
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia’s Next Generation Code
Architecture & Tools

Rob Hoekstra & ASC Team

January 27, 2016

SAND2016-0709PE

NextGen Software Architecture

 ASC/ATDM gives us an opportunity to target new
programming models and environments
 Massive Parallelism

 Performance Portability

 Data Management

 Asynchronous Multi-Tasking

 We are building on DOE research efforts
 ASC

 Co-design, CSSE, Testbeds, PSAAP2 Centers, etc.

 ASCR

 Co-design, X-Stack, RX-Solvers, CAL, etc.

2

Future Programming Model/Envir.

 Opportunity to start from a “clean sheet”:

 Architect the codes targeting potential future HPC PM/Es
 AMT for moderate to coarse-grained tasking

 Kokkos data parallelism (and possibly DAG tasking) within AMT tasks

 Data Warehouse to enable AMT task movement and efficient
movement across “memory spaces” and complex I/O layers

 Benefits/Goals
 Dynamic, system managed workload distribution

 Infrastructure which supports resiliency mechanisms

 New algorithmic approaches (asynchrony, hierarchy, thread scalability)

 Productivity/reduced complexity for application developer?

3

ATDM CS Core Components

4

O
S/

R
u

nt
im

e
H

ar
d

w
ar

e

ATDM ApplicationsATDM Applications

CPU CoresCPU Cores AcceleratorsAcceleratorsMemory HierarchyMemory Hierarchy

KelpieKelpie

NICNIC

QthreadsQthreadsNessieNessie

ATDM App Components

DHARMA (Asynchronous Multi-Tasking)DHARMA (Asynchronous Multi-Tasking)

Data Warehouse
(Data Management)

Data Warehouse
(Data Management)

Kokkos (Performance Portability)Kokkos (Performance Portability)

OpenMPOpenMP CUDACUDA

System

Node

I/O SubsystemI/O Subsystem

MPIMPI

??

pThreadspThreadsIOSSIOSS HIOHIO

[Charm++, Legion, Uintah, OCR, etc.][Charm++, Legion, Uintah, OCR, etc.]

OCROCR

DHARMA project: Distributed asyncHronous
Adaptive and Resilient Models for Applications

5

 A co-design driven specification effort at the top of the AMT
runtime system stack
 Start by gathering requirements across Sandia’s ATDM application space

 Approach is extensible to incorporating requirements from other Labs

 An effort to implement that spec
 Implementation is an integration effort

 Includes all ATDM CS Components

 not just the DHARMA team

 A long term engagement with the community to define best
practices and ultimately standards
 Communication of Sandia ATDM requirements

 Defining common vocabularies and shared abstractions across runtimes

FY15 L2 milestone to assess leading AMT
runtimes in the context of ASC workloads

 Programmability: Does this solution enable expression of our workloads

 Mutability: Ease of adopting this solution, modifying it to suit our needs

 Performance: Strong and weak scaling studies, load-balancing under
system heterogeneity, task- and data-granularity studies

6

Build system from scratch
and take ownership

Rely completely
on external partners

Lots of control, but lots
of extra investment

Less control,
but less investment

Risk: current academic
runtimes lack features to

support our workloads

Risk: potential lack of
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap

7

Data Management: Warehouse

 Data management is a large challenge at scale
 Practical: How do we move data between existing tools and AMT?

 Persistence: How will AMT codes leverage new I/O capabilities?

 Future Proof: How can we mitigate reliability risks?

 Build a flexible, multipurpose data warehouse
 Engine by which application data is moved and stored in ATDM

Data Warehouse
Mesh Tools Analysis Tools

AMT Applications

NVRAMDistributed Memory I/O

Data Warehouse Supports Key
Application Use Cases

8

Workflows

Data Warehouse

Resource Abstraction

Data Warehouse

I/OBurst BuffersCompute Nodes

Task-DAG Communication

Data Warehouse

Setup Analysis

Warehouse Software Architecture

9

Network
Operations

User APIs
I/O

Services

Distributed, In-memory
Data Object Management

Data Warehouse
Portable RDMA/RPC for HPC

BG/Q, Gemini, IB, MPI, …

Kelpie Manage key-value objects via RDMA
Organize resource pools

Short/long-term persistence
Burst Buffers, DFS
Interest in HIO

Custom views of data warehouse
App-specific APIs
Data distribution

Performance Portability (Kokkos)

10

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos 2.0Kokkos 2.0

Multi-Core Many-Core APU CPU+GPU

ATDM ICTrilinos Applications & Libraries

performance portability for C++ applications

11

 Teko: Block Segregated Preconditioning

 Anasazi: Parallel Eigensolvers

 Belos: Parallel Block Iterative Solvers (FT/CA)

 MueLU: Multi-Level Preconditioning

 Ifpack2: ILU Subdomain Preconditioning

 ShyLU: Hybrid MPI/Threaded Linear Solver

 Tpetra: Distributed Linear Algebra

 Zoltan2 Load Balancing & Partitioning

 Kokkos: Heterogeneous Node Parallel Kernels

Applications & Advanced Analysis Components

Back-ends: OpenMP, pthreads, Cuda, Qthreads, ...

