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ting portions of the raw DSC data directly. This was carried out for the

various truncation scenarios and superimposed on the raw data (solid

black curve). The plot has been rescaled to omit the data correspond-

ing to the initial transient. Note that fits obtained in this manner are

relatively insensitive to the range of truncation conditions investigated

here. (c) The normalized cumulative integrals calculated from the raw

data in (a) for the various truncation scenarios. Note that the plot and

ultimately the fitted parameters, k and n, are sensitive to the values se-

lected for upper and lower integration bounds. (d) Approximated DSC

traces based on the k and n values obtained from fitting the curves in (c)

to the expression for f(t). They are plotted here using the same S and C

values obtained for the direct fitting results of (a), since S and C values

are not computed when fitting the fraction curves to f(t). (e) Logarithm

plot of the curves presented in (c). Note the increased nonlinearity as

the extent of data truncation increases. (f) Approximated DSC traces

based on the n and k values computed from the slope and intercept of

the lines corresponding with the points indicated in (e). These points

were arbitrarily selected such that they visually represented the largest

linear portion of each plot. Again, S and C values for (f) were the same

as those from the direct fitting procedure. . . . . . . . . . . . . . . . . 128
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Figure A.14 k (a) and n (b) values plotted versus the truncation value (fraction of

peak height) for the various fitting types demonstrated in Fig. A.13.

Direct (�) refers to fitting the raw, but truncated, DSC data to the

expression for Q̇ (see Fig. A.13a-b). Fraction (©) refers to fitting the

normalized cumulative integral (fraction curve) to the expression for

f(t) (see Fig. A.13c-d). Log (4) refers to computing n and k from the

slope and intercept of normalized cumulative integral values presented

on log scales (see Fig. A.13e-f). . . . . . . . . . . . . . . . . . . . . . . 129
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ABSTRACT

Crystallization under far-from-equilibrium conditions is investigated for two different sce-

narios: crystallization of the metallic glass alloy Cu50Zr50 and solidification of a transparent

organic compound, o-terphenyl. For Cu50Zr50, crystallization kinetics are quantified through

a new procedure that directly fits thermal analysis data to the commonly utilized JMAK

model. The phase evolution during crystallization is quantified through in-situ measurements

(HEXRD, DSC) and ex-situ microstructural analysis (TEM, HRTEM). The influence of chem-

ical partitioning, diffusion, and crystallographic orientation on this sequence are examined.

For o-terphenyl, the relationship between crystal growth velocity and interface undercooling is

systematically studied via directional solidification.
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CHAPTER 1. INTRODUCTION

The rigid nature of solids make them difficult to manipulate mechanically, especially under

ambient conditions. Heating a solid reduces the mechanical burden associated with defor-

mation, as the forging of hot iron by a blacksmith demonstrates. Extending the notion of

deforming a material while it is hot, we arrive at solidification which utilizes thermal energy to

maintain a liquid that can be deformed using far less mechanical work. Indeed, highly intricate

shapes can be produced by filling a mold with a liquid and allowing it to freeze.

The properties of a material are intimately linked to its structural hierarchy that often spans

a vast range of length scales and includes defects. Since this hierarchy 1 is often established

during solidification, engineering the properties of a material that is solidified requires an

understanding of (i) the kinetics and mechanisms associated with the structural evolution and

(ii) the process parameters 2 to which these are linked.

The present work is concerned with crystallization under far-from-equilibrium conditions.

The extent to which a system is driven away from equilibrium can profoundly influence its

transformation pathways and resulting state. In terms of solidification, a liquid that survives

below its melting temperature falls further out of equilibrium with increased undercooling. Con-

camitant with an increased undercooling is a change in the relative thermodynamic stabilities

and nucleation and growth kinetics of competing crystalline phases. Indeed, the potential for

novel phases and microstructures presented under such conditions is of great fundamental and

practical interest. One way to access high undercoolings is through rapid solidification, where

a high cooling rate limits the chance of nucleation and growth of a crystal due to the reduced

1Examples include: atomic structure (i.e. crystalline phase(s) or amorphous), grain size / alignment / count,
chemical gradients, dislocation density, etc.

2Such as cooling rate, composition, pressure, applied fields (electromagnetic, gravitational, etc.), geometric
constraints, etc.
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time that a liquid spends at temperatures where nucleation and growth rates are significant.

During this time in undercooled states, a material may have the opportunity to access kinetic

pathways that are difficult or impossible to achieve via conventional processing methods.

Cooling through deeply undercooled states may allow the formation of metastable phases,

novel microstructures, and perhaps an amorphous solid. These non-equilibrium freezing prod-

ucts may even serve as a precursor for subsequent phase transformations. FINEMET, for

example, was the first magnetically soft material to derive enhanced properties from partial de-

vitrification of a glassy precursor (Fe-Si-B with small amounts of Cu and Nb). During carefully

designed annealing steps, shown schematically in Fig. 1.1, Cu rich crystallites (fcc) precipitate

from the glass and serve as heterogeneous nucleation sites for the ferromagnetic Fe-Si phase

(bcc)3, which grows and ultimately comprises a significant volume fraction of the material,

although the nominal crystallite size is quite small (approx. 10 nm). The growth of Fe-Si crys-

tallites slows and eventually halts as B and Nb are rejected to the surrounding glass, shifting it

to a more stable composition [24, 25]. The resulting ultrafine grains, dispersed in an amorphous

matrix, would be difficult to produce via traditional solidification techniques because they are

generally unable to provide the high nucleation and low growth rates required to produce such

an ultrafine crystalline structure.

The annealed nanocomposite structure shown in Fig. 1.1 allows magnetic coupling between

the ultrafine ferromagnetic crystallites, which reduces the effective magnetic anisotropy and

provides very soft magnetic behavior.4 In fact, magnetically soft amorphous and nanocrystalline

alloys have enabled several practical advances, such as a dramatic reduction in the size of

electrical transformers couled with an increase in their efficiency. Even small improvements

to a single hysteresis cycle can provide enormous savings in the long term, considering the

number of devices worldwide that require transformed electrical power, some of which operate

continuously.

As the example above illustrates, understanding the dynamics of phase competition in terms

3TEM and nano beam diffraction revealed Kurjumov-Sachs-based and Nishiyama-Wasserman-based relations,
in addition to a third orientation relation, between the fcc (Cu) and bcc (Fe-Si) phases, all of which involve parallel
close-packed planes that reduce the energy barrier associated with nucleation. [24]

4High saturation magnetization, high permeability, low coercivity, and low hysteresis loss
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of thermodynamic stabilities and growth mechanisms is a crucial prerequisite for controlling

the structure and properties of a material that is traversing a kinetic landscape that is far-

from-equilibrium. Although numerous reports on the crystallization kinetics of metallic glass

exist, the majority are anecdotal and lack sufficient rigor to reveal subtle details that may arise

during devitrification. The crystallization kinetics of melt-spun Cu50Zr50, for example, have

been studied extensively, yet the reported devitrification mechanisms and resulting phases vary

considerably. This is mostly a result of how the transformation was commonly investigated,

namely, ex-situ X-ray diffraction (XRD) of specimens that endured continuous heating to a

temperature associated with the completion of an exothermic reaction, as measured by thermal

analysis. Such an approach provides, at best 5 ,the phase fraction(s) associated with a particular

instant in time late in the transformation and risks overlooking complex phenomena, such as

transient metastable phase sequences and cooperative reactions that often characterize highly

driven transformations.

One of the challenges associated with investigating such transformations is that the XRD

patterns for the relevant phases are largely overlapping and difficult to deconvolute. Also,

conventional XRD is less capable of detecting nano-sized crystallites compared to high-energy

X-ray diffraction (HEXRD), especially when the crystalline phase fraction is small. In a recent

investigation using a heating rate of 10 K/min for the devitrification of melt-spun Cu50Zr50,

Kalay et al. [6] reported a sequence involving the initial formation of the Cu10Zr7, CuZr2,

and CuZr phases followed by a gradual decomposition of the metastable CuZr into Cu10Zr7,

and CuZr2. The initial three-phase devitrification occurred too rapidly for the transformation

kinetics of the individual phase(s) to be resolved. However, by applying a quantitative modeling

approach to analyze in-situ HEXRD patterns, it was determined that the initial devitrification

resulted in relative phase fractions of 0.399, 0.223, and 0.378 (by weight) for Cu10Zr7, CuZr2,

and CuZr, respectively. Moreover, this method enabled full quantification of the phase-resolved

kinetics of the slower post-crystallization decomposition reaction that began partway through

the first, sharp, exotherm and ended shortly after the broad second exotherm, resulting in a fully

CuZr structure. Even for the relatively low heating rate of 10 K/min, the initial devitrification

5Only after substantial and careful modeling / analysis of X-ray patterns.
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was too rapid to allow the initial phase evolution to be resolved, particularly the order in which

the phase(s) precipitated from the amorphous ribbon. As noted in Table A and the phase(s)

associated with the initial transformation vary considerably among previous reports on the

constant heating rate devitrification of Cu50Zr50.

A more recent study by Cullinan et al. [64] 6 utilized carefully selected isothermal annealing

treatments that resulted in a slower transformation, allowing the initial crystallization sequence

to be resolved through in-situ HEXRD measurements and electron microscopy of specimens

that were quenched at different times throughout the annealing (see Fig. A.2b). The high qual-

ity and resolution of the data revealed that the initial devitrification occurs in three stages: (i)

Cu10Zr7 crystallites nucleate from the amorphous precursor and grow7 depleting the surround-

ing glass of Cu; (ii) when the Cu:Zr ratio of the surrounding glass reaches 1:2,8 CuZr2 nucleates

on the interfaces between the glass and Cu10Zr7 crystallites and grows until the Zr-rich region of

the glass is consumed; (iii) the CuZr phase nucleates epitaxially on the glass/CuZr2 interfaces

and grows until the specimen is fully crystalline. As indicated in Fig. 1.3, the crystalline phase

fractions at the end of the isothermal transformation are consistent with those measured at the

beginning of the constant-heating rate transformation. The approach taken by these related

studies [6, 64] 9 provides a view of the crystallization process backed by direct experimental

data with never-before achieved fidelity.

Similar to the mechanism reported for FINEMET, solute rejection limits the growth of

Cu10Zr7 and promotes the growth of CuZr2 in the surrounding Zr rich glass. As CuZr2 grows

to the edge of the Zr rich glassy layer, the growth of CuZr becomes favorable because (i) an

epitaxial relationship between these crystal structures (see Fig. 1.3) catalyzes the nucleation

of CuZr and (ii) subsequent growth of CuZr requires a minimal diffusion burden, since the

surrounding glass is the same composition. Thus, atoms merely need to arrive at an appropriate

and available lattice site on the interface and no subsequent solute partitioning is required. As

these examples illustrate, the phase evolution during crystallization under far-from-equilibrium

6Included in Appendix A
7At the same time, small plate-like crystals are observed to nucleate from the glass. Their structure is not

confirmed, but is consistent with CuZr2.
8This seems to occur when the Cu10Zr7 crystallites are approximately 100 nm in size.
9Kalay et. al. (2011) and Cullinan et. al. (2015). The latter study is included in Appendix A.
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conditions may involve convoluted mechanisms that form metastable phases and structures.

Indeed, B2 structures are useful for they tend to participate in martensitic and shape memory

transformations, but the phases involved in these reactions tend to be unstable near ambient

conditions [26, 27, 28, 29]. This begs the question: can we control the formation of metastable

phases to engineer novel microstructures with practical properties, and can we preserve them

for use under conditions of interest?

Metastable phase formation is not specific to metallic systems, however, and is commonly

observed for organic compounds that are polymorphic.10 Recent estimates suggest that 30

to 50 percent of pharmaceutically relevant compounds are polymorphic [30]. Amorphous and

metastable crystalline phases are desirable forms for drugs because they tend to provide en-

hanced solubility and therefore enhanced bioavailability per dose. These desirable phases are

fragile, however, in the sense that they will transform to a more stable phase if presented such

an opportunity during processing or storage.11 Until recently, phase stability and polymorphic

transformations were frequently neglected in the pharmaceutical industry. Perhaps the most

serious incident that highlighted the need for such awareness was the recent shortage of Norvir

(ritonavir), an antiretroviral drug commonly used in combination with other drugs to control

symptoms associated with HIV infection and AIDS. The drug was originally marketed in 1996

in two versions: oral liquid and oral semi-solid capsules. Only one crystal form of Norvir was

identified throughout the development of 240 lots of semi-solid capsules, and presented no sta-

bility problems until 1998, when several capsule lots failed solubility tests. X-ray diffraction

and microscopy revealed that the capsules contained a new and distinct polymorph that was

much less soluble than the original. The sudden and rampant appearance of this contaminant

polymorph, known as Form II, rendered the original form unattainable and no longer guaran-

teed the stability of the oral solution without signifiant refrigeration. The production of this

lifesaving drug was therefore interrupted, severely threatening its supply until an alternative

oral tablet that did not require refrigeration was approved by the FDA in 2000.

10When a compound exhibits multiple crystalline phases with distinct properties in the solid state, it is said
to be polymorphic. The phenomenon is similar to allotropy, where a pure element exhibits multiple crystalline
forms. Diamond and graphite are two allotropes of carbon, for example.

11An unintended change of temperature, pressure, pH, or other factor could invoke an undesirable phase
change.
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The formation of drugs and vaccines that do not require refrigeration or intravenous delivery

is a critical necessity, if these and other life saving formulations are to be shared in places that

lack electrical infrastructures and sharps disposal programs. It is estimated that 21 million

hepatitis B, 2 million hepatitis C, and 250,000 HIV infections occur each year due to reused

needles and syringes. The majority (about 70%) of new HIV infections each year occur in

sub-Saharan regions of Africa, which is home to about 10% of the world’s population [WHO].

According to 2009 estimates, 200-500 people in Africa are infected with HIV every day because

of unsafe blood transfusions [inj] Since there is currently no cure for HIV or AIDS, prevention

through education and safe practices are the primary mechanisms for limiting the spread of

this pandemic [31].

Although some organic compounds such as sucrose, benzoic acid, and naphthalene are be-

lieved to exhibit only one crystal form under near-ambient conditions, numerous others exhibit

multiple crystalline forms. ROY (5-methyl-2[(2-nitrophenyl)amino]-3-thiophenecarbonitrile)12,

for example, exhibits ten known polymorphs, seven of which are solved structures - which is the

current record according to the Cambridge Structural Database. Perhaps the most intriguing

aspect of this polymorphic system is that all ten polymorphs can be formed and maintained

under near-ambient conditions. In fact, four of the seven crystalline forms can precipitate

spontaneously and simultaneously from the same liquid near room temperature [1]. Several

of the polymorphs are even capable of catalyzing the growth of a different and faster growing

polymorph [32].

In addition to offering a rich suite of metastable forms that are readily accessible, ROY is

also one of only eleven materials, all of which are glass-forming organic compounds (listed in

Table 1.2), that exhibit an anomalous crystal growth mode at high undercoolings.13 Unlike

the crystallization of other deeply undercooled materials, this growth mode is associated with

an abrupt increase in the isothermal growth velocity of crystals just above the glass transition

temperature, Tg. Since the growth mode is also observed for temperatures that are well within

12The abbreviation is derived from its Red, Orange and Yellow polymorphs. The compound is an intermediate
for the production of Olanzapine, an atypical antipsychotic drug for the treatment of schizophrenia and bipolar
disorder.

13Four ROY polymorphs that can be studied near Tg exhibit GC growth: YT04, Y, R, and OP
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the glassy regime, it is referred to as glass-crystal or GC growth. As Fig. 1.5 illustrates for

o-terphenyl, the fibrous and compact spherulite morphologies are associated with growth veloc-

ities that are orders of magnitude faster than faceted growth at similar temperatures. The key

features of this anomalous growth mode, which occurs under far-from-equilibrium conditions,

are:

1. It has only been observed for eleven organic glass forming compounds, ten of which

contain a phenyl ring.

2. It is associated with an abrupt increase in growth velocity, accompanied by a change from

faceted to fibrous growth around TFf = 1.15Tg, the transition temperature. An increase

in the bulk diffusivity of the constituent species does not occur in this temperature regime.

3. A subsequent morphology change from individual fibers to compact spherulites occurs

at a higher undercooling, Tfc. No discontinuity of the linear growth rates of the fibrous

and compact morphologies at Tfc has been reported. The volume growth rates exhibit a

discontinuity, however, since the individual fibers do not fill space as quickly.

4. The isothermal growth velocities are independent of time.

5. If a spherulite growing via the compact GC mode is heated above Tfc its growth stops,

yet fine fibers are noted to protrude from the halted interface. The compact GC growth

resumes upon cooling below Tfc, but only at certain locations along the crystal/liquid

interface.

6. Based on results for the polymorphic material ROY, GC growth is not correlated with

the thermodynamic stability of the crystalline phase (e.g. R has stability intermediate

between ON and YN, both of which do not exhibit GC growth). GC growth is not

correlated with molecular conformation (e.g. YT04, Y, and YN have similar C-N bond

twist angles, which are significantly different than the other polymorphs, yet YN does not

exhibit GC growth). Polymorphs with higher density and more isotropic packing tended

to exhibit GC growth.
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1.1 Thesis Organization

The remainder of the thesis includes two distinct studies of crystallization under far from

equilibrium conditions. Chapters 2, 3, and the Appendix A are related to the devitrification

of a metallic glass Cu50Zr50, while chapters 4, 5, 6, and 7 pertain to the solidification of a

transparent organic glass former, o-terphenyl. Chapters 2 and 4 provide independent reviews

of literature that is relevant to each material.

Figure 1.1 A schematic of the devitrification mechanism that produces the ultrafine mi-

crostructure of FINEMET. [2]

Table 1.1 A summary of the seven ROY polymorphs whose structures are solved. GC growth

was observed for the shaded polymorphs (Y, YT04, R, and OP). [1].

ture of drugs, explosives, dyes and pigments, and chocolates.
Polymorphs are valuable for understanding crystal packing
and structure-property relations;1 for example, they have
been used to test the third law of thermodynamics2 and the
relation between molecular arrangement and chemical reac-
tivity.3

This Account is concerned with the rich polymorphism of
an organic substance, 5-methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecarbonitrile, also known as ROY for its red, orange,
and yellow crystals (Figure 1 and Table 1).4-7 ROY is currently
the top system for the number of polymorphs of known struc-
tures in the Cambridge Structural Database (CSD),8 which
archives structures of organic and organometallic crystals.9

First prepared by medicinal chemists,10 ROY has been stud-

ied by solid-state chemists. Besides the seven known struc-
tures, ROY has three other polymorphs whose structures have
not been determined. The latest CSD search that names ROY
the most polymorphic8 was performed with carefully defined
criteria for data quality.11 That search also found 58 sub-
stances with three polymorphs, 11 with four, 2 with five, and
zero with six.

ROY is not the most polymorphic substance on record.
Water, for example, has 10 or more solid phases. The poly-
morphism of ROY is remarkable, however, in two respects.
First, all known polymorphs have been prepared near ambi-
ent conditions; many can even crystallize simultaneously from
the same liquid. In contrast, the polymorphs of some sub-
stances are formed under extremely different conditions. High

FIGURE 1. Polymorphs of ROY. The number 1-10 indicates the order of discovery. The polymorphs have different colors, melting points,
and molecular conformations (most pronounced in the torsional angle θ).

TABLE 1. Crystal Structures and Selected Properties of ROY Polymorphsa

form Y YT04 R OP ON YN ORP

crystal system monoclinic monoclinic triclinic monoclinic monoclinic triclinic orthorhombic
space group [No.] P21/n [14] P21/n [14] P1̄ [2] P21/n [14] P21/c [14] P1̄ [2] Pbca [61]
description yellow prism yellow prism red prism orange plate orange needle yellow needle orange-red plate
a, Å 8.5001 8.2324 7.4918 7.9760 3.9453 4.5918 13.177
b, Å 16.413 11.8173 7.7902 13.319 18.685 11.249 8.0209
c, Å 8.5371 12.3121 11.9110 11.676 16.3948 12.315 22.801
R, deg 90 90 75.494 90 90 71.194 90
", deg 91.767 102.505 77.806 104.683 93.830 89.852 90
γ, deg 90 90 63.617 90 90 88.174 90
Z 4 4 2 4 4 2 8
Dcalc, g cm-3 1.447 1.473 1.438 1.435 1.428 1.431 1.429
θ (deg) 104.7 112.8 21.7 46.1 52.6 104.1 39.4
νCN, cm-1 2231 2224 2212 2226 2224 2222 2217
mp, °C 109.8 106.9 106.2 112.7 114.8 99 97
∆Hm, kJ/mol 27.2 26.6 26.0 25.5 25.1 24.2 24.2
H - HY, kJ/molb 0 0.9 1.4 1.9 2.6 3.0 4.1

a Empirical formula C12H9N3O2S. MW ) 259.29. The structures were determined at 20-23 °C. b From fitting melting and eutectic melting data.4,6,7

Red, Orange, and Yellow Polymorphs Yu

1258 ACCOUNTS OF CHEMICAL RESEARCH 1257-1266 September 2010 Vol. 43, No. 9
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Figure 1.2 The devitrification of Cu-Zr binary metallic glasses has been studied extensively,

partly because this system features strong glass formation tendency [3] and a wide

composition range within which glassy alloys can be achieved by quenching from

the melt [4, 5]. In addition, several intermetallic compounds that reside within

or near this glass-forming range may play a role in the devitrification behavior,

potentially appearing as stable, metastable, or transient phases.
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Figure 1.3 (a) A STEM image of melt-spun Cu50Zr50 isothermally annealed at 671 K (398◦C)

for 44 min. (b) A schematic showing the coherent interface between the CuZr2
(C11b) and CuZr (B2) phases. Through slight atomic rearrangements, the lattice

parameter of CuZr2 (3.24 Å) enlarges to that of CuZr (3.28 Å) (c) Time-resolved

phase fractions computed from in-situ HEXRD patterns of isothermally annealed

(673 K, 400◦C) melt-spun Cu50Zr50, which agree well with the temperature-re-

solved phase fractions computed from in-situ HEXRD patterns collected during

10 K/min heating of melt-spun Cu50Zr50 [6].
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Figure 1.4 The ten know crystalline polymorphs exhibited by ROY

(5-methyl-2[(2-nitrophenyl)amino]-3-thiophenecarbonitrile). Each form is as-

sociated with a unique color and morphology [1].
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Table 1.2 A summary of the 11 materials that are known to exhibit the anomalous glass-crys-

tal growth mode.

