VAEM-STORM imaging 

Images of the cortical microtubule arrays were reconstructed from 20,000-30,000 frames 

captured in 17-25 min. To correct for the sample stage drift during the relatively long STORM 

image acquisition period, fluorescent beads were used as landmarks to track the stage movement 

and reconstruct the STORM images (e.g., Fig. 4C), which show higher spatial resolution 

compared to epi-fluorescence images (e.g., Fig. 4B and Fig. 5A) and confocal microscopy 

images (Fig. 5C-D). In the regions where cortical microtubules are present at high density and 

unresolved in epi-fluorescence and confocal microscopy images, individual microtubule 

filaments are clearly well-separated and resolved from each other in the STORM images. The 

complex organization patterns of cortical microtubule arrays in higher plants have diverse forms 

including random arrangement, regional organization, and eventually global organization. For 

example, parallel cortical microtubules in fast-elongating plant cells often co-align, forming 

microtubule bundles that are crucial for stabilizing the whole microtubule network. The bundles 

are believed to form by the crosslinking of individual microtubules with filamentous structures 

composed of microtubule-associated proteins.8,33-36 Electron microscopy (EM) was used in these 

studies to reveal the details of cross-linking including the bridge-angle and inter-microtubule 

spacing in synthesized microtubule networks in vitro. As an example, in Fig. 4D-E, individual 

microtubule filaments in one bundle are clearly resolved, showing a spacing of 80-140 nm 

between neighboring microtubules, which is in agreement with the EM results.34 
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Determination of the spatial resolution of VAEM-STORM imaging in plant tissues  

To quantify the achieved spatial resolution of VAEM-STORM imaging, point-like 

objects appearing as small clusters in the STORM images were used for analysis (Fig. 6A), as 

was described previously.4,37 The lateral resolution was estimated to be 42 nm as the full width 

of half maximum (FWHM) from 2D Gaussian fitting of the distributions of locations (Fig. 6B). 

Alternatively, the resolution can be estimated from the localization accuracy.3 The average 

localization precision () is 16.0 ± 2.2 nm (Fig. 6D) from single molecule image analysis of the 

same clusters, giving a localization accuracy (~2.35) of 37.6 ± 5.2 nm. The results from both 

analyses agree well. Therefore, we have achieved a resolution of ~40 nm in intact plant tissue 

imaging.  

We then measured the apparent width of individual cortical microtubule filaments in the 

STORM images by analyzing the cross-sectional profiles (Fig. 6E). Relatively long cortical 

microtubule filaments were chosen in order to obtain more reliable results. Fitting the cross-

sectional distributions of the microtubule filament with a Gaussian distribution gives a FWHM 

of 52 nm (Fig. 6F). The average apparent width over 20 microtubule filaments is 57 ± 4 nm. The 

measured width is in agreement with the actual size of a microtubule filament plus staining with 

primary antibody and secondary F(ab’)2 fragments.38 These results illustrate that the final spatial 

resolution depends both on the imaging method and the size of the objects. Therefore, 

microtubule filaments separated by ~60 nm should be readily resolved in VAEM-STORM 

imaging. As an example, two microtubules with 62-nm-separation are clearly resolved in Fig. 

6G-H. Quantification of the ability to resolve nearby cortical microtubules based on Rayleigh 

criteria gives a resolution of 67 ± 8 nm. 

 



 35 

Optimization of sample preparation and labeling 

In order to label cytoskeletal structures in plant cells, permeabilization of the cell wall is 

required, as it presents an obstacle for the transfer of any probe larger than several nanometers 

into the cytoplasm. Several methods, including the digestion of cell walls with degradative 

enzymes (whole-mount),39 mechanical sectioning40 and freeze shattering combined with enzyme 

degradation,41 have been previously reported. In addition, appropriate labeling density is critical 

for localization-based super-resolution imaging. The typical labeling concentrations reported in 

the literature were 1 - 10 μg/mL of dye-conjugated antibodies in animal cell imaging.4,28 We 

attempted VAEM-STORM imaging of plant cells using such labeling conditions, using whole-

mount samples in which the integrity of the cells is well preserved. However, due to high 

background and substantial interference between single molecule images resulting from the high 

labeling densities under such experimental conditions, no clear microtubule structures could be 

reconstructed (results not shown).  

To optimize the labeling strategy, we conducted two sets of experiments. In the first, 

combinations of different concentrations of both primary tubulin antibody and secondary F(ab’)2 

fragment with whole mount immunostaining were used to label the cortical microtubules of 

Arabidopsis seedling roots (Fig. 7A-D). The labeling concentration of Alexa Fluor 647-

conjugated F(ab’)2 fragments was found to contribute the most to increasing the localization 

precision and thus the spatial resolution. The best spatial resolution of ~ 38 nm was achieved 

with 1.0 μg/mL primary antibody and 0.04 μg/mL secondary F(ab’)2 fragment, as a result of 

more photons being collected and lower background noise (Fig. 7F-H). Continuous structures 

could not be completely reconstructed using more dilute labeling conditions (results not shown). 

These concentrations are ~50-fold lower than the typical concentrations used in mammalian cell 

STORM imaging 4,28. The low concentration of antibodies reduces the number of activated 
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probes during every activation cycle and increases the accuracy of point-localization during 

analysis 42. Proper labeling density and relatively low background were achieved at these 

optimum antibody concentrations as demonstrated in Fig. 7A-D. 

In the second set of experiments, we compared the whole mount method of sample 

preparation with the freeze shattering/enzyme degradation method, in which intact roots were 

randomly split longitudinally, reducing the number of cell layers in the roots. Each method was 

followed with immunostaining of cortical microtubules using the optimized labeling 

concentrations. For both methods, sub-diffraction limited resolution was achieved for imaging 

cortical microtubules in Arabidopsis seedling root epidermal cells (Fig. 7D, E). To quantitatively 

compare the spatial resolution achieved with these two sample preparation methods, cluster 

analysis was performed for each. The spatial resolution, estimated from the single molecule 

localization precision, was ~38 nm and ~23 nm for the whole mount and freeze shattering plus 

enzyme degradation methods respectively (Fig. 7F). The increased resolution upon freeze 

shattering was primarily due to an increase in the number (N) of photons collected, from 3988 ± 

53 photons up to 5525 ± 352 photons, and a reduction in b from 69 ± 8 photons to 54 ± 3 

photons (Fig. 7G, H). The increased photon counts and reduced background noise improve the 

localization accuracy by a factor of two, indicating that the multiple cell layers of intact roots is 

one important factor limiting the resolution achievable during super-resolution imaging in plant 

tissues. Especially in the case of the freeze shattering method, the spatial resolution was 

comparable to that achieved in animal cell imaging. Although it has been argued that minimal 

disruption of cellular components is introduced by freeze-shattering,41 the continuous structure of 

the cortical microtubules could be disrupted noticeably with this method as shown in the present 

work (Fig. 7E). Intact root staining is therefore the procedure of choice unless maximal spatial 

resolution is required. We used the whole mount immunostaining method to label cortical 
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microtubules with the photoswitchable dye molecule Alexa Fluor 647 for the remaining 

experiments.  

 

Quantitative analysis of the microtubule network with sub-50-nm resolution 

The cortical microtubule array plays a key role in controlling plant cell growth and 

anisotropy through directly guiding the deposition of cell wall material. This occurs largely by 

determining the directional movement and plasma membrane insertion site of cellulose synthase 

complexes during cellulose synthesis and deposition, which constrains the direction of plant cell 

expansion.25,43 Quantitative analysis of microtubule organization can therefore provide insight 

into the expansion and differentiation status of cells within the root.44 Due to technical 

limitations, the details of microtubule structures have not been fully visualized or quantified. 

Using the enhanced spatial resolution of STORM images, quantitative data including 

microtubule density and orientation were obtained. Individual microtubules were resolved from 

one another even within crowded microtubule bundles, allowing the microtubule density to be 

accurately determined by simply counting microtubule filaments per micrometer. The uniformity 

of microtubule filament distribution within a cell is related to its differentiation status. Insights 

into cellular growth and differentiation could be acquired with accurate assessment of the 

microtubule density.  

Although the predominant orientation of cortical microtubules can be identified from 

both epi-fluorescence and STORM images, much more detail is evident in the STORM images. 

Fig. 9F and Fig. 9G show the distributions of cortical microtubules in the highlighted red boxes 

in the epi-fluorescence (Fig. 9D) and the STORM (Fig. 9E) image, respectively. In addition to 

the predominant transverse alignment, a significant population of microtubules aligning in 
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between the transverse and longitudinal orientations can be resolved only in the STORM image. 

To verify the results from manual counting (Fig. 8), MicroFilament Analyzer (MFA)44 was also 

used to analyze the angular distributions of cortical microtubules in both epi-fluorescence (Fig. 

9H) and STORM (Fig. 9I) images. Consistently, more detailed structural information is found in 

the STORM images as demonstrated in the polar plots (Fig. 9J, K). It is therefore evident that 

STORM imaging, with the capability of resolving individual microtubules with sub-50-nm 

spatial resolution, helps in the accurate determination of the spatial organization, including 

density and orientation of cortical microtubule arrays, in plant cells.   

 

VAEM-STORM imaging of a whole Arabidopsis seedling root tip 

The spatial organization of cortical microtubules can change as a response to the 

environment or during different developmental stages.45,46 In Arabidopsis roots, the apical 

meristem is initially established during embryo development and provides stem cells for later, 

post-embryonic, growth. The defined division patterns of the stem cells lead to the formation of 

distinct developmental zones along the length of the root.47,48 After cell division occurs in the 

meristem, cells leave the meristem and begin to elongate in a specialized zone termed the 

transition zone. Extensive rearrangement of the cytoskeleton occurs in the transition zone to 

allow the developmental switch to elongation. Cells then enter the elongation zone, in which 

rapid cell elongation occurs, and finally the more distal differentiation zone.49 

Seven regions (a-g) spread throughout a root tip, as highlighted in the white boxes in Fig. 

10A, were chosen for STORM imaging. Regions a and b represent cells in the apical cap and 

meristematic zone respectively, c-d are in the elongation zone, e-f is between the elongation and 

the differentiation zone, and finally, g is in the differentiation zone. Variations in density and 
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orientation of microtubule arrays between different zones in the root tip can be observed 

qualitatively in both epi-fluorescence images and STORM images; however, accurate 

quantitative structural information, which varies dramatically in different zones, is only available 

in STORM images (Fig. 10B).  

The STORM images show that cortical microtubules in rapidly elongating cells (Fig. 10B 

c and Fig. 4C) are preferentially present in bundled structures, while single unbundled 

microtubules are commonly found in the apical cap and meristematic cells(Fig. 10B a-b) and the 

differentiated cells (Fig. 10B g) where the microtubules are less organized and at lower density. 

Moreover, the transition regions (Fig. 10B e, f) between different zones have intermediate 

microtubule density, indicating the changing organization during different growth phases. It has 

been suggested that the highly spatially organized and more stable regions of the cortical 

microtubule arrays are formed from bundled microtubules; the bundling lends stability to the 

overall structure despite the rapid treadmilling behavior of individual filaments.50 In contrast, the 

less organized and short-lived areas were hypothesized to correspond to individual microtubules 

present at lower density that move and reorganize via treadmilling.51 To provide direct evidence 

for this hypothesis, super-resolution is necessary to distinguish individual microtubules within 

bundles and to accurately assess microtubule density in different regions of the plant root.  

Fig. 11 shows the results from the quantitative analysis of the density and orientation of 

cortical microtubules in the cells highlighted in Fig. 10. Statistics provided in Table 1 indicate 

that the microtubule densities are not significantly different (P > 0.1) between regions c-d, e-f1, 

f2-g. Root cap cells (a) have loosely organized cortical microtubule structures at low density (1.6 

± 0.8 µm-1) and rarely form microtubule bundles. Cells in the late meristematic zone (b) have an 

increased microtubule density, and the cortical microtubules are arranged more tightly in the 
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transverse direction. In the elongation zone (c, d), cortical microtubules strongly prefer to exist 

as bundles in the rapidly growing cells, and as expected, the density is 3-4 times higher (~ 6.0 

µm-1) than in region a. For the cells in the late elongation or early differentiation stages (e, f1), 

the microtubule density decreases to ~ 4.0 µm-1. Cortical microtubule structure becomes loose (~ 

2.0-2.5 µm-1) and preferentially exists as free microtubule filaments in the differentiation zone 

(f2, g), which is consistent with decreasing growth. 

Microtubule orientation, on the other hand, varies dramatically in different zones of the 

root tip. This set of data shows that microtubule orientation changes from random alignment at 

low density (a), to transverse alignment (90 to the long axis of the cell) at high density (b-f1), 

then to random alignment again at intermediate density (f2-g1), and finally to longitudinal 

alignment at low density (g2). Consistent with previous reports,52 cortical microtubules are more 

likely to have a random organization in the root apical area (a) where cells are in the process of 

division, and no predominant orientations are found in this region. A transverse alignment is 

predominant in b to f1 with only small variations among these regions. Nonetheless, a significant 

population of microtubules with small orientation angles are present in f1 which does not exist in 

b-e. In contrast to f1, the adjacent cell f2 has no predominant orientations (with angles spanning 

the full range), which is consistent with the helical structure of cortical microtubules39 in f2. The 

variability in microtubule orientation continues to increase in g1; however, its adjacent cell g2 

shows a predominant orientation angle parallel to the cell’s long axis. The difference in 

microtubule organization at the same distance from the root tip (f1 vs. f2 and g1 vs. g2) could be 

because neighboring cells are at different differentiation stages or, alternatively, because they are 

of different cell types (epidermal and cortical cells).23  
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Conclusions 

In conclusion, we have successfully applied direct STORM imaging to cortical 

microtubules in Arabidopsis root cells with sub-50-nm resolution. The optimized labeling 

strategy, with much lower antibody/fragment concentrations compared to those reported in the 

literature, was critical for achieving such high resolution in plant cell and whole tissue imaging. 

Different sample preparation methods, including the commonly used enzymatic degradation of 

the cell wall and a combination of freeze-shattering and enzymatic cell wall degradation, were 

optimized to provide a spatial resolution of up to 20 nm, which is close to the best resolution 

demonstrated in mammalian cells. Finally, we quantified the spatial organization of cortical 

microtubules in different parts of an intact Arabidopsis root tip. The quantitative results show the 

dramatic differences in the density and spatial organization of cortical microtubules in cells of 

different differentiation stages or types. The methods developed can be applied to a wide range 

of plant cell biological processes, including imaging of additional elements of the cytoskeleton, 

organelle substructure, membrane domains and other structures currently only accessible by 

electron microscopy. We expect these advances in super-resolution imaging will enable critical 

progress in understanding the detailed spatial organization of biological processes in plant cells. 

