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Wondering what to blame? Turn PV performance assessments into
maintenance action items through the deployment of learning
algorithms embedded in a Raspberry Pi device.
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Abstract—Advanced monitoring of photovoltaic (PV) systems
can insure efficient operations. However, extensive monitoring
of large quantities of data can be cumbersome. The present
work introduces a simplified, cheap, yet effective data monitoring
strategy for classifying behavior, and determining lost revenues
automatically. This was achieved through the deployment of
Raspberry Pi (RPI) device at a PV system’s combiner box. The
RPI was programmed to collect PV data through Modbus com-
munications, and store the data locally on a MySQL database.
Then, using a Gaussian Process Regression algorithm the RPI
device was able to accurately estimate string level current,
voltage, and power values. Based on the residuals between this
estimate and the actual values the RPI was able to classify the
behavior as normal or in a fault condition using a Laterally
Primed Adaptive Resonance Theory neural network. In addition
identifying the fault condition, the RPI output the potential lost
revenue caused by the abnormal condition. The information
produced by the RPI could help define maintenance activities
in real-time so that problems could be addressed and solved
quickly.

Index Terms—fault classification, Gaussian Process, Laterally
Primed Adaptive Resonance Theory, Raspberry Pi

I. INTRODUCTION

Solar photovoltaic (PV) arrays require minimal maintenance
and operations to produce electricity. This is true, because
fixed tilt arrays have minimal moving parts. Whereas, gas gen-
erators or a wind turbines have components that must be oiled,
repaired, or replaced on a regular basis. Therefore, common
practice for many systems has been to install the PV panels
and then walk away. However, faults do occur, and financial
investments in large PV arrays demand strict performances
tolerances so that returns match expectations. Therefore, large
scale developments require intensive monitoring and oversight.

Current recommendations for PV system oversight suggest
metrics such as performance ratio (PR) [1], temperature cor-
rected PR, Energy Performance Index (EPI) SAM model,
EPI Regression model, and Power Performance Index (PPI).
However, these approaches do not provide an effective means
to detect and classify faults. Instead, the present work proposes
the implementation of a low cost intelligent Raspberry Pi (RPI)
device. The device can be deployed at combiner boxes or in-
verters to collect actual data through Modbus communications.
Then, the PV sub-system data can be analyzed by the onboard
analytics that includes advanced machine learning algorithms.

The integration of an intelligent RPI devices into a PV
system can perform automatic data collection and assessments
that can lead to improved operations. This paper introduces a
methodology where the RPI computes an estimate of system
performance using a Gaussian Process Regression (GPR)
algorithm. The estimated values were than compared with
the actual, and the differences were assessed by the Later-
ally Primed Adaptive Resonance Theory (LAPART) neural
network to detect and classify sub-system faults. The approach
not only classifies system anomalies but it also uses the
estimated performance to compute a lost revenue caused by
the fault condition. This abstract describes the implementation
of the RPI monitoring system and the embedded algorithms
in the methodology (Section II). It then outlines key results
and provides concluding remarks in Sections III and IV
respectively.

II. METHODOLOGY

The present work proposes the integration of an intelligent,
cheap, and deployable RPI device into a PV system that
can detect and diagnose fault conditions. Machine learning
algorithms, that include GPR and LAPART, were used to
estimate actual performance and then classify the status of a
PV system as shown in Figure 1. The process began with the
extraction of weather and actual system data through modbus
communications. The weather data was presented to the GP
estimator to define the ideal current, voltage, and power values.
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Fig. 1. The intelligent RPI included an embedded platform that first estimated
performance using a gaussian process algorithm. It then calculated the
difference between the actual and the estimate. The patterns in the differences
were then evaluated by a second learning algorithm that detected and diagnose
fault conditions. Finally, the difference between the actual and estimated
values were used to compute the lost revenue caused by the fault condition.

The estimated values were then subtracted from the actual



values produced by the system. These residual values were
used by the classification algorithm to detect and diagnose
fault conditions. In the event of a fault, the calculated residuals
were used to estimate the amount of money lost due to the
abnormal condition.

A. Estimate PV Performance

The estimated PV performance, described as the Estimator
in Figure 1, can be calculated using a component-based or
empirical model. For example, the python version of PV_LIB
(https://github.com/pvlib/pvlib-python) could be run on a RPI
device. However, in this experiment the estimator was the GPR
algorithm. The algorithms were presented with a training data
set, D = (z;,y)]i = 1,...n). The inputs x; included ambient
temperature, solar irradiance, and hour of the day, and outputs
y; were current, voltage, and power.

