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The need for model calibration

• Climate models, including Land Surface Models (LSMs) calibrated to 
perform well at the global scale

– For practical planning, engineering and assessment of climate change, 
need predictions at a finer resolution e.g., county or provincial scale

• Many parameterizations in LSMs are scale-dependent

– As spatial resolutions become finer, or when used at regional or site-
level, need re-calibration

– Calibration (observational) data is available at site scales

• Limited observational data and structural errors in LSMs hinder 
calibration

– Have to continuously estimate uncertainty in calibrated parameters

– Need to model structural errors in some form when performing 
calibration

– Often have to consider vectors and fields as “parameters” being 
estimated, not just scalars E.g., CO2 flux fields

• Some LSM calibration work performed; some idea of what might work 2



The calibration pipeline
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Challenges in calibration
• Structural errors: In calibration, structural 

errors may be 

– Removed e.g., use better sub-model OR 

– Modeled and estimated from observations; 
need random field models

• Uncertainty quantification: Limited 
observational data demand that

– We reduce dimensionality beforehand

– Estimate model inputs along with their 
uncertainty 
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• Emulators: curve-fits of model responses; used to address the 
computational expense of Bayesian methods

– Not always possible to make accurate emulators

– Emulators for fields (not scalars) tend to require huge training data

– Rough model responses lack good parameterizations

• Scalability: Many statistical algos are parallelizable but tools are serial

– Popular ones: R, Matlab, Dakota, UQTK

truth emulator

Including physics often improves 
emulators



Solutions we need – 1/2

• Parallel MCMC methods for calibration

– To calibrate using LSMs, not their emulators

– Prototypes exist, but:

• Scalability not proven (yet)

• Don’t combine LSMs and their (perhaps inaccurate) emulators

• No mature software base yet

• Emulators of different types

– Many types of emulators exist when model response is smooth

• But we need a “recipe” to decide what type fits a given training dataset

– Need non-stationary RFMs for model responses that are rough

– We also need classifiers to stay in the “physical” part of a parameter 
domain

• Or at least, where an emulator is usable

– Finally, we need scalable (> 1K cores) tools that can fit emulators to 
large datasets 
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Solutions we need – 2/2

• Non-stationary random field models

– Fancy name for parameterizations that can capture rough fields

– Needed when the length-scale of model response variation changes in  
perturbed parameter domain

• Examples: wavelet-based, tree-based etc.

• Basic idea is to chop the parametric domain into sub-domains (in a data-
driven manner)  and fit conventional emulators with compact support

– They need specialized algorithms to fit to training data

• Need to use “big data analytics” for fitting emulators & RFMs

– Fancy name for very scalable statistical tools 

– Contain scalable, statistical algos e.g., regression, shrinkage, NN, PCA, 
classifiers

– Existing frameworks like Spark/MLlib and H20 scale to Google-sized 
problems - our emulator training dataset won’t stretch them

• Finally, integration with a bench-marking system

– Check the usefulness of calibration 6



Practicalities
• Prototypes of 3 / 5 solutions have been demonstrated (see 2 pager)

– “big-data-analytics” in anything useful – not yet (2015 -release)

– No integration with a benchmarking system either

– Scalable (MPI + R) tools to “do discovery” in climate datasets

• U. Minnesota (NSF-funded); http://climatechange.cs.umn.edu; 

• No calibration or emulators

• Ongoing ASCR-funded work on developing RFMs and parallel MCMC

– Prototypes/proof-of-concept; won’t fund hardened tools

– Have been demonstrated with LSMs

• Deliverables – to be useful in climate modeling, we need:

– Libraries of scalable, multi-chain MCMC methods 

– Libraries of emulators that implement a pipeline:

• Fit & simplify emulators to data using big-data-analytics (BDA) platforms

• Select between them using ML model selection techniques

• BDA infrastructure at supercomputing centers

– Integration of calibration libraries with a benchmarking package 7

http://climatechange.cs.umn.edu


Synopsis

• We need a hardened software base for calibration of climate models

– LSMs are the easiest target; there are preliminary results and 
prototype implementations of such a software base