 

Materials and Methods 

Optical setup for VAEM-STORM 

The imaging system for VAEM-STORM (Fig. 1) was integrated into an inverted 

microscope (Zeiss, Axiovert 100 TV, Germany). Multicolor lasers were collimated into a single 

light path after the beam expander (Thorlabs, BE03M-A) with 3× magnification. Illumination 

light was provided by solid state lasers operating at different wavelengths (Newport, Excelsior 
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one 405 nm, 200 mW; Laser Quantum, Gem 660, 200 mW). Collimation of multicolor lasers 

was accomplished by using a dichroic mirror (Thorlabs, DMLP425T), thus allowing 

simultaneous illumination of the sample at multi-wavelengths. Uniblitz mechanical shutters 

(Vincent Associates, LS2Z2) in front of each laser were used to control the illumination 

conditions, either pulsed or continuous illumination profiles. The collimated light was expanded 

by a telescope of a pair of achromatic lenses (Thorlabs, AC127-025-A & AC254-150-A) and 

then focused at the back focal plane of a high refractive index oil immersion objective (Nikon, 

100X Oil, N.A. 1.49) using another achromatic lens (Thorlabs, AC508-200-A). The incident 

angle of illumination light is controlled by the lateral shift of the light path, through a three-

dimensional stage (Sigma KOKI, SGSP-20-20), before entering the objective. A multi-edge 

beam splitter (Semrock, DC-405-388-543-635) was used to reflect the light into the working 

objective to excite the sample and the emission light is collected by the same objective. After the 

tube lens provided with the microscope, a pair of relay lenses (Thorlabs, AC127-125-A) was 

used to focus emission light onto an EMCCD chip (Andor iXonEM+ 897) enabling a pixel size of 

~160nm. A combination of filters (Semrock, 664 nm RazorEdge long-pass edge filter (LP02-

664RU-25), 658 nm StopLine single-notch filter (NF03-658E-25), 708/75 nm BrightLine single-

band bandpass filter (FF01-708/75-25)) was inserted in front of the camera to reduce the 

background noise. Epi-fluorescence imaging under variable angle illumination and VAEM-

STORM imaging were performed using the customized system. Confocal images were acquired 

with a Leica confocal laser scanning microscope (Leica Microsystems, Leica SP5) using a ×63 

Leica oil-immersion objective. Excitation and emission wavelengths were 652 and 668 nm 

respectively. 
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Plant materials and growth conditions 

Arabidopsis thaliana Columbia-0 seeds were surface sterilized with 33% bleach 

(Clorox), 0.1% (v/v) Triton X-100 (Sigma) for 20 min, followed by 5 rinses with deionized 

water. Sterilized seeds were kept in the dark at 4°C for 2 days. Arabidopsis seedlings were grown 

vertically for 3-5 days under long-day conditions (16 hours light) on half-strength MS agar 

medium (Murashige-Skoog vitamin and salt mixture [Caisson, MSPA0910]) with 1% sucrose 

(Sigma), 2.4 mM MES (Sigma) (pH 5.7) , and 0.6% (w/v) Phytoblend (Caisson).  

 

Immunofluorescence by whole mounting 

Arabidopsis seedlings were immunostained as previously described39 with some 

modifications. Three- to five-day-old Arabidopsis seedlings were fixed for 40 min in fixation 

solution (1.5% paraformaldehyde (Sigma) and 0.5% glutaraldehyde (Sigma) in PME buffer 

[50mM PIPES (J.T. Baker), 2mM EGTA (Sigma), 2mM MgSO4 (Fisher)] with 0.05% Triton X-

100). The fixed samples were washed 3 times (10 min each time) with PME buffer followed by 

digestion for 20 min with 0.05% (w/v) Pectolyase (Karlan) in 0.4M mannitol (Sigma) in PME 

buffer. The samples were washed again in PME buffer for 3 x 5 min. The samples were treated 

with -20°C methanol (Fisher) for 10 min and rehydrated in phosphate-buffered saline (PBS) 

buffer for 10 min. 1mg/mL NaBH4 (Fisher) in PBS was applied to the samples for 20 min to 

reduce autofluorescence and then 3% BSA (Fisher) in PBS supplemented with 50 mM Gly (MP 

Biomedicals) for 3 hours for blocking. The samples were incubated with mouse anti-α-tubulin 

primary antibody (Sigma, T6074) at 1:1000-1:2000 dilution in 1% BSA in PBS at 4°C overnight. 

Samples were washed three times for 10 min each and incubated in Alexa Fluor-647 modified 

F(ab')2 fragment of goat anti-mouse IgG (H+L) (Invitrogen, A-21237) at 1:20,000 - 1:50,000 

dilution in 1% BSA in PBS for 3 hours at 37 °C. After rinsing 5 times (10 min each time) in 
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PBS, samples were post-fixed with fixation solution, washed a further 3 times (10 min each 

time), and mounted on a coverslip in imaging buffer [100 mM Tris pH 8.0 (Ambion), 10 mM 

NaCl (Sigma), 0.5mg/mL glucose oxidase (Sigma), 40µg/mL catalase (Sigma), 10% (w/v) 

glucose (Sigma) and 1% (v/v) β-mercaptoethanol (Sigma)] for epi-fluorescence/STORM 

imaging or kept in PBS buffer at 4°C for up to one month. 

 

Immunofluorescence by freeze shattering  

Freeze-shattering was performed as described previously41 with modifications. Three- to 

five-day-old Arabidopsis seedlings were fixed in fixation solution, washed 5 times with PME 

buffer and digested with enzyme as same as those in whole mounting method. After digestion, 

samples were placed between two 3-Aminopropyltriethoxysilane (APTES) coated slides and 

frozen immediately in liquid nitrogen for 5 min. After removal from liquid nitrogen, the paired-

slides were immediately separated and air-dried for 40 min. Freeze-shattered samples were 

permeabilized on the slides using 0.5% [v/v] NP40 (USB) and 10% DMSO (Fisher) in PME 

buffer and washed three times with PME buffer (10 min each time). The samples were reduced 

using 1 mg/mL NaBH4 in PBS for 20 min and blocked with 3% BSA in PBS for 1.5-2 hours. 

Primary antibody and secondary fragment were as above. The samples were post-fixed for 20 

min in fixation solution. For long-time storage, samples were immersed in PBS buffer and kept 

at 4°C for up to one month. 

 

Sample preparation and drift correction using fiducial marker 

For intact root samples, the labeled root was placed on a 22×50mm coverslip (Corning, 

No.1). For the freeze-shattering procedure, glass slides coated with APTES were used to attach 

the root to the surface. Imaging buffer was applied to the sample slide and then an 18×18mm 
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coverslip (Corning, No.1) was applied on the sample to form a chamber and sealed using nail 

polish to avoid oxygen from the air, thus allowing imaging for several hours. The sample 

chamber was then placed on a customized sample holder and was locked with two metal clips to 

reduce the sample drift. The sample holder was mounted on a high performance three-

dimensional piezo stage (PI, P-527.3CD), which was integrated into the microscope system. 

Fluorescent beads (Invitrogen, T7279) absorbed on the coverslip or glass slides were used as 

fiducial markers. The positions of the beads were tracked and used for stage drift correction of 

localized molecular positions in STORM images.  

 

Localizing the center of single molecules and determining localization accuracy 

The molecular size of single fluorescent molecules is usually a few nanometers; however 

the corresponding microscopic images have a typical size of a few hundred nanometers because 

of the point spread function (PSF) of the imaging system. Though the true molecular size of 

molecules cannot be determined using fluorescence microscopy, the centroid of the molecule can 

be localized with high precision with fitting by its PSF or 2D Gaussian function as an estimate. 

The precision of the localization, in brief, is inversely proportional to the square root of photons 

(√N) collected from the single molecule.8 Molecules emitting several thousand photons can be 

localized with nanometer precision under this standard. The simple estimation model works well 

in cases where the background noise is very small so that it can be neglected. In circumstances 

such as plant cell imaging, background noise is often high. Localization precision is measured by 

using another equation according to Thompson et al.53 

𝜎 = √
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where s is the standard deviation of the Gaussian distribution that equals 1/2.2 of the PSF width, 

a is the pixel size, b is background noise and N is number of collected photons. The first term 

(s2/N) is the photon noise, the second term is the effect of finite pixel size of the detector, and the 

last term is the effect of background. Using point-like objects appearing as clusters in the 

STORM images, the fitting parameters (Fig. 6A) were extracted b: 68, N: 3600, a: 156 nm giving 

an average localization of 16 nm. The FWHM of the fitting is used, giving an estimation of the 

spatial resolution as 40 nm. The spatial distributions of the clusters were also fitted by 2D 

Gaussian function giving a FWHM of 42 nm (Fig. 6B), in agreement with the results from single 

molecule fitting. The spatial resolution in VAEM-STORM imaging of intact Arabidopsis root 

cells in our experiments therefore was comparable to the resolution in animal cell imaging.  

 

Data analysis of VAEM-STORM imaging 

VAEM-STORM imaging data was processed using Insight3 software kindly provided by 

Dr. Bo Huang, University of California at San Francisco. In our experiments, an imaging 

sequence of 20,000-30,000 frames recorded at 20-60Hz was used to reconstruct a high resolution 

STORM image. In each frame, individual molecules were identified and fit by an elliptical 

Gaussian function to determine their centroid positions, widths, intensities and ellipticities. A 

threshold was chosen to eliminate molecules that were too dim, too wide or too elliptical to yield 

high localization accuracy based on the fit parameters. Usually, the intensity of the illumination 

light and the recording speed was adjusted such that fluorescent molecules were in the ‘on’ state 

for 2 – 3 frames. Molecules appearing in consecutive frames with a displacement smaller than 

one pixel were considered to be from the same fluorescent molecule and their final positions 

were determined using the weighted centroid positions in all consecutive frames.  
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A pixel size of 10 nm was used to generate the STORM images. In the STORM images, 

each molecular position was assigned as one point. These points were rendered as a normalized 

2D Gaussian peak, the width of which was determined by its theoretical localization accuracy 

calculated from the number of photons detected for that localization event. 
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Tables 

Table 1. Comparison of densities of CMT at different regions in plant root. 

 

T-test of densities of cortical microtubules between adjacent regions (a-g) highlighted in Fig. 5. 

Cells or regions with densities of cortical microtubules not significantly different (P > 0.1) are 

highlighted in light blue in the table. 
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Figures 

 

Figure 1. Schematic diagram of the setup for VAEM-STORM imaging. Multiple lasers were 

collimated by using dichroic mirrors DC1. Collimated lasers were first expanded with two 

achromatic lenses L1 (Thorlabs, AC127-025-A) and L2 (Thorlabs, AC254-150-A) and then 

focused by an achromatic lens L3 (Thorlabs, AC508-200-A) at the back focal plane of an oil 

objective O (N.A. = 1.49). Dotted-dashed and solid lines represent the back focal plane of O and 

the sample-imaging plane respectively. The single molecule images generated by the objective 

and tube lens (TL) were imaged by an Andor iXon+ 897 EMCCD camera via a pair of relay 

lenses L4 and L5 (Thorlabs, AC254-125-A). Emission filters are inserted between L4 and L5 to 

exclude scattering background. A highly inclined illumination condition was achieved via lateral 

shifting of the position of L3, which was mounted on a motorized 3D stage. 
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Figure 2. Comparison of laser beam paths. Comparison of the laser beam paths of total 

internal reflection fluorescence (TIRF) (A), variable angle epi-fluorescence (VAE) (B) and epi-

fluorescence (C) illumination. In VAE geometry, the incident angle of the laser beam is slightly 

smaller than yet very close to the critical angle. The illumination depth is adjusted by scanning 

the subcritical angles to achieve the illumination condition giving the best signal to noise ratio. 

(D) Theoretical light intensity on the coverslip-specimen surface at the specimen side, when a 

beam is introduced from the glass side, as a function of the incident angle. At θ < θc, the laser 

beam is refracted. At θ ≥ θc, the beam is totally internally reflected. Within about 10o from the 

critical angle, the light intensity on the specimen side is larger than that of the incident laser 

beam. When the incident angle is increased up to the critical angle, the intensity of refracted light 

increases due to the reduced thickness of the refracted beam at large incident angles. This 
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provides the necessary pre-condition for tuning the switching properties of dye molecules. At the 

critical angle, the laser intensity of the evanescent field is about four times higher than the 

incident beam. This is because the light intensity at the surface is the sum of the incident and 

reflected beams whose phases are the same. Therefore, the electric field of the total light doubles 

while the light intensity increases by a factor of four, which is the square of the electric field. As 

the incident angles become larger than the critical angle, the phases of the incident and reflected 

beams are different, thus the light intensity of the evanescent field decreases. 
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Figure 3. Comparison of S/N between epi-fluorescence illumination and VAE illumination. 

Imaging of Alexa Fluor 647-labeled cortical microtubules under epi-fluorescence (A) or VAEM 

(B). Images are acquired for epi-fluorescence and VAEM imaging using the same excitation 

intensity at 660 nm (3.5 kW/cm2) and same exposure time (50ms). The corresponding close-up 

images (C, D) show that the background due to out of focus contributions in VAEM is greatly 

reduced compared to epi-fluorescence. (E) Cross-sectional profiles at the same location show the 

dramatically enhanced S/N in VAEM compared to epi-fluorescence. Scale bar: 5 µm (A, B) and 

1 µm (C, D). 
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Figure 4. VAEM-STORM imaging of the cortical microtubule network of intact epidermal 

plant cells in the elongation zone of an Arabidopsis root tip. (A) Bright field image of cells at 

the elongation zone. The cells shown here are also highlighted in Fig. 5A as region d. The 

boundary between cells is highlighted with green dashed lines in the bright field image.  (B) Epi-

fluorescence image of the dense cortical microtubule network in the elongating cells and (C) the 

corresponding STORM image. (D) Zoomed-in STORM image as indicated in the white region in 

(C). (E) Cross-sectional profiles of a microtubule bundle in the cell [highlighted in the red box in 

(D)]. The histogram shows the cross-sectional distribution of the positions within the region 

specified by the red box. The red line is the fitting result from five simple Gaussian functions 

showing the centers of individual microtubules that are 80.0 nm ~ 137.9 nm apart. Scale bar: 3 

µm (A-C) and 500 nm (D). 
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Figure 5. Diffraction unlimited resolution in VAEM-STORM imaging compared to 

diffraction limited imaging of cortical microtubules in plant cells in the elongation zone. (A) 

Epi-fluorescence image and (B) STORM image of the same area. (C) Confocal image and (D) 

zoomed-in image showing the highly packed cortical microtubules in plant cells. Compared to 

the images taken by epi-fluorescence microscopy and confocal microscopy, where close cortical 

microtubules are not resolvable, the structure and organization of the cortical microtubules in the 

STORM images are much clearer and better resolved. Scale bar: 2 µm (A, B, D) and 50 µm (C). 
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Figure 6. Estimation of the spatial resolution of VAEM-STORM imaging in intact 

Arabidopsis root tip cells. (A) Point-like objects appearing as clusters in the STORM image 

were used to directly determine the localization accuracy, thus estimating the spatial resolution. 
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Inset shows a single molecule image in one frame. (B) The localization distributions of clusters. 

