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Abstract

This report contains analysis of unmanned aerial systems as imaged by visible, short-wave
infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at
the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images
in all spectral bands are shown and contrast versus background is reported. Calculations are
performed to determine estimated pixels-on-target for detection and assessment levels, and the
number of pixels needed to cover a hemisphere for detection or assessment at defined distances.
Background clutter challenges are qualitatively discussed for different spectral bands, and low
contrast scenarios are highlighted for long-wave infrared imagers.
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Executive Summary

Testing of visible (VIS), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave
infrared (LWIR) imagers was conducted using a quad-copter, octo-copter, and fixed wing un-
manned aerial systems (UAS) targets during the week of August 15, 2016, at the Nevada Na-
tional Security Site. The goal of this test was to determine the positive and negative attributes of
commercial off the shelf (COTS) imagers at different spectral bands.

We determined that LWIR imaging provided the best contrast of targets against background,
followed second by VIS imagers. MWIR showed some promise to reject nuisance targets like
birds, but needs additional testing to confirm. SWIR imaging performed poorly for the three UAS
tested, and does not appear a likely candidate for a counter UAS (CUAS) imaging element.

Using pixels-on-target estimates enabling detection or assessment, fixed distances were set and
imager parameters enabling detection or assessment at those distances were reported. Our analysis
estimates that a 1 gigapixel imager could enable hemispherical detection and assessment of a 0.5
meter UAS at approximately 1750 meters for detection and 750 meters for assessment.

Nuisance targets such as birds or insects were captured during the testing phase. All spectral
bands contain nuisance targets that could cause false alarms, especially using simple assessment
algorithms that only search for objects greater than a few pixels moving across the background.
Background clutter and nuisance targets appear minimized in the LWIR and MWIR, but further
testing is needed to validate.

A LWIR effect causing low contrast or zero contrast of UAS at certain angles above the horizon
was observed and discussed. An example of a UAS target briefly disappearing in the LWIR is
provided, and the thermal equivalence angle is reported.

We recommend the further investigation of LWIR and MWIR imagers to understand their be-
havior when imaging non-UAS targets such as birds, dust storms, or vegetation. Additionally,
we recommend the evaluation of these systems during night operation. We also recommend the
evaluation of other optical sensing systems to assist with positive UAS assessment, such as LWIR
polarimetric imaging. These evaluations may not require a flying UAS, and therefore could take
place at Sandia National Laboratories.






1 Introduction and test goals

Three primary steps are required by counter unmanned aerial system (CUAS). They are defined
as:

1. Detection — The collection of some phenomenological information captured by a sensor.
This step does not necessarily denote assessment (that is, differentiation of nuisance alarm
versus target).

2. Assessment — Analysis of data received in the detection phase, with the goal being to sepa-
rate real targets from highly cluttered, noisy background data.

3. Denial of mission/neutralization — Once a target is positively assessed in the previous step,
additional action must be taken to deny mission success, including the potential for target
neutralization.

This study evaluates passive commercial off the shelf (COTS) imaging systems within the
visible (VIS), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared
(LWIR) wavebands for the purpose of detection and assessment of UAS. The tests discussed in
this document took place at the Nevada National Security Site (NNSS), from August 15, 2016, to
August 18, 2016.

Three UAS morphologies were investigated: a quad-copter, octo-copter, and fixed wing system.
All devices were composed of plastics, Styrofoam, and some metallic components. Targets ranged
from tens of meters to greater than five kilometers from the imaging systems.

Tests were conducted to answer the following questions:
* Is there a clear best performer amongst the VIS, SWIR, MWIR, and LWIR imaging spectral
bands?

* What notional pixels-on-target are required to detect and assess the presence of a UAS, and
at what distance is this achievable?

* What is the contrast of background clutter such as birds or insects within the VIS, SWIR,
MWIR, and LWIR imaging bands?

* Do any spectral bands fail to enable the detection of a UAS under nominal conditions?
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2 Imaging background

The purpose of this test was to evaluate the capability of commercial off the shelf (COTS) passive
imaging systems of different spectral sensitivities to image unmanned aerial systems (UAS). Four
distinct spectral bands were evaluated in this study; visible (VIS), short-wave infrared (SWIR),
mid-wave infrared (MWIR), and long-wave infrared (LWIR). The wavelengths covered by these
regions are shown in table 1.