• Calibration should yield the objects of interest as PDFs

– Quantify the uncertainty due to limited data and/or structural errors

• The main constituents of this software base would be:

– Methods to make and select emulators from very large training data

– Use of big data analytics to fit emulators and RFMs to large data

– Parallel calibration methods, in case we cannot make emulators

– Integration with a benchmarking package

• In order to achieve this, we will need:

– A use-case e.g., LSMs, to pose realistic calibration problems rather 
than theoretical ones

– A team of climate scientists & ASCR-types to get this done

– Funding would also be appreciated 
8



BACKGROUND

9



Calibration methods & shortcomings -1/2

• During calibration, structural errors are incorporated in two ways

– Remove them: e.g. use a detailed sub-surface simulator when using an 
LSM in calibration. E.g., use PFLOTRAN with CLM4

– Estimate them: use a statistical parameterization for them and 
estimate them during calibration

• The effect of limited observational data is addressed in 2 ways

– Dimensionality reduction: Estimate just the important model 
parameters

• Use sensitivity analysis or shrinkage to discover them

– Bayesian calibration: Use a Bayesian formulation and a method like 
Markov chain Monte Carlo (MCMC) or Ensemble Kalman Filters (EnKF) 
to estimate parameters as PDFs

• PDFs provide you with a concise measure of estimation uncertainty

• Bayesian calibration is always more comp. expensive (102x-106x)

– Sometimes, scalable methods exist e.g., EnKFs

– Else, we need to use emulators (stat. curve-fits acting as proxies) 10



Calibration methods & shortcomings -2/2

• Emulators are NOT a silver bullet

– Made by fitting response surfaces to training data from perturbed 
parameter runs

– Limited to 1-10 parameters- huge training data requirements

• Often not possible to make accurate emulators (e.g., < 10%) 

• Often need to model fields (not scalars) as a function of perturbed 
parameters

– Both need parameterizations of surfaces in high dimensions (called 
random field models, RFMs)

• Tools to fit emulators usually serial (DAKOTA, Matlab, R)

– Sometimes the training data does not fit in the memory (e.g., if 
emulating fields, not scalars)

– We need:
• Scalable, multi-processor statistical frameworks for fitting emulators

• Calibration tools that will work if we fail to make emulators 11



Representative results of emulators 
• Aim to reproduce moisture content distribution by combining data 

dimensional reduction technique (PCA) and Gaussian process regression.
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Looks good for a 
single snapshot, BUT 
…

What’s the impact of 
these outliers on UQ 
analysis?

• Accuracy is not uniform, with some outliers.

• Can we statistically bound the error?

Somewhat.  How do we use these 
estimates in an UQ analysis?

Source: Liu, Y., et al. (2015). "A hybrid reduced-order model of 
fine-resolution hydrologic simulations at a polygonal tundra site." 
Vadose Zone Journal. doi:10.2136/vzj2015.05.0068



Representative results of emulators 
• A more heterogeneous problem require more advanced emulator 

technique: here based on coarse-grid simulation and PODMM 
downscaling technique.
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Source: Pau, G.S.H, et al. (2016). "Accurate and efficient 
prediction of fine-resolution hydrologic and carbon dynamic 
simulations from coarse-resolution models." WRR. Accepted.

truth emulator
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Including physics-related 
information (through efficient 
coarse model) can improve the 
representation.  Still, accuracy is not 
uniform.



Effects of ROM accuracy on Global SA
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ROM studied:
• GPR: Gaussian Process 

Regression
• Cut-HDMR: Cut High 

Dimensional Model Reduction
• RS-HDMR: Random sampling 

HDMR
• aPC: arbitrary Polynomial 

Chaos
Accuracy of emulator depends
• type of ROMs: GPR and cut-

HDMR have better accuracies.
• smoothness in the variables 

studied: pressure easier to 
estimate than saturation.

Accuracy of analysis
• Less sensitive to emulators if 

only qualitative analysis is 
needed.
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Source: Zhang, Y, et al. (2016). "Evaluation of 
Multiple Reduced-Order Models to Enhance 
Confidence in Global Sensitivity Analyses.” 
Submitted.