A histogram of the distributions of locations in 2D was generated by aligning about 30 clusters 

by their center of mass. The distribution was then fitted with a simple Gaussian function for 

determining the FWHM of 42 nm, which was used as the resolution for STORM imaging. (C) 

Photon numbers and (D) localization accuracies of Gaussian fitting of single molecule images 

from the same clusters as in (B). The typical image parameters, including the background noise b 

(68 ± 24 photons) and collected photons N from single molecules in their switching cycles 

(3,600 ± 1,297 photons), were determined. As expected, the background noise in plant cell 

imaging is much higher than in animal cell imaging in which b is almost negligible. Nonetheless, 

the collected N is sufficiently large to ensure highly accurate localization. The localization 

precisions are calculated for each localized molecule following previously established methods 

(see Materials and Methods). The average localization precision from a histogram of over 2,000 

positions is 16.0 ± 2.2 nm. (F) The apparent width of a single free microtubule is ~50 nm from 

fitting the cross-sectional profiles of locations (white box, E, zoomed-in image are extracted 

from Fig. 1C) with a simple Gaussian function. The average apparent width of over 20 single 

free microtubules is 57 ± 4 nm (data not shown). The apparent microtubule width is a result of 

the actual size of the microtubule plus staining antibodies and the sub-50-nm imaging resolution. 

(G) VAEM-STORM imaging provides details of microtubule bundling structures in plant cells. 

(H) Microtubule bundles composed of two single microtubules (white region, G, zoomed-in 

image are extracted from Fig. 1C) with 62 nm separation are clearly resolved in STORM images. 

Space between individual microtubule filaments varies from 50 nm – 120 nm33 in animal cells 

and 20 nm – 40 nm in Arabidopsis cells34 depending on the crosslinking structures. The 

separation distance is larger as a result of broadening effects due to antibody sizes and the spatial 

resolution. Scale bar: 200 nm. 
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Figure 7. Proper labeling density of cortical microtubules by antibody-conjugated dye 

molecules is critical for generating super resolution images with sub-50nm-spatial 

resolution. Cortical microtubules in Arabidopsis root cells were first labeled with mouse anti-α-

tubulin antibody, followed by goat anti-mouse F(ab’)2 fragments conjugated with Alexa Fluor 

647. (A)-(D) STORM images using various concentrations of primary antibody and secondary 

antibody fragments are shown..(E) STORM image with sample preparation using the freeze-

shattering process and with antibody concentrations the same as those in (D). The corresponding 
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localization precisions using clusters located between cortical microtubules (F), the local 

background in photon counts around the cluster (G) and the collected photon number of localized 

positions in the clusters (H) are shown. Scale bars: 1 µm. 

 A B C D 

primary antibody (µg/mL) 2.0 1.0 2.0 1.0 

secondary antibody (µg/mL) 0.20 0.20 0.04 0.04 
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Figure 8. Quantitative information on the cortical microtubule network is readily available 

with a resolution of 20 – 40 nm in STORM images. (A) White dashed lines show the long axis 

of the plant root cell and white dashed arrows indicate the orientation of individual microtubule 

filaments. The orientation angles are taken as the angle of each microtubule filament relative to 

the long axis of the cell. Two examples of microtubule filaments are shown with orientation 

angle of 30o and 160o respectively. (B) These images demonstrate how the densities of cortical 

microtubules are measured. Since close microtubule filaments are easily resolvable, the densities 

can be determined by counting numbers of filaments along the cross-sectional or circular profiles 

(red dashed lines) depending on the local arrangement of the cortical microtubule network.  

Scale bars: 5 µm. 
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Figure 9. VAEM-STORM imaging of cortical microtubules in a plant epidermal cell of a 

whole intact root tip and orientation analysis. Analysis was performed both manually and 

using Microfilament Analyzer (MFA) software.44 (A) Bright field image of the whole root tip. 

Image is a collage of individual images with the same optical setup (100× objective) as for epi-

fluorescence and STORM imaging. The location of cells for STORM imaging in the whole root 

therefore can be easily determined from the bright field images under the same magnification. 

(B)-(C) Zoomed-in bright field images showing the location of cells used for STORM imaging. 

(D) VAEM image and (E) STORM image of the cells highlighted in the bright field image, 

corresponding to the red box in (B). (F)-(G) Polar plots of the orientations of microtubule 

filaments in the VAEM image (F) and STORM image (G) as highlighted in the red boxes in (D) 

and (E), respectively. The long axis of the cell is indicated by the purple axis in the polar plots. 

(H) - (K) Results of orientation analysis using the MFA software. The offset angle is 900 (long 

axis) and is not corrected in the polar plot, consistent with (F) and (G). Predominant angles are 

highlighted as green stars in the polar plot. Note that Figures (F-G) and Figures (H-K) are in 

different forms due to two different measuring methods. Scale bars: 30 µm (A) and 3 µm (B – I). 
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Figure 10. VAEM-STORM imaging of cortical microtubules in different parts of an intact 

Arabidopsis root. (A) Mosaic of bright field images of the root tip. Seven regions (a-g) across 

the root tip are highlighted and were chosen for dSTORM imaging. (B) Zoomed-in bright field 

and corresponding epi-fluorescence and STORM images of the white-boxed regions in (A). 

Images are shown of cortical microtubules of epidermal cells in meristematic (a-b), elongation 

(c-e), and differentiation (f-g) zones of the intact Arabidopsis root tip. Note that the zoomed-in 

bright field image, epi-fluorescence image and STORM image of cells in region d are shown in 

Fig. 2. Cell boundaries are highlighted with red dashed lines. Cells in regions f and g show 

distinct microtubule organization patterns, thus they are analyzed separately in Fig. 6 as f1, f2 and 

g1, g2 as indicated in the corresponding bright field images. Scale bars: 50 µm (A) and 3 µm (B, 

a-g). 
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Figure 11. Quantitative analysis of the cortical microtubule network in a plant root tip. (A) 

The average cortical microtubule density (number of microtubules per micrometer) in the 

highlighted cells in Fig. 5, with the distance of cells from the root tip. Error bars represent the 
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standard deviation of densities of cortical microtubules from over 10 sub-regions in each cell.  

(B) Schematic representation of the orientation of cortical microtubules, taken as the relative 

angle (θ) of each microtubule filament to the long axis of the cell. The orientation angle θ as 

displayed in (C) is corrected by the offset angle φ of the cell, determined by its long axis. Ψ is 

the angle of the microtubule filament in the coordinates of the STORM image (x-y). All angles 

were determined by using NIH ImageJ (http://rsbweb.nih.gov/ij/). (C) Polar plots showing the 

distributions of cortical microtubule orientations (θ) of the corresponding cells in Fig. 4. 

Adjacent cells (f1 and f2, g1 and g2) showing dramatically different cortical microtubule 

organizations were analyzed separately. Note that the long axis of the cell has been aligned to the 

3 o’clock position in all polar plots as highlighted in purple.  
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Abstract 

The emergence and advancement of super-resolution and super-localization fluorescence 

microscopy in the past decades had enabled researchers to reveal more detailed molecular 

dynamics and structural information from single molecule imaging. The application of single 

molecule localization based super-resolution imaging techniques in imaging chemical reactions 

had brought new insights of the reaction mechanism at single particle level void of the averaging 

effect in classical ensemble experiments. Heterogeneous properties of porous materials had been 

revealed in single molecule fluorescence microscopy. Here we synthesized a multilayer 

nanocatalysts composed of platinum nanoparticles sandwiched between an optically transparent 

solid core and a mesoporous shell with aligned pores. The catalytic reaction, molecular 

transportation and their coupling on the core-shell nanocatalysts were studied. Heterogeneity of 

the nanopore structure was revealed by single molecule imaging experiments. 
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Introduction 

Optical microscopy imaging of single molecules, which reveals static and dynamic 

heterogeneities from seemingly equal molecules by removing the averaging effect in classical 

ensemble experiments, has played an important role in the investigations of fundamental 

biological and chemical processes at the molecular and nanoscale. The emergence of single 

molecule-based super-localization and super-resolution microscopy imaging techniques1-4 in the 

past decade has introduced the critical ability of resolving individual molecule with nanometer 

scale accuracy and precision for revealing more detailed molecular dynamics and structural 

information. Nearly all of these technical advances were originally developed for biological 

studies.  

More recently, however, efforts in super-resolution chemical imaging started to gain 

momentum. New discoveries that were previously unattainable with conventional diffraction-

limited techniques have been made, such as super-resolution mapping of catalytic reactions on 

single nanocatalysts5-16 and the mechanistic insight into protein ion-exchange adsorptive 

separations.17  Moreover, super-localization based single particle tracking (SPT) methods had 

also been widely used to study the dynamic behaviors of single molecule in porous materials 

such as mesoporous silica nanomaterials18-21 and reversed phase high performance liquid 

chromatography beads.22,23 The sub-populations of immobile or temporally trapped molecules in 

the porous structure were used to reveal defects and other properties of the porous materials. 

Furthermore, single molecular trajectories also helped to uncover the alignment of pore 

structures with nanometer precision.   

New insights on molecular transport and chemical reaction, and more importantly, their 

coupling, at the single molecule level in a wide range of length scales (from nanometer to tens of 
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micrometers) become increasingly interesting and important. However, most previous studies7,10-

12,16,18-22,24 dealt with these two important phenomena separately. Therefore, it is important to 

develop new methods to elucidate the coupling of molecular transport and catalytic reaction at 

the single molecule and single particle level. Herein, we applied an automated total internal 

reflection fluorescence microscope (TIRFM) to study the molecular transport and catalysis in 

high-performance core-shell catalysts.25 The core-shell catalysts were composed of a 3D 

sandwiched structure in which platinum (Pt) nanoparticles (NPs) were located between an 

optically-transparent spherical solid SiO2 core and a mesoporous SiO2 shell with aligned pores. 

The fully optimized automated TIRFM enables us imaging fluorescent molecules with high 

signal to noise ratio (SNR) and thus allowing us to localize the molecular positions with sub-10-

nm precision. The results from analyzing single molecular trajectories showed that resorufin 

molecule diffuses much slower in a nanopore than it is in a free aqueous solution. Moreover, 

three characteristic diffusional behaviors were also observed indicating the heterogeneous 

environment inside the nanopore. Analysis of the time dependence of all three sets of diffusion 

coefficients on different lag time revealed that resorufin molecules were undergoing both fast 

free motion and slow motions with restriction.   

 

Results and Discussion 

Imaging chemical reaction, molecular transportation and their coupling in core-shell 

catalysts 

The core-shell catalysts which have highly tunable complex structures with well-defined 

geometry and manageable complexity were synthesized following the procedure as described in 

Fig. 1. The synthesized core-shell catalysts consist of Pt NPs, sandwiched in between an 
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optically transparent solid SiO2 core and a mesoporous SiO2 shell (Fig. 2). The Pt NPs have an 

average size of 2.9 nm and the SiO2 core sphere is about 200 nm in diameter. The well-aligned 

nanopores in the mesoporous SiO2 shell have an average length of 110 nm. Since the catalytic 

reaction takes place on the surface of Pt NPs, a reactant molecule needs to diffuse through the 

nanopores in order to get contact with the surface of Pt NPs. The life cycle of a product molecule 

in a core-shell mesoporous nanocatalyst refers to the following events and processes: 1) 

Desorption of the product molecule from the surface of Pt NP. 2) Free diffusion in nanopores. 3) 

Adsorption/desorption of the product molecule on the inner surface of nanopores. 4) Moving out 

of the nanopore and leaving the evanescent field of TIRFM. After the fluorescent product 

molecule leave the evanescent field of TIRFM, the fluorescence signal vanishes completely. The 

oxidation of non-fluorescent amplex red into fluorescent resorufin (Fig. 3a) is used here as a 

model reaction to study the aforementioned events and processes. The nanopores in the porous 

silica shell confine the diffusion of the generated fluorescent molecules.  

TIRFM is arguably the most successful mode of fluorescence microscopy to be applied in 

studies of molecular dynamics, including diffusion26-28 and absorption,29,30 at liquid/solid 

interfaces. Under TIR illumination the incident angle of light is varied upon a material of a high 

index of refraction (n1). At angles beyond the critical angle, the incident light is completely 

reflected and an evanescent wave is created in the adjacent medium (n2), which must have a 

lower index of refraction than n1. The penetration depth of the evanescent wave varies with the 

angle of incidence, the wavelength of light, and the indices of refraction of the two media. The 

TIR geometry provides excellent background rejection for interfacial measurements. However, it 

is worthwhile to note that the dimension (~ 400 nm in height) of the core-shell catalysts used 

here is significantly larger than those in the previous works such as gold-semiconductor hybrid 
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nanocatalysts10 (< 10 nm in height). This makes finding the optimal illumination conditions more 

challenging in our experiments since the depth of the evanescent field generated under TIR 

illumination (limited to a few hundred nanometers) is comparable to the height of the 

nanocatalysts. To get the best performance (i.e., maximum illumination depth and highest SNR) 

out of TRIFM, we used an auto-calibrated scanning-angle TIRFM setup (Fig. 4) that had been 

accomplished with an optimized system layout and an automatic high-precision calibration 

procedure 31,32. A computer program developed in-house was used to find the incident angles in 

the full range with an interval as small as ~0.1°. The entire auto-calibration procedure can be 

finished within minutes. The automated operation allows us to find the truly optimized 

illumination conditions and achieve the best possible SNR in single molecule detection, which is 

crucial for localizing the positions of fluorescent resorufin molecules when they are diffusing in 

the nanopores. Sub-10-nm localization precision (Fig. 3b) can be achieved at an exposure time of 

50 ms under the fully-optimized automated TIRFM. Such high localization precision makes it 

possible to determine the entire trajectory of a resorufin molecule from the initial position on the 

SiO2 core (catalytic reaction site) to the final position where it disappears at the outer edge of a 

nanopore.  