Spectral Band Name Shorthand Wavelength region Sensor types

Visible VIS 04pumto 0.7 um  Si

Short-wave infrared SWIR 1.0 umto 3.0 um  InGaAs

Mid-wave infrared MWIR 3.0 umto 5.0 um  InSb, HgCdTe

Long-wave infrared LWIR 8.0 um to 12.0 pum HgCdTe, microbolometers

Table 1. Definitions used in this report when describing different
spectral bands.

It is important to differentiate between reflected photons and self-emitted photons, and clarify
these two concepts within the context of commercially available imaging systems.

Reflected photons consists of light emitted from a source, reflected off the UAS, and captured
by the passive imaging device. The VIS and SWIR imaging systems rely upon reflected photons,
either from the sun or a terrestrial light. Objects that appear highly reflective in the VIS bands may
not appear so in the SWIR, especially if the target contains dyes designed for the VIS spectrum.
Thus, a comparison between VIS and SWIR imaging systems is useful to determine if one spectral
band is more sensitive to the materials composing a UAS, and if one band enables earlier detection
or assessment in the presence of environmental clutter like insects, birds, and vegetation.

Self-emitted photons originate from all objects with a temperature above absolute zero. The
spectral location at which the majority of self-emitted photons are located can be calculated using
Wien’s law.

~2900[um K] ,

1
Tob; K] )

Amax -

Using this equation, and assuming we have an object at 100 °F (311 K), we can calculate the
wavelength of the peak self-emitted photons as 9.3 um, well within the LWIR spectral band. Both
the MWIR and LWIR bands rely primarily upon self-emitted photons from objects in the scene,
and therefore can be used without the presence of solar illumination or terrestrial lights.

IThe precise neumerator coefficient is 2.8977729 x 10° m K, but this coefficient is useful for quick caluclations.
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The spectral band definitions used in table 1, as well as the spectral sensitivity ranges of the
SWIR, MWIR, and LWIR cameras are plotted in figure 1
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Figure 1. Spectral atmospheric transmittance versus wavelength.
The VIS, SWIR, MWIR, and LWIR spectral bands are shown as
defined in table 1. The spectral sensitivity of the cameras used
within this test are shown.

Figure 1 shows that this is not an exhaustive study of the best spectral band from 0.4 pm to
12.0 um. Rather, this study is intended to examine the COTS offerings for different spectrally
sensitive imaging systems and determine how these systems apply to detection and assessment of

UAS.
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3 Imaging systems information

The UAS imaging test was comprised of five visible imaging systems, one cooled SWIR device,
one cooled MWIR device, and one uncooled LWIR device. Detailed information regarding the
focal lengths, sensor sizes, and lens models are included in table 2.

Spectral ~ Sensor size Focal

region [pixels] length

VIS 1920 x 1200 12 mm
VIS 1944 x 1104 23 mm
VIS 2992 x 1680 50 mm
VIS 1376 x 1032 50 mm
VIS 1280 x 1024 35 mm

SWIR 640 x 512 50 mm
MWIR  640x 512 50 mm
LWIR 640 x 480 35 mm

Table 2. Information regarding imaging devices utilized during
tests.

The five visible imaging systems tested included previous generation security cameras as well
as newer systems with higher resolution and larger dynamic range than past imagers. A variety
of focal lengths were chosen for the visible imagers to simultaneously capture different pixel on
target values.

The LWIR imaging device utilizes a microbolometer detector. These cameras represent a less
expensive, security-oriented LWIR product. They come embedded in environmental housings with
a single 35 mm focal length lens. Since this is a microbolometer based imager, the sensor is un-
cooled and can operate in the large temperature differentials expected at the test location. However,
the sensor noise present in a microbolometer imager is typically larger than that present in a cooled
LWIR imager.

