SAND2016- 0709PE

EERREE Sandia
al service in the national interest National
000 Laboratories

Sandia’s Next Generation Code
Architecture & Tools

Rob Hoekstra & ASC Team
January 27, 2016

EEEEEEEEEEE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

NextGen Software Architecture) o,

= ASC/ATDM gives us an opportunity to target new
programming models and environments

= Massive Parallelism

(Low Capacity, High Bandwidth)

S—
3D Stacked (High Capacity,
Low Bandwidth)

= Performance Portability

= Data Management

= Asynchronous Multi-Tasking

Integrated NIC
for Off-Chip
Communication

= We are building on DOE research efforts @
= Co-design, CSSE, Testbeds, PSAAP2 Centers, etc.

= ASCR
= Co-design, X-Stack, RX-Solvers, CAL, etc.

Future Programming Model/Envir. .

= QOpportunity to start from a “clean sheet”:

= Architect the codes targeting potential future HPC PM/Es
= AMT for moderate to coarse-grained tasking
= Kokkos data parallelism (and possibly DAG tasking) within AMT tasks

= Data Warehouse to enable AMT task movement and efficient
movement across “memory spaces” and complex 1/O layers

= Benefits/Goals
= Dynamic, system managed workload distribution
= |nfrastructure which supports resiliency mechanisms
= New algorithmic approaches (asynchrony, hierarchy, thread scalability)
» Productivity/reduced complexity for application developer?

ATDM CS Core Components) .

DHARMA (Asynchronous Multi-Tasking)

Data Warehouse

(Data Management) [Charm++, Legion, Uintah, OCR, etc.]

Kokkos (Performance Portability)

I/O Subsystem NIC Memory Hierarchy CPU Cores Accelerators

Hardware

DHARMA project: Distributed asyncHronous
Adaptive and Resilient Models for Applications

Laboratories

= A co-design driven specification effort at the top of the AMT
runtime system stack
= Start by gathering requirements across Sandia’s ATDM application space
= Approach is extensible to incorporating requirements from other Labs

= An effort to implement that spec
= |Implementation is an integration effort
* |ncludes all ATDM CS Components
" not just the DHARMA team
= Along term engagement with the community to define best
practices and ultimately standards
= Communication of Sandia ATDM requirements
= Defining common vocabularies and shared abstractions across runtimes

FY15 L2 milestone to assess leading AMT =)
runtimes in the context of ASC workloads

Laboratories

We face a spectrum of choices/risks in developing technical roadmap

Build system from scratch
and take ownership

Rely completely
on external partners

Risk: current academic
runtimes lack features to
support our workloads

Risk: potential lack of
vendor support/buy in

Less control,
but less investment

Lots of control, but lots
of extra investment

= Programmability: Does this solution enable expression of our workloads
= Mutability: Ease of adopting this solution, modifying it to suit our needs

= Performance: Strong and weak scaling studies, load-balancing under
system heterogeneity, task- and data-granularity studies

Data Management: Warehouse) .

= Data management is a large challenge at scale
= Practical: How do we move data between existing tools and AMT?
= Persistence: How will AMT codes leverage new I/O capabilities?
= Future Proof: How can we mitigate reliability risks?
= Build a flexible, multipurpose data warehouse
= Engine by which application data is moved and stored in ATDM

AMT Applications

Mesh Tools Analysis Tools
Data Warehouse

Distributed Memory | NVRAM

Data Warehouse Supports Key
Application Use Cases

Workflows

Sandia
|I1 National

Laboratories

Analysis

Compute Nodes Burst uffers 1/0

Task-DAG Communication

Warehouse Software Architecture @Ez.

Custom views of data warehouse
App-specific APls
Data distribution

Short/long-term persistence

= q Burst Buffers, DFS
7 Interest in HIO

NN
/O

User APIs

Services

Il
Manage key-value objects via RDMA

Distributed, In-memory Organize resource pools

Data Object Management

Network

Operations

Data Warehouse Portable RDMA/RPC for HPC

BG/Q, Gemini, 1B, MPI, ...