Published: August 29, 2011
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’ INTRODUCTION

The growth velocity of a crystal into its melt is thought to be
controlled by two factors: the rate of molecular fluctuation in the
liquid immediately before the growth front that leads to correct
registry with the crystal and the probability that the newly formed
crystal is irreversibly attached into the crystal phase. The relevant
molecular fluctuation for crystal growth is commonly believed to
be similar to diffusion. Near the melting point Tm, where super-
cooling (ΔT = Tm ! T) is slight, the driving force for crystal-
lization is small, diffusion is fast, and attachment of growth units
is the rate-limiting step. If ΔT is large, diffusive mass transport is
slowed and becomes rate-limiting; ultimately, rate is assumed to
become proportional to the diffusion coefficient.1

Comparatively recently, it was shown that crystal growth from
some glass-forming liquids near or below the glass transition
temperature (Tg) can become faster by up to 4 orders of magnitude
compared to the growth rates that are observed at slightly higher
temperatures.2!4 This growth mode, termed glass-to-crystal or
GCmode, was apparently first reported for o-terphenyl in 1967,5

and since 1995, it has been studied systematically by several
research groups. To date, GC growth has been observed for 10
compounds: o-terphenyl,4!6 benzophenone, phenylsalicylate
(salol), triphenylethane, toluene, diphenylphthalate, dimethyl-
phthalate, isopropylbenzene,6!8 nifedipine,9 and 5-ethyl-2!2-
nitrophenylamino-3-thiophenecarbonitrile (ROY, so named for
its red, orange, and yellow polymorphs).3,9,10

The key characteristics of GC growth mode can be summar-
ized as follows:3,4 (1) It emerges suddenly near Tg upon cooling
and disappears at the same temperature upon heating. (2) The
growing crystals often form compact spherulites, although the
GC growth mode can persist as fibers at higher temperature. (3)
The growth rate is nearly independent of time. (4) The activation
energy for growth can be smaller than the activation energy for
diffusion-controlled growth. (5) All compounds showing GC

growth to date contain aryl rings, a structural feature that has
been suggested to “help the realization” of GC growth.8 Although
several mechanisms have been proposed to explain GC growth
(see below), they do not explain all of the known features of this
phenomenon.

In the present article, we report an experimental study of
testosterone propionate (TP), a compound without a phenyl
ring that is able to crystallize in GC growth mode. This system
shows some new features that might be important for refining our
understanding of this mysterious growth phenomenon.

’EXPERIMENTAL SECTION

Testosterone propionate (TP) is the ester that is commonly abused
by body builders. We happened to have a sample of TP in our chemical
library from the Nutritional Biochemical Corporation. The sample was
recrystallized from methanol and yielded elongated prisms. The struc-
ture was confirmed to be that previously described.11 Several milligrams
of as-received or recrystallized TP was placed between a microscope
slide and cover glass. The sample was melted on a hot plate (Tm =
120 !C) and then rapidly cooled to room temperature. Then, it was
heated/cooled with a variable temperature stage (model FP90, Mettler-
Toledo) to the desired temperature from !12 to 120 !C. Crystal-
lization was observed using a conventional polarizing light microscope.

Received: May 20, 2011
Revised: August 29, 2011

ABSTRACT: The recently discovered glass-crystal (GC) growth mode in some glass-
forming liquids is characterized by strong and abrupt growth rate enhancement just in the
vicinity of the glass transition temperature. GC growth previously has been observed in
only 10 compounds. The data on testosterone propionate presented here indicate the
fastest GC growth acceleration observed to date. Moreover, testosterone propionate is the
first compound to show a helically twisted morphology concomitant with GC growth. It
has been previously stated that an aryl ring is a prerequisite of GC growth, but testosterone
propionate obviates that claim.

Ref Ref Compound Molecule Crystal 
Structure(s)

Tf   [K]
       (oC)

ΔHf  
kJ/mol

ΔSf  / R
kJ/(mol K)

Tg  [K]
      (oC)

ΔVf  
cm3/g

diphenylmet
hanone benzophenone α - orthorombic 

β - monoclinic
α - 325 ( 52 ) 
β - 301 ( 28 )

α - 18 
β - ? 6.662 207 (-66)

phenyl 2-
hydroxyben
zoate

salol I. orthorombic 
III. monoclinic

    I.  314  (41) 
III.  302  (2)

 I.  18.6 
III.  16.5

 I.    7.13 
II.   7.41 218  (-55)   I.  0.045 

III.  0.037

1,2-
diphenylbe
nzene

o-terphenyl 
OTP orthorombic 329  (56) 17.2 6.28 244 (-29) 0.042

triphenyleth
ylene triphenylethylene 341  (68) 20.35 7.18 248  (-25)

methylbenz
ene toluene

α - orthorombic 
(monolith) 

β - orthorombic 
(~ cubic)

α - 178  (-95) 
β - 153  (-120)

α - 6.64  (?) α - 4.49 117  (-156) α - 0.052 (?) 

common 
pvc 
plasticizer

diphenylpht
halate diphenylphthalate 348  (75) 252  (-21)

dimethylpht
halate dimethylphthalate 275  (2) 192  (-81)

used for 
production of 
acetone and 
phenol. Used as 
additive for 
aviation gasoline 
to improve 
antiknock quality 

isopropylbe
nzene cumene 177  (-96) 7.32 4.97 127  (-146)

nifedipine nifedipine 
Procardia

α - monoclinic 
β - triclinic

γ - ?

α - 444 (171) 
β - 436 (163)
γ - 408 (135)

α - 104 J/g 
β - 70 J/g
γ - ?

α - 9.76 
β - 6.68
γ - ?

315  (42)

5-methyl-2[(2-
nitrophenyl)amino
]-3thiophenecarbo
nitrile

ROY 
Olanzapine Impurity A

Y - monoclinic 
YT04 - 

monoclinic 
       R - triclinic 

OP - monoclinic

383  (109.8) 
380  (106.9) 
379  (106.2) 
385  (112.7)

27.2 
26.6 
26.0 
25.5

8.54 
8.42 
8.25 
7.97

259  (-14)

Testosteron
e 
Propionate

testosterone  
propionate

α - orthorombic 
β -

α - 393 (120 ) α - 21 α - 6.43 272  (-1)
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Figure 1.5 A summary of the glass-crystal growth studies for o-terphenyl under isothermal

conditions [7, 8, 9, 10, 11, 12, 13, 14]. For low undercoolings, down to about

10◦C, crystallization proceeds in a faceted manner [8]. The velocity of the smooth

faceted front reaches a maximum of 45.7 micron per second around (40◦C), and

then decreases with further undercooling, due to the decreased molecular mobility

(increasing viscosity) of the liquid. Around 10 ◦C, the glass-crystal growth man-

ifests as individual fiber and whisker crystals protruding from the slower growing

faceted front. As the undercooling is increased further, the glass-crystal growth is

said to be fully activated and a compact form of growth ensues, which is also much

faster than the advancement of the previously established faceted front. [13]
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CHAPTER 2. DEVITRIFICATION OF Cu50Zr50 - REVIEW OF

LITERATURE

The rapid solidification of metallic alloys may give rise to a hierarchy of non-equilibrium

effects, ranging from small departures from local chemical equilibrium to large scale trapping of

solutes and crystal defects, the growth of metastable crystalline phases, and even the formation

of glassy or amorphous solids. Moreover, these non-equilibrium freezing products can be fur-

ther transformed during subsequent heat treatments to yield novel structures with remarkable

properties. Indeed, various far-from-equilibrium transformation pathways can provide access to

phases and structures that may be difficult or impossible to achieve through more conventional

avenues.

In particular, amorphous metals provide transformation pathways that remain largely un-

explored, and there is great interest in exploiting the novel structures and enhanced properties

that may be derived from the full or partial crystallization of an amorphous metal [33, 34]. Pre-

diction and control of the phases and structures that are evolved along such far-from-equilibrium

pathways, however, requires an understanding of the mechanisms and kinetics that govern the

transformation dynamics.

The devitrification of Cu-Zr binary metallic glasses has been studied extensively, partly

because this system features strong glass formation tendency [3] and a wide composition range

within which glassy alloys can be achieved by quenching from the melt [4, 5], as shown in

Fig A.1. In addition, several intermetallic compounds that reside within or near this glass-

forming range may play a role in the devitrification behavior, potentially appearing as stable,

metastable, or transient phases. While several studies of the kinetics and phase evolution

during constant heating rate (CHR) and isothermal (ISO) devitrification of melt-quenched and

mechanically alloyed Cu50Zr50 have been reported 1 the majority of these studies failed to

1See, for example, [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
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describe the devitrification thoroughly and accurately because the underlying analyses often

relied on poor quality 2 and/or insufficient data.3 In some cases, reports of a transformation

reaction or mechanism were made without any diffraction or microscopy evidence. Studies

that included a kinetic analysis of the devitrification were unclear and incomplete, frequently

failing to include all of the fitted parameters associated with a given kinetic model and usually

omitting a description of how the parameters were computed. Thus, a complete description

of the prevailing mechanisms and related kinetics that reconciles the various observations of

phase evolution with system thermodynamics was not established within the literature.

2.1 Review of Constant-Heating Rate Devitrification Studies.

Table A summarizes the constant-heating rate devitrification studies of Cu50Zr50, some

of which are highlighted in the following paragraphs. Freed et al. [35] used XRD, differential

scanning calorimetry (DSC), and transmission electron microscopy (TEM) to study the crystal-

lization of splat-quenched Cu50Zr50.
4 For a heating rate of 10 K/min, they reported a two-step

devitrification sequence, associating the first exotherm (at 724 K) with partial crystallization

resulting in nuclei of a metastable crystalline phase that was not identified. The second, and

smaller, exotherm (at 731 K) was reported to correspond with complete crystallization resulting

in the formation of the CuZr phase.

Using DSC, Buschow reported that melt-spun Cu50Zr50 exhibits two exothermic events

when heated (at an unspecified rate). XRD revealed that the first event corresponded to

crystallization of the sample, primarily into an orthorhombic CuZr phase, while the second

event was proposed to be associated with recrystallization [38]. Dini and Dunlap also used XRD

to study the phases formed after heating melt-spun ribbons via differential thermal analysis

(DTA). For a sample heated at 20 K/min, they reported a fully crystalline structure comprised

of Cu10Zr7 and CuZr2 [41] .

59, 60, 61, 6, 62, 63]
2Such as relying on conventional X-ray diffraction (XRD) versus high-energy X-ray diffraction (HEXRD)

measurements.
3Such as relying on one or just a few diffraction measurements of post-annealed samples versus in-situ

measurements.
4Italics are used here to indicate that the notation is a shorthand description of composition and not a

chemical formula.
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Using XRD to investigate phase transitions in melt-spun ribbons on heating (40 K/min),

Altounian reported that devitrification occurs in a single-step reaction involving the simulta-

neous formation of Cu10Zr7 and CuZr2, with Cu10Zr7 as the major phase and CuZr2 as the

minor phase [39]. Using a much lower heating rate (0.835 K/min), Kneller et al. later reported

that the nucleation of the CuZr phase, which is metastable at low temperature, precedes the

formation of the Cu10Zr7 and CuZr2 phases [43].

Lu et al. used DSC and Field Ion Microscopy (FIM) to study constant-heating rate (25

K/min) devitrification of Cu50Zr50 melt-spun ribbons, reporting a two-step process in which

Cu10Zr7 precipitates first from the amorphous alloy at 723 K, followed by the CuZr2 phase

at 773 K [46]. Louzguine-Luzgin et al. measured two exothermic events through DSC (40

K/min), one sharp and one broad, for the devitrification of melt-spun ribbons. Through XRD

measurements, they attributed the initial crystallization event to the formation of a metastable

monoclinic CuZr phase, which transformed to Cu10Zr7 at higher temperatures. They also uti-

lized differential isothermal calorimetry (DIC) to anneal samples at 693, 698, and 710 K. These

thermal analysis measurements were subsequently used to model the devitrification kinetcs

according to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, Eqn. A.1, resulting in

Avrami exponent values, n, between 2.2 and 2.4. [54] Values of the JMAK parameter k were

not reported.

Wang et al. investigated the devitrification of melt-spun ribbons through XRD measure-

ments of samples that were heated via DSC (20 K/min) just up to the initiation of crystal-

lization and samples heated just beyond the completion of crystallization and, in both cases,

subsequently cooled to ambient temperature. The authors reported a fully crystalline structure

comprised of the orthorhombic Cu10Zr7 phase, attributing it as a major competing crystalline

phase due to its structural similarity to glassy Cu50Zr50 [57]. Using HEXRD, Pauly et al.

reported that heating Cu50Zr50 melt-spun ribbons through 973 K resulted in a single-step

formation of the equilibrium crystalline phases, Cu10Zr7 and CuZr2 [58].
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Fernandez et al. utilized DSC, XRD, and TEM to study the devitrification kinetics of

Cu50Zr50 powder prepared by gas atomization [59]. Although XRD indicated that the as-

atomized powder was amorphous, HRTEM revealed the presence of Cu10Zr7 nanocrystals. 10

K/min heating of as-atomized powders indicated a single exothermic peak associated with

the further formation of Cu10Zr7, according to XRD and TEM diffraction patterns of post-

DSC samples. Louzguine-Luzgin et al. studied the devitrification of melt-spun Cu50Zr50

through DSC (40 K/min) and XRD and reported that the first exothermic crystallization

event corresponds to the formation of a metastable monoclinic CuZr phase. They also utilized

DIC at temperatures 20 to 50 K below the onset of crystallization, analyzed their findings

using the JMAK expression (Eqn. A.1), and reported an n value of approximately 2.5 [60, 61].

As before, k values were not reported. Mattern et al. studied the devitrification of melt-spun

ribbons via small and wide angle X-Ray scattering and reported that the equilibrium phases,

Cu10Zr7 and CuZr2, formed at about 723 K while heating from 573 K to 773 K in 10 K steps

[62].

Recently, Cui et al. reported on the phase evolution of melt-spun Cu50Zr50. They utilized

XRD measurements to determine the phases present at various stages of the devitrification

process, using resistivity measurements as a guide. They investigated samples that were i)

quenched into water after the “primary” precipitation, ii) quenched into water from 1100 K to

determine the “transformed” (intermediate) crystal phases, and iii) slow cooled from 1100 K

to determine the final crystalline phases. They reported Cu10Zr7 and CuZr2 as the primary

phases, CuZr (B2) as the transformed phase, and Cu10Zr7 and CuZr2 as the final phases [63].

Although the results of the initial crystallization and subsequent phase evolution vary con-

siderably, a few trends are noted among the reports. The first transformation upon heating

amorphous Cu50Zr50 was most frequently reported as an exothermic event, beginning around

720 K, that was associated with complete crystallization 5 involving the formation of Cu10Zr7

and CuZr2. Of the five [41, 47, 50, 58, 62] studies that shared this result in common, two

[58, 62] reported a second exothermic event around 773 K and 783 K, respectively, during

5By this we mean the sample no longer features an amorphous fraction. This does not necessarily imply that
the resulting crystalline phase(s) are the final products of a given phase evolution.
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thermal analysis. Only one [58] of those studies reported on the phase evolution corresponding

with the second exotherm, associating it with the growth (increased fraction) of CuZr2. This

result is consistent with the phases that are most commonly reported as being present after

the second exotherm, namely, Cu10Zr7 and CuZr2.

One of the challenges associated with investigating such transformations is that the X-

ray diffraction (XRD) patterns for the relevant phases are largely overlapping and difficult

to deconvolute. Also, conventional XRD is less capable of detecting nano-sized crystallites

compared to high-energy X-ray diffraction (HEXRD), especially when crystalline phase fraction

is small. In a recent investigation using a heating rate of 10 K/min for the devitrification of

melt-spun Cu50Zr50, Kalay et al. [6] reported a sequence involving the initial formation of

the Cu10Zr7, CuZr2, and CuZr phases 6 followed by a gradual decomposition of the metastable

CuZr into Cu10Zr7, and CuZr2. Differing from the observations of Freed et al. [35] for this

heating rate, Kalay et al. found that the initial three-phase devitrification occurred too rapidly

for the transformation kinetics of the individual phase(s) to be resolved. However, by applying a

quantitative modeling approach to analyze in-situ HEXRD patterns, it was determined that the

initial devitrification resulted in relative phase fractions of 0.399, 0.223, and 0.378 (by weight)

for Cu10Zr7, CuZr2, and CuZr, respectively. Moreover, this method enabled full quantification

of the phase-resolved kinetics associated with the slower post-crystallization decomposition

reaction that began partway through the first, sharp, exotherm and ended shortly after the

broad second exotherm that produces a fully CuZr structure.

2.2 Review of isothermal devitrification studies.

Table A summarizes the isothermal devitrification studies of Cu50Zr50, some of which

are highlighted in the following paragraphs. Using DSC, Polk et. al. [36] measured the

thermal response of melt-spun Cu50Zr50 during isothermal annealing treatments conducted

at 5 K intervals from 690 to 715 K, although they only reported the DSC trace for 700 K.

Unfortunately, no phase evolution or kinetic analysis was reported.

6Unless otherwise indicated, the Cu10Zr7, CuZr2, and CuZr phases are assumed to exhibit the oC68, tI6,
and cP2 (B2) structures, respectively.
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Using differential isothermal calorimetry (DIC), Louzguine-Luzgin et al. [54] annealed melt-

spun ribbons of Cu50Zr50 at 693, 698, and 710 K. XRD of ribbon that was annealed for 20

min at 698 K (annealed slightly longer than was required for the exotherm to return to the

baseline signal) indicated that a monoclinic form of CuZr precipitated from the glass during

the isothermal annealing. They stated that this phase was metastable and transformed to

Cu10Zr7 and CuZr2 at higher temperatures. The DIC traces were also integrated and fit to a

modified5 form of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, Eqn. A.1, resulting

in Avrami exponent, n, values between 2.2 and 2.4. Later studies, by mostly the same authors,

reaffirmed the formation of a metastable monoclinic CuZr phase during isothermal annealing

and reported n values of approximately 2.5, although the temperature(s) investigated were not

specified [60, 61].

In addition to the CHR experiments summarized in Table A, a study by Pauly et. al.

[58] also utilized isothermal annealing to investigate the devitrification kinetics of melt-spun

Cu50Zr50. The authors fit a modified 7 form of the JMAK model to isothermal annealing data

acquired at 701, 703, 705, 707, and 709 K and calculated activation energies of crystallization

using the fitted parameters k and n. Unfortunately, only the average value of 3.6 for n was

reported.

Even for the relatively low heating rate of 10 K/min, the initial devitrification was too rapid

to allow Kalay et. al. [6] to resolve the early stages of phase evolution, particularly the order in

which the phase(s) precipitated from the amorphous ribbon. The study presented in Appendix

A [64] 8 features a more comprehensive investigation of the initial devitrification response of a

melt-spun Cu50Zr50 glass by utilizing specific isothermal annealing temperatures for which the

transformation is relatively slow. This permitted a more detailed measurement and analysis of

the phase evolution kinetics and associated mechanisms via in-situ HEXRD measurements and

electron microscopy of specimens that were quenched at various times during the annealing.

7The authors introduced a term, τ , associated with an incubation time: fC(t) = 1− exp [− (k[t− τ ])n]
8Recently published in Metallurgical and Materials Transactions A
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CHAPTER 3. DEVITRIFICATION OF Cu50Zr50 - ISOTHERMAL

KINETICS

As indicated in Table A, relatively few isothermal devitrification studies exist for melt-

quenched Cu50Zr50 and they tend to lack sufficient microstructural evidence to definitively

characterize the structural evolution that occurs during the annealing process. Although these

studies also tended to provide quantitative analysis of the crystallization kinetics, their reports

generally lacked the detail necessary for making meaningful comparisons with other studies. In

some cases kinetic model parameters were fit to thermal analysis data 1 but the values were

not reported, and in most cases no comments regarding the fitting procedure were provided.

Moreover, these studies often stated conclusions regarding crystallization mechanisms and mor-

phologies based on the value(s) of fitted model parameters without proper justification, such as

confirmation through microstructural analysis. The need for multi-method characterization for

describing such complex phase transformations was demonstrated by two recently published

manuscripts [6] [64] that together provide the most rigorous and complete description of the

structural and phase evolution during the devitrification of Cu50Zr50 to date. The most recent

of these manuscripts [64] 2 also introduced a new method for quantifying crystallization kinetics

from thermal analysis data. The remainder of this chapter is focused on describing this pro-

cedure in detail. The magnitude and overall shape of thermal analysis measurements depends

on a variety of factors, some of which are related to the specimen itself (such as its geometry,

mass, and thermal history) while others are related to the specific instrument and heating steps

that are used. Nonetheless, isothermal reactions measured by differential calorimetry (DSC,

DIC, DTA, etc.) frequently exhibit bell-shaped signals superimposed on a relatively constant

baseline signal associated with maintaining the temperature of interest.

1DSC - Differential Scanning Calorimetry, DIC - Differential Isothermal Calorimetry
2Included in Appendix A
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Although numerous mathematical expressions are able to adequately model such nominally

bell-shaped thermal analysis signals and include parameters that could directly quantify the

time dependence of a particular transformation, the tendency in the literature is to quantify the

kinetics based on the fraction of material that has transformed as a function of time according

to the the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation:

f(t) = 1− exp [− (kt)n] , (3.1)

where f is the volume fraction of material that has transformed, t is the elapsed time

at the constant annealing temperature, and the model parameters, k and n, are taken as

fitting constants. A common method for determining k and n from constant temperature data

involves computing a normalized cumulative integral over the thermal analysis event (peak) that

corresponds to the isothermal transformation of interest. A plot of the normalized cumulative

integral of a bell shaped curve versus time is sigmoidal, equaling zero at the lower integration

bound and equaling one at the upper integration bound. Such a curve can be fit to the JMAK

expression, f(t) = 1 − exp [− (kt)n], to determine the reaction rate constant, k, and Avrami

exponent, n. This type of analysis assumes that the normalized cumulative integral corresponds

with the time-dependent volume fraction of the system that has transformed. An alternative

analysis involves plotting ln(− ln(1 − f)) versus ln(t) and computing k and n from the slope

and intercept of the log-linearized expression for f(t): ln(− ln(1− f)) = n ln(k) + n ln(t).

Although constant temperature thermal analysis measurements often seem to be ideally

shaped for such analysis, they tend to exhibit features and artifacts that must be addressed

in order to ensure that a fit is accurate. Perhaps the biggest challenge involves accounting for

a non-constant baseline signal 3, even when an instrument background signal is subtracted.

This is especially problematic when the transformation of interest occurs so rapidly that the

measured signal associated with the instrument ramping to the isothermal holding temperature

3According to the JMAK expression, a valid cumulative distribution function, f should equal zero at t = 0,
and approach one as t approaches infinity. Thus, df/dt is bell-shaped, equals zero at t = 0, and asymptotically
approaches one as t approaches infinity. A DSC trace is not likely to share the second and third properties
exactly in common with df/dt, even if we account for the trace approaching a non-zero constant (C). However,
the signal surrounding a thermal event is often fairly constant during isothermal annealing, and such a trace can
be approximated fairly well by a scaled and shifted form of df/dt.
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overlaps the signal for the transformation of interest. This is usually not an issue for slower

transformations where sufficient time is available for the instrument to establish a relatively

constant baseline signal prior to, and after, the transformation of interest. In either case

however, proper analysis requires careful truncation, since the fitting results for the methods

described above are sensitive to the choice of integration bounds, as demonstrated in Figs. 3.2

3.4c-f. This is especially true for the log-linearization method, where the logarithmic plot is

linear over a smaller range as the amount of truncation increases, as shown in Fig. 3.4e for the

fitting of an actual isothermal data set. The nonlinear artifacts that arise in the logarithmic

plot introduce the need to further limit the amount of data that is considered when constructing

a line from which n and k are computed.

To avoid the complexities associated with data truncation, we have computed the JMAK

parameters k and n from the raw isothermal DSC signals (with the exception of the 673.4 K data

set, as we describe below). We begin by considering the time derivative of the JMAK expression,

df/dt, which is essentially a probability density function for the cumulative distribution function

f(t). In order to approximate an isothermal DSC signal, Q̇, we scale and shift df
dt by the factors

S and C, respectively. Thus,

Q̇ ≈ S
[
df

dt

]
+ C = S

[
(kn)(kt)(n−1) exp[−(kt)n]

]
+ C (3.2)

Fitting 4 this expression to an isothermal DSC signal with a relatively constant baseline

results in n and k values that i) are less sensitive to the extent of data truncation and ii)

describe the DSC trace with high accuracy, as demonstrated in Fig. 3.4b and Fig. 3.5 for four

different truncation scenarios. This method was applied to each of the raw 5 isothermal data

sets shown in Fig. 3.3, resulting in fitted parameters that are plotted in Fig. 3.6 and listed in

Table A.1. For each fitting, the corresponding data set was truncated such that only the points

surrounding the isothermal peak down to one percent of the peak height were considered.