The SWIR camera and MWIR camera are often used in scientific and engineering settings for
low-noise imaging. These cameras used fixed lenses of 50 mm focal length. Both cameras utilized
cooled detector arrays. For practical reasons, these cameras remained inside the testing facility
and were positioned such that a window could be opened or closed to enable recording of the UAS
targets.
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Spectral band Total Data

VIS 700.0 GB
SWIR 73.5 GB
MWIR 149.5 GB
LWIR 7.2 GB
Total 930.2 GB

Table 3. Total size of data collected across all spectral bands
during the week of August 15, 2016.

A significant quantity of data was collected during the testing period, as shown in table 3. Data
from the visible cameras was recorded using the Milestone video management software. Data from
the SWIR and MWIR imagers was recorded using vendor-supplied software. Data from the LWIR
camera was recorded using the ffmpeg software to convert an RTSP connection to file.

In regards to future testing, we strongly recommend the separation of any SWIR and MWIR
cameras to independent computer systems, as there appeared to be networking conflicts between
these cameras and the Milestone video management software used to record visible camera data.

We also recommend the inclusion of pan-tilt-zoom (PTZ) cameras placed above the testing
facility. Performing tests exclusively with fixed imagers increases test time and requires more
precise flying of UAS such that the target is captured in all fields-of-view. PTZ systems may offer
functional benefits and flexibility that could increase usable test data.
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4 Unmanned aerial system information

Three UAS were flown during the test period; a DJI Phantom 4 quad-copter, FreeFly Systems
Cinestar 8 octo-copter, and Finwing Sabre 1900. Information regarding theses systems is shown
in table 4. Images of the UAS are shown in figure 2.

UAS Name Dimensions Approximate Flight Duration

DJI Phantom 4 170 x 144 x 193 mm 28 minutes
Cinestar 8 octo-copter 1000 x 900 x 350 mm 30 minutes
Finwing Sabre 1900  Wing Span: 1900 mm 60-120 minutes

Length: 1320 mm

Table 4. Information regarding UAS utilized during tests.

Figure 2. Examples of commercially available UAS utilized in
these tests. (a) shows the DJI Phantom 4 quad-copter, (b) shows
the Cinestar 8 octo-copter, and (c) shows the Finwing Sabre 9000.
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5 Results

5.1 Comparison of spectral bands

Octo Fixed

Figure 3. Visual comparison of the quad-copter, octo-copter,
and fixed wing UAS morphologies in the VIS, SWIR, MWIR, and
LWIR spectral bands.
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Percent Contrast

Figure 3 shows the VIS, SWIR, MWIR, and LWIR images of the octo-copter, quad-copter, and
fixed wing UAS. Visible imagery tended to capture the target well when against the sky back-
ground, but performs poorly when the target is against highly cluttered backgrounds near the hori-
zon. SWIR imagery captured the quad-copter and fixed wing UAS well, but failed to capture the
struts of the octo-copter. This is likely due to the carbon fiber material composing the body of the
octo-copter. SWIR imagery is primarily relying upon reflected photons from the sun, and likely
suffers in low-light conditions. MWIR imagery performs well, but the particular camera used
in this test had fewer pixels on target than other devices tested. LWIR captures the quad, octo,
and fixed wing morphologies well, but suffers when targets are flown near the horizon or against
background objects of the same temperature, such as mountains or hills.

5.2 Target contrast against background

Quad-copter Octo-copter Fixed-wing
100 T T T T 100 T T T T 100 T T T
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Figure 4. Contrast percent of targets in figure 3 compared to
background contrast. The Michelson definition of contrast is used
in this analysis.

Figure 4 shows the percentage contrast of the targets from figure 3 against the background. This
data attempts to determine which spectral band enables the greatest contrast difference between
targets and background.

The quad-copter reflects well in the VIS, but the background sky also highly reflects scattered
sunlight, which yields a moderate contrast value. The SWIR signal is lower contrast than the
MWIR, which itself has lower contrast than the LWIR, the best spectral band to differentiate the
quad-copter from the background sky.

The octo-copter shows a similar trend as the quad-copter, with the exception of a larger VIS
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contrast. This is due to the black, highly absorbing material composing the majority of the octo-
copter. The very dark target against the sky background yields a high contrast difference.