Performance Portability (Kokkos) @&

m m Applications & Libraries “

Kokkos 2.0

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

Kokkos Kernels for Trilinos Solvers

Applications & Advanced Analysis Components

Anasazi: Eigensolvers

Belos: Linear Sovlers

Muelu: MultiGrid Preconditioners

Preconditioners

Ifpack2: Subdomain | ShyLU/Basker: Direct Solvers

Tpetra: Scalable Linear Algebra

Kokkos Sparse Linear Algebra

Balance/Partitioning

Zoltan2: Load Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, Qthreads, ...

Sandia
National
Laboratories

On-Node Runtime: Qthreads

= Qthreads is a user-level library for lightweight multithreading
on the node, accessible directly using a C API or indirectly
through a variety of higher-level programming models.

Sandia
National _
Laboratories

mh

= Qthreads originated at Notre Dame and moved to Sandia.

= |nitial motivation: Support graph processing / analytics
applications on commodity hardware using runtime-managed
massive multithreading and rich synchronization primitives.

Analytics / Graph Processing

SHMEM

Chapel

Portals*

Computational Science / Simulation

QTHREADS*

Interface

Portals*

Kitten Lightweight Kernel* or Linux OS

to Users

Scalable
Parallel
Runtime (SPR)

Adv. Arch. Testbeds

SST Simulator*

Legacy HW

Future ASC Systems

Qthreads System) &,

= The programmer exposes application parallelism as massive
numbers of lightweight tasks (qthreads).
= Full/empty bit primitives for powerful, lightweight synchronization
= Emulates behavior of Cray XMT (ThreadStorm) architecture
= C APl with no special compiler support required

= The run time system dynamically manages the scheduling of
tasks for locality and scalable performance.
= Heavyweight worker pthreads to execute the user’s tasks
= Worker pthreads pinned onto underlying hardware cores
= Architecture-aware mapping of workers to hardware (e.g., NUMA or Phi)
= Lightweight task switching

= Used in: Cray’s Chapel programming language, Kokkos fine-

grained threading, Multi-threaded graph library(MGTL), LLNL
ROSE front-ended OpenMP run time

On-Node Runtime Coordination) o,

Scalable performance portable on-node runtime

= FY15: Leverage prior ASC-CSSE and ASCR investment in
Qthreads runtime system

= FY16 L2: Support runtimes needs for Kokkos and AMT

= FY19 L1: Performant on-node tasking for high-performance
ATDM apps on Advanced Technologies Systems (ATS-3 in
particular)

Outcome(s): Provide scalable and performance portable on-
node runtime and related system software in
support of Kokkos, AMT, and application needs

Dev. Environment/Testbeds

= Next Generation Development Environment
= |ncreased performance and efficiency for developers
= Robust regression testing
= Deployment across range of platforms including testbeds

= SNL’s ASC program has supported a thriving CSSE testbed
program
= |Includes pre-production HW from majority of vendors
= ATDM is leveraging and augmenting this resource

= Early HW has proven crucial to:

= Testing of system software stack and compilers prior to production
platform delivery

= Exploration of performance implications for our proxies and codes

Sandia
National
Laboratories

Intel MIC/Phi/X86 vas L

\Manyish-Core

Retired Path
(ATS-1)
2015
lvyBridge X86
Powarinsianll Multi-Core
(A | ot | s Haswell 16 Core Path

W i g, G0
Xeon ey | XeonPhi’

NMergam(SIRN)

SandyBritge

igh s orner (C) ,, S[h]@[;@@[r dl

Compton V2

/
ATDM

Sept 2011 > Present

NVIDIA o e
oose y Laboratories
IBM/NVIDIA Integrated

Accelerator

Tightly
Integrated

Accelerator
ATS-2)

SandyBridge

ATDM

Sept 2011 > Present

Risks/Gaps WEEN

= Asynchronous Multi-Task

= Can existing technologies be extended to allow the dynamic behavior
required by our extremely complex codes?

= Can it out perform simpler MPI-based alternatives?

= Data Management

= Can the overhead be minimized enough to not damage code
performance?

= Can this layer facilitate on-node as well as off-node data movement?