 

Molecular transportation in nanopores 

Fig. 5a shows an example of the catalytic cycle of the oxidation of amplex red and the 

dynamic transportation of a resorufin molecule in a nanopore. In the recorded movies the 

generated fluorescent resorufin molecule shows a relatively stable fluorescence intensity, which 

indicates a horizontal alignment of this specific nanopore in the core-shell catalyst. The 

fluorescence intensity in the final frame is weaker than the rest of images, which is most likely 
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due to the fluorescent molecule escaping the nanopore and diffusing beyond the illumination 

depth of the evanescent field within the exposure time of 50 ms.  

Super-localization microscopy allows us to pinpoint the locations of fluorescent 

molecules in the nanopores with high precision. The distribution pattern of single molecule 

images can be fitted by a two-dimensional Gaussian function, which is commonly used as a close 

estimation of the point spread function in optical microscopy. The centers of the fluorescent 

molecules can be extracted with a sub-10-nm precision from the fitting parameters. The high 

localization precision allows us to construct the trajectory of the fluorescent resorufin molecule 

in the nanopore as shown in Fig. 5c. The spatial and temporal information of the catalysis cycle 

of oxidation of amplex red is thus readily available from the single molecular trajectory.  

The reactant molecule amplex red was first transferred into the product molecule 

resorufin on Pt NPs that corresponds to the first 3 frames of the recorded movie. Then the 

fluorescent resorufin molecule diffused away after desorption from the surface of Pt NPs. Instead 

of quickly diffusing out of the nanopores, the fluorescent molecule was trapped in nanometer 

region as it shows relatively slow motions. The “trapping” event could be caused by the 

interaction between the resorufin molecule and nanopore’s inner surface. The heterogeneous 

behavior of molecular transport reflects the inhomogeneity of the inner surface of nanopores. 

Once the resorufin molecule stepped out of the trapping region, it moved smoothly along the 

nanopore and eventually escaped out of nanopore.  

Stage drift is an important factor in super-resolution and super-localization imaging 

experiments. In order to rule out any possibility that the trajectory the resorufin molecule is 

arbitrary as the result of stage drift, images of fluorescent beads which worked as fiducial marker 

for stage drift correction in long-term imaging were extracted during the same imaging period of 
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tracking the resorufin molecule in nanopore (Fig. 5b). The constructed trajectory of the locations 

of fluorescent beads was shown in Fig. 5d. The movement of fluorescent beads is insignificant 

compared to the recorded traces of diffusing resorufin molecules. Therefore, we can confidently 

rule out the influences of stage drift to the trajectory of the resorufin molecule diffusing in 

nanopore. 

The transportation of resorufin molecules in nanopores can be quantified through 

analyzing the distribution of step size (r) in single-molecule trajectories. The diffusional 

behavior of resorufin molecules in nanopores can be obtained with high accuracy from single 

molecule trajectories by examining the distributions of step size.20 One of the benefits of such 

analysis is that a large number of single molecule trajectories similar to the one shown in Fig. 5c 

can be used to draw conclusions on statistical significance. The distribution of step size of 

resorufin molecules in nanopores, as shown in Fig. 6a, exhibits a feature similar to Gaussian 

distribution indicating a random walk mechanism according to the central limit theorem.33 

Therefore, the histogram distribution in Fig. 6a was fit to a radial displacement probability 

density function of a random walk in one dimension (see more details in Materials and Methods). 

The yielded apparent square root of mean squared displacement (‹r2›1/2) is 22.4 ± 0.5 nm. It is 

worthwhile to note that the displacement of resorufin molecules in nanopore is two orders of 

magnitude smaller than that in free aqueous solution (6.93 × 103 nm),34 indicating that the 

movement of resorufin molecules in nanopore is much slower. This can be explained with the 

small size of the nanopore (2~3 nm) (Fig. 2d). We have also examined the movement of a 

fluorescent bead fixed on a quartz surface, which mainly reflects the uncertainty of localization 

(Fig. 6b). The distribution of step sizes was calculated using the trajectory of the fluorescent 
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bead after correcting for the stage drift. Compared to the resorufin molecules, the fluorescent 

bead shows insignificant movement during the imaging period.  

 

Characterization of molecular trajectories in terms of diffusion coefficient 

The molecular transportation in nanopore can be quantitatively described by calculating 

the diffusion coefficients (D), which can be readily obtained from the ‹r2› at interval time of tlag 

according to the Einstein-Smoluchowski equation35 (See Materials and Methods). However, the 

result from data for single tlag is usually insufficient to fully describe the molecular diffusion in a 

confined environment. One needs to consider the long-term observation. For molecules 

following free random-walk motions, a linearly increasing of ‹r2› with the tlag can be expected. 

On the contrary, for those restricted molecules, ‹r2› that is still well approximated in the same 

way is stationary at different tlag. Therefore, the diffusion coefficient is better estimated by fitting 

the ‹r2› versus tlag. There are commonly two ways to deduce ‹r2› from single molecular 

trajectories, namely fitting the histogram distribution of step sizes or fitting the cumulative 

probabilities.  In practice, the result is more precise through the analysis of the cumulative 

probabilities instead of the histograms and loss of information by binning of the histogram can 

also be avoided. So we analyzed the single molecular trajectories by plotting the inverse of the 

cumulative probability (C(r2)) of the squared step sizes (r2) at different tlag. The plotted data were 

then fitted with modified multi-exponential decay functions (See more details in Materials and 

Methods) giving of the mean squared displacement, which is the characteristic value of 

describing single molecular diffusion in nanopore. 

Fig. 7a shows the cumulative probabilities versus squared step sizes at two different tlag 

(0.05 s and 0.2 s resembled as square and triangle, respectively). The data here cannot be simply 
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fitted by mono-exponential decay function (red dash line in Fig 7a) with which only a single 

diffusion type is recovered. To best fit the data, it requires at least three individual components of 

exponential decays (red solid line in Fig. 7a) giving of three different mean squared 

displacements at each tlag. This indicates that three types of diffusional behavior of resorufin 

molecules in nanopores can be revealed. To determine the diffusion coefficients of resorufin 

molecules in nanopores, different sets of mean squared displacements were plotted against the 

lag time (Fig. 7b). The data were then fitted with the Einstein-Smoluchowski equation for 

random diffusion in one dimension, giving diffusion coefficients of 0.022 ± 0.001 µm2/s (fast), 

0.0068 ± 0.002 µm2/s (slow) and 0.0021 ± 0.0003 µm2/s (very slow). The large differences of 

these diffusion coefficients indicate that the resorufin molecule is moving in three main types of 

environment in nanopores. The resorufin molecules showing a fast diffusion behavior (the 

component with largest diffusion coefficient) are those diffusing in the free solution filled in 

nanopores. The resorufin molecules with smallest diffusion coefficient are likely temporally 

absorbed or trapped onto either the Pt NPs or the inner surface of nanopores. It is also possible 

that the resorufin molecules diffuse slowly on the inner surface (the component with 

intermediate diffusion coefficient) because of weak interaction between resorufin molecule and 

nanopore inner surface. Through these three characteristic diffusion behaviors of resorufin 

molecules in nanopores were deduced from the ensemble data of single molecular trajectories, it 

still holds true on individual molecular traces. For instance, all three types of diffusional 

behaviors of resorufin molecules in nanopores can be clearly resolved in Fig. 5c. The result here 

shows that the mobility of resorufin molecules in nanopores changes strongly along its pathway 

due to the heterogeneous environments. Nevertheless, we did not always see all three distinct 

types of diffusion in the same single molecular trajectory as shown in Fig. 8. In some nanopores 



78 

 

 

(Fig. 8c), only a single diffusion behavior is observed. Therefore, the analysis of single 

molecular trajectories demonstrates that the diffusion coefficient not only varies along the 

diffusion trajectory of the same resorufin molecule in individual nanopore but also changes 

among different nanopores. The heterogeneities of the nanopore structure in the core-shell could 

only be revealed by single molecule tracking methods and would have been obscured in 

ensemble experiments due to inevitable averaging effects.  

To test whether the movement of resorufin molecules in nanopores actually follows free 

diffusion according to random-walk mechanism, the diffusion coefficients of all three 

components were calculated using Einstein-Smoluchowski equation (Table 1). The results were 

illustrated in Fig. 9. It clearly shows that the relationship between diffusion coefficients and lag 

time varies among three diffusion components. The fast diffusing resorufin molecules are nearly 

free since the diffusion coefficients stay same at different lag time. On the contrary, the other two 

slow diffusion components show decreasing diffusion coefficients as the lag time grows 

indicating that the molecule’s movement is restricted. The restriction of the diffusion of resorufin 

molecules in nanopores can be physically described by introducing a factor α,36,37 which is used 

to quantify the dependence of the diffusion coefficient on lag time. Γ is the transportation 

coefficient. The underlying mechanism is that the molecule diffuse freely at short observation 

periods but slows down at long observation time as a result of increasing effects of barriers or 

bindings. The base of this mechanism is that no average residence time of molecules per step can 

be obtained due to the broad distribution of association energies of interactions between 

resorufin molecules and the continuously changing environment in nanopores. The strength of 

restriction is quantified by α. For α = 1, the diffusion of molecules is independent of lag time 

indicating that the molecules is undergoing free Brownian diffusion. The results from fitting the 
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time dependence of diffusion coefficients are shown in Fig. 9, giving of α values of 0.98 ± 0.02 

(fast), 0.84 ± 0.07 (slow), and 0.66 ± 0.01 (very slow) and transportation coefficients of 0.084 ± 

0.002 µm2/s (fast), 0.023 ± 0.003 µm2/s (fast), and 0.0062 ± 0.0001 µm2/s (fast). The fast mobile 

fraction of resorufin molecules diffusing in nanopores is close to free motions, while the two 

slow mobile fractions indicate that the diffusion of resorufin molecules is restricted at some 

degree. Therefore, the changing between free diffusion and restricted motion of resorufin 

molecules in nanopores of core-shell catalysts is in consistent with the heterogeneity of the pore 

structure not only among different nanopores but also within the same nanopore. 

 

Conclusions 

In summary, we studied the molecular transportation and on-site chemical reaction, and 

more importantly, their coupling at single molecule and single channel level in mesoporous core-

shell catalysts. The catalysts used in this work have a complex, but well-defined geometry - Pt 

NPs sandwiched between an optically transparent solid SiO2 core and a mesoporous SiO2 shell 

with aligned pores. Fluorogenic oxidation of amplex red was used as a model reaction for 

studying catalytic reactions on the Pt NPs and molecular transportation in well-aligned 

nanopores. Under fully optimized automated TIRFM, the fluorescent product molecule, 

resorufin, was detected with high SNR thus allowing us to achieve sub-10-nm localization 

precision of single molecule image at a temporal resolution of 50 ms. The high localization 

precision enables us to track the full trajectory of a resorufin molecule from the initial position 

on the SiO2 core (the site of catalytic reaction) to the final position where it disappears at the 

outer edge of a nanopore. Analysis of the single molecular trajectories reveals that the 

displacement of resorufin molecules in nanopores is much slower comparing to that in free 
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solution. Furthermore, the heterogeneity of motions of resorufin molecules along their pathways 

indicates the heterogeneity in the local environment inside the individual nanopores. The 

diffusion coefficients of resorufin molecules in nanopores were calculated to show at least three 

sub-populations of different molecular mobility. Analysis of the time dependence of diffusion 

coefficients on lag time has also led to the quantification of the degree of restriction on motions 

of resorufin molecules in nanopores. The source of restriction could come from both the initial 

adsorption of resorufin molecules on Pt NPs or the adsorption-desorption of resorufin molecules 

on the inner surface of nanopores. These results show the heterogeneity of nanopore structure 

can only be revealed by single molecule tracking method. 

 

Materials and Methods 

Synthesis of Multilayer Nanocatalysts 

As shown in Fig. 1, monodisperse SiO2 spheres are synthesized as the starting core via 

Stöber method.38,39 The reason we choose SiO2 as the core as well as the shell material is that it 

has excellent thermal stability, inert catalytic activity, tunable surface functionality, and optical 

transparency in the visible light region, meeting the requirement of our research. After 

purification by centrifugation, monodisperse SiO2 spheres with an average diameter of 180 nm 

were obtained (Fig. 2). We polymerized 3-aminopropyltriethoxysilane (APTS) on SiO2 surface 

to introduce −NH2 groups. These −NH2 groups enhance the binding between Pt NPs and SiO2 

spheres, and thus the loading efficiency.  

Monodisperse 2.9 nm Pt NPs were synthesized by methanol reduction of chloroplatinic 

acid (H2PtCl6) in the presence of polyvinylpyrrolidone. These Pt NPs were loaded on NH2-

functionalized SiO2 spheres by mixing them in ethanol. Pt loading amount was controlled to be 
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~2.5 wt%. As shown in Fig. 2c, Pt NPs were uniformly dispersed on the surface of SiO2 spheres, 

owing to the strong interaction between Pt NPs and −NH2 groups on the surface of SiO2 spheres.  

Finally, a mesoporous SiO2 shell was grown on the surface of Pt NPs loaded SiO2 spheres. 

Tetraethyl orthosilicate (TEOS) was used as the SiO2 precursor and 

hexadecyltrimethylammonium bromide (C16TAB) was used as the templating agent. The 

transmission electron microscopy (TEM) image in Fig. 2 shows a solid SiO2 core of 180 nm in 

diameter and a uniform SiO2 shell of 110 nm.  

The SiO2 spheres were loaded with Pt NPs before the mesoporous SiO2 coating. The 

C16TAB template in mesoporous SiO2 was removed by refluxing in a mixture of methanol and 

concentrated hydrochloric acid. After removing the organic template, we noticed that the 

channels of mesoporous SiO2 shell are aligned perpendicular to the surface of the SiO2 core. The 

obtained nanostructure, Pt NPs confined between a solid SiO2 core and an aligned SiO2 

mesoporous shell, imitates a particle-in-well structure. The aligned pore orientation is attributed 

to the self-assembly of C16TAB surfactant and siliceous oligomer molecules occurring on the 

surface of preformed SiO2 spheres.40 

 

Optical setup for single molecule imaging at single particle level 

An adjustable 50 mW 532 CW laser (Uniphase, San Jose, CA) was first collimated using 

a pair of lens and then focus into the interface between aqueous sample and quartz slide by a 

long working distance lens. An extra quarter wave plate (WPMQ05M-532, Thorlabs, Newton, 

NJ) was introduced into the optical path to switch the linear polarized laser beam into circular 

polarized laser profile. The fluorescence signal was collected by a 60 × oil immersion objective 

(N.A. = 1.4) and focused onto the Andor iXonEM+ 897 camera (Belfast, Northern Ireland: 512 × 
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512 imaging array, 16 μm × 16 μm pixel size). A fluorescent filter set composed of a 532 nm 

longpass filter, a 532 nm nortch filter and a 568/40 bandpass filter (Semrock, Rochester, NY) 

was inserted before the camera to reject scattering signal from the sample. There is an extra 

magnification after the imaging objective in the microscope giving an effective imaging pixel 

size of 213 nm.  