The fixed wing shows similar trends, with SWIR, MWIR, and LWIR increasing in contrast.
The high contrast value in the LWIR is due to the target flying against the cold sky, and moderate
image processing on the LWIR camera that reduces noise of the background.

This analysis would indicate best to worst spectral bands for the detection of UAS targets is
LWIR, VIS, MWIR, and SWIR. However, this may not be the case in a practical CUAS system.
Clutter, such as birds, debris, and dust, appears different in each spectral band and environmental
specific conditions may guide a system towards a certain spectral band even if the contrast of the
target against the background is lower than other spectral regions.

5.3 Pixels on target evaluation

Figure 5 shows the quad-copter imaged by the VIS, SWIR, MWIR, and LWIR systems at different
pixel-on-target values.

20
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Figure 5. Images of the quad-copter UAS at different pixels-on-
target values for the VIS, SWIR, MWIR, and LWIR imagers.

Based upon the data shown in figure 5, estimated detection and assessment pixels on target are
calculated for the different spectral bands in table 5. These values should be taken as approxima-
tions, and further testing under varying conditions is needed before a more precise pixels on target
number can be found.
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Spectral band Detection Pixels On Target Assessment Pixels On Target

VIS 6 pixels (Fig. 5 Image E) 17 pixels (Fig. 5 Image D)
SWIR 8 pixels (Fig. 5 Image B) 13 (Fig. 5 Image A)
MWIR 8 pixels (Fig. 5 Image B) 15 pixels ¢

LWIR 5 pixels (Fig. 5 Image D) 14 pixels (Fig. 5 Image A)
Mean 7 pixels 15 pixels

“Note that figure 5 MWIR Image A has 11 pixels on target. We believe this too low a number for
assessment, but due to the large field of view of the MWIR camera tested we did not capture DJI Phantom
4 targets with greater pixel on target values.

Table 5. Estimated pixels on UAS target necessary for detection
or assessment.

Using an average detection pixels on target of 7 pixels, and an average assessment pixels on
target of 15 pixels, it is possible to evaluate an arbitrary distance at which the system must detect
or assess a target of a given size. The focal length needed to project the necessary number of pixels
onto a target at the desired distance can also be calculated.? Additionally, the individual pixel solid
angle subtended upon a sphere can be determined, and the total number of pixels needed to observe
a hemisphere can be found. These calculations are presented in table 6.

ZNote that a target size and detector pixel size must be chosen to perform this calculation. A 0.5 meter target and
15 pm pixel size were utilized in our calculations.
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Camera focal =~ Camera focal Gigapixels for Gigapixels for

Distance [m] length for length for hemispherical hemispherical
detection [mm] assessment [mm] detection assessment

100 21 45 0.004 0.018

250 52.5 112.5 0.024 0.1125

500 105 225 0.100 0.45

750 157.5 337.5 0.220 1.0125

1000 210 450 0.400 1.8

1500 315 675 0.880 4.05

2000 420 900 1.5 7.2

5000 1050 2250 9.8 45.0

Table 6. Using the data from table 5, and setting a target size of
0.5 meters and pixel size of 15 wm, distances at which detection
or assessment should occur were set and focal lengths necessary
to achieve this pixel-on-target value were calculated. Additionally,
using the instantaneous field of view of each pixel, the total num-
ber of pixels on a hemisphere required to meet the detection or
assessment distance were calculated.

The focal lengths estimated for detection and assessment are reasonable, though focal lengths
of over 500 mm can be difficult and expensive to acquire for certain spectral bands. An impor-
tant point to note is the 1 gigapixel threshold, which represents a just-achievable capability using
current technology. These calculations estimate that detection is achievable for a system out to ap-
proximately 1750 meters if long focal length lenses and large detectors are utilized in a gigapixel
sensor. Assessment appears achievable using 1 gigapixel at approximately 750 meters. Recent
investment in multi-sensor gigapixel imagers may be a reasonable path of investigation for UAS
detection via passive sensors.

5.4 Background clutter evaluation

Birds

Several birds were observed throughout the course of testing. Images from the SWIR and LWIR
are shown in figure 6.
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Figure 6. (a) bird in the SWIR, and (b) bird in the LWIR.

