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Abstract—We explore the use of asynchronous many-task
(AMT) programming models for the implementation of in situ
analysis towards the goal of maximizing programmer produc-
tivity and overall performance on next generation platforms.
We describe how a broad class of statistics algorithms can be
transformed from a traditional SPMD implementation to an
AMT implementation, demonstrating with a concrete example:
an measurement of descriptive statistics implemented in Legion.
Our experiments to quantify the benefit and possible drawbacks
of this approach are in progress, and we present some encour-
aging initial results on the (minimal) impact of the AMT-based
approach on code complexity, task scheduling, and application
scalability.

Index Terms—Programming Models, Asynchronous Many-
Task, Parallel Computing, Computational Statistics

I. INTRODUCTION

Science and engineering codes are currently facing the
daunting task of adapting to rapidly developing extreme-
scale computer architectures. Relative to current practice, both
the hardware and future algorithms will be characterized by
dynamic behavior and lack of uniformity, with architectures
that support increased concurrently by a factor of 40,000-
400,000 (cf. [1], [2])), yet are constrained by energy and
input/output (I/O).

A number of data analysis and visualization (DAV) research
efforts are currently focused on mitigating these extreme-scale
challenges, e.g. by developing in situ (cf. [3]–[5]) and in
transit (cf. [6]–[8]) frameworks wherein raw simulation output
is processed as it is computed, decoupling the analysis from
I/O and storing only the analysis results (which are typically
several orders of magnitude smaller than raw data).

Other research efforts seek to mitigate the complexities
imposed by future architectures via novel programming mod-
els. Many high performance computing (HPC) applications
have assumed static, homogeneous system performance, with
dynamic parallelism requirements stemming solely from the
work load, and thus typically follow the communicating
sequential processes (CSP) programming model using MPI
and MPI+X [9] approaches. However, the procedural and
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imperative nature of MPI requires application-level manage-
ment of system performance heterogeneity, fault tolerance,
and increasingly complex workflows. Asynchronous many task
(AMT) models and runtime systems, cf. [10]–[16], a leading
alternative to the CSP approach, attempt to mitigate these
challenges by allowing the compiler and runtime system to
assist with this management of these complexities. Further-
more, AMT models facilitate the expression of all forms of
parallelism (pipeline, task, and data). In Section II we discuss
these expected benefits in more detail - experiments to quantify
them are a major part of our ongoing work.

In Section III, we demonstrate how a broad class of statistics
algorithms can be transformed from their CSP formulation
to AMT implementation, illustrating that a holistic solution
(leveraging both programming models and DAV research) can
jointly maximize programmer productivity and code perfor-
mance on next generation computing platforms. We use the
Legion programming model for this work – similar imple-
mentations are possible in other AMT models.

Finally, Section IV discusses some of the possible draw-
backs that might arise from coupling analysis code with
the simulation code in an AMT model. We present some
encouraging early results that suggest these costs are small
enough that the use of AMT models is viable.

II. BACKGROUND AND BENEFIT OF AMT MODELS

A. The Legion Data-centric AMT Model and Run-time

Legion (cf. [11]) is an AMT model that makes data and
data-centric operations first-class programming constructs. A
Legion application is decomposed into a task hierarchy, and
tasks declare which parts of the application data they will
access or update. The Legion runtime is able to reason about
data usage of tasks, detect dependencies between tasks, and
issue data movement operations as needed, removing these
burdens from the developer. All runtime calls in Legion are
deferred, allowing the application code to issue tasks with
dependencies immediately – the runtime begins the execution
of that task only when it is safe to do so (i.e. its data
dependencies have been satisfied).

The Legion model separates the functional description of the
code (i.e. tasks and the data upon which they operate) from the
way in which the code is mapped to a given machine (where
to run tasks and place data). Application data is contained in
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logical regions, which have neither an implied location within
the memory hierarchy of the machine nor a fixed physical
layout. This allows performance-related transformations (e.g.,
the replication of read-only data to increase parallelism) to
be performed dynamically, and perhaps differently on dif-
ferent machines, without modifying the “machine-agnostic”
functional description.