The incident angle of laser beam at the interface was determined by the angle of the last 

mirror (controlled by a galvanometer), which was also in conjunction with a motorized linear 

stage (MAA-PP, Newport, Irvine, CA). The best illumination conditions achieves when the laser 

spot overlapped perfectly with the view field of the objective. For every incident angle, the best 

illumination condition was obtained by scanning the vertical position and the data was recorded 

in self-written program for later use. Therefore, we can fully optimize the imaging conditions to 

achieve maximum illumination depth while maintaining high SNR for every sample. It is 

worthwhile to notice that the whole process of optimization only take a few minutes.  

 

Fluorogenic Oxidation Reaction on Single Nanocatalysts 

In order to carry out the single-molecule imaging experiments on the multilayer 

mesoporous nanocatalysts, a fluorogenic oxidation reaction of non-fluorescent amplex red (10-

acetyl-3,7-dihydroxyphenoxazine) to produce highly fluorescent resorufin (λex = 563 nm; λem = 

587 nm, at pH 7.5) (Fig. 3a) has been used. A sample is typically prepared by spin-casting the 

nanocatalyst solution on a poly-L-lysine functionalized quartz slide. The concentration of the 

nanocatalysts immobilized on the quartz slide is usually controlled to be 1 μm−2 for single 

particle catalysis. The sample slide is then measured under our automated prism-type TIRFM. A 

532-nm green laser is used to excite the fluorescent resorufin product. The reactant-containing 
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solution (0.4 μM amplex red, 20 mM H2O2, and 50 mM pH 7.5 phosphate buffer) is introduced 

over the nanocatalysts within a flow chamber. Highly fluorescent resorufin product molecules 

are formed at one of many possible reactive Pt NPs on a single nanocatalyst.  

 

Identify catalytic events from single molecular intensity traces 

Fig. 10a is an example of fluorescent intensity trace of a mesoporous nanocatalyst in a 

short time period with an integration area of 10 pixels × 10 pixels. The catalytic events were 

resembled as bursts in the intensity trace. Fig. 10b is the fluorescent intensity trace of a nearby 

area time where no nanocatalysts exist during the same observation. The histogram distributions 

of both traces were showed in Fig. 10c. It is clearly observed that the intensity distribution is 

dominated by the fluorescent background which is in consistent with results that reaction bursts 

were sparsely and randomly distributed along the whole intensity trace (Fig. 10a). Nevertheless, 

the right shift to larger intensity values of the distribution (Fig. 10c, red) from the burst trace 

indicates the existence of catalytic events. In order to filter out the burst events from the whole 

fluorescent intensity trace efficiently, we first set up a low intensity threshold (blue dash line in 

Fig. 9a,b) of Ibg + 2.5σbg where Ibg and σbg were the mean intensity and standard deviation 

respectively from fitting the intensity distribution of the whole trace (Fig. 10c). Then a second 

intensity threshold (Ibg + 4σbg, red dash line in Fig. 10a, b) was set to further examine the 

identified bursts. The summed intensities from all frames of identified bursts were first 

calculated and those below the high threshold were ejected as noise from background. The 

method of using two intensity thresholds allowed us to include catalytic events showing low 

fluorescent signal but last for a long period. The two thresholds were set to maintain 1% of 

uncertainty that the identified burst are actually from the background. Fig. 10d shows the 
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intensity distribution of identified fluorescent bursts (red) which is clearly separated with the 

background intensity distribution (black). The identification processes of fluorescent bursts were 

finished by using a self-written MATLAB script which enabled us to manage large amount of 

imaging data without artificial bias. 

 

Localize the center positions of single molecules 

The molecular positions in identified bursts were localized by using similar approach in 

the previous chapter. Briefly, the distribution of the fluorescent intensity was fitted by a 2D 

Gaussian function to determine the center position of the single molecule image (Fig. 3b). This 

process was repeated for localizing the positions of the fluorescent bursts in all frames. Single 

molecular trajectories could then be constructed using the molecular positions and used for latter 

analysis. The localization precision is inversely proportional to the square root of collected 

photons (N) emitted from the fluorescent probe and proportional to the background noise (b). As 

a benefit of largely reduced fluorescent background noise in TIRFM and using collection 

objective with high numerical aperture (N.A.), we can collect the single molecule image with 

high SNR thus allowing us to localize the molecular position with sub-10-nm precision. The 

localization precision is determined using the following equation.41 

𝝈 = √
𝒔𝟐

𝑵
+

𝒂𝟐

𝟏𝟐𝑵
+
𝟖𝝅𝒃𝟐𝒔𝟒

𝒂𝟐𝑵𝟐
 

 where s is the standard deviation of the Gaussian distribution that equals 1/2.2 of the PSF width, 

a is the pixel size, b is background noise and N is number of collected photons. The first term 

(s2/N) is the photon noise, the second term is the effect of finite pixel size of the detector, and the 

last term is the effect of background. In the example shown in Fig. 3b, the center of resorufin 
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molecule is determined with precision of 8 nm given by the following parameters: s = 192 nm, a 

= 213 nm, N = 2063 photons and b = 15 photons. The high localization precision ensures us to 

visualize the whole process of the catalytic reactions and followed molecular transportation in 

nanopores. It is worthwhile to notice that the localization precision also varies depending on the 

location of catalytic event on the nanocatalysts. Resorufin molecules generated by the catalytic 

events happened on the bottom of the nanocatalysts gave higher fluorescent intensity thus their 

positions were localized with higher precision. The localization procedure was also 

accomplished by using a self-developed MATLAB script. 

 

Global analysis of single molecular trajectories 

The single molecular trajectories were studies through the mean squared displacement 

analysis. The step sizes (r) at lag time (tlag) were first calculated from the molecular trajectories 

and grouped into a histogram showing the distribution of molecular displacement per tlag (Fig. 6). 

For calculating the step sizes, every position on the trajectory was treated equally as a valid 

beginning point. Large data sets of single molecular trajectories were used for analysis in order to draw 

conclusions with statistical significance. 

Under random-walk mechanism, the probability that a molecule from the origin will be 

found at time t within a shell of radius r and the thickness of dr is defined as p(r,t)dr2 where 

p(r,t) is probability density function.33 Therefore, one can fit the distribution of the molecular 

step sizes with the probability density function: 

𝒑(𝒓𝟐, 𝒕) ∙ 𝒅𝒓𝟐 =
𝟏

𝝅〈𝒓(𝒕)
𝟐 〉

𝐞𝐱𝐩⁡(
−𝒓(𝒕)

𝟐

〈𝒓(𝒕)
𝟐 〉

)𝟐𝝅𝒓 ∙ 𝒅𝒓𝟐 
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where ‹r2› stands for the mean square displacement. Fitting the histogram distribution in Fig. 6a 

giving of a ‹r2›1/2 of 22.4 ± 0.5 nm. In practice, the ‹r2› is better determined by fitting cumulative 

probability of the distribution of step sizes rather than the grouped histogram due to the loss of 

information from binning.  

𝑷(𝒓𝟐, 𝒕) = ∫ 𝒑(𝒓𝟐, 𝒕) ∙ 𝒅𝒓𝟐 = 𝟏 −
𝒓𝟐

𝟎

𝐞𝐱𝐩⁡(
−𝒓(𝒕)

𝟐

〈𝒓(𝒕)
𝟐 〉

) 

𝑪(𝒓𝟐, 𝒕) = 𝟏 − ⁡𝑷(𝒓𝟐, 𝒕) = 𝐞𝐱𝐩⁡(
−𝒓(𝒕)

𝟐

〈𝒓(𝒕)
𝟐 〉

) 

Therefore, one can use the inverse cumulative probability function, C(r2), which is a simple 

exponential decay function to fit the probability data. However, it can be clearly seen that a 

single component fitting is insufficient to describe the overall distribution (Fig. 7a). Thus multi-

component exponential decay functions were used to fit the data.  

𝑪(𝒓𝟐, 𝒕) =∑𝒄𝒊

𝒏

𝒊=𝟏

𝐞𝐱𝐩⁡(
−𝒓(𝒕)

𝟐

〈𝒓𝒊(𝒕)
𝟐 〉 + 𝝈𝟐

) 

In the equation, ci is the amplitude of the different exponential components,⁡∑ 𝒄𝒊 = 𝟏, 〈𝒓𝒊(𝒕)
𝟐 〉 are 

the characteristic values for the mean squared displacement and 𝝈𝟐⁡corresponds to the 

uncertainty of localization. To best describe the probability distribution data, it needs at least 

three exponential decay functions. Three types of mobile fractions (fast diffusion, slow diffusion 

and very slow diffusion) of resorufin molecules were thus observed in mesoporous 

nanocatalysts. 

According to the Einstein-Smoluchowski equation for random diffusion in one 

dimension,35 the diffusion coefficient can be directly calculated using the following equation. 

〈𝒓𝒊(𝒕)
𝟐 〉 = 𝟐𝑫 ∙ 𝒕 
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Nevertheless, the result from data for single tlag is usually insufficient to fully describe the 

molecular diffusion in a confined environment. One needs to consider the long-term observation. 

For molecules undergoes free diffusion, the ‹r2› increases as the tlag grows. However, for those 

restricted molecules, ‹r2› that is still well approximated in the same way is stationary at different 

tlag. Therefore, the diffusion coefficient is better estimated by fitting the ‹r2› versus tlag giving of 

three diffusion coefficients of 0.022 ± 0.001 µm2/s (fast), 0.0068 ± 0.002 µm2/s (slow) and 

0.0021 ± 0.0003 µm2/s (very slow). The large difference of diffusion coefficients indicates that 

the local environments in nanopores are very heterogeneous. 

Motions of molecules in confined environment are usually expected to be restricted. To 

test the degree of restriction of resorufin molecules diffusion in nanopores, the diffusion 

coefficient at different lag time for all three mobile fractions were calculated as shown in Table 

1. The time dependence of diffusion coefficient on lag time is fitted by the following 

equation.36,37  

𝑫 =
𝜞

𝟒
𝒕𝜶−𝟏 

Here Γ stands for the transportation coefficient, and α is the factor for quantifying the degree of 

restriction of molecular motions. For α = 1, it stands for molecules undergoing unrestricted 

motions, namely free Brownian diffusion, with a constant diffusion coefficient of D = Γ/4.  
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Tables 

Table 1. Mobility of single resorufin moelcules in nanopores. 

 

Results of the analysis of the time-dependence frequency distributions of the step sizes as a 

function of lag time shown in Fig. 9. The analysis procedures was finished by first fitting the 

distributions with multicomponent exponential decay function assuming more than one mobile 

fractions present and diffusion coefficients were calculated at every lag time using Einstein-

Smoluchowski equation. 
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Figures 

 

 

Figure 1. Synthesis of the core-shell nanocatalysts. The Pt NPs are sandwiched in between a 

solid SiO2 core and a mesoporous SiO2 shell with aligned channels. APTS: 3-

minopropyltriethoxysilane; TEOS: tetraethyl orthosilicate; C16TAB: 

hexadecyltrimethylammonium bromide. 
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Figure 2. Characterize the structure of the core-shell nanocatalysts. (a) - (c) TEM images of 

2.9 nm Pt NPs confined inside aligned mesoporous SiO2 wells of 110 nm deep. The size of the 

SiO2 core is 180 nm on average. Pt loading amount is ~ 2.5 wt%. (d) BJH-pore size distribution 

calculated from N2 adsorption-desorption experiments.  
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Figure 3. Localize the positions of single resorufin molecules from fluorogenic oxidation of 

amplex red. (a) Scheme shows the catalytic oxidation of non-fluorescent amplex red into highly 

fluorescent resorufin molecule by core-shell nanocatalysts with the present of hydrogen dioxide 

(H2O2). The fluorescence signal from produced resorufin molecules was captured by the imaging 

system. (b) A fluorescence image of a single resorufin molecule (inserted images) spreads over a 

few pixels as a point spread function (PSF). The center position of this PSF can be determined 

with an accuracy of a few nanometers by 2D Gaussian fitting of its fluorescence profile. In this 

specific example, the center position was determined with a precision of 8 nm. The localization 

precision varies depending on the fluorescence signal collected from each resorufin molecule. 