Bird targets represent a particularly challenging nuisance type. As evident from figure 6 (a),
birds can appear similar to fixed wing UAS. Birds were observed on the VIS, SWIR, and LWIR,
and to a much lesser extent, the MWIR.

Insects

(a) (b)

Figure 7. Insects as imaged by the SWIR camera. Targets aver-
aged less than ten pixels in size, and moved quickly through the
camera field of view.

The SWIR camera captured numerous small, bright, and fast moving targets. We theorize these
are flying insects near the camera that strongly reflect in the SWIR. The fast motion, small size,
and high reflectivity will likely cause alarms for automated systems using SWIR imagery.
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Temperature equivalence angle

Targets of different temperatures will image at different digital values in a LWIR imager. There-
fore, LWIR imager are only effective if the target being imaged is at a different temperature than
the background. UAS targets are typically higher temperature than that of the sky, but as the UAS
flies closer to the horizon the thermal background increases in temperature. Practically, this results
in an angular position above the horizon at which UAS appear invisible to a LWIR camera. Figure
8 shows a series of sequential images taken of the fixed wing Sabre UAS descending in altitude to
land. Targets well above the horizon are imaged with high contrast (figures 8 (a) through (c)), but
as the UAS descends it moves into higher temperature backgrounds and contrast is reduced (fig-
ures 8 (d) and (e)). At a certain position, contrast is entirely lost, and the UAS cannot be detected
against the background (figures 8 (f)). As the UAS continues to descend, contrast inverts and the
target becomes cooler than the background (figures 8 (g) and (h)).

(e) ® (8 (h)

Figure 8. Fixed wing UAS in the LWIR during landing. Target
contrast against background decreases as the UAS moves into an
atmospheric region of similar temperature compared to the UAS.
Contrast returns after target is below thermal equivalence zone and
is imaged as cooler than the background.

The contrast of the targets shown in figure 8 are plotted versus angle above horizon in figure 9.
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Angle above horizon vs. contrast
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Figure 9. UAS angle above horizon versus contrast for the fixed
wing Sabre UAS measured with the LWIR camera. Positive con-
trast indicates the target is brighter (and therefore hotter) than the
background, while negative contrast indicates the target is darker
(and therefore cooler) than the background. Zero contrast indicates
that the UAS target is the same temperature as the background.

We define the angle above the horizon at which target contrast reaches zero as the temperature
equivalence angle (TEA). The TEA value will vary based on the temperature of the target, and
the background environment temperature. In our particular test, the fixed wing Sabre TEA was
measured as approximately 1.1° above the horizon. Therefore, targets at 1000 meters distance
from the LWIR camera will be measured with zero contrast at approximately 19 meters above the
horizon.

If thermal imaging systems are used as a primary component to detect or assess the presence
of a UAS, the system TEA must be evaluated for different targets and at different environmen-
tal background temperatures to establish ingress angles that may present challenges to a CUAS
system.
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6 Discussion and conclusion

VIS imagers work best with targets located against a uniform background, and require external
light sources. Because of this, we believe VIS imagers will be less useful for detection and assess-
ment of UAS unless required by a human for assessment after detection by an additional sensor.

SWIR imagers do not appear to be good candidates for UAS detection due to their reliance of
external light sources, sensitivity to SWIR absorbing materials used on UAS, and frequent capture
of fast and bright insects.

LWIR imaging may be best suited for detection and assessment of UAS. However, nuisance
sources such as birds will also be captured in the LWIR, and certain angles above the horizon may
present challenges due to temperature equivalence of the target and background. MWIR may offer
better clutter rejection, while still relying upon self-emitted photons from targets.

We estimate that 7 pixels on target are needed for detection, and 15 pixels on target are needed
for UAS assessment. Over 1000 meter detection and assessment may be achievable with 1 to 2
gigapixel imagers, but this represents a significant engineering challenge, especially in the LWIR.

We recommend the following:

* Further investigation between the MWIR and LWIR to evaluate nuisance targets and perfor-
mance in highly cluttered environments

* Evaluation of these systems under night conditions

* Investigation of other optical sensing systems such as LWIR polarimetric imagers to deter-
mine detection and assessment capabilities
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