While we certainly cannot presume that the same set of nucleation and growth processes

4Via non-linear regression.
5With the exception of the 673.4 K data set, the thermal analysis data was not altered prior to data fitting.

The 673.4 K data set warranted a background subtraction to remove a slight curvature that was imparted on
the baseline by the instrument. This correction consisted of subtracting a signal that was measured under the
same conditions as the 673.4 K ISO experiment, except in the absence of a specimen.
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controls the devitrification response over the range of temperatures examined here, the general

appearance of the transformation curves in Fig. A.2b does not indicate any dramatic changes

in the operative mechanisms. However, we have no reason to expect that a single mechanism

or even a single phase dominates the behavior, or even that any steady nucleation or growth

rates prevail. Acknowledging these issues fully, we still elect, for convenience, to summarize the

overall kinetics using the common exponential form of the JMAK formulation. We emphasize

that this choice is intended only to provide an empirical description of our measurements.

Moreover, we make no presumption that the value of any of the empirical fitting parameters

implies a correlation to any crystallization mechanism. Rather, it is our assertion that such a

correlation is not prudent here, given the complexity of the far-from-equilibrium transformation

which consists of multiple nucleation mechanisms that are simultaneously active, as indicated

by Figs. A.6-A.7.
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Schematic overview of the fitting process

Here is a schematic isothermal DSC trace.

Note the initial power transient that occurs 
as the program / system transitions from 
constant heating to isothermal holding.

Also note that the baseline of the DSC trace 
may not correspond to zero power, even 
after background subtraction.

Po
w

er

Time

0

Baseline of a DSC Trace

Transient or
“Trench”

Figure 3.1 A schematic DSC signal for an isothermal transformation. The initial portion of

the trace, shown in blue, is associated with bringing the instrument furnaces to

the programmed annealing temperature. Care should be taken to ensure that a

steady (flat) baseline signal, shown in green, is established before and after to the

signal of interest. In this case, an exothermic event is depicted as a bell-shaped

signal and downward deflections represent exothermic transformations.
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Schematic overview of the fitting process

The area under the crystallization peak is the 
important feature here.

In particular, we are interested in the 
cumulative area as a function of time, 
normalized to the total fraction:

To make our life easier, we need to truncate 
the data to not include the transient (many 
people refer to this as “the trench”) and also 
shift the data for easier integration.

This brings up another important factor that 
must be considered: what domain to 
integrate over? In other words, what time 
interval should the DSC trace span that 
captures the isothermal crystallization 
process the best? The gray squares illustrate 
potential “beginning” and “ending” data 
points. 

Mathematically these points correspond to 
zero percent transformed and 100 percent 
transformed, respectively.

The fraction vs time curve is therefore 
dependent on the interval over which the the 
integration is performed.
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The initial transient regime is not 
representative of the isothermal hold.

Figure 3.2 A schematic DSC signal for an isothermal transformation. The initial portion of

the trace, shown in blue, is associated with bringing the instrument furnaces to the

programmed annealing temperature. The choice of integration bounds influences

the resulting fraction versus time curve which, in turn, influences the fitted JMAK

parameters k and n.
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Figure 3.3 Isothermal DSC traces for the indicated temperatures, shifted to a common base-

line in this figure.



27

O

Truncation (Fraction of Peak Height)

n

0.02 0.04 0.06 0.08 0.10

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

O O O

.010

.025

.050

.100

O

Truncation (Fraction of Peak Height)

k 
(1

/m
in

)

0.02 0.04 0.06 0.08 0.10

0.
12

0
0.

12
1

0.
12

2
0.

12
3

0.
12

4
0.

12
5

O O O

.010

.025

.050

.100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time, t, min

Fr
ac

tio
n 

Tr
an

sf
or

m
ed

, f

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●

.010

.025

.050

.100 ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

ln(t)

ln
(−
ln
(1
−f
))

0.0 0.5 1.0 1.5 2.0 2.5

−1
0

−8
−6

−4
−2

0
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●

●

●

●

.010

.025

.050

.100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time, t, min

Po
we

r, 
m

W

5 10 15

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

.010

.025

.050

.100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time, t, min

Po
we

r, 
m

W

5 10 15

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

.010

.025

.050

.100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time, t, min

Po
we

r, 
m

W

5 10 15

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

.010

.025

.050

.100

●
●

●

●

●

●

●

Temperature (K)

k 
(1

/m
in

)

675 680 685 690

0.
05

0.
10

0.
15

0.
20

●

●

●

●

●
● ●

Temperature (K)

n

675 680 685 690

5
6

7
8

9

a

b

c

d

e

f

a

b

Direct
Fraction
Log

Direct
Fraction
Log

a

b

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time, t, min

Po
we

r, 
m

W

0 5 10 15

10
12

14
16

18
20

22
24

● ●● ●● ●● ●

.010

.025

.050

.100

Figure 3.4 (a) Raw isothermal (688.1 K) devitrification data measured by DSC. Note the initial

transient signal that persists after the program changes from a ramping (100 K/min)

to isothermal mode. For mathematical convenience, we present the data here such that

exothermic events result in positive deflections from the baseline signal. The indicated

points denote the lower and upper bounds for the data truncation scenarios we consider for

this demonstration. The fitted values that we report in Table A.1 are based on truncating

the raw data to include only the points greater than one percent of the peak height

on both sides of the peak (listed as .010 in this figure). (b) Approximated DSC traces

constructed from the expression for Q̇ using the JMAK parameters obtained by fitting

portions of the raw DSC data directly. This was carried out for the various truncation

scenarios and superimposed on the raw data (solid black curve). The plot has been rescaled

to omit the data corresponding to the initial transient. Note that fits obtained in this

manner are relatively insensitive to the range of truncation conditions investigated here.

(c) The normalized cumulative integrals calculated from the raw data in (a) for the various

truncation scenarios. Note that the plot and ultimately the fitted parameters, k and n, are

sensitive to the values selected for upper and lower integration bounds. (d) Approximated

DSC traces based on the k and n values obtained from fitting the curves in (c) to the

expression for f(t). They are plotted here using the same S and C values obtained for

the direct fitting results of (a), since S and C values are not computed when fitting the

fraction curves to f(t). (e) Logarithm plot of the curves presented in (c). Note the

increased nonlinearity as the extent of data truncation increases. (f) Approximated DSC

traces based on the n and k values computed from the slope and intercept of the lines

corresponding with the points indicated in (e). These points were arbitrarily selected such

that they visually represented the largest linear portion of each plot. Again, S and C

values for (f) were the same as those from the direct fitting procedure.
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Figure 3.5 k (a) and n (b) values plotted versus the truncation value (fraction of peak height)

for the various fitting types demonstrated in Fig. A.13. Direct (�) refers to fitting

the raw, but truncated, DSC data to the expression for Q̇ (see Fig. A.13a-b).

Fraction (©) refers to fitting the normalized cumulative integral (fraction curve)

to the expression for f(t) (see Fig. A.13c-d). Log (4) refers to computing n and

k from the slope and intercept of normalized cumulative integral values presented

on log scales (see Fig. A.13e-f).
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Figure 3.6 Plots showing the temperature dependence of the fitted JMAK model parameters

k (a) and n (b), based on the data presented in Fig. 3.3.
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CHAPTER 4. REVIEW OF ORTHO-TERPHENYL LITERATURE

This chapter features a brief chronology of studies pertaining to the properties and crystal-

lization behavior of o-terphenyl (OTP), a transparent, organic, glass forming material. Upon

melting ( 57◦C), OTP forms a clear to slightly amber liquid that is remarkably resistant to

crystallization and exhibits a drastic change in the temperature dependence of viscosity as it

is cooled towards its glass transition temperature. As described in the following sections, OTP

exhibits several anomalies with respect to its transport properties, thermal properties, and

crystallization behavior.

Weiler - 1896 [66]

Weiler isolated several hydrocarbons during a study of the Wurtz-Fitting reaction includ-

ing o-terphenyl (1,2-diphenylbenzene, OTP) , although it would go unidentified until the

1927 study by Bachman & Clark [67].

Bachmann & Clarke- 1927 [67]

Bachmann & Clarke isolated and identified OTP, reporting the melting and vaporization

temperatures as 57◦C and 332◦C, respectively.

Birkett & Clews - 1937 [68]

Birkett & Clews grew large, colorless, prismatic crystals of OTP from methyl alcohol and

petroleum ether. They measured a crystalline density of 1.166 g/cc in a CaCl2 solution

at 17◦C. Through XRD measurements on the large single crystals, they deduced an or-
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thorhombic space group of P212121 and lattice parameters of a = 18.6 Å, b = 6.05 Å,

and c = 11.8 Å. Combining the density, lattice parameters, and molecular weight of an

OTP molecule, they concluded that each unit cell contained four molecules. By com-

paring diamagnetic susceptibility measurements from the single crystals with computed

susceptibilities based on possible molecular orientations within the crystal they deduced

that, within the single crystals (i) neither of the side phenyl groups can be perpendicular

to the central phenyl group, (ii) the most likely structure is one in which the two side

phenyl groups are rotated about 50◦ relative to the plane of the central phenyl group,

(iii) the vector bisecting the angle between the side phenyl group bonds is nearly parallel

with the a lattice vector.

Allen & Pingert - 1942 [69]

Allen & Pingert published a detailed study of the synthesis and purification of OTP,

noting that it can be readily separated from other polyaryls through solution recrystal-

lization.

Karle & Brockway- 1944 [70]

Karle & Brockway studied the structure of OTP molecules in the vapor phase using

electron diffraction and concluded that the phenyl rings were not coplanar, but rather

orthogonal to the central phenyl ring on average. Independent deviations of the side

phenyl groups could range up to ± 15◦, but larger deviations would have to be in phase.

Good et al. - 1953 [71]

Good et al. reported that the liquid density of OTP decreases linearly from 1.22 to 0.62

g/cc between 70 to 150◦C, and that it boils at 327◦C. They also reported on the solubility

of OTP with p-terphenyl (PTP, a molecular isomer to OTP), stating that a single eutectic

point exists at a mole fraction and temperature of 0.0155 and 55.75◦C, respectively. No

solid solubility was detected by XRD measurements.
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Andrews & Ubbelohde - 1955 [72]

Andrews and Ubbelohde reported on the vapor pressure, viscosity (η) and molar vol-

ume of OTP in addition to other polyphenyls. When log10(η) is plotted against (1/T ),

benzene, diphenyl, and p-terphenyl exhibited very linear trends, while PTP and, to a

greater extent, OTP displayed significant departure from linearity, a behavior commonly

associated with the formation of clusters and an increasing activation energy for viscous

flow. Since OTP also exhibits a pronounced ability supercool, they proposed that the

structure of such clusters must differ from aggregates that act as crystal nuclei. They

also cite the unusually low ratio of the latent heat of vaporization to activation energy of

viscous flow (∆Hvap/Eη) as further evidence of a “highly associated liquid”, indicating

that larger holes must form in the melt in order for molecular movement to occur.

They go on to mention that no evidence exists to suggest extensive deviations of the

the angles between the phenyl group planes, and this rigidity must significantly influence

molecular packing in the melt and the flow characteristics for OTP. Calculations of the

volume required to rotate a polyphenyl molecule (diphenyl, PTP, MTP, and OTP) about

three mutually perpendicular axes through its centroid and comparing this to the molar

volume of liquid suggests that rotation of these molecules should be prohibited in the

liquid state, especially near their respective freezing points, and that rotation should

actually be prohibited up to the respective boiling points, based on thermal expansion

data.

Greet & Turnbull - 1967 [7]

Greet & Turnbull [7] measured the specific volume of liquid and solid (crystal and glassy)

OTP from the equilibrium melting temperature to below the glass transition temperature,

which they report as approximately -30◦C for “ordinary cooling rates”. Mercury capillary

and HCl solution dilatometers were used to measure the specific volume of the amorphous

and crystalline samples, respectively. These results are stated to agree fairly well with
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those of Andrews & Ubbelohde [72]. The melting temperature, Tm = 329 K (56◦C,

heat of fusion, ∆Hf = 4.05 kcal/mol, and heat capacities of liquid, glass, and crystal

were measured with DSC. They also measured the viscosity of liquid OTP from 20 to

-30◦ C and noted that when combined with the higher temperature data of Andrews &

Ubbelohde, the temperature dependence of viscosity - over 10 orders of magnitude - fits

very well to the equation:

η = A exp

[
B

(T − T0

]
(4.1)

where A = 4.65×10−4, B = 689 K, and T0 = 231 K.

Greet & Turnbull also reported on the crystallization behavior of OTP, stating that crys-

tallization from the melt required slow cooling, and that nucleation was suppressed for

samples that were undercooled to room temperature and thoroughly outgassed, delay-

ing crystallization for up to several months. They also measured the velocity of the

solid-liquid interface within liquid films between microscope and cover glass slides using

an optical microscope with a temperature controlled stage. They noted a cylindritic 1

morphology and that the width of the comprising grains decreased with increased under-

cooling. At very large undercoolings between 50-60◦ C, the noted a roughening of the

interface and the presence of thin filaments and plates protruding ahead into the liquid.

This is likely the first reported observation of the anomalous crystallization

mechanism later described as glass-crystal (GC) growth [73]. 2

Greet - 1967 [8]

Following the procedure reported by Greet & Turnbull [7], Greet [8] measured the crystal

growth velocity in liquid films of OTP formed between glass slides on a temperature

controlled optical microscope. Crystallization was induced in via seeding at the edge

1A two dimensional radial growth pattern often referred to as spherulitic throughout the literature
2The GC terminology is not utilized in the literature until coined in [73], and is instead frequently referred

to as anomalous crystallization / growth because it persists for undercoolings deep into the glassy state.
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film. This study includes the first photograph of the faceted 3 crystal-liquid interface

associated with low to moderate undercoolings. The growth rate measurements were

analyzed with respect to three different models of isothermal crystallization that were

prevalent at the time and featured a similar set of assumptions. In each of these models,

the growth rate G is proposed to depend on the rate that molecules attach to the surface

of a growing crystal interface, which is assumed to be inversely proportional to the liquid

viscosity:

G(T ) =
f(t)

η(T )
(4.2)

Thus, the distinguishing feature of each model is the temperature dependence of f(T ).

Greet tests the theories by plotting G versus different expressions derived from the models

to see whether or not any of them predict the temperature dependence of the the crystal

growth velocity. The model employing a two-dimensional surface nucleation was least

supported and was proposed to describe crystallization from the vapor more accurately

compared to crystallization within a melt [74, 75, 76]. Within the range 60 K of under-

cooling investigated, no kinetic transition was observed as predicted by the theory of a

diffuse interface [77, 78]).

Finally, the failure of a reaction rate model [79, 74, 80] to predict the growth velocities

indicated that Stokes-Einstein relationship between diffusion and viscosity 4 may be an

oversimplification, in that the relationship between the shear viscosity of the liquid and

the rate at which molecules attach to and detach from the interface may not be related

as simply as in other systems. Shear flow in glass-forming systems, for instance, may

involve the cooperative motion of entire clusters compared to the attachment of a single

molecule to the interface.

3Greet states that, regardless of whether growth occurs in a solution or the melt, growth along the shortest
lattice vector, b = 6.05 Å, dominates and the crystal planes forming the interface are of the type {110}.

4Describes the diffusivity, D, of a spherical particle with radius r through a liquid with a low Reynolds
number. D = kbT

6πηr



35

Greet & Turnbull - 1967 [81]

Greet & Turnbull [81] measured the heat capacity of liquid and crystalline OTP from

about 220 through 340 K (-53 through 67◦C) to calculate the configurational entropy,

Sc(T ) = SLiq(T ) − SCry(T ), in order to test a consequence of the Adam & Gibbs

statistical-mechanical model of the liquid state: that the temperature dependence of

viscosity, η of a glass-forming liquid should be:

η = A exp

(
B

TSc

)
(4.3)

where A and B are constants. Comparison with previously measured data revealed that

the viscosity of liquid OTP changes much faster with temperature than predicted by the

Adam-Gibbs model.

McCall et al . - 1969 [15]

McCall et. al. studied molecular motions in OTP using pulsed nuclear magnetic relax-

ation to investigate self-diffusion coefficients and relaxation times. They note that OTP

behaves as expected for a typical glass forming substance, and the NMR data resembles

that of a high polymer, in that the relaxation times do not reach the lattice values until

well below the glass transition temperature, which they interpret as local motions be-

coming dominant and long-range motions ceasing as the temperature is lowered. Upon

heating of crystalline OTP, molecules are noted to be nearly immobile through the melt-

ing point. Fig. 4.2 cite shows the self-diffusion coefficients for OTP with the characteristic

increase of activation energy at high undercoolings.

Chang & Bestul - 1972 [16]

Using adiabatic calorimetry, Chang & Bestul measured the heat capacities from 2-329 K

(-271 through 56◦C = Tm), 2-240 K (-271 through -33◦C = Tg), and from 240 - 360 K
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(-33 through 87◦C) for crystalline, glassy, and liquid OTP, respectively. The noted that

above 170 K (-103◦C), the temperature dependence of the heat capacity for crystalline

OTP was very close to linear.

Magill & Li - 1973 [9]

Magill & Li measured the crystal growth velocity of OTP to an undercooling of 75 K

(-198◦C) and reported a maximum in the temperature dependence of growth velocity of

36 µm/s at 312 K (39 C). They also noted that the growth rate is not described well by

the Fisher-Turnbull model for crystallization [92].

Faceted crystals were observed at all temperatures and no change in crystal

structure was observed, except for the entrapment of bubbles that tended to

form at the tips of growing crystals, which accelerated their growth relative

to the remaining interface.

Scherer et al. - 1974 [10]

Scherer et. al. measured the growth velocity of OTP for undercoolings between 2.5 and

75◦C for material in the as-received condition and material that received 153 passes of zone

refinement at 0.25 cm/hr (.69 µm/s). Although the zone-refining temperature gradient

was not reported, the authors used a microscope equipped with a temperature gradient

stage to select a velocity for zone refinement, noting that “cellular breakdown” occurred

for rates velocities greater than 0.25 cm/hr. For the growth velocity measurements, they

monitored the advance of the smooth, faceted, interface as it grew into the liquid contained

between microscope slides. For undercoolings greater than 40◦C, they noted a “dendritic-

type” growth protruding ahead of the smooth interface and recorded these velocities as

well, noting that they were much faster than the propagation of the smooth interface.

These measurements are shown in Fig. 4.4, which also indicates that the growth rates

of the extensively zone refined OTP were not significantly different than those for the



37

as-received state. Bubbles were noted to appear at the growing interface, even in purified

samples despite extensive zone-refinement and subsequent degassing under vacuum.

Between Tm = 55.5◦C and 25◦C, growing crystals were well separated and non-competitive,

in that lagging crystals were not overgrown or otherwise pinched off, they merely main-

tained their relative positions. Between 20◦C and 15◦C, crystallization proceeded as

a macroscopically smooth interface with adjacent crystals in closer proximity but still

growing together with the same velocity. Decreasing the temperature from 25◦C to 15◦C

caused initially lagging crystals to accelerate to the leading crystals, forming a smooth

interface. When subsequently heated back to 25◦C, the crystals separated and return to

the isolated crystal morphology characteristic of that temperature range. The facet size

and spacing exhibited no systematic variation with temperature, a wide range of sizes

and spacings were noted for all temperatures that they were observed.

Below 15◦C, small “pointed crystals” were observed to extend into the liquid ahead of

the macroscopically smooth interface. As shown in Fig 4.4, these anomalous crystals

grew much faster than the interface from which they originated. DSC of OTP specimens

crystallized via the faceted and anomalous mechansims revealed that both morphologies

exhibit the same heats of fusion, indicating that they are likely the same crystalline phase.

Aikawa et al. - 1978 [17]

Aikawa et. al. used X-ray diffraction of a single crystal of OTP to determine the lattice

parameters and molecular conformation, reporting an orthorhombic unit cell ( a = 18.583

Å, b = 6.024 Å, and c = 11.728 Å) and twist angles of the side phenyl rings of 62.1◦ and

42.5◦ that help alleviate steric interactions between one another. Also, the carbons of the

side phenyl groups that are bonded to the central phenyl ring are significantly displaced

from the plane of the central phenyl ring in opposite directions. The noted that repulsion

between the side phenyl groups stretches bonds C(1)-C(6) and C(3)-C(4), while the C-C

bonds between the side and central phenyl groups are shorter than the corresponding

bonds in biphenyl (see Fig. 4.5). Aikawa et. al. also mention that the B and C side
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phenyl groups should rotate easily in the liquid state, with the C ring allowed to take

rotains between 90±47.5◦, while the rotation of B is more limited and depends on the

conformation of C, and vice versa. As liquid OTP is supercooled further, a random

distribution of rotation angles within the range of allowed liquid values is expected to

persist into the glassy state.

Brown & Levy - 1979 - [18]

Using neutron diffraction, Brown & Levy determined the lattice vectors and molecular

conformation using a single crystal of OTP. They reported an orthorhombic unit cell (a

= 18.583 Å, b = 6.024 Å, and c = 11.728 Å), and twist angles of 42.1◦ and 62.1◦ in the

same sense relative to the coplanar configuration of all three phenyl groups within the

molecule. Their results were consistent with the predictions that Clews & Lonsdale made

based on diamagnetic anisotropy measurements.

Bartsch et al. - 1993 [19]

Bartsch et. al. measured the temperature dependence of the static structure factor

S(Q) of OTP and noted that, unlike simple liquids, the main peak consisted of two

maxima. Cooling the liquid to Tg resulted in a significant increase of the peak height

of one of the maxima, at 1.9 Å−1, which they associated with changes in short-range

intermolecular structure up to 10-15 Å, stating that changes in intramolecular order were

temperature independent. The increase of this maxima was continuous with increasing

undercooling and therefore discarded as the cause of dynamical anomalies that were

reported to abruptly occur near a critical temperature of Tc = 290 K (17◦C). 5

5Decoupling of translational diffusion from shear viscosity, and thus an inability of the Stokes-Einstein rela-
tionship to satisfactorily describe attachment kinetics for T < TC , as noted in [8].
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Biswas - 1995 [82]

Using inelastic Raman scattering on acoustically levitated OTP droplets, Biswas reported

qualitative changes in Raman spectra associated with intermolecular structural transfor-

mations and also monitored the strongest Raman intensities over continuous temperature

range to determine the volume fraction transformation rates during crystallizaton. Upon

melting, well defined peaks associated with scattering from the crystalline lattice (and

the influence of thermal expansion and internal strain) merge into a broad band related

to the vibrational density of states.

