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Non-linear Physics with Lasers

Dominant fields (e.g. this conference):
• Frequency combs
• Higher harmonics
• Nonlinear materials
• High intensity effects in solids/fibers

Characteristic parameters:
• Femto- to picosecond pulses
• Micro- to millijoule pulse energies
• Kilo- to megahertz rep-rate
• Nondestructive interaction

(Courtesy of phys.org / CAU Kiel)

This presentation:

2-4 kJ, few ns, 1-3 shots/day,
targets fully destroyed.
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So What?

Understanding the workings 
of a Sledgehammer is straight 

forward…
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1. Sandia’s Facilities and the MagLIF Program

2. Challenges for pre-heating fuel (“LPI” – nonlinear interaction)

3. How do we measure LPI - and what do we see?

4. Summary and other worries

Contents

M. Geissel - Nonlinear Laser Plasma Interaction 4



Sandia National Laboratories’ Pulsed Power Center

World’s most powerful
electric device (100TW, >20MA)

Can exceed 300TW, 2MJ
of X-ray output

Applications:

Accelerate flyer plates
(‘dynamic materials’)

or

Z-Pinch implosions
(ICF, radiation source)

Prototype Beamline for NIF

• Up to 4.5 kJ @ 527nm
• 0.5 – 4 ns pulse width
• 30 cm square beam size
• Programmable pulse 

shape
• Optional 15 GHz phase 

modulation

Mission:
Provide backlighting or 
additional heating 
capability in Z.
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Z-Backlighter
“Z-Accelerator”

Beamlet

Petawatt

Laser-
experiments

me



Magnetized Liner Inertial Fusion (MagLIF)

~1 cm
‘Drive’ B-Field from

Z-Machine (azimuthal)

Polyimide Laser
Entrance Hole (‘LEH’)

Beryllium liner

4-12 atm. Deuterium

‘Seeded’ B-Field
(axial)
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S.A Slutz et al.: 
Physics of Plasmas 17, 056303 (2010)



Magnetized Liner Inertial Fusion (MagLIF)

Phase 1: 
B-Field from Z’s Drive-Current 
starts to compress  liner (and fuel)

Phase 2: 
Z-Beamlet injects several 
kilojoules of pre-heat into fuel

• Magnetization of fuel
• Minimization of heat 

conduction losses
• B-Field Compression possible
• Tcompressed is proportional to Tpreheat
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Movie: Courtesy of C. Jennings
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B-field
laser
compression

Magnetized Liner Inertial Fusion (MagLIF)

Phase 3: 
Fuel compresses to densities 
and temperatures enabling 
thermonuclear fusion
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MagLIF experiments are “a bit destructive”

Before After
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High B

R
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Once Again:  Why initial B-Field and Pre-Heat?

Velocity (cm/s)

C
R

1
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(CR10: Rstart/Rend req. for 10 keV.)

The axial B-Field 
inhibits heat 
conduction

An initial temperature
relaxes compression
requirements

Initial Temperature:
--- Room-temp.
--- 50 eV
--- 100 eV
--- 150 eV

Early MagLIF Experiments in Z

Gomez et al.: PRL 113, 155003 (2014).
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Pre-Heat Challenges
Ideal World vs. Real World

(nonlinear laser-plasma interaction)
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IF Pre-Heat Behaved 
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Absorption K via inverse Bremsstrahlung:

Absorption is 
lower with higher
temperature

Absorption is 
higher with higher
electron density
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How Pre-Heat Actually Behaves

(a first indication: window transmission) 
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Laser energy ~ 2kJ
1µm polyester window

calibrated PIN 
Diode (incident)

PIN Diode + 
calorimeter 
(transmission)

incident
transmitted

Possible dilemma:  
• Too large laser spot doesn’t efficiently destruct window
• Too small laser spot may drill through fuel too fast
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LPI: Laser-Plasma Instabilities 1

(A Line-up of Common Suspects)

Basics: Laser Driven 
Electrostatic Waves

• Laser energy is transferred
to plasma oscillations.