GP can be defined as a set of random variables where any
finite number of the set have a joint Gaussian distribution [3].
GP applies a distribution over functions that are specified
by a mean function and a covariance function as shown in
Equation 1.

fx) ~ GP(u(), k(z,2")) (D

The mean function, p(z), is usually defined to be zero and
the covariance k(x,z’) defines the prior properties of the
functions considered for inference [4]. The k in the covariance
represents the kernel function which projects the data into a
higher dimensional feature space to increase the computational
power of the algorithm [5].

B. Actual PV System

The intelligent RPI was deployed to monitor an actual
10.8kW,. system (Figure 2) located in Albuquerque, New
Mexico. The array had four strings of 10 modules that were
combined into into one prior to entering the inverter. The
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Fig. 2. The present work performed tests on a 10.8kW array. The array has
four strings that each have 10 modules. The strings are combined prior to
entering the inverter. In addition, each of the string’s current and voltage are
monitored.

RPI device, shown in Figure 3, was deployed inside the
combiner box and offered an energy efficient way to perform
computational tasks [9]. A critical task was collecting actual
sensor data which was achieved through Modbus communca-
tions. The device connected with the Modbus TCP/IP network
created by the Gantner Q.Station 101 data collection device
through the ethernet port. A Modbus serial connection was

achieved through the RPI USB port, which provided access
to inverter data. The data was extracted from the two Modbus
protocols using Python programing language script and stored
in a MySQL database on the RPI.

Fig. 3. The Raspberry Pi was located inside an enclosure attached
to the array. It was powered by a 5V power supply, and connected
to the existing data collection devices through Modbus TCP/IP and
Serial ports. It also has its own GPS time clock to maintain correct
date and time throughout the data collection process.

C. Classification of Faults

The classification of faults was performed using a LAPART
algorithm. The algorithm was introduced by Healy and Caudell
for logical inference and supervised learning [6]. The LA-
PART algorithm can converge rapidly towards a clear solution
because it does not depend on the gradient descent method
that is used in many popular algorithms such as the multi-
layer perceptron. The gradient descent approach is susceptible
to issues that include slow and/or incorrect convergence to
the optimal solution [7]. The LAPART architecture couples
two Fuzzy Adaptive Resonance Theory (ART) algorithms to
create a mechanism for making predictions based on learned
associations.

III. RESULTS

The results for this experiment were broken out into three
sections. The first section (Sec. III-A) describes the ability of
the GPR to estimate PV performance.

A. PV Performance Estimates

The GPR algorithm estimated current for each string, overall
voltage, and total power. The estimation could be performed
in real-time or at the end of each day. GPR was able to
estimate ideal performance well. For example, Figure 4 plots
the actual and estimated values for a single day. The results
of the classification of the residual values performed by the
LAPART algorithm were documented in Sec. III-B.
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Fig. 4. The estimated PV performance for current, voltage, and power fit well

with the actual values as shown for this single day of intermittent behavior.
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Fig. 5. Top: Actual and estimated power for a two day period. Middle: The
residual current and voltage indicates significant faults on the second day.
Bottom: The LAPART algorithm was able to classify the fault conditions

B. Fault Classification

The fault classification process used the LAPART algorithm
and could accurately classify normal, inverter, and shading
characteristics. For instance, two fault conditions were in-
troduced into the actual system. The first step, which was
to perform an estimate of the performance using the GP
algorithm, was conducted. The actual and estimated results
are plotted in the top graph of Figure 5. Then the difference
between the actual and estimated were computed and plotted
in the middle of Figure 5. Finally, the LAPART algorithm
considered the residual patterns and was able to identify
the normal and two fault conditions (inverter shutdown and
shading) over the course of a single day as shown in the bottom
graph of Figure 5.

C. Lost Production

The final task, performed by the intelligent RPI, was to
estimate the lost production caused by the fault conditions.
The difference between the GP estimate and the actual power
results were calculated and described in Figure 6. In this case,
the faults caused the overall energy production to reduce by

22.9kWh for the 10.8kW array.
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Fig. 6. The difference between the actual and estimated was used to calculate
the lost energy. In this case a total of 22.9kWh were not produced.

IV. CONCLUSION

The RPI device was integrated into an existing PV array
and successfully collected data through Modbus communi-
cations. The GP algorithm, embedded in the RPI, was able
to accurately estimate current, voltage, and power values.
The classification of faults was achieved using the LAPART
algorithm. Finally, the full paper will include a more detailed
review of estimate and classification accuracy for multiple
fault conditions.
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