B. Data-centric AMT Approach Benefits

The data-centric AMT model supports composability of the
simulation and analysis code bases. Traditional CSP simula-
tions and analysis code bases must be explicitly connected,
requiring manual data management and communication. Sub-
sequent changes in how analysis is done will require rewriting
parts of the simulation, and vice-versa. In contrast, a data-
centric AMT formulation reduces the entanglement of the
application and analysis code to simply what data is being
shared, and not when, where, or how this sharing occurs.
Analysis tasks should therefore be much easier to incorporate
into simulation code and can be more easily reused by other
codes.

In addition, the AMT approach provides performance porta-
bility in the face of increasing I/O cost and variability.
Different pieces of code will likely have different spatio-
temporal characteristics in terms of compute intensity, degree
of parallelism, data access patterns and the task and data
inter-dependencies. The decoupling of the functional code
from computation and data placement allows an analysis code
to easily be tuned for different machines or to be easily
implemented as either in situ or in transit.

Finally, the AMT approach provides an opportunity for
the runtime to make an efficient schedule of simulation and
analysis tasks. It may be possible to incorporate the analysis
workload into available gaps in the execution of the simulation,
whereas this scheduling requires significant programmer effort
(and is generally not performance-portable) in the MPI+X
models. Dynamic load balancing provided by AMT models
has potential to allow for more graceful handling of dynamic
variability in analysis tasks and simulation.

III. PARALLEL STATISTICS IN LEGION

A. Parallel Statistics Engines

In earlier work, we described a scalable, parallel statisti-
cal analysis library, using SPMD data parallelism with MPI
(cf. [17]–[19]). It was designed to mimic the predominant
statistical analysis workflow (so that a data analyst would
find it natural and intuitive to use) and to be conducive to
embarrassingly parallel implementations when possible. In
order to meet these requirements, those parts of the analysis
which by construction are not embarrassingly parallel were
isolated so that design trade-offs be limited to operations
explicitly requiring parallel communication. The resulting
analysis workflow comprises four disjoint operations, and a
given analysis may use all or just a subset. Illustrated in
Figure 1, the operations are as follows:

• Learn a model from observations,

• Derive statistics from a model,
• Assess observations with a model, and
• Test a hypothesis.

Fig. 1: The four operations of statistical analysis and their interactions with
input observations and models. When an operation is not requested, it is
eliminated by connecting input to output ports.

From the parallelism standpoint, the Learn operation is a
special case of the map-reduce pattern [20], while the
remaining operations are embarrassingly parallel. Specifically,
all local values associated with the same key are merged by
the reduce function to compute the global primary model.
In some of the statistical algorithms, namely moment-based,
it is not necessary to communicate the keys, so sending
values alone is unambiguous and the number of such keys
is typically very small. This allows for an implementation of
the reduce function as an AllGather MPI collective. In
contrast, for quanta-based algorithms, it is necessary to com-
municate keys , so the reduce function is implemented using
a Gather-Broadcast scheme, as illustrated in Figure 2.
This can cause problems as network size increases, thereby
justifying the need to investigate AMT strategies.

B. Legion Approach and Implementation

We now propose an AMT implementation of the parallel
statistics engines. Again, we use the Legion programming
model for this work, but expect that our experience would
translate to other AMT models as well. The existing decom-
position into independent operations and isolation of parts that
do not require global communication from the others allows
for a natural transition to an AMT model.

In the Legion implementation, data movement is no longer
explicitly described (for instance with the dashed red arrow in
Figure 2). Instead, a logical region is created to contain the
primary and derived models, which we call the aggregation
region. Sub-tasks launched by a top-level task pick up work
on those data segments to which they are assigned, in a
similar way to what is done by parallel processes in the SPMD
context, at least for the Learn and Assess phases. The main
difference between the Legion and SPMD implementations is
that a broadcast of the global primary model is not necessary,
as data movement operations are handled by the run-time.
Instead, the annotation of data requirements for each task
provides the run-time with sufficient information to address
conflicts and to prevent incomplete or incorrect model updates.
This works well for statistical aggregation operations (set
unions, number additions and multiplications) as they are
commutative, and therefore the primary model is guaranteed to
be independent of the order in which tasks report their results.