Hikima et al. - 1995 [11]

Hikima et. al. studied the crystallization of OTP using adiabatic calorimetry and optical

microscopy and reported two different crystallization mechanisms that occurred over sep-

arate temperature ranges. For temperatures down to 255 K (-18◦C, ∆T = 75◦C ) they

observed crystallization proceeding in a faceted manner and measured the velocity of the

interface advancement as a function of temperature (see Fig. 4.8). Between 250 and 220

K (T = -23 and -53◦C, ∆T = 80 and 110◦C) a fine aggregate of crystals exhibiting a

smooth interface was observed. The temperature dependence of the crystal growth rate

exhibits a discontinuity between the two regimes, as the rate abruptly increases by sev-

eral orders of magnitude around 250 K (-23◦C). X-ray diffraction of samples crystallized

via both mechanisms were nearly identical, indicating that both mechanisms produce the

same crystalline phase. Hikima et. al. specifically note that the anomalously fast growth

ceases at 250 K (-12◦C) and occurs over a temperature range that is completely separate

from the “ordinary”, faceted, growth at lower undercoolings.6

To reconcile the enhanced growth rates at high undercoolings, associated with the anomolous,

compact, crystallization occuring below 250 K (-23◦C) Hikima et. al. propose that sub-

critical nuclei (embryos) in the liquid ahead of the advancing crystal are rapidly incorpo-

6Recent studies revealed that the anomalous growth persists to higher temperatures in the form of fast
growing fibers and whiskers, to about 1.15Tg (281 K, 8◦C). [73]
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rated into the crystal upon impingement due to the similar molecular packing, effectively

reducing the interfacial free energy barrier associated with advancing the crystalline front.

They refered to this mechanism as homogeneous-nucleation-based (HNB) crystal-

lization, and, using classical nucleation theory, and geometric arguments, calculated

the temperature dependence of crystal growth velocity. As shown in Fig 4.8 and com-

mented by the authors, the maximum calculated growth rate of 10−12µm/s is 10 orders

of magnitude smaller than the experimentally observed maximum of ∼ 10−2µm/s for

the corresponding growth regime. Several of these authors would later publish similar

studies on triphenylethylene and 3,3’-dimethoxy-4,4’-bis(2,2-diphenylvinyl)biphenyl and

report better fitting by modifying their HNB theory such that the β relaxation process

controls the nucleation rate [83, 84, 85, 85, 86]

Back et al. - 1996 [87]

Back et al. measured the melting and boiling points of OTP using DSC between 50 kPa

and 1.4 Mpa and reported an enthalpy of vaporization of 50.62 kJ/mol, and a boiling

point of about 345◦C near 1 atmosphere.

Hikima et al. - 1998 [85]

Hikima et al. reported a micrograph of OTP crystallized at various temperatures near

Tg (244 K, -29◦C), showing the compact form of the anomalous growth they associated

with a homogeneous-nucleation-based crystallization mechanism. Similar to their 1995

publication, they again report X-ray diffraction patterns indicating that the same phase

is produced regardless of the crystallization mechanism, i.e. low-undercooling faceted

crystallization or high-undercooling anomalous crystallization, however, the enthalpy of

fusion were found to be lower for OTP that was crystallized at high undercoolings via the

anomalous crystallization mechanism. They also revised their HNB theory in an attempt

reconcile the poor fitting of their original calculations [11] by associating the β relaxation
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process 7 as the governing process of embryo formation and also incorporating a “nucle-

ation enhancement effect”. Although these modifications result in much better agreement

with experimental measurements of crystal growth velocity (by orders of magnitude), the

overall trend is still not representative of the experimentally measured values.

Magill et al. - 2000 [88]

Magill et. al. revisit their 1973 analysis of the inability of the Stokes-Einstein equation to

model the shear viscosity of supercooled liquids. In this publication, they report that the

use of an Arrhenius equation and two Vogel-Fulcher- Tammann-Hesse (VFTH) 8 equations

are required to fit the temperature dependence of viscosity for two glass-forming liquids

(trinaphthylbenzene and o-terphenyl) over an extensive temperature range. They note

that the “crossover” from one VFTH parameterization to the other coincides with the

temperature at which the Stokes-Einstein relation becomes invalid.

Wu - 2006 [89]

To better understand the origin of reported discrepancies between predicted and measured

growth velocities of deeply undercooled organic liquids, Wu et. al. measured the crystal

growth rates of three indomethacin polymorphs. For a 50◦C temperature range, down to

Tg+19◦C, each polymorph exhibited the same temperature dependence of ur. Considering

that each polymorph is expected to exhibit its own site-factor temperature dependence,

the deviation of ur from a constant value at low undercoolings seems to have liquid

origin. For undercoolings below Tg + 19◦C, two of the three polymorphs tranistioned to

a fiberlike morphology.

7Here, the β process (or β relaxation process) is associated with the motion of molecules in between the
crystalline embryos.

8exp[−C/(T − T∞)], representing the temperature dependence of the self- diffusion coefficient in the liquid-
melt, which is often reported to be the governing mass transport process during crystal growth.
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Konishi & Tanaka - 2007 [12]

For a crystal growing within a glass, Tanaka [90] proposed that the volume contraction

associated with crystallization should induce a negative pressure on the glass adjacent

to the advancing interface, providing free volume to nearby molecules, locally increasing

their mobility, and thus enhancing the crystallization rate.

Later, Konishi & Tanaka [12] reported on enhanced crystallization for OTP and two dif-

ferent crystal forms of salol. Similar to previous studies by others, they measured the

position of the advancing crystal-glass interface over time using an optical microscope

with a temperature controlled stage. The samples were films prepared between to mi-

croscope slides. They observed a discontinuous increase of the crystal growth rate near

Tg, consistent with previous studies, however the increase of Form I salol was greater

than for Form II, which featured a smaller volume change on crytallization. The authors

suggested that the abrupt increase of crystal growth rate below Tg is associated with the

dynamic balance between the free volume created and the volume relaxation that occur

during growth. They argued that hydrodynamic flow is only possible for the liquid, thus

diffusion is the only mechanism by which the glass may relax any stresses that arise due

to the volume contractions associated with crystal growth.

Sun et al. - 2007 [73]

Sun et. al. proposed the term “GC”, standing for glass-crystal, to describe the anoma-

lously fast growth rates that abruptly appear at low temperatures, near Tg, and persist

deep into the glassy state. For certain polymorphs of the glass-former 5-methyl-2[(2-

nitrophenyl)amino]-3-thiophenecarbonitrile (called ROY for short), they reported a mor-

phological evolution similar to that for other systems that exhibited GC growth: growth

of large, individual, faceted crystals at low undercoolings, growth of tightly packed, space-

filling crystals, with a smooth interface at higher undercoolings, and a transition to a much

faster compact growth for undercoolings below Tg (259 K, -14◦C). They also noted that
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the enhanced growth rates associated with GC are also present in the liquid, up to 1.15Tg

(299 K, 26◦C), in the form of fast-growing fibers. As shown in Fig. 4.9, the linear growth

rates associated with the fast growing fibers are consistent with the trend for the growth

rates of the compact form below Tg. Although this is the first account in the literature

linking these two growth regimes, the fibrous growth morphology was briefly mentioned

by Greet & Turnbull [7] and Scherer et. al. [10]. Like previous reports, growth rate

measurements were made by observing the advancement of the crystal interface within

a film of liquid/glass between two microscope slides, using an optical microscope with a

temperature controlled stage.

Regarding the homogeneous nucleation based theory proposed by Oguni et. al. [11, 85]

Sun et. al. point out that an abrubt increase in the homogeneous nucleation rate over the

temperature ranges where GC growth is observed is unlikely, and that when GC growth

is paused and later resumed 9 it is only observed at select locations, which would require

that the homogenous nucleation exhibits spatial heterogeneity.

Sun et. al. also argue against the “tension induced mobility” explanation offered by

Tanaka [90, 12], pointing out that the GC growth rate is constant over time at a particular

temperature, and that a building tension would imply an acceleration of the growth rate.

They also point out the observation of GC growth in the form of fibers in the liquid,

which is capable of relaxing stresses quickly, in contrast to the claims by Tanaka et al.

[90, 12] that the anomalous growth only occurs in the rigid glassy state. They mention

that the β relaxation is common to both viscous liquids and glasses and merges with

the α relaxation (bulk structural relaxation) around 1.2Tg, which is approximately the

temperature at which the transition from compact crystallite (spherulitic) growth to

fibrous-GC growth is observed for both ROY and OTP.

9By temporarily raising the temperature of the sample.
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Ediger et al. - 2008 [21]

Ediger et. al. [21] reviewed isothermal crystal growth models that originated from Frenkel

[91] and Turnbull & Fischer [92], stating that such models are only empirically correct at

small undercoolings, and fail to describe crystal growth rates for materials that exhibit

substantial supercooling. Specifically, they mention that the assumption of proportional-

ity between different metrics of mass transfer, such as D, Dr, and η−1 (the self-diffusion

coefficient, rotational self-diffusion coefficient, and inverse viscosity, respectively) does not

tend to persist to large undercoolings. They go on to compare reduced crystal growth

rates , ukin, with viscosity for 15 liquids and establish that, for a given glass-forming

liquid ukin ∝ η−ζ where ζ < 1 and is highly correlated to the fragility index, m. In

their analysis, ukin is equal to u/(1 − exp[−∆G/RT ]) ≈ u/(1 − exp[−∆Sm/R]) where

u is the observed growth rate, ∆G is the free energy difference between the liquid and

crystal, and ∆Sm is the entropy of melting. Note that ukin is able to predict the growth

rates for high undercoolings, as demonstrated in Fig. 4.10. Fig. 4.11 illustrates that,

for several classes of glass-forming liquids, ukin ∝ η−ζ where ζ < 1. Comparison with

Fig. 4.12 reveals a correlation between ζ and m. Thus, crystal growth kinetics are shown

to systematically depend on a property of that is strictly related to liquid dynamics. This

finding is counter to the conventional perspective that crystal growth rates are controlled

by the crystal-liquid interface through a function f describing the fraction of sites on the

interface that are available for attachment. The failure of this perspective, employing

common growth models is well documented [93, 94]. Ediger et. al. also point out the

interesting fact that all three crystal forms of Indomethacin feature ζ = 0.76, even though

they exhibit substantially different interface structures. They argue that the slopes in

Fig. 4.11 being less than 1 (ζ < 1) implies spatially heterogeneous dynamics in the liquid,

and they speculate that this is manifested as a decoupling of transport properties, i.e.

local diffusivities, viscosities, etc. can vary substantially from location to location in the

liquid. Such heterogeneity is expected to be less pronounced for strong liquids, such as

SiO2 which, in fact, features nearly identical temperature dependencies of self-diffusivity,

viscosity, and kinetic growth rate.
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Based on their analysis, Ediger et. al. offer the following empirical equation for the

observed growth rate of glass- forming liquids:

u =
a

τo

(
η(T )

ηo

)−(1.1−0.005m)

exp

(−∆Sm
R

)[
1− exp

(−∆G(T )

RT

)]
(4.4)

where a is the lattice spacing, ηo = 104 Pa s, and τo is the structural relaxation time when

η = ηo. Ediger et. al. emphesize that metallic liquids and polymeric liquids were not

included in the analysis because (i) metallic systems generally solidify very rapidly when

the composition of the liquid and crystal are the same (making viscosity measurements

of the undercooled liquid difficult, and thus uncommon) and and they tend to exhibit

nonlinear growth rates versus time when the compositions differ, and (ii) the molecular

weight / polymer chain length influences the viscosity of polymeric materials more than

the influence of temperature.
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Figure 4.1 A summary of the glass-crystal growth studies for o-terphenyl under isothermal

conditions [7, 8, 9, 10, 11, 12, 13, 14]. For low undercoolings, down to about

10◦C, crystallization proceeds in a faceted manner [8]. The velocity of the smooth

faceted front reaches a maximum of 45.7 micron per second around (40◦C), and

then decreases with further undercooling, due to the decreased molecular mobility

(increasing viscosity) of the liquid. Around 10 ◦C, the glass-crystal growth man-

ifests as individual fiber and whisker crystals protruding from the slower growing

faceted front. As the undercooling is increased further, the glass-crystal growth is

said to be fully activated and a compact form of growth ensues, which is also much

faster than the advancement of the previously established faceted front. [13]
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MOLECULAR MOTION IN ORTHO-TERPHENYL 3841 

shows a minimum near 300 e which corresponds to a 
correlation frequency of about 4X 107 cps in the present 
experiments. Above the glass transition temperature, 
T2, TIp, and T1, all tend to approach the same curve 
as expected theoretically. These curves are continuous 
through the melting point. Above the melting point 
TIp and TI are approximately equal and vary in a 
similar way with temperature. T2 levels off in the 
liquid state at about 0.2 sec. The high resolution NMR 
spectrum of OT shows two lines (chemically shifted) 
with a width of about 5 cps. This width is probably 
unresolved J coupling. The residual width and the 
limiting T2 are in good agreement, i.e., T2"'-'1/811. Below 
the glass transition temperature T2 remains at a value 
consistent with the assumption of only slow molecular 
motion (II.«1/T2). Elementary NMR theory would 
suggest that T2 should vary inversely with specimen 
density. This accounts for the fact that the crystalline 
T2 is somewhat shorter than the glass T2• TI for the 
glass is considerably shorter than TI for the crystalline 
phase at low temperatures. It is suggested that para-
magnetic impurities are distributed more or less uni-
formly through the glass but concentrated at grain 
boundaries, and thus less effective in relaxation, in the 
crystalline phase. When IIc< 1/T2 and the 
local field, Slichter and Ailionl9 have shown that 

Taking HL=2 G this yields cps 
at -lOoe. The fact that neither TI nor Tip increase 
precipitously at or near the glass transition may indi-
cate the presence of molecular reorientation of a local 
nature below the glass transition temperature or may 
simply reflect the influence of paramagnetic impurities. 

The magnitudes of TI and TIp at their minima are 
easily shown to be2° 

(1/T1)min =3-y2(1-q) HL2211'II 
and 

for an isotropic reorientation. The local field, HL , is 
obtained from the second moment of the rigid lattice 
NMR absorption line, (.1v2)RL, by, 

3HL2= (41I'2/'Y2) 

TABLE I. Relaxation time magnitudes. 

H (G) (T1)ml .. (calc) (Tl)ml .. (obs) 
7200 0.06 sec 0.08 sec 

HI (G) (TIP)mln(calc) (T1P)ml .. (obs) 
2 O.04msec 0.09 msec 

10 0.2 msec O.4msec 
20 0.4 msec 0.9 msec 

to G. P. Jones, Phys. Rev. 148, 332 (1966); D. C. Douglass 
and G. P. Jones, J. Chern. Phys. 45, 956 (1966). 
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FIG. 2. Self-diffusion coefficients for o-terphenyl as a function 
of temperature. 

The factor (1-g) is usually of order one and gives 
the fraction of the local field which is made time de-
pendent by the molecular motion. Application of these 
equations to the OT data, taking (1-g) =1, gives the 
results exhibited in Table I for 110=30 MHz. We note 
that both the calculated (T1)min and (T1p)min are con-
sistently too large by a factor of 2. A good agreement 
can be obtained by setting (1-g) =0.5. This is not 
unreasonable, but we have not developed a molecular 
model to justify such an assignment. The dependence 
of (T1p)min on HI is correctly predicted. We regard the 
agreement of calculated and observed quantities to be 
good. 

The coefficient of self-diffusion is shown in Fig. 2 as 
a function of reciprocal temperature. Table II contains 
the numerical results for D. Extension of these meas-
urements to lower temperatures is difficult because of 
the rapid decrease of T2• This makes the use of large, 
pulsed field gradients of little value since T2 is usually 
the limiting quantity in measuring small diffusion 
coefficients.21 •22 The characteristic increase in activa-
tion energy at low temperatures is evident in Fig. 2. 
The activation energy varies from about 6-14 kcal/ 
mole in the range 180°-50°C. 

The coefficient of self-diffusion can be written as 

(1) 

21 D. W. McCall and D. C. Douglass, Z. Elektrochem. 67, 336 
(1963) . 

21 E. O. Stejskal, J. Chern. Phys. 43, 3597 (1965). 
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Figure 4.2 As reported in [15].
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HEAT CAPACITY OF o-TERPHENYL 50S 

crease its magnitude on prolonged soak annealing due 
to the onset of crystallization. The annealed glass 
reported for Series XVII-XXII is produced by soak 
annealing of the quenched glass at 225°K for 2 days 
and then at 2300 K for 1 additional day, and for Series 
XXXII at 2300 K for 3 days. 

ITI. RESULTS AND DISCUSSION 
A. Representation of Data 

The heat-capacity data for o-terphenyl are listed in 
Table I and are shown graphically in Fig. 1. The table 
is divided into sections for crystal, liquid, annealed 
glass, and quenched glasses. Each section is composed 
of several series of continuous determinations and is 
arranged in the order of increasing initial temperature 
of each series. These series are numbered chronologically 
so that the thermal history of the sample may be 
followed. More than one physical state may be involved 
in a series. The approximate temperature increment 
for each determination may be inferred from the tem-
perature differences between the adjacent determina-
tions. The temperature rise for each determination is 
generally about one degree or less below lOoK, 10% 
of the temperature up to 1000K, and 10° above 1000K. 

Curvature corrections have been applied to correct 
for the difference between the observed apparent heat 
capacity t:.H/t:.T and the true heat capacity dH/dT 
due to the finite temperature increment, t:.T, used in 
the determinations. These corrections are usually less 
than 0.1 % of the heat capacity. 

o 

400 
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T 

" il' -:> 

200 ct. u 

100 

100 
T:K 

200 300 

300 

,. 
20 
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__ -L ________ ______ -u0 
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T ("K) 
FIG. 1. Heat capacity of o-terphenyl: 0, crystal; ., annealed 

glass; 0, quenched glass and liquid. 

O. 

T o 0.2 
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r 

-0.2 

-0.4 

-0.6 
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FIG. 2. Deviation of individual heat-capacity points of 0-
terphenyl from smoothed values. 0, crystal; ., annealed glass' 
0, quenched glass and liquid. ' 

At 360oK, the vapor pressure of o-terphenyl is 
estimated to be less than 0.2 mm Hg from the data of 
Fritz et al,14 The energy required to increase the equilib-
rium vapor pressure in the vapor space in the sample 
container is less than 0.002% of the total energy input 
required to raise the temperature of the sample for a 
normal heat-capacity determination. Therefore, even 
at the upper end of the temperature range of measure-
ment, corrections due to vaporization have not been 
applied. 

Deviations of individual values from the smoothed 
curves generated by a least squares fitting computer 
program are shown in Fig. 2. The precision of the 
heat-capacity measurement is generally better than 
0.05%. At temperatures above 2500 K, the precision 
is about 0.1 % and at temperatures below 15°K, it 
gradually changes to about 2% at 2°K. Over most 
of the temperature range, the accuracy of the measure-
ment was shown to be comparable to the precision, 
as demonstrated by the results of the heat-capacity 
measurement on a calorimetry conference standard 
sample of sapphire.7 

Smoothed heat-capacity values at rounded tem-
peratures along with values of other derived thermo-
dynamic functions are listed in Table II. For all the 
phases, Ho refers to the zero-point enthalpy of the 
crystal. The entropy values for all phases are also 
referred to the entropy of the crystal at absolute zero, 
which is considered to be zero. The heat-capacity 
values are obtained by least squares polynomial 
fitting through the individual data points listed in 
Table 1. The thermodynamic functions of the crystal 
from 2°K to the melting point and that of the liquid 
above the melting point are obtained by integrating 
the appropriate polynomials from the absolute zero 
of temperature up to the temperatures listed in Table 
II. The thermodynamic functions for the supercooled 
liquid and for the glasses are then obtained by integra-
ting from the values of the liquid at its melting point. 

Plots of Cp/'P vs ]'2 are shown in Fig. 3. The curve 

Downloaded 13 May 2013 to 129.186.252.85. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissionsFigure 4.3 As reported in [16].
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speed for this material was found to be 0.25 cm/fir. A individual growth rate measurements at a particular
total of 153 zone passes were made. By this time, there temperature was no greater than that between the two
was no trace of the added dye impurity or other color- batches of as-received material. The data of fig. 3 also
ation visible in the molten zones. The initial end of the indicate that the growth rates of ultra-pure o-terphenyl
specimen was clear and highly transparent. The central
section oi the specimen was removed from the tube - I I I I I I I I I
under a dry nitrogen atmosphere (in the bell jar of a - -

vacuum evaporator equipped with a glove attachment)
and placed in cleaned and dried jars. The specimen - ~ -

material was subsequently removed from the jars and
stored in a desiccator under vacuum. 4 - A -

Specimen slides for the crystallization studies of both ~, ~‘~‘~i A

as-received and ultra purity materials were prepared by ~ -5 -

placing a cleaned and dried Pyrex slide covered with
powdered o-terphenyl on a silver block in a vacuum 6 -

bell jar. Following evacuation, the block was heated .

until a large portion of the material had melted; after -

reducing power to the heater, the remaining crystals on -8

the portion of the slide outside the block served to 55 45 35 25 5 5 -5 -15 —25
nucleate recrystallization of the liquid. In some cases, Temperature (°C)
specimens were melted and recrystallized several times Fig. 3. Growth rate versus temperature relation for o-tcr-phenyl ( ) as received; (ri ultra purity; (A) protuberances ahead
under vacuum to eliminate dissolved gas. Some of the of flat interface; ( ) daLi of ref. 8.
degassed material was subsequently placed between
two fire-polished cover glasses, and the melting— are not significantly different from those of the as-
recrystallization procedure repeated once more to received material. The reproducibility of the data for
provide the final sample slide, temperatures below about 5 °Cwas not so good as that

The sample slide was then placed in the hot stage— at higher temperatures because of the onset of the
cold stage and growth rates were measured over a dendritic-type growth at the lower temperatures and
range of undercoolirig from 2.5 to 75.0 °C.The rate of because time restrictions effectively precluded repe-
advance of the crystal—liquid interface was measured titions of the lengthy measurements required.
using a filar eyepiece and stopwatch. The interface An important qualification concerning the signifi-
measured was that of a smooth facet perpendicular to cance of the results for the ultra-pure material must be
the growth direction. At undercoolings greater than included here. In spite of the very careful procedures
40 ~C, a portion of the interface grew ahead of the employed with the pure material, which included
rest and a dendritic-type of growth was observed. The repeated degassing of the samples, it was observed that
dendrites grew at a much faster rate than the smooth after a particular specimen had been used for several
interface, and both rates were measured. measurements, a number of small bubbles began to

appear at the interface. At temperatures near the
3. Results maximum in the growth rate versus undercooling

The results of crystal growth rate measurements on curve, these bubbles would appear only after the
both ultrapure and as-received o-terphenyl are shown specimen had been cycled through the melting point
in fig. 3. Each point in the figure for temperatures several times; and in these cases it may represent gas
 —5.0 °Crepresents the average of several measure- picked up by the liquid from the atmosphere in the
ments. The points at lower temperatures represent the stage. Some bubbles were observed, however, in the
results of a single run. Comparison of the data on the first run at temperatures below about 0 CC, under con-
two batches of as-received material indicates that the ditions of low growth rate and presumably low solu-
results are highly reproducible. The variation in the bility. Thus there is evidence for some small amounts of

Figure 4.4 As reported in [10].
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measurements (Clews & Lonsdale, 1937), its direct 
determination seems necessary in order to elucidate the 
structure in the glassy state and to correlate the physical 
properties with the structure. 