Anasazi: Eigensolvers Belos: Linear Sovlers

Muelu: MultiGrid Preconditioners

ShyLU/Basker: Direct SolversIfpack2: Subdomain
Preconditioners

Tpetra: Scalable Linear Algebra

Kokkos Sparse Linear Algebra

Kokkos ContainersZoltan2: Load
Balance/Partitioning

Kokkos Core

Kokkos Kernels for Trilinos Solvers

On-Node Runtime: Qthreads

 Qthreads is a user-level library for lightweight multithreading
on the node, accessible directly using a C API or indirectly
through a variety of higher-level programming models.

 Qthreads originated at Notre Dame and moved to Sandia.

 Initial motivation: Support graph processing / analytics
applications on commodity hardware using runtime-managed
massive multithreading and rich synchronization primitives.

Application Analytics / Graph Processing Computational Science / Simulation
Interface
to Users

API SHMEM Chapel Kokkos* OpenMP MPI

Runtime Portals* QTHREADS* Portals* Scalable
Parallel

Runtime (SPR)OS Kitten Lightweight Kernel* or Linux OS

Architecture Adv. Arch. Testbeds SST Simulator* Legacy HW Future ASC Systems
HW/SW
Interface

Qthreads System
 The programmer exposes application parallelism as massive

numbers of lightweight tasks (qthreads).
 Full/empty bit primitives for powerful, lightweight synchronization

 Emulates behavior of Cray XMT (ThreadStorm) architecture

 C API with no special compiler support required

 The run time system dynamically manages the scheduling of
tasks for locality and scalable performance.
 Heavyweight worker pthreads to execute the user’s tasks

 Worker pthreads pinned onto underlying hardware cores

 Architecture-aware mapping of workers to hardware (e.g., NUMA or Phi)

 Lightweight task switching

 Used in: Cray’s Chapel programming language, Kokkos fine-
grained threading, Multi-threaded graph library(MGTL), LLNL
ROSE front-ended OpenMP run time

On-Node Runtime Coordination

Scalable performance portable on-node runtime

 FY15: Leverage prior ASC-CSSE and ASCR investment in
Qthreads runtime system

 FY16 L2: Support runtimes needs for Kokkos and AMT

 FY19 L1: Performant on-node tasking for high-performance
ATDM apps on Advanced Technologies Systems (ATS-3 in
particular)

Outcome(s): Provide scalable and performance portable on-
node runtime and related system software in
support of Kokkos, AMT, and application needs

14

Dev. Environment/Testbeds

 Next Generation Development Environment
 Increased performance and efficiency for developers

 Robust regression testing

 Deployment across range of platforms including testbeds

 SNL’s ASC program has supported a thriving CSSE testbed
program
 Includes pre-production HW from majority of vendors

 ATDM is leveraging and augmenting this resource

 Early HW has proven crucial to:

 Testing of system software stack and compilers prior to production
platform delivery

 Exploration of performance implications for our proxies and codes

15

Intel MIC/Phi/X86

16

Westmere +
Knights Ferry

SandyBridge
Knights Corner (B)

SandyBridge
Knights Corner (C)

IvyBridge

IvyBridge
Knights Corner
PowerInsight V2

Haswell 16 Core
PowerInsight V2

Knights
Landing

X86
Manyish-Core

Path
(ATS-1)

X86
Multi-Core

Path

Haswell

ATDM

Sept 2011 Present

= Retired

= 2015

NVIDIA
IBM/NVIDIA

17

Interlagos + Fermi 2090x

Interlagos + Kepler K20X

SandyBridge + Kepler K20

SandyBridge
Kepler K20 + K40 + K80

Power 8

Power 8
K40+K80

Power 8
K40 +K80

Loosely
Integrated

Accelerator

Tightly
Integrated

Accelerator
(ATS-2)

Power 7 + FPGA

Sept 2011 Present

ATDM

Risks/Gaps
 Asynchronous Multi-Task

 Can existing technologies be extended to allow the dynamic behavior
required by our extremely complex codes?