The Derive operation is performed by the top-level task, and
its results, also stored in the aggregation region, are logically



Fig. 2: An MPI implementation of the
parallel order statistics; dashed red arrows
indicate inter-process communication. In the
map-reduce pattern, keys are the raw ob-
servations and values are the number of
observations.

Fig. 3: A simplified example illustrating the operations
of the task-based order statistics; solid blue arrows in-
dicate task launches whereas dashed red symbolize the
logical aggregation region. Sub-tasks are not obligated
to terminate in this order, as both union and addition
operators are commutative.

Fig. 4: Task scheduling timeline: Learn
sub-tasks are displayed in light blue color.

available to any Assess sub-task launched from the top level.
This asynchronous many-task Learn/Derive/Assess scheme is
represented in Figure 3 in the case of order statistics. One of
the benefits of this new approach is that the approach is valid
for both quanta-based and moment-based statistics.

We now provide a high-level description of our Legion
implementation of the scheme outlined in Figure 3 for the
descriptive statistics use case. The reader interested in a
more detailed description is invited to read [21]. In the case
of moment-based descriptive statistics, the primary statistical
model computes the following double-precision values: sample
size, minimum, maximum, mean, and centered M2, M3 and
M4 aggregates, using the online versions of the process-local
update formulas for these quantities, whereas the aggregation
with the global model is computed by means of the pairwise
versions (cf. [22]). In turn, Learn tasks are launched by the
top-level task as sub-tasks for each member of the input data
partition. Learn tasks data dependencies include reading their
subset of the input data and reading and writing the output
region where results are to be aggregated.

The Derive task is launched only by the top-level task, for
it only needs to read the small set of primary statistics in
order to compute the derived statistics which, for descriptive
statistics, are the variance, standard deviation, skewness and
kurtosis estimators. This operation is typically negligible in
computational terms for most statistical analyses. Derive task
data dependencies include read-only access to the first field of
the logical region used to store the primary statistical model,
and write access to the second field for the derived model.

IV. ASSESSMENT

Experiments to quantify the expected benefts of the AMT
approach for this style of in situ analysis are in progress,

but such a significant change in programming style is not
without potential risks either. As a “sanity check”, we have
performed some initial experiments focused on these risks. A
poor result in any one of these assessments would indicate
that the approach might not be viable.
Code complexity: Some additional complexity is necessary

when coupling simulation and analysis code in situ, but
this complexity should be contained and minimized as
much as possible.

Heterogeneous task scheduling: An AMT runtime must be
able to schedule both simulation and analysis tasks,
ideally reducing, but certainly not introducing idle CPU
periods.

Impact on scalability: The use of an AMT runtime must
not introduce any new scalability bottlenecks into the
application.

These initial experiments were conducted by inserting
our Legion prototype implementation into a Legion port of
MiniAero, a Mantevo mini application (cf. [23]–[25]), as a
surrogate for a full-scale scientific application.

A. Code Footprint

The operation of our analysis prototype in situ requires that
adaptor code (code to create and launch the Legion tasks)
be added to the MiniAero proxy application. The amount of
adaptor code should be kept as small possible.

The first part of MiniAero/Legion modified was its internals
that hard-code one index per type of task allowed to be created
at run-time: we thus had to create new entries for the Learn,
Derive, and Assess tasks, as well has a couple of ancillary
tasks. We also modified the user interface of MiniAero/Legion
in order to allow for the specification of additional parameters



in the command line arguments to be passed to the in situ
analysis.

In addition, the main file as well as the top-level task of
MiniAero/Legion was modified to create, register, launch, and
delete the statistics tasks. It takes twelve lines to specify the
aggregation region for primary statistics in the top-level file.
Note that another aggregation region is created similarly for
the derived statistics. The scheme, illustrated in Figure 3, is
actually invoked from inside the time-loop and takes seven
lines to initialize statistics, launch Learn and Derive tasks
and optionally launch a Dump task. We conclude this brief
overview of the adaptor code that is currently needed by
indicating that it was only necessary to add a total of ca. eighty
lines of C++ code in six different files of MiniAero/Legion.
See [21] for details.