Prismatic crystals were obtained from a methanol 
solution. Intensity data up to 2 0  = 50 ° were collected 
with a crystal of  dimensions 0-4 x 0 .4  x 0 .3  mm, on a 
Rigaku four-circle diffractometer with graphite-mono- 
chromated Mo Ka radiation; an o>-20 scan at 4 ° (28) 
min -~ was employed. Lorentz and polarization correc- 
tions were made as usual. A total of  1365 reflections 
were obtained, of  which 226 with IFol < 3.0a(IFol ) 
were considered as unobserved. The structure was 
solved by direct methods with MULTAN (Germain, 
Main & Woolfson, 1971) and refined by the block- 
diagonal least-squares method. The function mini- 
mized was ~ w(IFol -- t F c I) 2, where w is the weight as 
follows: w = 0 .2  for IFol < 2.41 and IFol > 24-08,  and 
w = (6.9753 - 0.902441Fol + 0.03416Fo~) -~ for 2.41 
< IFol < 24.08.  All the hydrogen atoms were located 
on a difference map and their positional and isotropic 
thermal parameters were also refined. At the final stage 
of  the refinement, ten reflections were excluded because 
the profiles of  their peaks showed some splitting, 

Table 1. Final positional parameters (carbon atoms 
×104; hydrogen atoms ×I03), with their standard 

deviations in parentheses 

x y z 
C(1) 2619 (2) 3363 (7) 3579 (3) 
C(2) 1932 (2) 3695 (9) 3168 (3) 
C(3) 1449 (2) 5143 (10) 3632 (4) 
C(4) 1695 (2) 6518 (8) 4538 (4) 
C(5) 2365 (2) 6214 (7) 4963 (3) 
C(6) 2848 (2) 4693 (6) 4513 (3) 
C(7) 3562 (2) 4453 (7) 5064 (3) 
C(8) 3768 (3) 2476 (8) 5579 (3) 
C(9) 4440 (3) 2339 (10) 6098 (4) 
C(10) 4897 (3) 4090 (12) 6105 (4) 
C(l I) 4694 (3) 6038 (9) 5590 (4) 
C(12) 4033 (2) 6219 (8) 5079 (4) 
C(13) 3104 (2) 1784 (7) 2983 (3) 
C(14) 3810 (2) 2336 (8) 2708 (3) 
C(15) 4256 (3) 875 (8) 2107 (4) 
C(16) 4001 (3) -1119 (8) 1732 (4) 
C(17) 3280 (3) -1706 (8) 1984 (4) 
C(18) 2851 (2) -266 (8) 2601 (3) 
n ( l )  170 (2) 262 (7) 246 (3) 
n(2) 95 (2) 568 (5) 319 (3) 
H(3) 134 (2) 776 (6) 483 (3) 
H(4) 253 (2) 751 (6) 560 (3) 
n(5) 336 (2) 97 (7) 552 (3) 
n(6) 467 (2) 98 (9) 643 (4) 
H(7) 536 (2) 400 (7) 644 (3) 
n(8) 504 (3) 768 (10) 549 (4) 
n(9) 394 (2) 766 (7) 464 (3) 
n(10) 408 (2) 393 (7) 302 (4) 
H(I 1) 488 (2) 151 (8) 195 (4) 
H(I2) 440 (2) -256 (7) 121 (4) 
H(13) 296 (2) -326 (7) 169 (3) 
H(14) 228 (2) --62 (7) 278 (3) 

probably due to a slight crack in the crystal. The final R 
value was 0 .080  for 1139 reflections. Atomic scattering 
factors were taken from International Tables for X-ray 
Crystallography (1974). The positional parameters are 
given in Table 1.* 

Discussion. Bond lengths and angles are shown in Fig. 
1, with the atom-numbering and ring-notation system 
used. The repulsion between the B and C rings makes 

* Lists of structure factors and anisotropic thermal parameters 
have been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 33592 (7 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

H(13) 
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C(16) ~ ~ H(14) 

c c(,~)~ i ') co~) ,~ 
H(ll) Z~°o'~f2, -.~<C(13)z % H(2) C(14),~ ~ C ~)IC(2)'-'~' 

c(~) c(~) 
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-/ ~.~ C(6)_ C(4) Zo 

B C (12) ~ °--LQ-°-°-°-°-°-~ H (9) 

.,,;~ ,~c(m" 
H ( 7 ) "  ~/ 
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~ / ~  ~ 1 " 
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Fig. 1. (a) Bond lengths (A) and (b) bond angles (o). 

Figure 4.5 As reported in [17].



51

786 o-TERPHENYL 

atoms were calculated from the C atom coordinates, 
and full-matrix least-squares refinement was started at 
once. In the final cycles, an isotropic extinction param- 
eter (Coppens & Hamilton, 1970) was adjusted along 
with the scale factor, the coordinates, and the aniso- 
tropic thermal parameters (290 parameters in all). The 
496 reflections having IFcI 2 less than cr(IFo L2) were 
weighted zero; otherwise the weights used for the IFol 2 
observational data were the reciprocals of the 
variances, which were computed as a2(',Fol 2) = 
[tTc2([Fo b2) + (0.031Fol2)2], where O"2(I/7o 12) is the purely 
statistical variance. The nuclear scattering lengths used 
are from a compilation by Shull (1972): b c = 0.6648, 
b u = -0 .374 × 10 ~ mm. The final values of the usual 
measures of goodness of fit for the reflections not 
weighted zero are: R(F)  = 0.059, R ( F  2) = 0.057, 
Rw(F 2) = 0.075, tr~ = 1.005 (e.s.d. of observation of 
unit weight). The value of the isotropic extinction 
parameter g, as defined by Coppens & Hamilton 
(1970), is 0.36 (2) x 104 rad-k Table 1 lists the atom 
coordinates and their estimated standard errors.* 

In a final difference Fourier synthesis including only 
the reflections weighted non-zero in the refinement the 
densities ranged from -0 .053 to +0.052 in units of 
10 -11 mm A -a, to be compared with peak densities in 
the corresponding final Fourier map of 1-40 to 2.53 for 
C atoms and -0 .48  to -0 .84  for H atoms. 

packing drawing of Fig. 1) are consistent with the 
predictions made by Clews & Lonsdale (1937) from a 
study of the diamagnetic anisotropy of the crystal, to 
the degree that the predictions were precise. The 
complete description of the structure from the present 
work will be useful in interpreting on a molecular basis 
the results of remeasurements of diamagnetic suscep- 
tibility now in progress (Lang, 1978). 

Bond lengths, valence angles, and other details of the 
molecular structure are shown in Fig. 2. The angles (0 in 
the figure are twists about the inter-ring bonds from the 
theoretical conformation (not physically possible) in 
which all three rings are coplanar. These angles are 
pure twists, each having been calculated as the angle 
less than 90 ° between the projections on the plane 
perpendicular to an inter-ring bond of the normals to 
the least-squares best planes through the central ring of 
six C atoms and through the appropriate terminal ring. 
The negative signs make the angles conform to the sign 
convention for torsion angles (Klyne & Prelog, 1960). 
The deviation of each C and H atom from the least- 
squares best plane through its own ring of six C atoms 
is shown. For each of the four axial C and two axial H 

Table 1. Fractional atomic coordinates for  o-terphenyl 
( x l 0  s) 

Discussion. The molecular conformationt and the 
orientation of the molecule in the unit cell (see the 

* Lists of structure factors and anisotropic thermal parameters 
have been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 34017 (13 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

5- The molecule depicted in Figs. 1 and 2 has the chirality implied 
by the coordinates of Table 1. The analysis of course does not 
distinguish between this chirality and the opposite one of the 
inverted structure. 

A 

B 
Fig. 1. Stereoscopic drawing showing the packing of molecules in 

the o-terphenyl crystal. Atoms are represented by their ellipsoids 
of 50% probability (Johnson, 1976). The shortest intermolecular 
distances (in no way unusual) are: C . . .C ,  3.60; C . . . H ,  2.82; 
H . . . H ,  2.42/k. 

C(l) 
c(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(l') 
c(2') 
c(3') 
C(4') 
c(5') 
C(6') 
C(l")  
c(2") 
C(3") 
C(4") 
c(5") 
c(6") 
H(2) 
H(3) 
H(4) 
H(5) 
H(6) 
H(Y) 
H(4') 
H(5') 

B H(6') 
H(2") 
H(Y') 
H(4") 
H(5") 
H(6") 

Estimated standard errors are given in parentheses. 

X y z 
31081 (15) 67820 (51) 29788 (21) 
38203 (17) 73379 (64) 27147 (25) 
42515 (21) 58664 (74) 21046 (31) 
39846 (29) 38499 (75) 17346 (35) 
32770 (30) 33043 (72) 19845 (36) 
28500 (23) 47356 (66) 26038 (29) 
26282 (15) 83903 (58) 35778 (22) 
28475 (14) 96847 (53) 45093 (22) 
23711 (17) 112479 (65) 49743 (29) 
16818 (18) 115164 (78) 45436 (31) 
14560 (17) 102040 (84) 36402 (32) 
19260 (15) 86778 (74) 31676 (27) 
35622 (15) 94537 (56) 50560 (25) 
40329 (19) 112382 (70) 50792 (36) 
47019 (21) 110422 (92) 55979 (43) 
49087 (23) 90850 (115) 61008 (40) 
44339 (25) 72927 (103) 60989 (37) 
37654 (20) 74857 (74) 55712 (29) 
40380 (38) 89221 (141) 29738 (75) 
48015 (45) 63294 (197) 19117 (82) 
43400 (64) 27165 (193) 12343 (87) 
30671 (76) 17199 (167) 16973 (93) 
22942 (48) 42362 (153) 28183 (80) 
25482 (41) 122439 (140) 56864 (62) 
13311 (44) 127293 (203) 49235 (83) 
9177 (37) 103966 (206) 32705 (88) 

17489 (37) 76886 (182) 24271 (68) 
38799 (46) 127805 (157) 46638 (90) 
50662 (48) 124572 (238) 55903 (105) 
54327 (47) 89058 (240) 64977 (99) 
45846 (64) 57317 (214) 65036 (98) 
33933 (51) 60963 (152) 55534 (81) 

Figure 4.6 As reported in [18].
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representing the scattering of the isolated atoms, the 
scattering derived from interferences between atoms 
on the same and on different molecules, respectively. 
The proportionality sign between (da/dQ),,, and 
S(Q) in eq. ( 1) takes into account that we are deal- 
ing with a molecular system and take (da/dG),,, as 
the quantity which corresponds to S(Q) in the atomic 
systems which are treated by theory. Thus it is under- 
stood in the following that we always mean (da/ 
da)coh when referring to the static structure factor 
S(Q). 

3. Results and discussion 

Fig. 1 shows the fully corrected data for T= 3 14, 
255 and 200 K. In contrast to atomic systems the main 

a) 
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Fig. 1. Fully corrected static structure factor (du/dG),.,, u S( Q) 
of deuterated ortho-terphenyl at 314 K (p), 255 K (-.-.-) 
and 200 K (---; for clanty only depicted in (b) ) as measured 
at the instrument D20 at the ILL, Grenoble. Note the increase at 
Q= 1.9 A-’ with decreasing temperature. 

peak of the static structure factor is split into two 
maxima at about 1.4 and 1.9 A-‘. Besides a reduc- 
tion of scattering intensity in the Q-O region due to 
the decrease of the isothermal compressibility xr with 
decreasing temperature (xr- S( Q=O) ) and a slight 
shift of the peak positions to higher Q values due to 
the increase of the density, the main change (see fig. 
lb for details) consists in an increase of the peak 
height at 1.9 A- ‘, when going from 3 14 to 200 K, 
while the peak at 1.4 A-’ remains nearly unaffected 
except for a slight reduction of peak height which is 
most likely being connected to the decrease in xr. 

As this unusual temperature effect at 1.9 A-’ has 
not yet been reported in glass-forming molecular liq- 
uids two questions have to be addressed: (i) what is 
the physical origin of these changes and (ii) are they 
related to the observed dynamic anomalies [ 12-141, 
i.e. do they appear at a specific temperature (e.g. T,) 
or do they evolve continuously? 

Since we are dealing with a molecular liquid with 
internal degrees of freedom, i.e. the orientation of the 
lateral phenyl rings with respect to the central one (cf. 
insert in fig. la), one has to consider in addition to 
changes in the intermolecular structure, i.e. in 
(da/dL?):b”‘, also the possibility that the observed 
temperature effect is due to a variation of the intra- 
molecular structure. In order to assess the effects in 
S(Q) caused by a change of the internal structure we 
calculated the intramolecular contribution to S(Q), 
i.e. (do/dL?) $r in eq. ( 1)) according to [ 241, 

/A_\‘n’ra mm 

X ew(-<Ar&)Q2/2), (2) 

where b,, b, and rap denote the scattering lengths and 
the distance of atoms (Y and p, respectively, j. (Qr) = 
sin (Qr) /Qr is the spherical Bessel function of zeroth 
order, and the summations run over the m atoms of 
the molecule. The exponential term in eq. (2) repre- 
sents the Debye-Waller factor which describes the 
vibrational broadening of the scattering pattern. Two 
cases have been considered: (i) the intramolecular 
scattering intensities are derived by assuming a tem- 
perature dependent distribution of internal geome- 
tries corresponding to different orientations of the 
lateral phenyl rings as well as (ii) the existence of a 

Figure 4.7 As reported in [19].
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smooth through the microscope with a resolving power
of 1 pm order, but the crystalline sample appeared to be
the aggregate of fine crystallites while that formed above
255 K appeared to be the gathering of relatively large
crystals with the respective particular orientations. The
observed manner of crystallization explains clearly the
enhancement of the heat-evolution effect by the annealing
treatment at 248 K in the calorimetry, since the enlarge-
ment of the crystal front area within the cell increases the
places where the crystallization potentially takes place.
Since the crystallization process below 250 K was ob-

served as the advance of the crystal front into the liquid
phase, the growth rate of the crystalline phase was evalu-
ated from the advancement length of the front in a
specified period. The rates obtained in the temperature
range between 220 and 260 K are plotted in Fig. 8 togeth-
er with those at higher temperatures reported in the
literature. ' The growth rate increased continuously with
increasing temperature from 220 to 248 K, showing its
peak of about 0.018 pms ' at around 248 K, but the
growth ceased suddenly at 250 K as it ceased in the
calorimetry. Further increase in the temperature
brought the ordinary crystal growth to occur, and the
growth rates obtained above 255 K were in good agree-
ment with previously reported values. '
Figure 9 shows the difference between the progress of

crystallization after a temperature jump from 247 to 263
K and the reverse from 263 to 247 K. In the former case,
the crystal front advanced immediately after the jump,
keeping the front line smooth and at the rate expected at
263 K. In the latter case, on the other hand, no continu-
ous advance was observed of the crystal front which was
formed at 263 K. The crystallization instead began with
forming nuclei heterogeneously at some spots on the
liquid-crystal interface and proceeded with forming a cir-
cular crystal front about each nucleus at the advance rate
expected at 247 K. These observations clearly indicate
that the crystal-growth processes are different between
above 255 and below 250 K. The observation that the
growth rate above 255 K is rather independent of the
crystal surface, is consistent with the interpretation that
the crystallization proceeds in the molecule-by-molecule

jb) ',.
I

500pm

FIG. 9. Photomicrograph of crystalline o-terphenyl growing
into the supercooled liquid: (a) crystalline layer formed at 247
K; (b) crystalline layer formed at 263 K after a temperature
jump from 247 K; (c) fan-shaped crystal formed at 247 K after a
temperature jump from 263 K.

manner. The growth process below 250 K is deduced to
be considerably affected by the microscopic structure of
the crystal surface. This is also consistent with the inter-
pretation that the crystallization below 250 K is brought
through union of the structured cluster of crystal embryo
or nucleus on the crystal surface.
Figure 10 illustrates the temperature regions in which

the glass transition, the potentially homogeneous-
nucleation-based crystallization, and the ordinary crystal-
lization phenomena were found by calorimetry (a) and by
optical-microscopic observation (b). The region of glass

(a) calorimetry
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FIG. 8. Crystal-growth rate vs temperature relation for o-
terphenyl: 0 data obtained in this work; ~ data from Ref. 13.

FIG. 10. Diagram showing the temperature regions of the
glass transition (I), the potentially homogeneous-nucleation-
based crystallization (II), and the ordinary crystallization (III):
(a} found by the calorimetry; (b) found by the microscopic ob-
servation.

Figure 4.8 As reported in [11].
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Figure 4.9 As reported in [20]: “Growth kinetics of ROY polymorphs in offset(a) and overlay

(b) views. For clarity, the overlay compares only one polymorph (YT04) that shows

GC growth and another (ON) that does not. “�” are growth rates of fast-growing

fibers. Data points below log(u) = -10 are upper bounds. The growth of R05

could not be measured above 340 K because of polymorphic conversion and the

fast growth of YN.”
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viscosities up to at least 105 Pa s. !4" Crystal growth rates,
viscosities, and entropies of fusion are reported in refereed
journals. In one case, we utilized unpublished data6 that cor-
roborated and extended other reported results. !5" Fragilities
are either reported in a refereed journal or the reported vis-
cosity data extend to Tg to allow calculation of this quantity.

We found data on seven organic and eight inorganic liq-
uids for which these conditions are met. Figure 2 shows ukin
for these 15 liquids, plotted as a function of the liquid vis-
cosity !. In a log-log format, each of the liquids is described
well by a straight line in the intermediate and high viscosity
regions, indicating a power law dependence of ukin upon the
liquid viscosity:

ukin " !−#. !2"

Values of the exponent # are provided in Tables I and II.
The use of Eq. !1" to correct the observed growth rate for

the thermodynamic driving force is common.5 In some cases,
other correction terms have been shown to be valid near Tm
but for the data shown, any errors associated with our ap-
proximation are small. For example, Magill and Plazek3 have
included in their description of the crystal growth kinetics of
tris!naphthylbenzene" a temperature dependent term associ-
ated with surface nucleation. Use of their correction term, as
opposed to Eq. !1", would change the slope for this com-
pound in Fig. 2 by a small amount, from 0.74 to 0.76.

Crystal growth rates along different crystallographic di-
rections can be different but this does not introduce any sig-
nificant ambiguity into our analysis. For all of the organic
liquids and for some of the inorganic liquids, a spherulitic
morphology is observed near Tg; in this case, the observable
growth is isotropic. For some inorganic liquids, the growth
rates used to construct Fig. 2 were obtained from observing
faceted crystals. In only one case was a quantitative growth
rate anisotropy reported and this was less than a factor of 2.6

Since only one growth rate was reported for each system, we
have not made any choices which bias the presentation in
Fig. 2.

We excluded a few data sets based on quality consider-
ations. For example, if the original publication indicated sub-
stantial uncertainty in the quantities described above, the
data were excluded. If the same data set was described in-
consistently by the authors, either within one publication or
within a group of publications, the data were excluded. Ad-
ditionally, if later work provided a correction to earlier work,
then the later work was utilized.

We have not included data on metallic and polymeric
systems in this paper. For metallic liquids, most of the crystal
growth rate data reported in the literature are for systems
where the crystal and the supercooled liquids have different
compositions. In this case, crystal growth is not linear in
time due to the concentration gradients that are created near
the growing crystal. Metallic systems for which the liquid
and crystal have the same composition typically crystallize
very rapidly and accurate viscosity measurements are rarely
available for comparison. For polymeric liquids, it is under-
stood that the viscosity is controlled by the motion of entire
chains and is not directly correlated with crystallization ki-

FIG. 1. Experimentally measured crystal growth rates for supercooled tris-
!naphthylbenzene" !Ref. 3". Near Tm, the growth rate is controlled by the
thermodynamic driving force for crystallization. As Tg is approached, mo-
bility in the liquid limits the rate at which the crystal can grow. Using Eq.
!1", growth rates for the low temperature regime can be corrected to yield
the kinetic part of the growth rate ukin.

FIG. 2. !Color online" The crystal growth rate, corrected for the thermody-
namic driving force, plotted against the supercooled liquid viscosity ! for
!a" organic and !b" inorganic liquids. In all cases, the data are well described
by a straight line in the log-log format, usually with a slope significantly less
than unity. References for growth rate data, viscosity, and thermodynamic
parameters are given in Tables I and II.

034709-2 Ediger, Harrowell, and Yu J. Chem. Phys. 128, 034709 !2008"

Downloaded 24 May 2013 to 129.186.252.85. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

Figure 4.10 As reported in [21]



56

viscosities up to at least 105 Pa s. !4" Crystal growth rates,
viscosities, and entropies of fusion are reported in refereed
journals. In one case, we utilized unpublished data6 that cor-
roborated and extended other reported results. !5" Fragilities
are either reported in a refereed journal or the reported vis-
cosity data extend to Tg to allow calculation of this quantity.

We found data on seven organic and eight inorganic liq-
uids for which these conditions are met. Figure 2 shows ukin
for these 15 liquids, plotted as a function of the liquid vis-
cosity !. In a log-log format, each of the liquids is described
well by a straight line in the intermediate and high viscosity
regions, indicating a power law dependence of ukin upon the
liquid viscosity:

ukin " !−#. !2"

Values of the exponent # are provided in Tables I and II.
The use of Eq. !1" to correct the observed growth rate for

the thermodynamic driving force is common.5 In some cases,
other correction terms have been shown to be valid near Tm
but for the data shown, any errors associated with our ap-
proximation are small. For example, Magill and Plazek3 have
included in their description of the crystal growth kinetics of
tris!naphthylbenzene" a temperature dependent term associ-
ated with surface nucleation. Use of their correction term, as
opposed to Eq. !1", would change the slope for this com-
pound in Fig. 2 by a small amount, from 0.74 to 0.76.

Crystal growth rates along different crystallographic di-
rections can be different but this does not introduce any sig-
nificant ambiguity into our analysis. For all of the organic
liquids and for some of the inorganic liquids, a spherulitic
morphology is observed near Tg; in this case, the observable
growth is isotropic. For some inorganic liquids, the growth
rates used to construct Fig. 2 were obtained from observing
faceted crystals. In only one case was a quantitative growth
rate anisotropy reported and this was less than a factor of 2.6

Since only one growth rate was reported for each system, we
have not made any choices which bias the presentation in
Fig. 2.

We excluded a few data sets based on quality consider-
ations. For example, if the original publication indicated sub-
stantial uncertainty in the quantities described above, the
data were excluded. If the same data set was described in-
consistently by the authors, either within one publication or
within a group of publications, the data were excluded. Ad-
ditionally, if later work provided a correction to earlier work,
then the later work was utilized.

We have not included data on metallic and polymeric
systems in this paper. For metallic liquids, most of the crystal
growth rate data reported in the literature are for systems
where the crystal and the supercooled liquids have different
compositions. In this case, crystal growth is not linear in
time due to the concentration gradients that are created near
the growing crystal. Metallic systems for which the liquid
and crystal have the same composition typically crystallize
very rapidly and accurate viscosity measurements are rarely
available for comparison. For polymeric liquids, it is under-
stood that the viscosity is controlled by the motion of entire
chains and is not directly correlated with crystallization ki-

FIG. 1. Experimentally measured crystal growth rates for supercooled tris-
!naphthylbenzene" !Ref. 3". Near Tm, the growth rate is controlled by the
thermodynamic driving force for crystallization. As Tg is approached, mo-
bility in the liquid limits the rate at which the crystal can grow. Using Eq.
!1", growth rates for the low temperature regime can be corrected to yield
the kinetic part of the growth rate ukin.

FIG. 2. !Color online" The crystal growth rate, corrected for the thermody-
namic driving force, plotted against the supercooled liquid viscosity ! for
!a" organic and !b" inorganic liquids. In all cases, the data are well described
by a straight line in the log-log format, usually with a slope significantly less
than unity. References for growth rate data, viscosity, and thermodynamic
parameters are given in Tables I and II.

034709-2 Ediger, Harrowell, and Yu J. Chem. Phys. 128, 034709 !2008"

Downloaded 24 May 2013 to 129.186.252.85. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

Figure 4.11 As reported in [21]
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transport of Li+ occurs in these systems, as in many other
systems containing lithium salts,10 and that this transport
strongly influences the rate of crystal growth.