Scale bar: 1 μm. 
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Figure 4. Automated TIRFM. (a) The optical setup of automated total internal reflection 

fluorescence microscopy.  A CW 532 nm laser line was first collimated through a pair of lens L1 

and L2. The laser beam was then directed through a equilateral prism encountering at the solid-

liquid interface where TIR happened by a mirror galvanometer, which is also in conjunction with 

a motorized linear stage. In combination, the incident angle of incident laser beam and the 

location of illumination spot were able to adjusted to achieve optimal illumination conditions. A 

third lens (L3) was inserted to control the size of illumination area. A quarter wave plate (λ/4) 

was insert into and out of the optical path to switch the laser beam between linear polarized and 

circular polarized. The fluorescent signal was collected by an oil immersion objective (O) and 

focused on the camera by a tube lens (L4). The scattering background was rejected by a filter set 

(F). 
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Figure 5. Single molecule imaging of chemical reaction and molecular transportations in 

confined environment. (a) A series of single images of fluorescent resorufin molecules 

generated from the catalytic reaction. (b) Images of a fluorescent bead (fiducial marker) at the 

same imaging time period as in (a). The localized positions of resorufin molecules and the 

fluorescent bead were plotted as trajectories as shown in (c) and (d) respectively. The location of 

catalytic reaction site was indicated by the red arrow in (c). Scale bar: 3 μm. 
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Figure 6. Displacement analysis of single molecular trajectories. (a) The histogram 

distribution of the step sizes at lag time of 0.05 s, which were calculated from over ×104 single 

molecular trajectories. (b) The displacement of a fiducial marker during the imaging experiments 

was also analyzed in the same way. The positions of the fiducial marker were first corrected of 

stage drift by using another fiducial maker before the displacement analysis. 
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Figure 7. Quantify the mobility of resorufin molecules in nanopores. (a) The inverse 

cumulative probability distributions (C(r2)) over the step sizes (r2) at different lag time. The 
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results at two different lag time tlag = 0.05 s (empty square) and tlag = 0.2 s (empty triangle) were 

shown here. The probability distribution data were fitted by exponential decay functions with 

single component (red dash line) and multi-component (red solid line). (b) Mean squared 

displacement over lag time. Three sets of data from three different mobile fractions (Fast: 

magnet empty diamond, Slow: red empty circle, Very slow: blue empty square) were plotted and 

fitted with Einstein-Smoluchowski equation (See Materials and Methods). 
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Figure 8. Single molecular trajectories of resorufin molecule diffusing in a nanopore. (a), 

(b) The resorufin molecule desorbed and diffusion in a nanopore quickly and was trapped in a 

short time period before it escaped away from the nanopore. (c) The resorufin molecule shows a 

relatively stable motion in this nanopore. (d) After staying at the catalytic reaction sites for a 

long time, the resorufin molecule quickly diffuse out the nanopore. The motions of resorufin 

molecules vary largely among different nanopores reflecting the heterogeneous pore structures of 

the core-shell nanocatalysts. It is worth to notice that the lengths of molecular trajectories were 

different due to the fact that the pores on a single nanocatalyst were aligned in all three 

dimensions. Therefore these trajectories are planar projections of one-dimensional diffusion trace 

of resorfion moelcules in three-dimensional space. The starting point of the single molecular 

trajectory was indicated as the red dot in figures.  
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Figrue 9. Diffusion properties of resorufin molecule in a nanopore. The degree of restriction 

of molecular motion in a nanopore was quantified for all three different mobile components 

(Fast: magnet empty diamond, Slow: red empty circle, Very slow: blue empty square). The fast 

mobile component follows a free Brownian diffusion (α = 0.98 ± 0.02) behavior while the two 

slow mobile fractions undergo different amplitude of restrictions (α = .84 ± 0.07and α = 0.66 ± 

0.01for slow and very slow diffusion components respectively). 
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Figure 10. Criteria for identifying fluorescent bursts from the catalytic reaction. (a), (b) Part 

of the integrated fluorescence intensity traces from a imaging area of 10 pixels × 10 pixels of a 

core-shell nanocatalyst and nearby background. The blue and red dash lines correspond to the 

two intensity thresholds (Low: Ibg + 2.5σbg, High: Ibg + 4.0σbg) for filtering out the fluorescence 

bursts with 1% of uncertainty that the bursts are actually from background noise. (c) Histogram 

distributions of the integrated intensity from burst trace (red) and background trace (black). (d) 

Histogram distributions of the integrated intensity from identified bursts (red) and background 

trace (black). 



 104 

CHAPTER 4: SINGLE PARTICLE ORIENTATION AND 

ROTATIONAL TRACKING IN REFLECTED LIGHT 

SHEET SCATTERING MICROSCOPY 

 

Bin Dong, Ning Fang 

A manuscript under peer review 

 

Abstract 

Rotational tracking with plasmonic gold nanorod probes has been shown to be a 

useful method to study rotational dynamics at sub-micrometer scale. In this chapter, a 

novel method, termed reflected light sheet scattering microscopy (RLSSM), was 

introduced for deciphering the three-dimensional orientation of gold nanorods with high 

angular resolution and localization accuracy. Two configurations of RLSSM were 

reported. In the dual-color RLSSM, two linearly polarized and well-collimated light 

sheets at the longitudinal and transverse surface plasmon resonance wavelengths were 

utilized to determine both in-plane and our-of-plane motions of gold nanorods. In the 

bifocal RLSSM, through pattern matching of the aberrant images of gold nanorods, the 

azimuthal angle of AuNR was resolved without suffering from the angular degeneracy. 

The detailed rotational dynamics of gold nanorods in glycerol/water mixtures was 

revealed at fast imaging rates of up to 500 frames per second. Furthermore, the imaging 

depth in RLSSM can be extended to hundreds of micrometers for imaging thick 

biological samples.  



 105 

 

Introduction 

Molecular motors are involved in many biological processes, such as DNA 

polymerization,1 stepping of motor protein,Kural, et al. 2,3 and self-rotation of ATP 

synthase,4 to perform critical functions at sub-micrometer scale. A full understanding of 

the detailed mechanisms of these processes often requires visualizing both translational 

and rotational motions induced by molecular motors. As an example of resolving 

translational motions, single particle tracking techniques with nanometer-scale 

localization precision have been used to reveal the hand-over-hand walking mechanism 

of microtubule-associated motor proteins.2,5 On the other hand, fluorescence polarization 

spectroscopy6-8 has been employed to decipher rotational motions of fluorescence dipole 

moments under polarized excitation. Traditionally, organic dye molecules or 

semiconductor quantum dots (QDs) are used as optical probes in these fluorescence 

anisotropy measurements; however, their applicability is significantly limited by the 

irreversible photobleaching of dye molecules and the intrinsic blinking of QDs.9,10  

Plasmonic gold nanorods (AuNRs), which display excellent optical and chemical 

stability, have been intensely investigated as an alternative to fluorescent probes.11-14 

AuNRs possess several desirable features for single particle rotational tracking, including 

large scattering and absorption cross sections at the localized surface plasmon resonance 

(LSPR) wavelengths,15-17 geometrically controlled anisotropic optical properties (the 

longitudinal and transverse LSPR modes along the long and shot axes of AuNRs, 

respectively), good biocompatibility, and controllable surface chemistry.18-20  
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Several techniques have been developed to resolve the orientation of AuNRs in 

the focal plane including dark-field (DF) polarization microscopy,18 photothermal 

heterodyne imaging (PHI),21 and differential interference contrast (DIC) microscopy.22-26 

These imaging methods use a similar strategy of separating light into two orthogonal 

polarization channels to decipher the azimuthal (in-plane) angle of either the long or short 

axis of an AuNR. However, the polar (out-of-plane) angle is either inaccessible (PHI) or 

ambiguous because of insufficient angular resolution (DF, DIC). Furthermore, the 

angular degeneracy resulting from the cylindrical shape of AuNRs limits these 

techniques’ ability to differentiate the orientation of AuNRs in the four`1 quadrants of the 

Cartesian coordinate system. To circumvent the angular degeneracy, defocused 

orientation and position imaging (DOPI)27,28 has been introduced to determine the three-

dimensional (3D) orientation of a tilted single dipole in a single frame. The core idea is 

based on the electron transition dipole approximation and the fact that the dipole 

emission exhibits an angular anisotropy. Direct visualization of the spatial distribution of 

the scattered or emitted field of a single dipole becomes possible when an aberration, e.g., 

defocusing, is deliberately applied in the imaging system. Furthermore, a common 

practice of DOPI is to switch back and forth between the defocused and focused imaging 

modes to achieve more precise position and orientation determination.  

 Focused orientation and position imaging (FOPI) was recently demonstrated in 

the Fang Laboratory, which overcame the drawbacks of both polarization based in-focus 

imaging methods or the DOPI method.23 The core idea is coupling the effects of the 

supporting dielectric substrate, such as a gold film, with the far-field scattering patterns 

of plasmonic nanoparticles. The in-focus imaging patterns are used to resolve the 
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absolute 3D orientation of tilted AuNRs near the substrate with high signal to noise ratio. 

Nevertheless, the necessary interaction between the AuNRs and the gold film limits its 

potential applications. A dual-color total internal reflection scattering (TIRS) imaging 

method29 was also developed previously to dynamically resolve the azimuthal and 

elevation angles of AuNRs, thus allowing the characterization of their conformations on 

synthetic lipid membranes. Both of these methods, however, are more sensitive to a small 

range of elevation angles and more suitable for studying the rotational motions of AuNRs 

on substrate surfaces because of the short coupling distance in FOPI and the exponential 

decay of the evanescent field in TIRS. 

 To circumvent the limitations of the existing methods, herein, we report a novel 

single particle rotational tracking technique, reflected light sheet scattering microscopy 

(RLSSM), for deciphering the 3D orientation of AuNRs with high angular resolution and 

localization accuracy. The thickness of the excitation light sheet can be narrowed down to 

about half a micrometer to significantly reduce the excitation volume, and therefore the 

background is reduced effectively. Optical sectioning of the sample with large vertical 

scanning range (~200 μm) can also be achieved. Through modulating the scattering 

intensity fluctuation or matching the aberrant scattering patterns, we can track the 

orientation and rotational motions of nanoparticles in glycerol solution. 

 

Results and Discussion 

Characterization of light sheet profile 

Reflected light sheet microscopy (RLSM) was originally reported by Gebhardt, et 

al.30  An RLSM system consists of two objectives: one low-magnification water-

immersion illumination objective (numerical aperture NA 0.8) and one high-
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magnification oil-immersion detection objective (NA 1.3) with a vertical arrangement 

(Fig. 1). A light sheet with a thickness of several hundred nanometers to a few 

micrometers can be made by coupling the illumination objective at the focal plane of a 

cylindrical lens. A disposable atomic force microscopy (AFM) cantilever coated with 

gold functions as a tiny mirror to reflect the light sheet by 90° and projects a horizontal 

plane into the sample, thus allowing sub-micrometer optical sectioning.  

The characterization of the laser beam profile is critical for the best utilization of 

the RLSM’s unique features. The key parameters, as defined in Fig. 2a, are the minimum 

thickness (full width at half-maximum of cross-sectional intensity distribution) at the 

focal plane, the dimension (2 times the Rayleigh length), and the lateral extension 

(width). An important consideration is the tradeoff between the minimum thickness and 

the Raleigh length of the light sheet within which it remains reasonably uniform. The 

thickness of the light sheet can be varied by inserting an optical iris right behind the 

aperture of the illumination objective. The results show that the larger the iris opening is, 

the thinner the light sheet can be (Fig. 2b). With the NA 0.8 illumination objective and a 

laser light source at the wavelength (λ) of 660 nm, the Gaussian light sheet can be 

narrowed down to a minimum thickness of about 0.42 μm in the center and 0.59 μm at a 

distance of 0.64 μm (the Rayleigh length) from the center. Moreover, as shown in Fig. 

2b, a smaller dimension of light sheet can be used with a smaller thickness. In the rest of 

experiments discussed here, a 4-mm aperture size was used to maintain a sub-micrometer 

light sheet thickness while achieving a relatively uniform illumination length of ~6 μm.  
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Comparison of epi-illumination and reflected light sheet illumination 

Similar to total internal reflection fluorescence (TIRF) microscopy, in which a 

very thin evanescence field with a thickness of only a few hundred nanometers is 

employed to effectively eliminate the out-of-focus background, RLSM can also reduce 

the illumination thickness to the sub-micrometer range, thus providing us with an 

alternative way to greatly reduce the background. It is worthwhile to note that RLSM 

does not provide as good a background reduction as TIRF microscopy due to its larger 

illumination volume; however, RLSM does provide an important advantage over TIRF 

microscopy in its ability to image thick samples (up to several hundred micrometers) with 

the improved imaging depth.  

Fluorescent beads were dispensed in 98% glycerol/water mixture and imaged in 

both epi-fluorescence microscopy and RLSM (Fig. 3). The shape of the light sheet could 

be visualized. Fluorescent beads clearly showed better signal to noise ratio (SNR) in 

RLSM than in epi-fluorescence microscopy. An improvement factor of 6 was calculated 

from over a hundred fluorescent beads: SNR = 43 ± 12, n = 115 for RLSM (Fig. 3d); 

SNR = 7 ± 3, n = 110 for epi-fluorescence (Fig. 3e). Variable SNRs are found along the 

light sheet path, and the best SNR is achieved at the thinnest part of the sheet.  

 

Imaging AuNRs using dual-color RLSSM 

The LSPR enhanced scattering of AuNRs depends on the wavelength and 

polarization of the excitation light, as well as the aspect ratio of the AuNRs. The 

longitudinal LSPR mode results in much stronger absorption and scattering signals than 

the transverse LSPR mode.31,32 The UV-vis spectrum (Fig. 4a) of 40 nm × 97 nm AuNRs 
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(aspect ratio ~ 2.4, suspended in water) shows two peaks at the transverse (530 nm) and 

longitudinal (660 nm) LSPR wavelengths.  

Two continuous-wave (CW) linearly polarized laser beams at the wavelengths of 

532 nm and 660 nm were directed into the illumination objective and then reflected by 

the AFM tip to form a horizontal light sheet. Two Fresnel rhombs prisms (Fig. 1a) were 

used to control the polarization directions of both excitation light beams, which allowed 

us to modulate both excitation light sources between the s-polarization direction (s-pol, 

perpendicular to the plane of incidence) and the p-polarization direction (p-pol, in the 

plane of  incidence). Fig. 4b shows the results with the 660-nm laser in p-pol and the 532-

nm laser in s-pol. At either LSPR wavelength, the scattering intensity changes 

periodically as the corresponding axis of AuNR rotates with respect to the polarization 

direction of light.  

The out-of-plane orientation changes (polar angles, θ) and the in-plane orientation 

changes (azimuthal angles, φ) of AuNRs can be tracked by using the p-pol 660-nm laser 

and the s-pol 532-nm laser, respectively. A dual channel system (Fig. 4c) has been set up 

to measure both angles simultaneously from the normalized scattering intensity. When 

the AuNR’s long axis is parallel to the propagation direction of the 532-nm s-pol laser 

(φ=90), the transverse SPR mode produces the most intense scattering. A sin2φ fitting is 

used to calculate the remaining angles. Due to the nature of the squared sine fitting, the 

four-fold degeneracy remains in assigning the orientation angles. A similar approach is 

taken to assign polar angles. When the AuNR’s long axis lies flat in the imaging plane 

(θ=90), a minimum intensity is achieved under the 660-nm p-pol laser, while a vertical 

position (θ=0) will result in the maximum LSPR excitation. A cos2θ fitting of the 
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normalized intensity calculates the rest of the angles. To most accurately assign the 

maximum and minimum intensities, each AuNR was recorded many thousands of frames.  

 

Resolving both azimuthal and polar angles in dual-color RLSSM  

To test the concept, the AuNRs (25 nm × 65 nm) were suspended in a mixture of 

glycerol (98%) and water (2%). High glycerol content results in a large viscosity, thus 

restricting both translational and rotational motions of AuNRs in this solution. AuNRs 

show very little lateral movement, but they can still rotate in 3D (Fig. 5a). The scattering 

intensity from AuNRs varies between a maximum and a minimum in the longitudinal 

LSPR channel. As a comparison, fluorescent beads in the same glycerol/water mixture 

show no significant fluctuations during the imaging time of 30 seconds (Fig. 5b).  