• Resonant process
• Driver for instabilities

Stimulated Brillouin Scattering
(SBS)

ionse--gas

Stimulated Raman Scattering
(SRS)

• Momentum transfer to ions
(ion acoustic wave/soundwave)

• Little energy transfer
• Small wavelength shift for

scattered wave

ionse--gas

• Momentum transfer to electrons
(electron plasma wave/p plasmon)

• Stronger energy transfer
• Red-shift of scattered wave
• Generation of hot electrons likely

Plasma Physics:
Not the traditional
Raman effect from
vibration or rotation
of molecules!!! 
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LPI: Laser-Plasma Instabilities 2

(A Line-up of Common Suspects)

Only at ne = ¼ ncrit: 
Two-Plasmon-Decay Self-Focusing and Filamentation

ionse--gas
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• Absorption of photon

• Hot electrons very likely

• Not possible in low plasma
densities (ne,max < ¼ ncrit)

• Can occur during LEH 
heating and expansion
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High Te & Elas

Low Te & Elas

e-

e- ne

Nrefr.

• Heat transport and ponderomotive force expel 
electrons from hot spots

• Refractive index in hotspots increases: N2  (1-ne/ncrit)
 Focusing effect!
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LPI: Laser-Plasma Instabilities 3

Good to know…
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Thin and dense plasma Add thick but less 
dense plasma

Line Density and Volume Matter!!

LPI grows exponentially with 
propagation depth l:

ELPI  EXP (  l)

The Gain  increases

• inversely with ncrit laser)
2

• linearly with Ilaser

• linearly with ne



Reducing LPI:  Beam Smoothing

unconditioned

with phase plate

1.: Phase Plates

intermediate
field shows
very strong
intensity
modulations

small scale
modulations
decrease by
means of heat
conduction

2.: Spectral Dispersion (SSD)

Requires added bandwidth Other methods:

• 2-Dimensional SSD

• Polarization 
Smoothing (PS) for
2 reduction of
modulations

• Induced Spatial 
Incoherence (ISI)
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Experimental Results
Measurement Concepts and Data
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Laser Entrance Hole Transmission

Calorimeter

“LEH”
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Z-Beamlet

X-ray 
PIN diode

0

2V

1V

-10 ns 10 ns0 ns



M. Geissel - Nonlinear Laser Plasma Interaction 20

Laser Penetration Into a Gas Cell

laser

LEH diagnostic slit

D ~ 3.5 mm

~ 900µm laser spot, uncond.
315 torr Ne (2.1% ncrit)

D

Phase Plate, ~ 900µm @ 95%
376 torr Ne (2.5% ncrit)

0 5mm 10mm 15mm

0 5mm 10mm 15mm

X-ray filter: 1µm mylar

X-ray filter: 2µm mylar



SBS Backscatter Measurements
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Fiber to streaked 
spectrometer



All data without phase plate 
(data with phase plate pending)

SBS Backscatter Measurements
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Poor beam quality:
More SBS
Bigger  (filamentation)
 Spectral shift
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SBS Backscatter Measurements

Temporally and spectrally resolved

Notes: Gas is D2 (less SBS than Ne)
Measurements taken in Z



Summary
 Few things in plasma physics follow simple textbook rules.

 If you heat plasma with kJ-class lasers, you will see nonlinear LPI !!!

 The only thing better than a smooth beam is an even smoother beam.

 More measurements on SBS and additional capabilities (e.g. SRS!!).

 Even if LPI is reduced in favor of high laser deposition, we still worry for MagLIF:

 Contamination/mix of heavier elements (radiation loss!)

 Hydrodynamic instabilities (hopefully O.K.)

 Driver-Target coupling (under investigation)

 And more…
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Take this 
home:

Wish us
luck…

Pending:



EXTRAS
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SBS Backscatter Measurements in Z

no phase plate w/ phase plate w/ phase plate
(adjusted brightness)

Fiber to streaked 
spectrometer
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SBS Backscatter Measurements
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