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The need for model calibration

Climate models, including Land Surface Models (LSMs) calibrated to
perform well at the global scale

— For practical planning, engineering and assessment of climate change,
need predictions at a finer resolution e.g., county or provincial scale

Many parameterizations in LSMs are scale-dependent

— As spatial resolutions become finer, or when used at regional or site-
level, need re-calibration

— Calibration (observational) data is available at site scales
Limited observational data and structural errors in LSMs hinder
calibration

— Have to continuously estimate uncertainty in calibrated parameters

— Need to model structural errors in some form when performing
calibration

— Often have to consider vectors and fields as “parameters” being
estimated, not just scalars E.g., CO2 flux fields

Some LSM calibration work performed; some idea of what might work
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The calibration pipeline
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Challenges in calibration

Structural errors: In calibration, structural
errors may be

— Removed e.g., use better sub-model OR

0.4

— Modeled and estimated from observations;
need random field models
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0.2

0.1

Uncertainty quantification: Limited
observational data demand that

— We reduce dimensionality beforehand

— Estimate model inputs along with their Including physics often improves
uncertainty emulators

Emulators: curve-fits of model responses; used to address the
computational expense of Bayesian methods
— Not always possible to make accurate emulators
— Emulators for fields (not scalars) tend to require huge training data
— Rough model responses lack good parameterizations
Scalability: Many statistical algos are parallelizable but tools are serial
— Popular ones: R, Matlab, Dakota, UQTK



Solutions we need —1/2

Parallel MCMC methods for calibration
— To calibrate using LSMs, not their emulators

Prototypes exist, but:
 Scalability not proven (yet)
* Don’t combine LSMs and their (perhaps inaccurate) emulators
* No mature software base yet

Emulators of different types

Many types of emulators exist when model response is smooth
* But we need a “recipe” to decide what type fits a given training dataset

Need non-stationary RFMs for model responses that are rough

We also need classifiers to stay in the “physical” part of a parameter
domain

e Or at least, where an emulator is usable

Finally, we need scalable (> 1K cores) tools that can fit emulators to
large datasets



Solutions we need — 2/2

* Non-stationary random field models
— Fancy name for parameterizations that can capture rough fields

— Needed when the length-scale of model response variation changes in
perturbed parameter domain

e Examples: wavelet-based, tree-based etc.

* Basicidea is to chop the parametric domain into sub-domains (in a data-
driven manner) and fit conventional emulators with compact support

— They need specialized algorithms to fit to training data

* Need to use “big data analytics” for fitting emulators & RFMs
— Fancy name for very scalable statistical tools

— Contain scalable, statistical algos e.g., regression, shrinkage, NN, PCA,
classifiers

— Existing frameworks like Spark/MLlib and H20 scale to Google-sized
problems - our emulator training dataset won’t stretch them

* Finally, integration with a bench-marking system
— Check the usefulness of calibration



Practicalities

Prototypes of 3 / 5 solutions have been demonstrated (see 2 pager)
— “big-data-analytics” in anything useful — not yet (2015 a-release)
— No integration with a benchmarking system either

— Scalable (MPI + R) tools to “do discovery” in climate datasets
e U. Minnesota (NSF-funded); http://climatechange.cs.umn.edu;

* No calibration or emulators
Ongoing ASCR-funded work on developing RFMs and parallel MCMC
— Prototypes/proof-of-concept; won’t fund hardened tools
— Have been demonstrated with LSMs
Deliverables — to be useful in climate modeling, we need:
— Libraries of scalable, multi-chain MCMC methods

— Libraries of emulators that implement a pipeline:
* Fit & simplify emulators to data using big-data-analytics (BDA) platforms
* Select between them using ML model selection technigues
e BDA infrastructure at supercomputing centers

— Integration of calibration libraries with a benchmarking package
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http://climatechange.cs.umn.edu

Synopsis

We need a hardened software base for calibration of climate models

— LSMs are the easiest target; there are preliminary results and
prototype implementations of such a software base

Calibration should yield the objects of interest as PDFs
— Quantify the uncertainty due to limited data and/or structural errors
The main constituents of this software base would be:
— Methods to make and select emulators from very large training data
— Use of big data analytics to fit emulators and RFMs to large data
— Parallel calibration methods, in case we cannot make emulators
— Integration with a benchmarking package
In order to achieve this, we will need:

— A use-case e.g., LSMs, to pose realistic calibration problems rather
than theoretical ones

— A team of climate scientists & ASCR-types to get this done
— Funding would also be appreciated ©
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Calibration methods & shortcomings -1/2

* During calibration, structural errors are incorporated in two ways

— Remove them: e.g. use a detailed sub-surface simulator when using an
LSM in calibration. E.g., use PFLOTRAN with CLM4

— Estimate them: use a statistical parameterization for them and
estimate them during calibration

* The effect of limited observational data is addressed in 2 ways

— Dimensionality reduction: Estimate just the important model
parameters

* Use sensitivity analysis or shrinkage to discover them

— Bayesian calibration: Use a Bayesian formulation and a method like
Markov chain Monte Carlo (MCMC) or Ensemble Kalman Filters (EnKF)
to estimate parameters as PDFs

e PDFs provide you with a concise measure of estimation uncertainty
* Bayesian calibration is always more comp. expensive (102x-10°x)
— Sometimes, scalable methods exist e.g., EnKFs

— Else, we need to use emulators (stat. curve-fits acting as proxies) 10



Calibration methods & shortcomings -2/2

Emulators are NOT a silver bullet

— Made by fitting response surfaces to training data from perturbed
parameter runs

— Limited to 1-10 parameters- huge training data requirements
Often not possible to make accurate emulators (e.g., < 10%)
Often need to model fields (not scalars) as a function of perturbed

parameters

— Both need parameterizations of surfaces in high dimensions (called
random field models, RFMs)

Tools to fit emulators usually serial (DAKOTA, Matlab, R)

— Sometimes the training data does not fit in the memory (e.g., if
emulating fields, not scalars)
— We need:
e Scalable, multi-processor statistical frameworks for fitting emulators
e Calibration tools that will work if we fail to make emulators
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Representative results of emulators

* Aim to reproduce moisture content distribution by combining data

dimensional reduction technique (PCA) and Gaussian process regression.
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Representative results of emulators

A more heterogeneous problem require more advanced emulator

technique: here based on coarse-grid simulation and PODMM
downscaling technique.

truth

i % emulator i

IR Including physics-related

ik B information (through efficient
coarse model) can improve the
representation. Still, accuracy is not

uniform.
0

0.2 Kolmogorov-Smirnov Statistics PDF at (a) PDF at (b)
——
l — fROM

0.2r (b) 0. 21 ‘

Mﬂﬂ | :
01 - a) . ||l WWNWWV w [ |
O \
2006 2007 2008 2009 2010 0.2 0.4 0.2 0.4

3:1-3
year m3m>3 m’m



RMSE(bar)

P

RMSE

S
i

GPR

S
i
S
=

Sobol Sensitivity Indices
RS-HDMR  Cut-HDMR

S
i

aPC

Effects of ROM accuracy on Global SA

A

2 - = ROM studied:

of /4y | EEEEN_ + GPR:Gaussian Process

J& s ' %A& Regression

, e} ~ |+ Cut-HDMR: Cut High
bt | o — Dimensional Model Reduction
PN —%h., . * RS-HDMR: Random sampling

M . . @f/ HDMR
) j . | /[~ —<] « aPC: arbitrary Polynomial

o
o

‘ 1 | ‘ — Chaos
" Accuracy of emulator depends

eo
~
s
{
o
; g °
? .
]
s i =
%
s o
~
op PR
El
. e
2
s

i * type of ROMs: GPR and cut-
_ ‘ " HDMR have better accuracies.
: | T ‘ —=5 | * smoothness in the variables
\ =y studied: pressure easier to
: . —Caprock k, . .
’ - estimate than saturation.
RS .

" oA A “—__| Accuracy of analysis
I S ¢ Less sensitive to emulators if
0.8 08 /\/’— |7 Res.® . . . .

— s, only qualitative analysis is
0.6 0.6 ——Caprock k,
| = | - needed.

- Source: Zhang, Y, et al. (2016). "Evaluation of
" 8 o Multiple Reduced-Order Models to Enhance
E e o fow am o w % w o mow w0 % m—w w  Confidence in Global Sensitivity Analyses””

Submitted.