Fig. 6a is the scatter plot of the positions of the AuNR from the trajectory shown 

in Fig. 5a. The lateral movement of this AuNR is confined within a narrow range of less 

than 500 nm. The apparent mean radical displacement of AuNR in this solution is 28.4 

nm from fitting the probability density function of the distributions of calculated squared 

displacement from the same dynamic trace of AuNR (See Materials and Methods). This 

result is in agreement with the theoretical value of 31.1 nm under our current imaging 

frequency of 33 Hz according to the Tirado and Garcia dela Torre (TT) model.33,34 Both 

theoretical and experimental data prove that the thickness of the light sheet in our setup is 

sufficiently large that the fluctuations of scattering intensity from AuNRs are not due to 

translational movement but rather free rotations. 

To demonstrate the simultaneous tracking of longitudinal and transverse SPR 

modes, both lasers were set to s-pol. Since the long and short axes of AuNR are 
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orthogonally arranged, the signals in these two channels should be out of phase by 90o, 

resulting in an anti-correlated relation between the two channels. As expected, Fig. 7a 

shows the nearly perfect anti-correlated traces (correlation coefficient: -0.85). Calculated 

angles (Fig. 7b) are also in good agreement.  

Then we switched to a different configuration of 660-nm p-pol and 532-nm s-pol 

laser beams to image the same AuNRs and measure both azimuthal and polar angles (Fig. 

7c). The correlation coefficient of -0.16 indicates that the anti-correlation was no longer 

the dominant relation between the two traces. The overall non-correlated relation 

suggests the existence of both in-plane and our-of-plane rotations.  

  

Resolving azimuthal and polar angles without angular degeneracy in bifocal 

RLSSM 

Though it is convenient to resolve both azimuthal and polar angles using dual-

color RLSSM, one of its drawbacks as mentioned previously is the angular degeneracy 

originating from the symmetric shape of AuNRs. DOPI27,35 provides a way to resolve the 

azimuthal angle of AuNRs in all four quadrants of the Cartesian coordinate system. 

However, its relatively slow imaging rate still limits its applicability in dynamic tracking 

of live events. To enable fast dynamic tracking of rotational motions without the 

limitation of angular degeneracy, a biplane imaging system has been implemented from 

slight modification of dual-color RLSSM system (Fig.4d). In the biplane imaging system, 

the signal was split in 50:50 by a beam splitter. An extra lens was inserted into one of the 

optical paths thus shifting the focal plane in that channel. 
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In the channel where AuNRs are in-focus, we can precisely find their positions 

and calculate the polar angles with the 660-nm p-pol laser. Using the excitation light at 

the longitudinal LSPR wavelength helps to increase the localization precision. In the 

other channel, defocused image can be used to determine the azimuthal angle by 

matching the real images with the simulated data.  

Previously, the azimuthal angle was determined by comparing the collected 

defocused image with simulated image manually. This often introduced large artificial 

uncertainties. Herein, we developed a MATLAB program to measure the azimuthal angle 

automatically based on calculating the correlation coefficient between the defocused 

image and the simulated images. An example is shown in Fig. 8. Two simulated images 

with the azimuthal angles of 50o and 225o were first generated using MATLAB codes. 

Their correlation coefficients with defocused images at different azimuthal angles were 

then calculated using the in-house programs. The results are shown as two traces with 

maximum correlation coefficients at 46 and 227, respectively.  

Because of the largely enhanced scattering intensity from plasmonic AuNRs, we 

can use high frame rates up to 500 Hz to image at the orientation and rotational behaviors 

of AuNRs in glycerol solution with sufficiently high SNR. Fig. 10 shows a trace of 

scattering intensity (red dot-line) from an AuNR in 98% glycerol/water mixture at an 

imaging rate of 2 ms/frame. The calculated polar angles and azimuthal angles were 

presented in Fig. 10 (green dot-line) and Fig. 11 (magnet dot-line), respectively. The 

AuNR would be expected to exhibit free rotations in all three dimensions thus giving a 

dynamic trace of angles that is fluctuating randomly between a maximum and a minimum 

(Fig. 5a). The measured rotational diffusion constants Dr were 0.0476 ± 0.0004 s-1 (out-
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of-plane rotation) and 0.0211 ± 0.0006 s-1 (in-plane rotation) using auto-correlation 

analysis of the full dynamic trace of angles (Materials and Methods). These rotational 

diffusion coefficients are about two orders of magnitude smaller than the theoretical 

value18 of 18.6 s-1. The much smaller Dr from our experiments is consistent with the 

observation of frozen moments during the several observation periods (out-of-plane 

rotation: 10.0 s – 10.5 s and 14.5 s – 16.7 s; in-plane rotation: 20.6 s – 25.0 s and 26.0 s – 

32.0 s in Fig. 10). When traces during 20 s – 60 s (polar angle) and 35 s – 60s (azimuthal 

angle) were used to run the auto-correlation analysis, giving of rotational diffusion 

coefficient Dr 17.7 ± 1.5 s-1 (out-of-plane rotation) and 22.3 ± 1.2 s-1 (in-plane rotation). 

These results indicated that the AuNR was undergoing free rotations during these 

observation times. The results show that the rotation of AuNRs in the glycerol/water 

mixture was not always completely free but with some restrictions occasionally.  

           

Higher temporal resolution reveals more detailed rotational behaviors of AuNRs  

There is a tradeoff between the accuracy in angle assignment and the imaging rate 

due to the fact that weaker signals are obtained at faster imaging rates. In addition, the 

imaging rate is also limited by the capability of the detector itself.  To study the effects of 

imaging rates on the measured rotational diffusion constants, we reconstructed the 

tracking of AuNRs under the exposure times of 4 ms, 8 ms, 20 ms, 40 ms, and 100 ms 

(Fig. 12 – Fig. 16, respectively) through binning the 2-ms trace from the same AuNR. As 

the exposure time increases, the two slow rotation periods gradually disappear. As a 

result, the measured Dr increases (Fig. 9b, d). The loss of rotational information due to 

slower imaging rate is further demonstrated by studying the fast rotation periods. Fig. 10 
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is the result from auto-correlation analysis of the angle variations of the same AuNRs 

during the observation period from 20 s to 60 s (polar angle, Fig. 10a, b) and 35 s to 60 s 

(azimuthal angle, Fig. 10c, d). It clearly shows that the measured rotational diffusion 

constants decrease and deviate from the theoretical value as the imaging rate slows down. 

Therefore, more details including fast and slow rotational behaviors of AuNRs in 

glycerol/water mixture can be observed at faster imaging rates while they could be 

hidden at slower imaging rates. 

 

Conclusions 

In summary, we have presented a novel single particle orientation and rotational 

tracking method that combines the reflected light sheet illumination scheme with a dual-

view detection system for tracking anisotropic plasmonic gold nanoparticles in 3D. Two 

approaches including dual-color RLSSM and bifocal RLSSM have been demonstrated to 

determine polar angles and azimuthal angles simultaneously. The LSPR enhanced 

absorption and scattering strength from plasmonic AuNRs and largely reduced 

background of thin excitation volume enabled us to push the imaging rate up to 500 fps. 

Unlike TIRF, the imaging depth in RLSSM can be extended to hundreds of micrometers. 

Therefore, we expect this method to become widely useful in biological studies in which 

3D rotational motions are of great interest such as endocytosis and intracellular 

transportation in animal cells.   
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Materials and Methods 

Optical setup 

A 50-mW 532-nm CW laser (Uniphase, San Jose, CA) and a 200-mW 660-nm 

CW laser (Laser Quantum, UK) were collimated into the same optical pathway with 

dichroitic mirrors. The beams were then expanded by a telescope of a pair of cylindrical 

lens and then directed into the illumination objective. The tipless AFM cantilever coated 

with gold reflected the formed light sheet by 90 and projected it into a horizontally 

planar illumination beam. A half-wave Fresnel rhomb (FR600HM, Thorlabs, Newton, 

NJ) was placed into the beam path for switching between s-pol and p-pol illuminations. 

Scattered light is collected by a Plan Fluor 100x/NA 1.3 oil immersion objective and 

directed into a  dual-view imaging system before reaching an Andor iXonEM+ 897 

camera (Belfast, Northern Ireland; 512 × 512 imaging array, 16 μm × 16 μm pixel size). 

Within the dual-view system, a Stopline 532-nm notch filter (Semrock, Rochester, NY) 

was placed in the long pass path, and a Coherent 560-nm short pass (Coherent, Santa 

Clara, CA) was placed in the short pass path. 

The configuration of bifocal RLSSM was similar to dual-color RLSSM. The 

collected scattering signal was split 50:50 with a beam splitter (BPD254S-FS, Thorlabs, 

Newton, NJ), and an additional long-focusing lens was inserted into one of the optical 

path to introduce a different focus depth in order to generate defocused images, which 

were used to determine the in-plane angle of AuNRs in 360. One laser (660 nm, the 

longitudinal LSPR wavelength) was sufficient to obtain the 3D orientations of AuNRs in 

the bifocal imaging system.  
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Determination of the light sheet profile 

According to the set of equations shown below, the minimum thickness when 

using a NA 0.8 illumination objective is 0.42 μm (λ = 660 nm) at the focal plane, giving 

the Rayleigh length of 0.64 μm. Therefore, a relatively uniform light sheet of 1.28 μm 

long is available. The dimension of a light sheet with reasonably even intensity can be as 

long as 28.33 μm if the minimum thickness increases to 2.00 μm.  

𝜔0 =
0.46𝜆

√𝑀 ∙ 𝑁𝐴0.91
 ;   𝐹𝑊𝐻𝑀 =  √2 ln(2) ∙ 𝜔0    

  𝑧𝑟 =
𝜋 ∙ 𝜔0

2

𝜆
 ;    𝜔0 = 1.27 × 𝑓 ∙ 𝜆 ∙

𝑀2

𝐷
  

In these equations, 𝜔0 is 1/e2 radius of the laser spot, 𝜆 is the wavelength of light, 𝑀2 = 1 

for a perfect Gaussian beam, 𝑧𝑟 is the Rayleigh length of light sheet, 𝑓 is the focal length, 

𝐷 is the diameter of laser beam controlled by an optical iris. 

The adjustment of the light sheet profile was realized by inserting an optical iris 

as an optical aperture behind the back focal plane of the illumination objective. The 

cross-sectional profiles of the light sheets at different opening sizes of the optical aperture 

were taken at different axial positions away from the focal plane of illumination 

objective. The thickness of the light sheet at every axial position was then determined as 

the FWHM from the Gaussian fitting of the cross-sectional profiles. It is worthwhile to 

note that reducing the optical aperture size also cuts off the laser beam and reduces the 

laser intensity at the focal plane and along the optical axis. All of these factors should be 

considered as a whole in the sample-dependent optimization process. 
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Sample Preparation  

Fluorescent polystyrene beads (60 nm in diameter) were purchased from Duke 

Scientific (Palo Alto, CA), while AuNRs of two different sizes (25 nm  65 nm, 40 nm  

97 nm) were purchased from Nanopartz (Salt Lake City, UT). The fluorescent bead 

solution was first dilute with 18.2-MΩ pure water to a proper concentration. 2 L of the 

diluted solution were added into 998 L of glycerol (Sigma-Aldrich). Then the glycerol 

solution containing the nanospheres was vortex and sonicated for 15 minutes.   

The AuNRs colloid solutions were first centrifuged at room temperature and the 

supernatants were removed. Then the glycerol solutions of appropriate concentration 

were added into the AuNR pellet and then sonicated for 30 minutes. To uniformly 

suspend nanoparticles and fluorescent beads in the glycerol solution, the solution was 

mounted on a tube rotator for over 24 h. 

 

Imaging AuNRs under RLSSM   

The prepared glycerol solutions containing nanoparticles were first transferred 

into µ-Dish glass chamber (81158, ibidi). The chamber was then mounted on the sample 

holder. The reflected light sheet was inserted into the imaging system by adjust height of 

AFM tip holder. Further adjustments were necessary in order to make the horizontal light 

sheet close to the glass surface of the chamber. Once the adjustment was done, the 

sample was left on the microscope for 30 min to reduce the translational movement of 

nanoparticles caused by the operation. 

An Andor iXonEM+ 897 camera was used to record full-frame images at 33 Hz. 

In order to achieving higher imaging speed, the region of image was cropped. The highest 
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frame rate with a reasonable size of imaging area we could manage with this camera was 

500 Hz while the electron-multiplying (EM) gain was set to the maximum value of 300.  

 

Determination of azimuthal and polar angles simultaneously  

In dual-color RLSSM imaging, scattering intensity traces for both the longitudinal 

and transverse LSPR modes of single nanoparticles were generated using a MATLAB 

program. The calculation was based on summing the intensity of the 10 brightest pixels 

in the region of interest and then the summed intensity was subtracted by the background 

intensity.  

The background intensity was determined by the following procedure. First, the 

average intensity of background was measured from a nearby 15  15 pixel area of the 

AuNRs. This area was carefully chose so that no signals from nanoparticles were 

included. Then the background intensity was taken as ten times of the average intensity. 

The background corrected intensity was then subtracted by the minimum intensity. The 

scattering intensity traces were further normalized using the resulting maximum intensity. 

Cos2θ and sin2φ were used to perform the fitting of normalized intensity traces for the 

longitudinal and transverse LSPR channels, respectively. Thousands of frames were 

collected to ensure that all possible orientation angles were captured. 

For bifocal RLSSM imaging, the polar angle was determined from the intensity 

trace of the in-focus channel following a similar procedure used for dual-color RLSSM. 

On the other hand, a MATLAB script was developed in-house to determine the azimuthal 

angles from the defocused images. A series of simulated defocused images from single 

dipoles were first generated using a programs published previously27. The angular 
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resolution in the simulated data pool was 1o for both azimuthal and polar angles. The 

azimuthal angle was determined to be the case where simulated defocused image and 

collected defocused images generates the highest correlation coefficient. The Computer 

Vision System Toolbox package in MATLAB was used to calculate the correlation 

coefficient between two images. It should be noted that much weaker signals were 

acquired when the AuNR’s long axis laid horizontally, leading to higher uncertainties in 

determining large polar angles. 

 

Super-localization of AuNRs 

The scattering intensity distributions from single AuNRs were fitted with 2D 

Gaussian functions, and the lateral positions (x, y) were extracted from the fitting results. 

The localization accuracy (σ) on average from the fitting results was calculated to be 3 

nm based on the average collected photon number (N) of 6820 photons and the 

background noise (b) of 22 photons. It should be noted that the localization accuracy 

cannot be determined by 2D fitting of the distribution of locations from a cluster mainly 

because of the free translational movement (Fig. 6a) of nanoparticles in the solution.  