C. On the relation between ukin and the entropy
change on crystallization

Having established the scaling relationship between ukin
and !, we now consider the absolute magnitude of crystal
growth rates. For the systems shown in Fig. 2, absolute
growth rates !and ukin values" at constant viscosity vary by
nearly five orders of magnitude. We find a significant corre-
lation between absolute growth rates and "Sm !the entropy
difference between the liquid and the crystal at Tm". To make
a fair comparison between different liquids, we multiply ukin
by #$ /a, where #$ is the structural relaxation time of the
liquid and a is the molecular diameter !taken as 0.5 nm in all
cases".11 The quantity ukin#$ /a approximately represents the
number of molecular layers added to a crystal in one struc-
tural relaxation time of the liquid.

We have calculated #$ as follows. The Maxwell model
relates the structural relaxation time #$ to the viscosity ! and
the high-frequency shear modulus G:

#$ = C!/G . !4"

In the Maxwell model, C=1. Here we take C=4 based on
empirical comparisons between Eq. !4" and measured #$ val-
ues in fragile supercooled liquids. The modulus G is un-

known for some of the liquids utilized in this paper. We use
representative values for the organic !G=2 GPa" and inor-
ganic liquids !G=10 GPa" in Eq. !4". For this calculation, we
assume that G is independent of temperature; the error asso-
ciated with this approximation is small compared to other
approximations in our calculation. As a result of these ap-
proximations, we estimate that the calculation of #$ using
Eq. !4" is accurate to within about 0.8 of a decade. This is
adequate for the broad comparisons shown in Fig. 4.

Figure 4 shows that ukin#$ /a is, to a good approximation,
equal to exp!−"Sm /R", with the organic liquids and the less
complex inorganic systems best described by this relation.12

Absolute crystal growth rates are predicted within one de-
cade for 80% of the liquids. The exceptions to this relation-
ship are anorthite, cordierite, and !to a lesser extent" diop-
side, which all exhibit faster growth than expected from "Sm.

This relationship between crystal growth rates and "Sm
was incorporated in an expression for the growth rate by
Burke et al.13 As far as we know, this expression has never
been derived nor tested against experimental data. The rela-
tionship indicated in Fig. 4 suggests that, after normalizing
for the different driving forces of crystallization, a given liq-
uid will more quickly crystallize into the less structured crys-
tal. A plausible explanation of this correlation is that the

TABLE III. Parameters characterizing crystal growth for Li-ion-containing systems.

System
Fragility

!m"
Tm

!K" "Sm /R %
log!ukin#$ /a"
!!=104 Pa s" References

Lithium diborate
!Li2O·2B2O3"

80 1183 12.2 0.35 ¯ 9

Lithium
metaphosphate
!Li2O·P2O5"

109 926 8.3
!est"a

0.28 −2.5 8 and 47

aEstimated in original publications by analogy to related materials.

FIG. 3. The exponent %, representing the dependence of crystal growth rates
on viscosity, plotted as a function of the supercooled liquid fragility. The
fragility m is calculated from the temperature dependence of the viscosity,
with references given in Tables I and II. The line is a guide to the eye. The
typical uncertainty in % is 0.05.

FIG. 4. !Color online" Crystal growth rates as a function of "Sm, evaluated
at !=104 Pa s !solid black squares, open black circles, solid blue triangles"
and !=102 Pa s !open red diamonds". Anorthite, cordierite, and diopside
!solid blue triangles" have been separated from less complex inorganic sys-
tems !solid black squares". Growth rates have been corrected for the ther-
modynamic driving force, as shown in Eq. !1", and normalized with the
structural relaxation time #$. All the liquids shown in Fig. 1 are included in
this plot, plus glycerol. #$ was calculated from the viscosity using the Max-
well model. The typical uncertainty in the ordinate, due to the estimation of
#$, is 0.8 of a decade.

034709-4 Ediger, Harrowell, and Yu J. Chem. Phys. 128, 034709 !2008"

Downloaded 24 May 2013 to 129.186.252.85. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

Figure 4.12 As reported in [21]
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CHAPTER 5. LOW-TEMPERATURE DIRECTIONAL

SOLIDIFICATION APPARATUS

5.1 Background

At present, only eleven materials are reported to exhibit the anomalous crystallization

behavior at high undercoolings (GC growth) that begins as fast growing individual whiskers

and fibers just above Tg and transitions to a compact growth with a smooth interface below

Tg. These organic glass-forming materials are summarized in Table 1.2. Although there is no

specific set of characteristics that allow prediction of whether a material will exhibit GC growth

or not, a few general trends exist amongst those that do, namely those featuring i) molecules

with one ore more phenyl rings and/or a propeller / 3-fold symmetry, ii) non-close-packed

crystal structures, iii) and a high entropy of fusion, which often manifests as faceted crystal

growth [95].

Greet & Turnbull provided the first report of GC growth in 1967 for OTP [7], noting thin

filaments and plates protruding from the previously established smooth interface for under-

coolings greater than 50◦C (T < 7◦C). Their study also included the first report of isothermal

crystal growth velocities for OTP. Since then, OTP has become the most studied material that

exhibits GC growth, partly due to its unusually high glass transition temperature (-30◦C).

Isothermal crystal growth velocities have been reported in several different studies, through

experiments that use an optical microscope with a temperature controlled stage to monitor the

time required for a seeded crystal to advance a known distance within a film of liquid OTP

contained between microscope slides. In all of these cases, the reported temperatures corre-

spond to that of the microscope stage. The compiled results from isothermal growth studies

are shown in Fig 4.1.
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Although the crystallization rates of OTP measured under such “isothermal” conditions are

consistent, the method is limited in that the temperature within the specimen - and more impor-

tantly at the solidifying interface - is unknown. Latent heat is liberated at the interface during

solidification, which warms the surrounding liquid. This heat must diffuse away such that the

surrounding liquid is colder than the advancing solid in order for solidification to proceed. Thus,

in the experiments described above the reported temperatures - those corresponding to the mi-

croscope stage - may not correspond with the temperature of the solidifying interface. For this

reason, a low-temperature directional solidification apparatus was constructed that is capable

of studying the crystallization rate by translating a specimen through a known thermal gradi-

ent with a known constant velocity and measuring the temperature at the interface after it has

established steady state growth. Solidification within a thermal gradient is also advantageous

because (i) heat, including latent heat, is directed away from the interface through the solid

versus towards the adjacent liquid where it could accumulate and further influence the crys-

tallization rate, (ii) the thermal gradient and specimen slide geometry tend to produce aligned

growth morphologies, (iii) the thermal gradient tends to suppress non-planar growth modes

which can facilitate interface temperature measurements and (iv) complex motion profiles may

allow access to transient states that would be difficult or impossible to achieve under other

conditions, where the growth velocity is not an adjustable parameter. The remainder of this

chapter describes the design and construction of a low-temperature directional solidification

apparatus for studying solidification of low-melting point materials.

5.2 General Description

Similar to previously reported Bridgeman-type designs [96], this apparatus allows for the

independent control of a temperature field and its uniaxial motion relative to a specimen slide

that is fixed in the laboratory frame. As shown in Figs. 5.2 and 5.3, a movable insulating

enclosure featuring heated and cooled metal blocks, or zones, surrounds the specimen slide

over a portion of its length between its ends, which are supported by posts. The supporting

posts and the bottom surfaces of the channel that passes through the enclosure and metal blocks

are the same height, so that the specimen slide is in good thermal contact with the hot and
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cold zones that dictate the thermal field. The enclosure assembly is attached to a linear servo

motor that enables relative motion - typically constant-velocity displacements - between the

thermal field and the stationary specimen. A microscope and camera assembly mounted to an

independent two-axis motorized stage is also attached to the linear servo, allowing adjustments

to the field of view that are independent of motion occurring on the primary servo axis. This

entire apparatus rests on a self-leveling table and is surrounded by a Lexan polycarbonate

shield to limit the influence of ambient air currents on the temperature profile.

5.3 LTDS Equipment Specifications and Capabilities

5.3.1 Linear Servo Motor

The motor that provides primary axis motion is a Parker 404LXR series linear servo. The

complete model number tags and corresponding specifications are listed in Table 5.1. The

accuracy of the encoder was independently checked for velocities of 1, 10, and 100 micron per

second by viewing motion across a calibrated scalebar using the microscope and digital camera

attached to the servo, in the configuration shown in Fig. 5.4. To calculate instantaneous

velocities, the 0.1 mm distance between divisions was divided by the time elapsed between the

arrival of division marks to the field of view. For each velocity, measurements from the left,

middle, and right side of the servo were collected. The average measured velocities were 0.98,

9.99, and 100.48 with standard deviations of 0.17, 0.18 and 6.50, respectively. In its present

service condition, this linear servo model can provide velocities down to at least 0.1 micron per

second. The bearings of the motor mechanically limit the maximum velocity to 3 meters per

second, although the encoder resolution further limits this to 0.3 meters per second. Ultimately,

the true maximum velocity will depend on service conditions such as the load which must be

translated and resistances to motion. This particular motor has been routinely operated at 100

mm/s, which far exceeds the needs of most directional solidification experiments.
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5.3.2 Optics & Digital Camera

The optics of the LTDS apparatus consists of a Navitar 12x series zoom lens that provides

a right-angle light path between an infinity-corrected long working distance objective lens and

12.8 megapixel Olympus DP-72 color CCD camera. Coupled with a solid-state hard drive

equipped desktop computer, full frame color images can be steadily acquired up to about 13

frames per second.

5.3.3 Thermal Field

The thermal field is produced by flowing hot and cold fluids in closed loops between tem-

perature controlled recirculating baths and the hot and cold zones, respectively. The heat

transfer fluids for the hot and cold zones are an ethylene glycol & water mixture (.30 vol %

ethylene glycol) and MultiTherm 501, respectively. The lower and upper limits for these cold

zone and hot zone fluids are -30◦C and 260◦C, respectively. The power-limited temperatures of

the identical recirculating baths are about -10◦C, and 185◦C. The FEP (Fluorinated Ethylene

Propylene) tubing that serves as the fluid conduit features lower and upper service temperature

limits of -75◦ C and 205◦C. Thermal gradients up to about 5◦C are attainable, although the

several factors will determine the specific temperature profile, including the magnitude of the

fluid temperatures reaching the hot and cold zones, the spacing between the zones, the thermal

contact between the specimen slide and the hot and cold zones, the thermal conductivity of

the slide / specimen, etc.
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Table 5.1 Specifications for the linear servo motor.

Series Travel Model Mounting Grade Drive Type Home Sensor

404 T05 LXR M P D13 H3

200 mm Metric Precision 8 Pole Motor No Current Seeking 
(Normally Open)

Limit Sensor Cable 
Management

Z Channel 
Location Encoder Option Environmental Digital Drive Pinning Option

L2 CM05 Z3 E4 R1 A6 P1

Nc Current Seeking  
(Normally Closed)

3.0 m OEM 
Cable Set 

GEM 
Center 

Position
0.1 μm

Resolution Strip Steel No Multi-Axis 
Pinning
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Figure 5.1 A schematic of steady state directional solidification. Initially, a thermal field is

established and the portion of the specimen at temperatures greater than the melt-

ing temperature (or liquidus temperature for alloys) melts. Once an equilibrated

solid-liquid interface has been established, a constant relative velocity between the

thermal field and specimen slide is imposed. The interface will recede towards

colder temperatures. If the interface appears stationary with respect to the ther-

mal field, it is growing at the same rate as the imposed velocity, at an undercooling

given by Tm − Ti.
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Figure 5.2 Computer drawing of the low-temperature directional solidification apparatus. 1

- linear servo (primary axis), 2 - thermal field enclosure, 3a,b - stepper motors

attached to a two-axis stage that manipulates the microscope field of view, 4 -

cable carriage, 5 - microscope optics with right angle adapter, 6 - digital camera,

7 - Lexan polycarbonate enclosure, 8 - stationary specimen slide.
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Figure 5.3 A computer-drawn exploded view of thermal field enclosure. 1a,b - Insulating

housing, 2a - cold zone, 2b - hot zone, 3a - cold zone thermoelectric pad, 3b - hot

zone thermoelectric pad, 4 - cold zone auxiliary fluid cooling pad.
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Figure 5.4 The setup used to verify the accuracy of programmed servo velocities. The glass

slide features 300 mm of 0.1 mm divisions.
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CHAPTER 6. PURIFICATION OF O-TERPHENYL

400 grams of 99% purity o-terphenyl (OTP = 1,2-diphenylbenzene, CAS 84-15-1) was

purchased from Sigma Aldrich (Vendor Lot # MKBJ3853V). The as-received OTP was in the

form of white crystalline plates but formed a viscous yellow liquid upon melting in air. Two

different techniques were employed in an attempt to purify the OTP, namely, distillation and

solution recrystallization.

6.1 Vapor distillation.

The distillation apparatus, shown schematically in Fig. 6.1, consists of a boiler flask, distil-

lation column, glass thermometer, condenser, collection flask, heat tape, and a vacuum system.

The heat tape was set to 320◦ C, the recirculating condenser fluid set to 40◦C, and the dis-

tillation glassware was evacuated to -30 mm Hg by temporarily opening the vacuum valve.

After a few minutes, the 20 gram charge of as-received OTP melted and formed a yellow liquid

in the boiler flask. The vacuum valve was then slowly opened a slight amount, causing the

liquid to slowly boil. About eight minutes later, a vapor cloud had developed and condensation

was noted on the inner walls of the boiler flask and condenser, which slowly dripped into the

collection flask to form a yellow liquid. The OTP dripped from the condenser to the collection

flask at a rate of 1-2 drips per second for about an hour and fifteen minutes, leaving only a

small pool of brown liquid in the boiler flask.

6.2 Solution recrystallization.

200 grams of as-received OTP were slowly melted in a beaker on a hot plate, forming

approximately 200 mL yellow liquid. 1700 mL of 45◦C methanol was added to the beaker
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100 mL at a time until the OTP was completely dissolved. The OTP-methanol solution in

the beaker was allowed to free-cool to room temperature, and then placed in an ice bath for

approximately 12 hours. The next day, about 150 grams of very fine needle-like crystals were

collected via vacuum filtration.

6.3 Purity analysis - Gas Chromatography & Mass Spectrometry

6.3.1 Background

GC-MS is a method of chemical analysis that relies on gas-chromatography and mass spec-

trometry measurements to identify chemical species within a sample. Typically, a material

of interest is dissolved in a standard solvent, evaporated, and subsequently injected to a gas

chromatograph, or column, by flowing an inert carrier gas over the solution. The column is

a coil of very fine hollow tubing that features a polymeric coating on its interior. Once the

vaporized sample + solvent + carrier gas mixture, referred to as the analyte, enters the column,

the individual chemical constituents interact with the coating in different ways. Specifically,

the rate at which the carrier gas flow pushes different chemical species through the column

depends on their relative adsorption strengths, which is highly dependent the size/mass and

shape of the chemical species. Thus, chemically distinct species in a sample are collected into

separate packets that travel through and emerge from the column at different times. Acquiring

mass-spectra as a function of time and comparing to a library of standard spectra allows the

identification of chemical species in a sample. For this work, an Agilent 6890 GC-MS was

used to qualitatively investigate the relative purities of OTP in as received, vapor distilled, and

solution crystallized states.

6.3.2 GC-MS Sample Preparation Protocol

Step 1 - Preparation of Internal Standard

5.12 mg of eicosane was dissolved in 500 mL of methylene chloride. All sample solutions

utilized this stock solution as a solvent to ensure that the concentration of the eicosane

internal standard is uniform throughout all of the subsequently prepared samples.
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Step 2 - Preparation of solutions for quantifying impurities

54.48 mg of as-received, 50.53 mg of vapor distilled, and 55.84 mg of solution crystallized

OTP were placed into separate 25 mL volumetric flasks and constituted using the stock

solution prepared in Step 1.

Step 3 - Preparation of sample vials for GC-MS

Approximately 1.5 mL of each solution were placed into glass GC-MS vials and imme-

diately capped using separate disposable glass pipettes. The vials were then loaded into

the GC-MS auto-sampler carousel.

Step 4 - GC-MS Method

GC-MS was carried out according to the standard operating procedure, with the exception

of the injection volume being 2 microliters, split 50:1, rather than 1 microliter.

6.3.3 GC-MS Results

Fig. 6.6 shows the gas chromatograms for each of the OTP conditions that were inves-

tigated, and reveals the presence of four detectible impurities in the as-received and vapor

distilled OTP. Comparison of the mass spectra acquired during the impurity peaks with a

library of standard mass spectra indicated that the impurities were, in decreasing concen-

tration, C15H12 1-phenylnaphthalene, C15H12 2-phenylindene, C12H14 biphenyl, and C16H14

endo-o-phenylenenaphthalene 1,2,3,4-tetrahydro- . The persistence of thes impurities after va-

por distillation is not surprising, considering that at least two of them, 1-phenylnapthalene

and biphenyl, have vapor pressures [22] that are similar or significantly greater than the vapor

pressure of OTP near the distillation temperature of 320◦C, as shown in Fig. 6.7. It is likely

that the very fine crystals that grew slowly from solution feature less of the trace impurities

because i) the trace impurities were redistributed over a much larger volume in solution, de-

creasing their probability of encountering a growing OTP crystal and ii) the slow-growing and
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very fine scale crystals are less accommodating of impurity entrapment. The lack of impurity

peak detection on the gas chromatogram of solution crystallized OTP suggests that its purity

was improved over the 99% purity advertised by the manufacturer, although a quantitative

measure of the purity was not investigated. Fig. 6.8 shows melting endotherms for OTP in

each condition, measured by DSC. OTP in the as-received and vapor distilled conditions ex-

hibited very similar melting behavior while the melting point was raised about 2◦C for OTP

that was crystallized from solution, consistent with the impurity levels measured via GC-MS,

since impurities are often assumed to lower the freezing point of a substance. All subsequent

work with OTP specimens utilized solution crystallized OTP.

Figure 6.1 A schematic of the glassware used for the vapor distillation apparatus.
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Figure 6.2 A photograph of vapor-distilled OTP condensing and accumulating in the collec-

tion bulb.The boiler flask is surrounded with heat tape and insulating wool. The

orange condenser fluid is a 50-50 by volume mixture of water and antifreeze.
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Figure 6.3 The 150 gram collection of fine OTP needles that crystallized from methanol.
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Figure 6.4 A magnified view of the OTP needles that crystallized from methanol.
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Figure 6.5 A comparison of GC chromatographs for the different OTP conditions. As-received

and vapor distilled OTP featured the same four impurities (identified in Fig. 6.6),

which were not detected in the solution crystallized OTP. x-axis: minutes, y-axes:

percent, normalized Total Ion Current.
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Figure 6.6 Identification of the four impurity peaks based on mass spectra. The saturated

peak at 7.77 minutes is due to the main component (OTP). The peak at 8.73

minutes is due to the eicosane internal standard.
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Figure 6.7 Saturated vapor pressures for o-terphenyl, 1-phenylnaphthalene, and biphenyl cal-

culated using the Antoine equation and coefficients from [22].
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Figure 6.8 Melting endotherms for OTP in as-received, vapor distilled, and solution crys-

tallized conditions, featuring melting temperatures of 52.4, 52.2, and 54.4◦ C,

respectively.
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CHAPTER 7. DIRECTIONAL SOLIDIFICATION OF

ORTHO-TERPHENYL

7.1 Specimen Slide Preparation

A typical directional solidification experiment using the apparatus described in Ch. 5 in-

volves two glass slides containing the material of interest, namely, a longer observation slide

for viewing solidification and a shorter temperature slide featuring carefully positioned ther-

mocouples within the same material. These slides are placed in the apparatus such that the

observation slide is stationary with respect to the laboratory frame and the temperature slide

is stationary with respect to the thermal field enclosure. Thus, the temperature slide travels

along with the thermal field enclosure, measuring its variation over time via thermocouples at

specific locations within the slide. Since heat transfer is not instantaneous, the actual temper-

ature profile (temperature as a function of position) within the observation slide will depend

on factors such as the magnitude of the imposed thermal field, the geometry of the glass slides,

the thermal conductivities of the slides and specimen, and the imposed thermal field velocity.

Therefore, a single thermocouple is placed in the observation slide so the temperature can be

measured as a function of position between the hot and cold zones. An experiment is usually

designed such that the sample thermocouple begins in alignment with the hot zone edge, so

that the temperature profile is collected at the beginning of the experiment upon advancement

of the thermal field. Temperature profiles collected in this manner are subsequently used to

assign temperature values to features within the field of view, such as the solid-liquid interface,

based on their position.

A 600 mm long observation slide and a 150 mm long temperature slide were prepared by

filling 0.4mm x 4mm ID borosilicate slides, featuring previously positioned thermocouples, with
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solution recrystallized OTP according to the geometries indicated in Fig 7.1. Slides were filled

by applying vacuum suction to one end of the slide and inserting the other open end into

OTP liquid melted in a beaker on a hot plate. After a slide was filled to a target length it

was removed from the liquid and the vacuum released. The open end previously connected to

vacuum was flame sealed and the other, filled, end was sealed with epoxy. Care was taken not

to fill the slides excessively because the thermal expansion upon melting of OTP is quite large

(>10%) resulting in frequent cracking and breaking, especially for completely filled slides and

situations where material in the middle of the slide was melted and the surrounding crystal

provided no room for expansion.

7.2 Temperature Profiles

The hot and cold bath temperatures were set to 85◦C and -5◦C, corresponding to temper-

atures within the hot and cold zone of about 75◦C and 5◦C, respectively. The observation and

temperature slides were inserted into the apparatus and secured with aluminum-backed foil

tape such that the cold and hot thermocouple pairs spanned the inner cold and hot zone edges,

respectively, so that temperatures just within and just outside each zone could be monitored

over time (see Fig. 7.1 and Fig. 5.3). 1 The temperature profile (temperature as a function of

position) was measured between the hot and cold zones by monitoring the stationary thermo-

couple in the observation slide as the thermal field passed over it at a prescribed velocity. The

measurements began with the specimen thermocouple aligned with the left edge of the hot zone

and ended with the specimen thermocouple measuring a temperature about 5 mm to the left

of the cold zone edge (essentially aligned with the leftmost thermocouple in the temperature

slide). The velocity-dependent temperature profiles are shown in Fig. 7.2. Each profile was fit

to 6-parameter polynomial so that subsequent measurements of the interface position could be

used to compute corresponding interface temperatures for each velocity.

1The rightmost thermocouple stopped functioning a few days after the temperature slide was made, so no
temperature measurements within the hot zone were recorded by this thermocouple, except for the free growth
experiments described in Ch.7.4.



80

7.3 Directional Solidification of OTP

The relationship between crystal growth velocity and interface temperature (undercooling)

for OTP was investigated by measuring the temperature at which crystals grew in a thermal

gradient under steady state conditions for several velocities. Experiments were started by es-

tablishing an equilibrated interface within a thermal field (≈ 3◦C). After a steady and nominally

flat solid-liquid interface was established, the thermal field was advanced at a constant velocity

and the interface was tracked through independent displacements of the camera assembly (see

Fig. 5.2). As described in 7.2, the single thermocouple in the observation slide begins in align-

ment with the hot zone edge. Thus, the thermal profile is measured at the beginning of each

experiment and is later used to compute the interface temperature based on its position in the

field of view. The influence of the observation slide thermocouple on the ensuing solidification

is assumed to be negligible because (i) the interface starts only a few millimeters behind it in

the thermal field and the wires are routed back through the solid (see Fig. 7.1 and Fig. 7.7) and

(ii) the steady state measurements are taken much later in the experiments, at least several

minutes after the interface has passed the thermocouple. Fig. 7.3 includes the constant velocity

directional solidification measurements in addition to isothermal measurements reported in the

literature.