B. On-Node Parallelism

C. On-Node Parallel Scalability

As an early check of scalability impacts, we measured the
scaling behavior of just the Learn task in an on-node setting,
performing an in situ analyses of the initial mass values of the
3D Sod problem, cf. [26], which comes with the MiniAero
distribution. Although what ultimately matters is the scala-
bility of the overall combination of simulation and analysis
workloads, the combination can scale no better than any of its
individual components. The test platform was a single Linux
server, containing two 8-core Xeon E5-2670 2.6GHz CPUs.
Scalability was measured by running test cases on different
numbers of cores (the MiniAero simulation code constrains
these choices to powers of 2), either using the same input size
(i.e. strong scaling) or with an input size proportional to the
core count (i.e. weak scaling). Each test was run 20 times in
order to capture any performance variability. Three separate
series of timings were retained, corresponding to the the
shortest (“best”), average, (“mean”) and longest (“worst”) in-
situ analysis execution speeds. Figure 5 presents weak (R(p))
and strong (SN (p)) scaling numbers for each of these series,
normalized with respect to its own timing at p = 1, obtained
with a 128×256×8 reference grid, scaled up along the x-axis
for the weak scaling analysis.
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Fig. 5: Scaling of Learn tasks on a single node: left, weak
scaling with a 128× 256× 8 grid; right, weak scaling with a
128× 256× 8 grid per task.

These results reveal optimal on-node scaling, both weak and
strong, except when the node is fully subscribed: in this case,

with 16 Learn tasks. This is not surprising, as the top-level task
is still running as all Learn tasks are launched; therefore, when
16 sub-tasks are executed, at least one core must handle two
tasks concurrently. Moreover, background OS perturbations
are to be expected and their relative impact increases when all
cores of the CPUs are utilized. These results however demon-
strate that our approach of using aggregation regions instead
of bulk-synchronous inter-thread communication performs as
well as possible when running on a single node, and therefore
should not impact scalability of the overall application.

V. CONCLUSION

We see great promise in an approach to in situ data analysis
and visualization based on the use of AMT programming
models. Our case study implementing established statistics al-
gorithms in this model is a work in progress, but initial results
are very encouraging. Porting the analysis code from an MPI
implementation into a Legion one was straightforward (thanks
in part to an initial design that has separated computation
from communication for other reasons). The additional code
required to connect the analysis code to the main simulation
code is well contained, and early performance tests raise no
concerns related to task scheduling or impact on scalability.
Further experiments will attempt to quantify the benefits of
the AMT approach to in situ analytics, measuring overall
(i.e. simulation and analysis) application performance and
scalability in comparison to an MPI-based implementation.
We expect these benefits to become increasingly important
as scientific simulations and their associated analyses run at
extreme scale.

REFERENCES

[1] R. Stevens et al., “Architectures and technology for extreme
scale computing,” U. S. Department of Energy, Tech. Rep.,
2009. [Online]. Available: http://science.energy.gov/∼/media/ascr/pdf/
program-documents/docs/Arch tech grand challenges report.pdf

[2] S. Ahern et al., Scientific Discovery at the Exascale, a
Report from the DOE ASCR 2011 Workshop on Exascale Data
Management, Analysis, and Visualization, 2011. [Online]. Avail-
able: http://science.energy.gov/∼/media/ascr/pdf/program-documents/
docs/Exascale-ASCR-Analysis.pdf

[3] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In-situ
visualization for large-scale combustion simulations,” IEEE Computer
Graphics and Applications, vol. 30, pp. 45–57, 2010.

[4] J.-M. F. Brad Whitlock and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Proc. of
11th Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV’11), April 2011.

[5] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Gevecik,
M. Rasquin, and K. Jansen, “The paraview coprocessing library: A
scalable, general purpose in situ visualization library,” in Proc. of IEEE
Symposium on Large Data Analysis and Visualization (LDAV), October
2011, pp. 89 –96.