 

Determination of the translational and rotational diffusion coefficients of AuNRs in 

solution 

The probability distribution of the displacements as a function of different lag 

times (tlag) was analyzed to understand the translational motions of nanoparticles in a 

homogenous medium such as the glycerol solution used in our experiments.  The 

probability36-39 that a nanoparticle from the origin will be found at time t within a shell of 
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radius r and thickness of dr is commonly defined as p(r,t)dr. For nanoparticles 

undergoing random-walk in solution, the probability density function p(r,t) is given by 

the following equation:  

𝑝(𝑟, 𝑡) =
1

𝜋 < 𝑟2 >
𝑒𝑥𝑝

(
−𝑟2

<𝑟2>
)

∙ 2𝜋𝑟 

<r2> is the mean squared displacement. Therefore, by fitting the distributions of 

displacements of nanoparticles at certain lag time (Fig. 6c), we can extract the mean 

square displacement <r2>. According to the Einstein equation,40 the mean square 

displacement <r2>=4Dt∙tlag where Dt is the diffusion constant of nanoparticles in solution 

and tlag is the delay time between observations for two-dimensional diffusion. To 

determine Dt more precisely, <r2> at different tlag was calculated and a plot of the MSD 

versus time is shown in Fig. 6b. The data points follow a linear trend as predicted by the 

equation giving a diffusion coefficient Dt of (6.7 ± 0.3)  10-11 cm2/s. The calculated Dt 

from our experiment data is in good agreement with the theoretical translational diffusion 

constant (5.4  10-11 cm2/s) of 40 nm  97 nm AuNRs based on the TT model.33,34 

To determine the rotational diffusion constant of AuNRs in glycerol solution, we 

followed the same procedure as the previously published works.18,25 Briefly, we first run 

autocorrelation analysis (ACA) on the calculated angles of AuNRs, the trend of 

autocorrelation coefficient versus time lag was then fitted by simple exponential decay 

function. The mean decay time <τ> for nanorods rotation can thus be determined from 

fitting results. <τ> of the decay reflects the rotation speed of AuNRs in the glycerol 

solution. With larger <τ>, it means slower rotation. The rotational diffusion constant Dr 

was calculated based on <τ> = 1/6Dr as also reported from others’ works.18 The 

theoretical rotational diffusion constant was calculated using the following equation:41  
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𝐷𝑟 =
3𝑘𝐵𝑇

𝜋𝜂𝑙3
(𝑙𝑛

2𝑙

𝑑 − 0.8), 

where kB is the Boltzmann constant, T is the absolute temperature, 𝜂 is the viscosity of the 

glycerol/water mixture, l and d are the length of the long and short axes of AuNR, 

respectively. 
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Figures 

 

 

 

Figure 1. Imaging system for RLSSM. (a) Optical path showing the formation of 

reflected light sheet in RLSSM microscopy in which FR stands for half-wave Fresnel 

rhomb, D stands for dichroitic mirror, C stands for cylindrical lens and L stands for focus 

lens. A tiny mirror (i.e. a disposable tipless AFM cantilever coated with gold on both 

faces) reflects the light sheet by 90o and projects a horizontal plane into the sample that is 

mounted on a high precision 3D-piezo stage, thus allowing sub-micrometer optical 

sectioning of the sample. White light source is conjugated into the optical path by using a 

dichroitic mirror (D3). Before the collected signal gets the EMCCD camera, a pair of 

relay lens is used to adjust the magnification times. (b) A real picture showing the setup 

at sample stage. 
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Figure 2. The light sheet profile can be readily adjusted with an iris behind the 

illumination objective. (a) 3D shape of a light sheet. x is the dimension which is 2 times 

of the Rayleigh length (Zr); y is the lateral extension of the parallel light path; and z is the 

thickness of the light sheet at the focal plane which is determined by using FWHM of 

cross-sectional intensity distribution. (b) Correlation between the minimum thickness and 

the Rayleigh length under different optical aperture sizes of the iris. 
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Figure 3. Schematics of illumination strategy for DC-RLSSM and bifocal RLSSM. 

(a) UV-vis spectrum of AuNRs with an average size of 40 nm × 97 nm in aqueous 

solution shows SSPR wavelength around 530 nm and LSPR wavelength around 660 nm. 

AuNRs with average size of 25 nm × 65 nm have same aspect ratio as 40 nm × 97 nm 

nanorods thus similar SSPR and LSPR wavelength should be expected. (b) The 660 nm 

(LSPR) laser was set to be p-polarized for determining the polar angle and the 532 nm 

(SSPR) laser was set to be s-polarized for determining the azimuthal angle in DC-

RLSSM. The azimuthal angle and polar angle are defined as (φ) relative to the x axis 

(also the propagation direction of light) and (θ) relative to the z axis as shown in the 

Cartesian coordinate system. (c) Dual view system for DC-RLSSM in which collected 

scattering signal is separated into shortpass wavelength channel and longpass channel and 
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then focused by a focus lens to form image in the EMCCD camera. Image in each 

channel will occupy one half the full view field from the camera. (d) Dual view system 

for bifocal RLSSM where a beam splitter is used to split the collected signal 50:50 into 

two channels. One additional focus lens (L2) is inserted into the optical path of one 

channel to introduce defocused image. 
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Figure 4. The confined illumination volume of light sheet reduces the background 

from out-of-focus significantly. (a) Epi-fluorescence image and (b) RLSSM image of 60 

nm fluorescent beads in 98% glycerol/water mixture.  The rectangular shape of reflected 

light sheet in the imaging plane is readily visible. (c) Cross-sectional profiles of the two 

beads from RLSSM image (red dot line) and epi-fluorescence image (black dot line) 

show the largely reduced background and noise in RLSSM imaging compared to epi-

fluorescence imaging. (d) and (e) are histogram distributions of SNR over 115 and 110 

fluorescent beads in RLSSM imaging and epi-fluorescence imaging respectively.  
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Figure 5. The dynamic intensity traces from nanoparticles and fluorescent beads 

show significant difference. (a) The scattering intensity from AuNR is blinking between 

a maximum and a minimum for long period of time, indicating free rotation of AuNR in 

glycerol solution. (b) On the contrary, no obvious change of fluorescent intensity from 

beads in same glycerol solution during the same amount observation time.  
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Figure 6. The translational moving of AuNR in 98% glycerol solution is nearly 

frozen. (a) locations of same AuNR as shown in Fig. 5a. The translational diffusion of 

AuNR is confined within a very small region (400nm × 400nm). (b) The mean squared 

displacement of AuNR vs. lag time. The translational diffusion constant (Dt) from linear 

fitting of data points is 6.7 ± 0.3  10-11 cm2/s which is in consistent with the theoretical 

value 5.4  10-11 cm2/s. (c) Probability distributions of displacement (histogram) which 

are fitted by radical probability density function (red line) from a two dimensional 

random-walk model at different lag time (tlag). Mean squared displacement can be 

extracted from the fitting results. 
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Figure 7. Determine the in-plane and out-of-plane angles of AuNRs in solution using 

DC-RLSSM. (a) An anti-correlated dynamic traces (anti-correlated coefficient: -0.85) of 

scattering intensity from 40 nm  97 nm AuNR in 98% glycerol solution when the 

polarization of two illuminating laser lines at 532 nm and 660 nm are aligned 

perpendicular to the propagation direction of light. (b) Calculated angles from fitting the 

normalized scattering intensity traces showing a good agreement. (c) The normalized 

intensity traces and (d) calculated angles from the same particles but with 532 nm s-pol 

and 660 nm p-pol illumination shows decreasing correlations. The correlation coefficient 

is reduced -0.16 indicating a mix of anti-correlated, non-correlated and positive 

correlated relations between scattering intensity traces from two channels. Here, the 

azimuthal angles are plotted as green line while the red stands for the polar angles. 
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Figure 8. Determine the azimuthal angle of GNRs through pattern matching. The 

pattern matching process was based on calculating the correlation coefficient between 

target images and simulated images by using MATLAB codes. Two examples are shown 

here. 
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Figure 9. Determine the rotation speed of AuNRs in glycerol solution by auto-

correlation analysis (ACA). (a) Results from performing ACA of the trace of polar 

angles of a AuNR under different frame rate. The full trace used for analysis was shown 

Fig. 11 (green dot-line) and Fig. 13 – Fig. 17 (green scatter-line) which was from a whole 

imaging period of 1.0 min. The scatter plots represented the auto-correlation coefficient 

versus the time lag. Dash lines were the fitting results from exponential decay function. 

(b) Plot showing the mean decay time Dr under different imaging speed. Larger Dr means 

faster rotation speed. (c) ACA of the trace of azimuthal angles and (d) plot of Dr versus 

imaging rate. The full trace of azimuthal angles was given in Fig. 12 – Fig. 17 (magnet 

dot-line). 
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Figure 10. Effects of imaging rate on determining rotation speed of nanorods in 

glycerol solution. (a) Results from performing ACA of the trace of polar angles of the 

same AuNR as Fig. 9 between 20 s to 60 s under different frame rate. The scatter plots 

represented the auto-correlation coefficient versus the lagtime. Dash lines were the fitting 

results from exponential decay function. (b) Plot showing the rotational diffusion 

constant Dr under different imaging speed. (c) Auto-correlation analysis of the trace of 

azimuthal angles and (d) plot of Dr versus imaging speed during the same imaging period 

as in (a).  
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Figure 11. Dynamic trace of normalized scattering intensity and polar angles from a 

AuNR in glycerol solution. Red dot-line plots were the dynamic trace of normalized 

intensity from AuNR scattering with temporal resolution of 2 ms. Green dot-line plots 

stands for the calculated polar angles. For better vision, the full trace was split into twelve 

segments and each segment was a dynamic trace of 5 s imaging. 
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Figure 12. Dynamic trace of azimuthal angles from a AuNR in glycerol solution. The 

azimuthal angles of the same nanorods as in Fig. 10 were determined from automatically 

pattern matching program written with MATLAB codes. The frame rate is 2 ms/frame. 
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Figure 13. Dynamic trace of angles of nanorods with 4 ms imaging rate. The tracking 

movies were formed through binning of the original 2 ms tracking movie. 
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Figure 14. Dynamic trace of angles of nanorods with 8 ms imaging rate. The tracking 

movies were formed through binning of the original 2 ms tracking movie. 
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Figure 15. Dynamic trace of angles of nanorods with 20 ms imaging rate. The 

tracking movies were formed through binning of the original 2 ms tracking movie. 
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Figure 16. Dynamic trace of angles of nanorods with 40 ms imaging rate. The 

tracking movies were formed through binning of the original 2 ms tracking movie. 

  



 149 

 

 

Figure 17. Dynamic trace of angles of nanorods with 100 ms imaging rate. The 

tracking movies were formed through binning of the original 2 ms tracking movie. 
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CHAPTER 5: GENERAL CONCLUSIONS 

 

The work presented with centers of developing super-resolution and super-

localization imaging methods for studying chemical and biological processes. Three 

optical sectioning strategies, namely TIR illumination, variable-angle illumination and 

light sheet illumination, were used as microscopy imaging techniques for the majority of 

the work. 

In the first project, VAE illumination and dSTORM were combined to 

successfully applied for super-resolution imaging in thick sample such plant root cells. 

The achieved spatial resolution was quantified (< 50 nm) through cluster analysis. The 

increased illumination depth yet still well-confined in VAE and the proper labeling 

density of fluorophores so that fluorophores can be optically resolved work as a whole to 

resolve the CMT network in plant root cells with a spatial resolution beyond diffract 

limit. The former helps to excite fluorophores deep inside the plant cells while still 

maintain low fluorescence background allowing single fluorescent molecule be detected 

with sufficient high SNR and localized with nanometer precision. The latter is 

approached by optimize the immunolabeling procedures. Results from quantitative 

analysis of the CMT network including densities and orientations show the dramatic 

differences in spatial organization of cortical microtubules in cells of different 

differentiation stages or types. Future work could be in areas such as imaging of 

additional elements of the cytoskeleton, organelle substructure, membrane domains and 

other structures currently only accessible by electron microscopy; revealing the 
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relationships between subcellular organs and cytoskeleton using multicolor super-

resolution microscopy; and so on.  

The localization based super-resolution microscopy is also applied for imaging 

the molecular transportation, the catalytic reaction and their coupling at single molecule 

and single channel level in a multilayer mesoporous nanocatalysts. The multilayer 

nanocatalyst is a complex structure with well-defined geometry including Pt NPs 

sandwiched between an optically transparent solid SiO2 core and a mesoporous SiO2 

shell with well-aligned pores. A fluorogenic oxidation of non-fluorescent amplex red to 

highly fluorescent resorufin is used as model chemical reaction to test the core-shell 

nanocatalysts. Molecular trajectory with Sub-10-nm localization precision reveals 

resorufin molecules diffuse two magnitude of orders slower in a nanopore than in free 

solution. Moreover, at least three sub-populations of different diffusion coefficients (fast: 

0.022 μm2/s, slow: 0.0068 μm2/s and very slow: 0.0021 μm2/s) were found and their 

motions are restricted with varied strength that could be caused by the initial adsorption 

of resorufin molecules on Pt NPs or the adsorption-desorption of resorufin molecules on 

inner surface of nanopores. While the fast mobile fraction follows a free diffusion 

behavior (Brownian diffusion) (α = 0.98), two slow mobile fractions are restricted with 

degrees at α = 0.84 (slow) and α = 0.66 (very slow). These results showing the 

heterogeneity of nanopore structure can only be revealed by super-localization 

microscopy. The future work will continue study the coupling of molecular transportation 

and catalytic reaction in terms of reaction kinetics: diffusion dominated vs. chemical 

reaction dominated. Moreover, effects of pore length, pore size and pore properties 

(hydrophobic vs. hydrophilic) on catalytic reaction rates and mechanisms will be studied. 
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Finally, the design and built of RLSM is described and applied for three-

dimensional tracking of the orientation changes of anisotropic plasmonic gold 

nanoparticles in aqueous solutions with very high viscosity. A dual-view detection 

system with two approaches including DC-RLSSM and bifocal RLSSM were 

demonstrated to determine polar angles and azimuthal angles simultaneously. Because of 

the enhanced absorption and scattering strength from plasmonic AuNRs and largely 

reduced background of thin excitation volume in RLSM, fast imaging rate up to 500 fps 

is achieved and demonstrated. Rather follows free rotational diffusion, both slow rotation 

mode and fast rotation mode of AuNRs in glycerol solution are only revealed under very 

fast imaging speed. Possible future work will focus on in vivo studying orientation 

changes in 3D of biological processes such as membrane diffusion, endocytosis, 

intracellular transportation and so on. 

The advancement in single localization based microscopy had already and will 

continue to bring new discoveries and insights in understanding the chemical and 

biological processes at molecular level.  
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