Fig. 7.4 features an image of the equilibrated interface (t = 0 seconds) and two images

of the interface growing at steady state for each of the prescribed velocities. The interface

temperatures that are listed correspond to those in Fig. 7.3, and were calculated from the

average interface position within four different images of steady state growth that were taken

at least a few minutes apart. For the velocities investigated, the interface generally grew as

distinct faceted crystals that formed a nearly planar interface with the liquid. Low velocities

were associated with a few (3-5) wide crystals ranging rom 0.5 - 1 mm in width, that sometimes

featured notable space / porosity in the form of channels between adjacent crystals, parallel

to the growth direction. Over the course of an experiment, new faceted crystals emerged by

nucleating (i) in the region between adjacent crystals, on the surfaces parallel to the growth
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direction, (ii) as a consequence of crystal fracturing due to thermal stresses 2, and (iii) by the

splitting of a crystal. In some cases, bubbles within the liquid were large enough to significantly

disrupt a crystal, resulting in a splitting of the crystal (see Fig. 7.5 or its extinction due to

the unhindered growth of surrounding crystals. As a result, the specific crystals comprising

the leading edge of the interface changed over time, as new crystals emerged and others were

overgrown. Nonetheless, the nominal interface position and appearance (number of crystals,

crystal spacing, etc.) did not change significantly over time for a given velocity.

As shown in Fig. 7.3, the crystal growth rate - undercooling behavior of OTP followed

a similar trend as previous reports, however, the results from the present work are shifted

down in temperature by 5-10◦C. As the velocity increased the interface adopted a more planar

configuration comprised of narrower crystals, and the incorporation of bubbles, presumably

dissolved air, changed. At low velocities, bubbles occasionally nucleated on the face 3 of a

growing crystal and were subsequently entrapped in the advancing solid as a individual porosity

sites. There was an even greater tendency for gas to continuously partition and coalesce on

the face crystals and in the space between adjacent crystals. In some cases, extensive smearing

of a bubble essentially formed a macroscopic crack. Although the identity of the gas was not

investigated, it is assumed to be air and not a decomposition product or OTP vapor. It is

worth noting that similar bubble formation and behavior has been reported for OTP that was

extensively zone refined [10] and also for salol [98, 97].

Although a velocity of 60 microns per second was attempted twice, no steady state faceted

growth was observed. Instead, the interface receded and only a few crystals grew fast enough

to stay within field of view. The sharp corners of these crystals eventually rounded and over

time they coarsened prior to slowing to the point of being covered by the cold zone, as shown in

Fig. 7.6. Fig. 7.11 shows a similar progression for a different 60 micron per second experiment,

where the velocity was stopped just before the receding interface was completely covered by

the cold zone. The interface was then allowed to grow freely, during which it transitioned

to a fibrous morphology around 1,400 seconds, during which thin whiskers and fibers, often

2As noted in [97].
3Points along the smooth interface between the tip and root of a growing faceted crystal.
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with bubbles attached to their tips, grew individually and chaotically resulting in a very fine

scale polycrystalline mass with considerable porosity (see Fit. 7.11 and Fig. 7.12). The fibrous

growth lasted about 700 seconds, after which the growth transitioned to a few sites of radially

growing crystallites. As these spherulites grew, less favorably oriented crystals (those not

parallel with the long axis of the slide) were overgrown or otherwise terminated, establishing a

faceted interface comprised of just several grains as before.

7.4 Free Growth Under The Constraint of a Thermal Gradient

The temperature dependence of crystal growth velocity for OTP was also investigated by

allowing crystals to grow under the constraint of a thermal gradient (≈ 3◦ C/mm), but without

an imposed velocity as before. These experiments started with an equilibrated interface near the

hot zone edge and measured its position as a function of time after the thermal field was rapidly

advanced (1 mm/s) such that cold zone was brought into close proximity with the interface. The

initial, equilibrated, interface was also aligned with the thermocouple in the observation slide so

the cooling rate of the interface could be measured. This also provided an estimate of the time

required for the specimen to re-equilibrate and conform to the newly positioned thermal field.

As shown in in Fig. 7.9, the transient lasted about three minutes. Once the temperature re-

equilibrated, the interface position was tracked using independent displacements of the camera

assembly. From those position measurements, velocities and temperatures were computed using

a previously measured temperature profile collected at 1 micron per second 4, shown in Fig. 7.8.

A schematic of this “free growth” process is shown in Fig. 7.7, and the results are shown in

Fig. 7.10. Although overall trend agrees well with previous reports, the free growth velocities

are shifted down in temperature by about 5◦C compared to the previously reported isothermal

studies. The morphology of the interface during free growth followed a progression similar

to that described in the previous section and in Fig. 7.11, with the exception that it did not

form and grow smooth crystals that receded prior to the transformation to fibrous growth.

4As shown in Fig. 7.2, the temperature profiles measured at 1 and 5 micron per second are nearly identical.
The 1 micron per second velocity is slow enough that the time variation of the thermal field becomes significant,
as indicated by the higher noise associated with that profile. Therefore, it should be reasonable to associate the
stationary thermal field with a temperature profile measured at such a low velocity.
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Instead, the faceted interface grew rapidly over a short distance (about 20 micron per second

for 0.45 mm) before changing to fibrous growth. After about 8 minutes of fibrous growth over

about 8 mm, a smooth interface composed of radially growing crystals emerged until a set of

preferentially oriented faceted crystals dominated the interface. These interface morphologies

are distinguished from one another in Fig. 7.10, which features plots of the interface velocity

as a function of undercooling for two different free cooling experiments.
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Figure 7.1 Nominal specimen slide geometries and thermocouple locations. Slides are rect-

angular (0.4mm x 4.0mm ID) and made of borosilicate glass. Top: observation

slide. Bottom: temperature slide. Note the cold (left pair) and hot (right pair)

thermocouple pairs in the temperature slide.
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Figure 7.2 Velocity-dependent temperature profiles measured as described in the text. For

higher velocities, a given position between the temperature zones is associated

with a higher temperature due to the decreased time available for the specimen to

re-equilibrate as the thermal field passes. Black squares indicate the thermocouple

measurements within the temperature slide at their respective positions, averaged

over time for all of the listed experiments. [2015-LTDS-79, -83, -84, -85, -86, -87,

-88, -89, and -90]
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Figure 7.3 Velocity-undercooling measurements for OTP solidified under directional solidifi-

cation conditions (red, present study) and isothermal conditions (black, as reported

in the listed studies). [2015-LTDS-84, -85, -86, -87, -88, -89]
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Figure 7.4 Morphology evolutions for velocities that established steady state growth.

[2015-LTDS-84, -85, -86, -87, -88, and -89].
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Figure 7.5 A progression of images showing splitting of a large faceted crystal due to the

continuous incorporation of gas that acts to slow the top portion of the facet. As

a result, the facet tip shifts upwards and the crystal splits. Such disruptions to

growth and accommodations by the interface are frequent during growth at slow

growth (< 10 micron per second). At higher velocities, the crystals comprising

interface are less dynamic, since gas tends to be incorporated in discrete pockets

rather than continuous channels. Approximately 15 minutes separates each of the

frames. [2015-LTDS-36]
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Figure 7.6 Morphology evolution for 60 micron per second growth. The interface initially

grows as a faceted front, but transitions to a smooth interface before receding

from the field of view, unable to grow at the imposed velocity. [2015-LTDS-91]
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Figure 7.7 A schematic of a free growth experiment utilizing a rapid advancement of the ther-

mal field. Red and blue lines refer to the hot and cold zone edges, respectively.

(a) The initial equilibrated solid-liquid interface aligned with the sample thermo-

couple. (b) After the rapid advancement of the thermal field, the interface grows.

The temperature profile within the specimen re-equilibrates based on the newly

positioned thermal field after a few minutes, as shown in Fig. 7.9. Velocity and

temperature measurements of the interface are made once the temperature reading

of the sample thermocouple has re-equilibrated. Temperatures
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Figure 7.8 The low velocity profile used to compute temperatures based on position mea-

surements during free growth experiments. The nominal temperature gradient

associated with this profile is 1.8◦C/mm. Black squares indicate the average ther-

mocouple measurements within the temperature slide at their respective positions.

[LTDS Notebook 2, Page 121]
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Figure 7.9 Temperatures measured in the profile slide (red, orange, light and dark blue) and

in the specimen slide (green) during the free growth experiments. The rapid ad-

vancement of the thermal field (1 mm/s) resulted in a transient period where the

temperature profile in the specimen adjusts to colder temperatures, as indicated

by the sharp decrease in temperature just around 600 sec. The temperature tran-

sient lasts about three minutes, and all of the interface velocity and temperature

measurements are taken after this period. [2015-LTDS-77]
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Figure 7.10 Measurements from two free growth experiments (purple & orange, 2015-LTDS-76

& -77) superimposed on previously reported isothermal measurements (black) of

crystal growth velocity as a function of temperature for OTP. For the free growth

data, diamonds, circles, and asterisks indicate faceted, smooth / rounded, and

GC-fibrous morphologies, respectfully.
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Figure 7.11 Morphology evolution for 60 micron per second growth, followed by free growth.

[2015-LTDS-58]
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Figure 7.12 A magnified view of the fibrous growth during free growth of OTP. Times corre-

spond to those in Fig. 7.11. [2015-LTDS-58]
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CHAPTER 8. SUMMARY

The work presented in this thesis falls under two broad themes: isothermal crystallization

of the metallic glass Cu50Zr50 and directional solidification of the glass-forming organic mate-

rial o-terphenyl. The crystallization of a glassy Cu50Zr50 precursor via a structural evolution

involving metastable phase formation and the anomalous crystallization morphology of deeply

undercooled liquid o-terphenyl are both examples of transformations that occur far from equi-

librium. Although there is great technological interest in metastable materials (amorphous and

crystalline), prediction and control of the phases and structures that are evolved along such

far-from-equilibrium pathways requires an understanding of the mechanisms and kinetics that

govern the transformation dynamics.

8.1 Devitrification of Cu50Zr50

Although the devitrification of melt-quenched Cu50Zr50 has been studied extensively, the

reported phase evolutions vary considerably, and many of the studies utilized poor characteriza-

tion methods and/or featured inadequate reporting. Thus, a clear description of the prevailing

mechanisms and related kinetics that reconciled various observations of phase evolution with

system thermodynamics was lacking in the literature. Following a recent publication by Kalay

et al. [6], the present work aimed to unravel the rapid initial phase evolution during the crys-

tallization of melt-spun Cu50Zr50 through the use of isothermal annealing at temperatures

near but below the onset of crystallization. Studying the transformation in this slow response

regime allowed sufficient time for in-situ high-energy X-ray diffraction measurements and the

preparation of partially annealed samples for TEM microstructural analysis.
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The isothermal results indicate that devitrification of melt-spun Cu50Zr50 occurs via three

stages: (i) Cu10Zr7 crystallites nucleate and grow, leaving a Zr enriched zone in the glass sur-

rounding the growing particles; (ii) when the Cu:Zr atom ratio within the interface surrounding

the Cu10Zr7 crystallites approaches 1:2, CuZr2 nucleates and grows until it consumes the Zr-rich

region of glass; (iii) the CuZr phase nucleates epitaxially on the CuZr2 phase, assisted by the

reduced nucleation barrier associated with the crystallographic similarity of the phases. Growth

of the CuZr phase continues until the crystallites are completely impinged and devitrification

is complete. We emphasize, once again, that the phase fractions measured after isothermal

annealing are very consistent with the early phase fractions measured for specimens that were

devitrified via a constant heating rate, as shown in Fig. A.12. We therefore assert that the

devitrification mechanism observed during the slow-response isothermal annealing is similar to,

if not the same as, the early stage devitrification mechanism during constant heating. These

results provide the most systematic and consistent survey of the devitrification response to date

and highlight the need for multi-method and in-situ characterization to adequately describe

such transformations. This work also included an analysis of the isothermal devitrification

kinetics using new procedure for directly fitting thermal analysis data to the commonly used

JMAK expression (see Eqn. A.1). The values of JMAK parameters, k and n, computed via this

direct method are shown to (i) be less sensitive to the subjective process of data truncation and

(ii) require little to no data processing prior to fitting, unlike the methods commonly employed

throughout the literature.

8.2 Purification and Directional Solidification of o-Terphenyl

Two different methods were attempted to purify o-terphenyl beyond the as-received condi-

tion, namely, vapor distillation and crystallization from solution. Through gas-chromatography

& mass spectroscopy (GC-MS) and differential scanning calorimetry (DSC) measurements, it

was concluded that only the o-terphenyl that was slowly crystallized from methyl alcohol fea-

tured an improvement in purity. This is likely a consequence of the impurities featuring vapor

pressures that were similar to and greater than o-terphenyl (as shown in Fig. 6.7) rendering

vapor distillation ineffective.
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A directional solidification apparatus was constructed that was capable of studying crystal-

lization of o-terphenyl. In particular, the design of the apparatus featured (i) a large separation

of the hot and cold zones, (ii) optics that could be moved independent of the thermal field, (iii)

the ability to monitor solidification over long-distances (up to about 400mm). These features

allowed crystallization to be tracked over the large range of interface undercoolings exhibited

by this system. The vast majority of solidification studies for o-terphenyl measured the velocity

of crystals as they advanced in a liquid with a known, yet nominal, temperature. The present

work features the first systematic study of crystallization of o-terphenyl using the well estab-

lished method of directional solidification 1, during which the temperature of the solid-liquid

interface is measured as it grows within a thermal gradient for two scenarios: (i) a constant

relative velocity between the thermal gradient and sample, and (ii) free growth within a ther-

mal gradient. Fig. 7.10 indicates that the crystallization rate - undercooling relationship for

these scenarios is the same, with the exception that the system can be driven to adopt higher

growth velocities compared to free and isothermal growth for temperatures between at least

34 and 38◦C. Fig. 7.10 also indicates that the velocity - undercooling relations measured via

directional solidification are shifted down in temperature by 5-10◦C with respect to previously

reported isothermal measurements.

The results presented in this thesis indicate that directional solidification (DS) of OTP is

feasible and produces morphologies that are similar to those reported for isothermal conditions.

The apparent shift of velocity-undercooling DS measurements to lower temperatures implies

that the solidification response of OTP depends on the thermal constraints to which it is sub-

jected. The origin of this discrepancy is complicated by the fact that no one has reported

velocity-undercooling measurements under isothermal conditions (employing careful measure-

ment of the interface temperatures) and under thermal gradient conditions for the same batch

of OTP. Comparison between such data sets would minimize uncertainties that arise when

comparing results from different studies, especially the influence of varying purity levels which

are rarely quantified.

1Directional solidification of OTP was reported by Scherer et. al., who used the technique in the form of zone
refinement [10], and by Shangguan & Hunt who reported a series of micrographs showing faceted OTP growing
at 3.3 micron per second within a gradient of 3.5 C per mm [99].
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The fibrous form of glass-crystal (GC) growth was observed during a free growth experiment

within a thermal gradient and the general appearance and characteristics of its growth were

similar to those reported for isothermal conditions, with one important exception. Fibers

emerged from the halted faceted interface and grew independently and chaotically, coarsening

over time (see Fig. 7.12). Unlike previous reports, however, the tips of growing whiskers and

fibers were frequently attached to, and seemingly led by, bubbles 2 that continuously nucleated

and coalesced as solidification proceeded. The fastest growing and farthest reaching fibers were

typically thin and attached to relatively small bubbles (up to about 200 micron). As bubbles

merged grew they eventually became trapped as porosity in the advancing crystalline mass. It

is unclear whether previous studies observed this type of bubble behavior during fibrous-GC

growth because they are not mentioned and not present in published micrographs. Although

the formation and migration bubbles seems to enhance the growth of individual fibers, their

significance, and perhaps necessity, in regard to GC growth remains unclear.

2Presumably air
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APPENDIX A. KINETICS AND MECHANISMS OF ISOTHERMAL

DEVITRIFICATION IN AMORPHOUS Cu50Zr50

Modified from a paper published in Metallurgical and Materials Transactions A.1

T.E. Cullinan2, I. Kalay 3 , Y.E. Kalay 4, M.J. Kramer 5, R.E. Napolitano 6

Abstract

The crystallization kinetics and microstructural dynamics associated with devitrifying a

melt-spun Cu50Zr50 metallic glass were investigated using isothermal treatments, in-situ high-

energy synchrotron X-ray diffraction, conventional and high-resolution transmission electron

microscopy, and differential scanning calorimetry. The analysis of isothermal transformations

allows us to more clearly unravel the complex interplay between nucleation and growth of

competing stable and metastable phases. The isothermal devitrification response was found to

involve the Cu10Zr7, and CuZr2, and CuZr phases, consistent with previously reported constant

heating rate experiments, but here we have resolved the phase evolution and structural char-

acteristics of the transformation, including the very early stages of crystallization. At 671 K

(398◦C), the isothermal transformation starts with the formation of the Cu10Zr7 phase, which

grows in a generally equiaxed morphology. At a size of approximately 100 nm, the growth of

the Cu10Zr7 particles is interrupted by the precipitation of a thin layer of the CuZr2 phase,

1Reprinted with permission of Metallurgical and Materials Transaction A, 46, 600-613, 2014
2Graduate Student, Primary Author, Department of Materials Science and Engineering, Iowa State University
3Assistant Professor, Department of Materials Science and Engineering, Cankaya University, 06790, Ankara,

Turkey
4Associate Professor, Department of Metallurgical and Materials Engineering, Middle East Technical Univer-

sity, Ankara 06800, Turkey
5Materials Sciences and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
6Major Professor, Corresponding Author, Department of Materials Science and Engineering, Iowa State

University
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upon which the metastable CuZr (B2) grows epitaxially. Crystallization kinetics are quanti-

fied here though in-situ measurements (HEXRD, DSC) and ex-situ microstructural analysis

(TEM, HRTEM). Finally, the influence of chemical partitioning, diffusion, and crystallographic

orientation on this sequence are examined.

Introduction

The rapid solidification of metallic alloys may give rise to a hierarchy of non-equilibrium

effects, ranging from small departures from local chemical equilibrium to large scale trapping of

solutes and crystal defects, the growth of metastable crystalline phases, and even the formation

of glassy or amorphous solids. Moreover, these non-equilibrium freezing products can be fur-

ther transformed during subsequent heat treatments to yield novel structures with remarkable

properties. Indeed, various far-from-equilibrium transformation pathways can provide access to

phases and structures that may be difficult or impossible to achieve through more conventional

avenues.

In particular, amorphous metals provide transformation pathways that remain largely un-

explored, and there is great interest in exploiting the novel structures and enhanced properties

that may be derived from the full or partial crystallization of an amorphous metal [33, 34].

Prediction and control of the phases and structures that are evolved along such far-from-

equilibrium pathways, however, require an understanding of the mechanisms and kinetics that

govern the transformation dynamics.

The devitrification of Cu-Zr binary metallic glasses has been studied extensively, partly

because this system features strong glass formation tendency [3] and a wide composition range

within which glassy alloys can be achieved by quenching from the melt [4, 5], as shown in

Fig A.1. In addition, several intermetallic compounds that reside within or near this glass-

forming range may play a role in the devitrification behavior, potentially appearing as stable,

metastable, or transient phases. While several studies of the kinetics and phase evolution

during constant heating rate (CHR) and isothermal (ISO) devitrification of melt-quenched and

mechanically alloyed Cu50Zr50 have been reported (see, for example, [35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 6, 62, 63] and [45,
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47], respectively), these studies generally fall short of completely describing the devitrification

behavior as a result of poor data arising from the chosen experimental method (e.g. conventional

XRD rather than HEXRD) or insufficient data arising from too few (or no) experimental

measurements and microstructural observations. In addition to the shortcomings associated

with experimental methods, additional questions arise from unclear or unreported procedures

for data fitting and analysis. Given these limitations, a clear description of the prevailing

mechanisms and related kinetics has yet to emerge that reconciles the various observations of

phase evolution with system thermodynamics.

In Table A, we summarize the studies that reported on the phase evolution during CHR

devitrification of Cu50Zr50
7, most of which used diffraction methods to determine the phase(s)

that were observed to form upon heating an amorphous specimen to a selected temperature.

Although the results of the initial crystallization and subsequent phase evolution vary con-

siderably, a few trends are noted among the reports. The first transformation upon heating

amorphous Cu50Zr50 was most frequently reported as an exothermic event, beginning around

720 K, that was associated with complete crystallization 8 involving the formation of Cu10Zr7

and CuZr2. Of the five [41, 47, 50, 58, 62] studies that shared this result in common, two

[58, 62] reported a second exothermic event around 773 K and 783 K, respectively, during

thermal analysis. Only one [58] of those studies reported on the phase evolution corresponding

with the second exotherm, associating it with the growth (increased fraction) of CuZr2. This

result is consistent with the phases that are most commonly reported as being present after

the second exotherm, namely, Cu10Zr7 and CuZr2.

One of the challenges associated with investigating such transformations is that the X-

ray diffraction (XRD) patterns for the relevant phases are largely overlapping and difficult

to deconvolute. Also, conventional XRD is less capable of detecting nano-sized crystallites

compared to high-energy X-ray diffraction (HEXRD), especially when crystalline phase fraction

is small. In a recent investigation using a heating rate of 10 K/min for the devitrification of

7We use italics here to indicate that the notation is a shorthand description of composition and not a chemical
formula.

8By this we mean the sample no longer features an amorphous fraction. This does not necessarily imply that
the resulting crystalline phase(s) are the final products of a given phase evolution.
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melt-spun Cu50Zr50, Kalay et al. [6] reported a sequence involving the initial formation of

the Cu10Zr7, CuZr2, and CuZr phases 9 followed by a gradual decomposition of the metastable

CuZr into Cu10Zr7, and CuZr2. Differing from the observations of Freed et al. [35] for this

heating rate, Kalay et al. found that the initial three-phase devitrification occurred too rapidly

for the transformation kinetics of the individual phase(s) to be resolved. However, by applying a

quantitative modeling approach to analyze in-situ HEXRD patterns, it was determined that the

initial devitrification resulted in relative phase fractions of 0.399, 0.223, and 0.378 (by weight)

for Cu10Zr7, CuZr2, and CuZr, respectively. Moreover, this method enabled full quantification

of the phase-resolved kinetics of the slower post-crystallization decomposition reaction that

began partway through the first, sharp, exotherm and ended shortly after the broad second

exotherm, resulting in a fully CuZr structure.

Even for the relatively low heating rate of 10 K/min, the initial devitrification was too

rapid to allow the initial phase evolution to be resolved, particularly the order in which the

phase(s) precipitated from the amorphous ribbon. Thus, the present study aims to provide

a more comprehensive picture of the kinetic landscape surrounding the initial devitrification

response of a melt-spun Cu50Zr50 glass through isothermal annealing. This enables selection

of specific treatment temperatures to effect a relatively slow transformation, permitting a more

detailed measurement and analysis of the phase evolution kinetics and associated mechanisms

via in-situ HEXRD measurements and post-annealing electron microscopy.

We begin by reviewing the relatively few studies that have utilized isothermal annealing to

investigate the devitrification of Cu50Zr50, which are summarized in Table A. Using DSC, Polk

et. al. [36] measured the thermal response of melt-spun Cu50Zr50 during isothermal annealing

treatments conducted at 5 K intervals from 690 to 715 K, although they only reported the DSC

trace for 700 K. Unfortunately, no phase evolution or kinetic analysis was reported.