[6] V. Vishwanath, M. Hereld, and M. Papka, “Toward simulation-time data
analysis and i/o acceleration on leadership-class systems,” in Proc. of
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
October 2011.

[7] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just
In Time: Adding Value to The IO Pipelines of High Performance
Applications with JITStaging,” in Proc. of 20th International Symposium
on High Performance Distributed Computing (HPDC’11), June 2011.



[8] J. C. Bennett et al., “Combining in-situ and in-transit processing
to enable extreme-scale scientific analysis,” in SC ’12: Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Salt Lake Convention Center,
Salt Lake City, UT, USA, November 10–16, 2012, J. Hollingsworth,
Ed. IEEE Computer Society Press, 2012, pp. 49:1–49:9. [Online].
Available: http://conferences.computer.org/sc/2012/papers/1000a089.pdf

[9] W. Gropp, “MPI at exascale: Challenges for data structures and
algorithms,” in Proceedings of the 16th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 3–3. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-03770-2 3

[10] A. Buss, H. Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauch-
werger, “STAPL: standard template adaptive parallel library,” in Pro-
ceedings of the 3rd Annual Haifa Experimental Systems Conference,
2010, pp. 1–10.

[11] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
expressing locality and independence with logical regions,” in SC
’12: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2389086

[12] T. Heller, H. Kaiser, and K. Iglberger, “Application of the parallex
execution model to stencil-based problems,” Comput. Sci., vol. 28, pp.
253–261, 2013.

[13] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent ob-
ject oriented system based on c++,” in OOPSLA 1993: 8th Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications, 1993, pp. 91–108.

[14] J. D. D. S. Germain, S. G. Parker, C. R. Johnson, and J. McCorquodale,
“Uintah: a massively parallel problem solving environment,” 2000.
[Online]. Available: http://content.lib.utah.edu/u?/ir-main,29551

[15] E. A. Luke, “Loci: A deductive framework for graph-based algo-
rithms,” in Computing in Object-Oriented Parallel Environments (3rd
ISCOPE’99), ser. Lecture Notes in Computer Science (LNCS), S. Mat-
suoka, R. R. Oldehoeft, and M. Tholburn, Eds. San Francisco, CA,
USA: Springer-Verlag (New York), Dec. 1999, vol. 1732, pp. 142–153.

[16] T. Mattson, R. Cledat, Z. Budimlic, V. Cave, S. Chatterjee,
B. Seshasayee, R. van der Wijngaart, and V. Sarkar, “OCR:
The Open Community Runtime Interface,” Tech. Rep., June
2015. [Online]. Available: https://xstack.exascale-tech.com/git/public?
p=xstack.git;a=blob;f=ocr/spec/ocr-1.0.0.pdf;hb=HEAD

[17] B. Wylie and J. Baumes, “A unified toolkit for information and
scientific visualization,” in Proc. SPIE 7243, Visualization and Data
Analysis, San Jose, CA, U.S.A., Jan. 2009. [Online]. Available:
http://doi.org/10.1117/12.805589
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[22] P. Pébay, “Formulas for robust, one-pass parallel computation of
covariances and arbitrary-order statistical moments,” Sandia National
Laboratories, Sandia Report SAND2008-6212, Sep. 2008. [Online].
Available: http://infoserve.sandia.gov/sand doc/2008/086212.pdf

[23] K. Franko, T. Fischer, P. Lin, and S. Bova, “CFD for next generation
hardware: Experiences with proxy applications,” in Proc. 22nd AIAA
Computational Fluid Dynamics Conference, Dallas, TX, Jun. 2015.

[24] J. Bennett, R. Clay et al., “ASC ATDM Level 2 Milestone
#5325: Asynchronous many-task runtime system analysis and as-
sessment for next generation platforms,” Sandia National Labora-
tories, https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/ATDM-
AMT-L2-Final-SAND2015-8312.pdf, Sandia Report SAND2015-8312,
Sep. 2015.

[25] “Mantevo.” [Online]. Available: http://mantevo.org/

[26] G. A. Sod, “A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws,” J. Comput. Phys., no. 27,
pp. 1–31, 1978.