= Performance Portability
= Can Kokkos significantly reduce HW specific code in our applications?
= Pros and cons of embedded DSL approach to directive based
alternatives such as OpenMP?
= Qverarching

» |nstrumentation/Tools that can expose meaningful information
throughout this stack

Outcomes rh) pes

= We are leveraging years of prior ASC and ASCR efforts and
ASC Co-design has driven significant NNSA tri-lab
collaboration for this space; many more commonalities.

= We are evaluating promising new tools for productivity and
performance on new architectures; but they create a much
deeper layer of constructs that the developer does not
control.

= And doing it with highly complex near production codes

= Synergy, leverage and enhancement with the broader
community is critical to success

Acronyms

= AMT — Ansynchronous Multi-Tasking

= API - Application Programming Interface

= ATDM — Advanced Technology Development & Mitigation
= CAL-Computer Architecture Lab

= (CSSE — Computational Systems & Software Environment
= DAG - Directed Acyclic Graph

= DFS - Distributed File System

= DSL-Domain Specific Language

= EM - Electromagnetics

= |B- Infiniband

= MPI - Message Passing Interface

= PM/Es — Programming Models/Environments

= PSAAP - Predictive Science Academic Alliance Program

= RDMA —Remote Direct Memory Access

= RPC-Remote Procedure Call

= SGEMP - System Generated Electromagnetic Pulse

Sandia
National _
Laboratories

BACKUP SLIDES) .

Data Warehouse)

AMT Applications

Mesh Tools Analysis Tools

Data Warehouse

Distributed Memory | NVRAM

Workflows

NN

Data Warehouse

IA‘ S\ AN X Y
I;)ata Warehouse

1R

Distributed Objects: Kelpie [Epjébjlecg@i

Network

= Kelpie: An in-memory, distributed object store
= Peer-based: each host manages a cache of RDMA-able objects
= Multi-dimensional key that maps to 2D data organization
= Common interfaces (put/get, pub/sub, prefetch,...)

= FY15: Manage collections of nodes with resource pools
= FY16: Internal rework to streamline API

Network: Nessie S -

Objects
Network

= Task DAGs: Advantageous to work below MPI
= Examples: GASnet, Dataspaces, libfabrics, uGNI, PAMI

= Hardships: Memory registration, Serialization
= Nessie: Sandia-developed RDMA+RPC layer
= FExplicit buffer management

= FY15 Progress
= Lunasa: Dynamic memory manager
= Nssi-Lite: Stripped down RPC layer
= NNTI 3.0: Event driven

= FY16 Work

= New fabrics, Performance optimization

1/0 Services Capis] o_

Objects
Network

= Enable objects to be made persistent
= Nonvolatile Memory (burst buffers)
= Parallel File Systems

= FY16: Prototype storage interface
= Leverage Hierarchical I/O (HIO), target Trinity

Qthreads Objectives and Outcomes @

= Be efficient for both analytics and computational science

= Many other run time systems address only one or the other

= Be a vehicle for run time system research
= Enable co-design leveraging Sandia expertise across the system stack
= Use modularity for flexibility, extensibility
= Support for diverse architectures and programming models
" |mprove understanding of system and application behavior

= Test and challenge efficiency and scalability limits

" |mpact deployed run time system technologies
= Develop solutions to unsolved problems in adaptive run time systems

= Present lessons learned to industry and the community
= Vendors apply the new techniques to their implementations
= In the case of the Chapel language, Cray has adopted our run time

Qthreads-based Software) e

= Chapel programming language
= Chapel is Cray’s next generation parallel programming language.
= Qthreads provides the default tasking layer for the Chapel run time.

= Multithreaded graph library (MTGL)

= MTGL is Sandia’s toolkit for graph processing algorithms.
= Qthreads allows MTGL, originally designed for the Cray XMT, to
execute on commodity systems such as x86 and POWER machines.
= Kokkos task-parallel extensions [In progress]

= Kokkos is Sandia’s C++ library for efficient management of data layout
and parallelism for manycore processors.

= Qthreads supports extensions to Kokkos that add task parallelism
(futures) to the existing Kokkos data parallel capabilities.
= Qthreads also serves as an OpenMP run time using the LLNL
ROSE compiler as the front-end.