Using differential isothermal calorimetry (DIC), Louzguine-Luzgin et al. [54] annealed melt-

spun ribbons of Cu50Zr50 at 693, 698, and 710 K. XRD of ribbon that was annealed for 20

min at 698 K (annealed slightly longer than was required for the exotherm to return to the

9Unless otherwise indicated, the Cu10Zr7, CuZr2, and CuZr phases are assumed to exhibit the oC68, tI6,
and cP2 (B2) structures, respectively.
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baseline signal) indicated that a monoclinic form of CuZr precipitated from the glass during

the isothermal annealing. They stated that this phase was metastable and transformed to

Cu10Zr7 and CuZr2 at higher temperatures. The DIC traces were also integrated and fit to a

modified3 form of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, Eqn. A.1, resulting

in Avrami exponent, n, values between 2.2 and 2.4. Later studies, by mostly the same authors,

reaffirmed the formation of a metastable monoclinic CuZr phase during isothermal annealing

and reported n values of approximately 2.5, although the temperature(s) investigated were not

specified [60, 61].

In addition to the CHR experiments summarized in Table A, a study by Pauly et. al.

[58] also utilized isothermal annealing to investigate the devitrification kinetics of melt-spun

Cu50Zr50. The authors fit a modified 10 form of the JMAK model to isothermal annealing data

acquired at 701, 703, 705, 707, and 709 K and calculated activation energies of crystallization

using the fitted parameters k and n. Unfortunately, only the average value of 3.6 for n was

reported.

Experimental Methods

An ingot of Cu50Zr50 nominal composition was prepared from high-purity constituents

(0.9999 Cu and 0.9995 Zr, by weight) via arc melting in an argon atmosphere. The ingot

was remelted and quenched on a water-cooled copper hearth three times to ensure chemical

homogeneity. The ingot was melted a fourth time in a graphite crucible under 0.33 atm helium

and rapidly solidified into thin ribbons, nominally 2.5 mm wide and 45 µm thick, by free-jet

melt spinning onto a rotating copper wheel with a tangential velocity of 25 m/s. The as-spun

ribbon specimens were verified to be amorphous through DSC, HEXRD, and TEM analysis,

as reported elsewhere [6].

Devitrification response was investigated through isothermal (ISO) and quench-interrupted

(QI) treatments using a Perkin Elmer Pyris 1 DSC. A 10 mg amorphous melt-spun ribbon

specimen, sealed in an aluminum pan, was employed for each treatment. Sealed specimens

were held at 323 K for 10 minutes to allow the instrument to stabilize prior to heating at

10The authors introduced a term, τ , associated with an incubation time: fC(t) = 1− exp [− (k[t− τ ])n]
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100 K/min from 323 K to a target temperature, after which they were held isothermally until

the first measured exotherm was complete, resulting in a fully crystallized specimen. 11 The

isothermal hold temperatures were 671.4, 673.4, 678.4, 683.1, 688.1, 690.2, and 693.0 K, with a

maximum variation of ± 0.065 K for the duration of the treatments. Microstructural evolution

during devitrification was investigated with isothermal quench-interrupted (QI) treatments that

utilized a low temperature (671 K) hold terminated by a quench after partial crystallization.

The isothermal hold times for these specimens were 23, 30, 37, 44, 49, and 75 min. For all ISO

and QI experiments, a 20 mL/min flow of high-purity nitrogen was utilized to limit sample

oxidation.

Microstructural analysis including transmission, scanning transmission, and high-resolution

transmission electron microscopy (TEM, STEM, and HRTEM, respectively) using a FEI-Tecnai

G2-F20. In preparation for microscopy, specimens were thinned by double-sided electrolytic jet

polishing at 10 V using a solution of 33 vol.% nitric acid (in methanol) at 242 K. Quantitative

micro-chemical analysis was performed using an EDAX energy dispersive X-ray spectroscopy

(EDS) unit.

Results

The observed isothermal crystallization behavior is summarized by the DSC traces plotted in

Fig. A.2a. Each trace exhibits a single exothermic crystallization peak, and the variation of peak

location and shape indicates the temperature dependence of the overall transformation kinetics.

Integration of the heat flux vs time curves yields the time-evolution of the transformed fractions

for the respective hold temperatures (Fig. A.2b). The corresponding isothermal transformation

(IT) contour diagram is then constructed from the full set of integrated traces, as shown in

Fig. A.2c.

While we certainly cannot presume that the same set of nucleation and growth processes

controls the devitrification response over the range of temperatures examined here, the general

appearance of the transformation curves in Fig. A.2b does not indicate any dramatic changes

11We assume that such a low-temperature holding and rapid heating has a negligible effect on the subsequently
measured thermal responses.
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in the operative mechanisms. However, we have no reason to expect that a single mechanism

or even a single phase dominates the behavior, or even that any steady nucleation or growth

rates prevail. Acknowledging these issues fully, we choose for convenience to summarize the

overall kinetics using the common exponential form of the Johnson-Mehl-Avrami-Kolmogorov

formulation.

We emphasize that this choice is intended only to provide an empirical description of our

measurements. Moreover, we make no presumption that the value of any of the empirical fitting

parameters implies a correlation to any crystallization mechanism. Rather, it is our assertion

that such a correlation is not prudent here, given the complexity of the far-from-equilibrium

transformation which consists of multiple nucleation mechanisms that are simultaneously active,

as indicated by Figs. A.6-A.7.

Accordingly, we take the fraction crystallized, fC , as

fC(t) = 1− exp [− (kt)n] , (A.1)

where the model parameters, k, and n, are taken as fitting constants that are listed in

Table A.1 and plotted in Fig. A.3. Once again, we resist, at this time, making any specific

mechanistic interpretations related to the values of these constants, as is often done (without

proper justification), and simply use the formulation as an empirical representation of the

reaction kinetics. The details of the fitting procedure are presented in the appendix.

For a more detailed analysis of the isothermal response, we select a low isothermal hold

temperature (671 K) for quench-interrupted treatments and examine the structure at various

stages of crystallization, as indicated by the crystallized fraction, fC . After 23 minutes at

671 K (fC << 0.01), fine Cu10Zr7 particles (3-5 nm) are observed to be dispersed within the

amorphous alloy, as shown by the HRTEM image and associated fast Fourier transform (FFT)

patterns in Fig. A.4. After 30 minutes (fC ≈ 0.01), the structure remains as Cu10Zr7 growing

from the amorphous bulk, as shown in Fig. A.5. After 37 minutes at 671 K (fC ≈ 0.05), a

dispersion of very fine platelets, approximately 10-20 nm in length, are observed along with

the growing Cu10Zr7 phase. This is shown in Fig. A.6, with an EDS map indicating the

chemical partitioning that accompanies the growth of the Cu10Zr7 phase and the associated Zr
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enrichment of the surrounding amorphous material. A related feature, observed after 37 minutes

of annealing, is the appearance of a small amount of the CuZr2 and CuZr phases. The nucleation

scenario is revealed in Fig. A.7, where it appears that the CuZr2 phase nucleates on the surface

of the growing Cu10Zr7 particle. There, it grows to only a small thickness before it is interrupted

by nucleation and general growth of the CuZr phase, with subsequent growth occurring radially

outward from the original particle, resulting in a nodular three-phase morphology after 44

minutes (fC ≈ 0.2), as shown in Fig. A.8. The transformation proceeds in this manner until

the material is fully crystallized. The prevailing nodular structure, characteristic of this Cu10Zr7

- CuZr2 - CuZr phase sequence, is clearly revealed by the microstructures observed after 49

minutes (fC ≈ 0.4) and 75 minutes (fC > 0.99) at 671 K, as shown in Figs. A.9 and A.10,

respectively.

With the microstructural evidence clearly supporting a three-phase scenario for the devit-

rification response, we now revisit the in-situ HEXRD investigation to resolve the formation of

the individual phases during crystallization. Using an independent set of isothermal HEXRD

measurements obtained at 673 K, we employ a Rietveld refinement strategy, detailed elsewhere

[6], to determine the time-evolution of the individual phase fractions during devitrification

from the glass. While we were not able to extend the data below approximately fC = 0.15,

the analysis clearly shows that the Cu10Zr7 phase dominates the early devitrification behavior,

with CuZr2 and CuZr following. In addition, the individual phase fractions present when the

material is fully crystallized (fC = 0.39, 0.22, and 0.39 for Cu10Zr7, Cu2Zr, CuZr, respectively)

are consistent with the previous findings reported by Kalay et al. [6], where the subsequent

phase decomposition was resolved.

Discussion

The investigation reported here employs isothermal treatment in a carefully selected slow-

response regime. The approach taken here provides a view of the crystallization process with

never-before achieved fidelity. The distinguishing features of this work are listed below:
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• The application of in-situ HEXRD yields high quality data with sufficient temporal res-

olution so as to enable Reitveld analysis, for the fist time providing here quantitative

phase-resolved time-evolution data for the crystallization process itself.

• The analysis of quench-interrupted specimens with HRTEM provides a clear view of the

microstructural transformation pathway associated with the phase evolution sequence.

• The self consistent picture of the phase evolution sequence described by the combination

of these techniques provides a new level of detail and clarity for our understanding of the

crystallization mechanisms in Cu50Zr50, and the associated kinetics.

• The evolution sequence observed here is quantitatively consistent with our previously

reported CHR analysis, suggesting that the details regarding the transformation path

provided by the current work may be relevant for the CHR transitions as well, even

though the rate of transformation precludes direct in-situ study.

Given these characteristics, the current work offers an unprecedented level of detail, where

direct in-situ diffraction evidence, supported by detailed microstructural analysis are used to-

gether to interpret the thermal analysis measurements, for which the details of phase evolution

and individual transformation steps are generally convoluted with each other and with instru-

ment response. Our isothermal results clearly illustrate several important characteristics of

the devitrification response that presumably occur during the early stages of constant heating

rate devitrification, but are too rapid to resolve. Microstructural analysis of the QI specimens

indicates that the Cu10Zr7 phase nucleates first from the glass, where its growth occurs with

concomitant Cu-depletion and Zr-enrichment in the surrounding Cu50Zr50 glass. Cu10Zr7 par-

ticles grow to a size of 100-150 nm before the CuZr2 phase nucleates on the glass/Cu10Zr7

interface. The observation of this limiting size suggests that it is controlled by the solute bal-

ance associated with the growth of the partitioning Cu10Zr7 phase and on the resulting shift
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in driving force, favoring the local formation of the CuZr2 phase in the Zr-enriched glass. The

limited extent of growth observed for the CuZr2 phase further supports this description, since

the driving force for its growth would decay very rapidly over a short radial distance away from

the growing Cu10Zr7 particle. In addition, the epitaxial relationship between the CuZr2 and

CuZr phases, shown in Fig. A.11, essentially eliminates the nucleation barrier and promotes

rapid formation of the CuZr phase as soon as it is energetically driven, which occurs when the

Zr-enriched region of glass is consumed by growth of the thin layer of CuZr2.

The generally nodular appearance of the overall microstructure implies that this mechanism

of Cu10Zr7/CuZr2 seeding of the CuZr phase is favored over nucleation and growth of the

CuZr directly from the glass. (We qualify this statement by noting that the fine plate-like

phase remains unidentified but consistent with the CuZr2 C11b structure.) Moreover, since the

Cu10Zr7/CuZr2/CuZr sequence gives rise to the appearance of CuZr very early in the overall

transformation (i.e. fC = 0.05) and since CuZr does not nucleate directly from the glass, the

overall kinetic response is mainly controlled by the growth kinetics of the B2 phase (which were

investigated for higher temperatures in a recent molecular dynamics study [100]). Fig. A.12

indicates that the phase fractions after complete isothermal crystallization agree well with the

initial phase fractions from recently reported CHR results [6]. Thus, we assert that the phase

selection mechanisms are similar for both the ISO and CHR crystallization cases, and that

these results identify, generally, the initial crystallization sequence for melt-spun Cu50Zr50.

A meaningful comparison of our isothermal annealing results to previous investigations

relies on unreported details of those studies, such as melt-spinning parameters the mass of

thermal analysis samples, the thermal history of the isothermally annealed samples 12, and

all of the fitted JMAK parameters including the temperature(s) they correspond to and how

they were computed. Despite these issues, we elect to include a very basic comparison here

for completeness. The isothermal traces we report in Fig. A.2 feature characteristic times

(onset, peak, offset) that are on the same order of magnitude as those reported by of Polk

[36], Louzguine-Luzgin [54] et al., and Pauly et al. [58]. All three of these reports indicate

isothermal responses that are slower than our data would suggest, if extrapolated. For the

12Specifically, the heating rate used to reach the annealing temperatures.
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temperature we report in common with Louzguine-Luzgin et al. (693 K), for example, our

exotherm has completed and returned to the baseline signal approximately four minutes before

their exotherm initially deflects.

Conclusions

We present, for the first time, a complete description of the structural evolution that occurs

during isothermal devitrification of melt-spun Cu50Zr50, based on in-situ high-energy X-Ray

diffraction, ex-situ electron microscopy, and thermal analysis. Our HEXRD and TEM results

show that the isothermal devitrification of melt-spun Cu50Zr50 occurs via three stages: (i)

Cu10Zr7 crystallites nucleate and grow, leaving a Zr enriched zone in the glass surrounding

the growing particles; 13; (ii) when the Cu:Zr atom ratio within the interface surrounding the

Cu10Zr7 crystallites approaches 1:2, CuZr2 nucleates and grows until it consumes the Zr-rich

region of glass; (iii) the CuZr phase nucleates epitaxially on the CuZr2 phase, assisted by the

reduced nucleation barrier associated with the crystallographic similarity of the phases. Growth

of the CuZr phase continues until the crystallites are completely impinged and devitrification

is complete. We emphasize, once again, that the phase fractions measured after isothermal

annealing are very consistent with the early phase fractions measured for specimens that were

devitrified via a constant heating rate, as shown in Fig. A.12. We therefore assert that the

devitrification mechanism observed during the slow-response isothermal annealing is similar to,

if not the same as, the early stage devitrification mechanism during constant heating.

Appendix - JMAK Fitting Procedure

The magnitude and overall shape of thermal analysis measurements depends on a variety

of factors, some of which are related to the specimen itself (such as its geometry, mass, and

thermal history) while others are related to the specific instrument and heating steps that

are used. Nonetheless, isothermal reactions measured by differential calorimetry (DSC, DTA,

etc.) frequently exhibit bell-shaped signals superimposed on a relatively constant baseline signal

13During this stage, small plate-like crystals also precipitated within the amorphous matrix. They were too
small to identify and their effect on the crystallization pathway requires further investigation.
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associated with maintaining the temperature of interest. A common method for determining the

JMAK parameters (k and n) from constant temperature data involves computing a normalized

cumulative integral over the thermal analysis event (peak) that corresponds to the isothermal

transformation of interest. These methods assume that the magnitude of the measured signal

is directly related to the transformation rate. A plot of the normalized cumulative integral (of

a bell shaped curve) versus time is sigmoidal, equaling zero at the lower integration bound and

equaling one at the upper integration bound. Such a curve can be fit to the JMAK expression,

f(t) = 1 − exp [− (kt)n], to determine the reaction rate constant, k, and Avrami exponent, n.

This type of analysis assumes that the normalized cumulative integral corresponds with the

time-dependent volume fraction of the system that has transformed. An alternative analysis

involves plotting ln(− ln(1−f)) versus ln(t) and computing k and n from the slope and intercept

of the log-linearized expression for f(t): ln(− ln(1− f)) = n ln(k) + n ln(t).

Although constant temperature thermal analysis measurements often seem to be ideally

shaped for such analysis, they tend to exhibit features and artifacts that must be addressed

in order to ensure that a fit is accurate. Perhaps the biggest challenge involves accounting for

a non-constant baseline signal 14, even when an instrument background signal is subtracted.

This is especially problematic when the transformation of interest occurs so rapidly that the

measured signal associated with the instrument ramping to the isothermal holding temperature

overlaps the signal for the transformation of interest. This is usually not an issue for slower

transformations where sufficient time is available for the instrument to establish a relatively con-

stant baseline signal prior to, and after, the transformation of interest. In either case however,

proper analysis requires careful truncation, since the fitting results for the methods described

above are sensitive to the choice of integration bounds, as we demonstrate in Fig. A.13c-f. This

is especially true for the log-linearization method, where the logarithmic plot is linear over a

smaller range as the amount of truncation increases, as shown in Fig. A.13e for the fitting of

14According to the JMAK expression, a valid cumulative distribution function, f should equal zero at t = 0,
and approach one as t approaches infinity. Thus, df/dt is bell-shaped, equals zero at t = 0, and asymptotically
approaches zero as t approaches infinity. A DSC trace is not likely to share the second and third properties
exactly in common with df/dt, even if we account for the trace approaching a non-zero constant (C). However,
the signal surrounding a thermal event is often fairly constant during isothermal annealing, and such a trace can
be approximated fairly well by a scaled and shifted form of df/dt.
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our raw 688.1 K isothermal data set. The nonlinear artifacts that arise in the logarithmic plot

introduce the need to further limit the amount of data that is considered when constructing a

line from which n and k are computed.

To avoid the complexities associated with data truncation, we have computed the JMAK

parameters n and k from the raw isothermal DSC signals (with the exception of the 673.4 K data

set, as we describe below). We begin by considering the time derivative of the JMAK expression,

df/dt, which is essentially a probability density function for the cumulative distribution function

f(t). In order to approximate an isothermal DSC signal, Q̇, we scale and shift df
dt by the factors

S and C, respectively. Thus,

Q̇ ≈ S
[
df

dt

]
+ C = S

[
(kn)(kt)(n−1) exp[−(kt)n]

]
+ C (A.2)

Fitting 15 this expression to an isothermal DSC signal with a relatively constant baseline

results in n and k values that i) are less sensitive to the extent of data truncation and ii)

describe the DSC trace with high accuracy, as we demonstrate in Fig. A.13b for four different

truncation scenarios. This method was applied to each of our raw 16 isothermal data sets,

resulting in fitted parameters that are listed in Table A.1. For each fitting, the corresponding

data set was truncated such that only the points surrounding the isothermal peak down to one

percent of the peak height were considered.
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the approximate range over which the Cu-Zr system exhibits strong glass-forming
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Figure A.2 Results for isothermal DSC experiments: (a) DSC traces for the indicated tem-

peratures (shifted to a common baseline), (b) corresponding plots of fraction crys-

tallized versus time (Note: • denotes the times selected for the QI experiments),

and (c) the IT diagram for the overall isothermal crystallization event. Note: �
denotes calculated times based on i) the isothermal temperatures investigated and

ii) the fractions of interest.
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Figure A.3 Plots showing the temperature dependence of the fitted JMAK model parameters

k (a) and n (b). The parameters were fit according to the method described in

the appendix.
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Table A.1 Fitted JMAK Parameters, computed as described in the appendix.

Hold. Temp. k n S C

(K) (1/min) mW · min mW

671.4 0.019 7.288 6.214 11.403

673.4 0.024 7.018 6.180 -0.002

678.4 0.042 6.872 6.238 12.801

683.1 0.071 6.218 7.104 18.356

688.1 0.123 6.057 7.677 21.689

690.2 0.158 6.010 7.701 21.446

693.0 0.217 6.041 7.762 34.344

!

Figure A.4 HRTEM image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 23 min.

Insets: Corresponding FFT patterns where a1 shows the [334] zone axis of Cu10Zr7
nanocrystals and a2-a4 indicate amorphous regions.
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!
Figure A.5 A BF image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 30 min,

with corresponding SAED pattern showing the [2,3,3] zone axis of the Cu10Zr7
nanocrystal.

!

Figure A.6 A BF image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 37 min.

Insets: SAED pattern of the [100] zone axis and EDS element mappings of the

Cu10Zr7 nanocrystal.
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Figure A.7 (a) A BF image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 37

min. (b) HRTEM image of region A showing the Cu10Zr7, CuZr2, and CuZr (B2)

phases. The insets are FFT images of regions b1-b4. Region b1 shows the [100]

zone axis of the Cu10Zr7. The two regions labeled b2 show the [100] zone axis of

two differently oriented CuZr2 crystals. Regions b3-b4 show the [100] zone axis of

the CuZr (B2) phase.
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Figure A.8 (a) A STEM image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 44

min. The data from the EDS line scan (A to A’) is presented in (b). These data

were collected along a 250 nm line, approximately, with 1-nm beam size.
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!
Figure A.9 BF images of melt-spun Cu50Zr50 isothermally annealed at 671 K for 49 min. (a)

shows the the nucleation of CuZr (B2) on CuZr2 crystals. The inset is a convergent

beam electron diffraction (CBED) pattern from CuZr (B2) at a [111] zone axis.

(b) shows the distribution of these crystals in the amorphous matrix.
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!
Figure A.10 A BF image of melt-spun Cu50Zr50 isothermally annealed at 671 K for 75 min.
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Figure A.11 A schematic showing the coherent interface between the CuZr2 (C11b) and CuZr

(B2) phases. Through slight atomic rearrangements, the lattice parameter of

CuZr2 (3.24 Å) enlarges to that of CuZr (3.28 Å).
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K/min heating of melt-spun Cu50Zr50 [6].
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Figure A.13 (a) Raw isothermal (688.1 K) devitrification data measured by DSC. Note the

initial transient signal that persists after the program changes from a ramping

(100 K/min) to isothermal mode. For mathematical convenience, we present

the data here such that exothermic events result in positive deflections from the

baseline signal. The indicated points denote the lower and upper bounds for the

data truncation scenarios we consider for this demonstration. The fitted values

that we report in Table A.1 are based on truncating the raw data to include only

the points greater than one percent of the peak height on both sides of the peak

(listed as .010 in this figure). (b) Approximated DSC traces constructed from

the expression for Q̇ using the JMAK parameters obtained by fitting portions

of the raw DSC data directly. This was carried out for the various truncation

scenarios and superimposed on the raw data (solid black curve). The plot has

been rescaled to omit the data corresponding to the initial transient. Note that

fits obtained in this manner are relatively insensitive to the range of truncation

conditions investigated here. (c) The normalized cumulative integrals calculated

from the raw data in (a) for the various truncation scenarios. Note that the plot

and ultimately the fitted parameters, k and n, are sensitive to the values selected

for upper and lower integration bounds. (d) Approximated DSC traces based

on the k and n values obtained from fitting the curves in (c) to the expression

for f(t). They are plotted here using the same S and C values obtained for the

direct fitting results of (a), since S and C values are not computed when fitting

the fraction curves to f(t). (e) Logarithm plot of the curves presented in (c).

Note the increased nonlinearity as the extent of data truncation increases. (f)

Approximated DSC traces based on the n and k values computed from the slope

and intercept of the lines corresponding with the points indicated in (e). These

points were arbitrarily selected such that they visually represented the largest

linear portion of each plot. Again, S and C values for (f) were the same as those

from the direct fitting procedure.
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Figure A.14 k (a) and n (b) values plotted versus the truncation value (fraction of peak height)

for the various fitting types demonstrated in Fig. A.13. Direct (�) refers to fitting

the raw, but truncated, DSC data to the expression for Q̇ (see Fig. A.13a-b).

Fraction (©) refers to fitting the normalized cumulative integral (fraction curve)

to the expression for f(t) (see Fig. A.13c-d). Log (4) refers to computing n and

k from the slope and intercept of normalized cumulative integral values presented

on log scales (see Fig. A.13e-f).
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