 Can it out perform simpler MPI-based alternatives?

 Data Management
 Can the overhead be minimized enough to not damage code

performance?

 Can this layer facilitate on-node as well as off-node data movement?

 Performance Portability
 Can Kokkos significantly reduce HW specific code in our applications?

 Pros and cons of embedded DSL approach to directive based
alternatives such as OpenMP?

 Overarching
 Instrumentation/Tools that can expose meaningful information

throughout this stack

18

Outcomes

 We are leveraging years of prior ASC and ASCR efforts and
ASC Co-design has driven significant NNSA tri-lab
collaboration for this space; many more commonalities.

 We are evaluating promising new tools for productivity and
performance on new architectures; but they create a much
deeper layer of constructs that the developer does not
control.

 And doing it with highly complex near production codes

 Synergy, leverage and enhancement with the broader
community is critical to success

19

Acronyms
 AMT – Ansynchronous Multi-Tasking

 API – Application Programming Interface

 ATDM – Advanced Technology Development & Mitigation

 CAL – Computer Architecture Lab

 CSSE – Computational Systems & Software Environment

 DAG – Directed Acyclic Graph

 DFS – Distributed File System

 DSL – Domain Specific Language

 EM - Electromagnetics

 IB - Infiniband

 MPI – Message Passing Interface

 PM/Es – Programming Models/Environments

 PSAAP – Predictive Science Academic Alliance Program

 RDMA – Remote Direct Memory Access

 RPC – Remote Procedure Call

 SGEMP – System Generated Electromagnetic Pulse

20

BACKUP SLIDES

21

Data Warehouse

22

Data Warehouse
Mesh Tools Analysis Tools

AMT Applications

NVRAMDistributed Memory I/O

Kelpie

Distributed Objects: Kelpie

 Kelpie: An in-memory, distributed object store
 Peer-based: each host manages a cache of RDMA-able objects

 Multi-dimensional key that maps to 2D data organization

 Common interfaces (put/get, pub/sub, prefetch,…)

 FY15: Manage collections of nodes with resource pools

 FY16: Internal rework to streamline API

23

Node

Kelpie
Object
Cache

DHT4
DHT3

DHT5

DHT7

Network

APIs I/O

Objects

Network: Nessie

 Task DAGs: Advantageous to work below MPI
 Examples: GASnet, Dataspaces, libfabrics, uGNI, PAMI

 Hardships: Memory registration, Serialization

 Nessie: Sandia-developed RDMA+RPC layer
 Explicit buffer management

 FY15 Progress
 Lunasa: Dynamic memory manager

 Nssi-Lite: Stripped down RPC layer

 NNTI 3.0: Event driven

 FY16 Work
 New fabrics, Performance optimization

24

Network

APIs I/O

Objects

I/O Services

 Enable objects to be made persistent
 Nonvolatile Memory (burst buffers)

 Parallel File Systems

 FY16: Prototype storage interface
 Leverage Hierarchical I/O (HIO) , target Trinity

25

Network

APIs I/O

Objects

Qthreads Objectives and Outcomes

 Be efficient for both analytics and computational science
 Many other run time systems address only one or the other

 Be a vehicle for run time system research
 Enable co-design leveraging Sandia expertise across the system stack

 Use modularity for flexibility, extensibility

 Support for diverse architectures and programming models

 Improve understanding of system and application behavior
 Test and challenge efficiency and scalability limits

 Impact deployed run time system technologies
 Develop solutions to unsolved problems in adaptive run time systems

 Present lessons learned to industry and the community

 Vendors apply the new techniques to their implementations

 In the case of the Chapel language, Cray has adopted our run time

Qthreads-based Software

 Chapel programming language
 Chapel is Cray’s next generation parallel programming language.

 Qthreads provides the default tasking layer for the Chapel run time.

 Multithreaded graph library (MTGL)
 MTGL is Sandia’s toolkit for graph processing algorithms.

 Qthreads allows MTGL, originally designed for the Cray XMT, to
execute on commodity systems such as x86 and POWER machines.

 Kokkos task-parallel extensions [In progress]
 Kokkos is Sandia’s C++ library for efficient management of data layout

and parallelism for manycore processors.

 Qthreads supports extensions to Kokkos that add task parallelism
(futures) to the existing Kokkos data parallel capabilities.

 Qthreads also serves as an OpenMP run time using the LLNL
ROSE compiler as the front-end.

