TWIAD: Why You Should IndexSAND2016- 0692C |n
Write-Optimized Databases

Bridger Hahn!2, Helen Xu!2, Thomas Kroegerl, Nolan Donoghuelz,
and David Zage?

{bridger.hahn, helen.xu, nolan.donoghue}@stonybrook.edu
tmkroeg@sandia.gov
zage@cerias.net
1Sandia National Laboratories, Livermore, CA, USA
2Department of Computer Science, Stony Brook University
3Intel Corporation, Santa Clara, CA, USA

October 28, 2015

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 1/23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

TWIAD the
Write-Optimized
IP

Address
Database

o = = = DQC
Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

Network-based
IDS System

Port
Mirroring
(SPAN)

IDS as we know it

Attacker

Bridger Hahn, Helen Xu, Thomas Kroeger, N

TWIAD

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

@ State of the art IDS involves
logging all connections
across the network

@ Logging is bad but indexing
is too slow

@ Why should an IDS do the
work of maintaining a
database?

Your friendly neighborhood IDS
monitor

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 4/23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

@ Indexes facilitate faster
queries

@ “The right read problem is a
write problem”

@ Slow queries indicate
bad/insufficient indexes

Indexing vs Logging

Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

@ The pipe can be very big

@ Connection logs generate
quickly

o Lower budget = better

@ How can we keep up and
store all of this data in
multiple indexes?

At first, logging is faster

u]
)
I
il
it

Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

Goal: Ingest and query network
data quickly

@ More indexes expedite query
but slow insertion

@ Age-old tradeoff

@ What if we could ingest
more quickly to offset this
tradeoff?

Logging falls flat when you get to
queries

[m] = =
Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

B-Tree Index Structure

@ Start with a B-Tree

Root Level
@ Data stored at the
leaves Intermediate 1
Level 2500
@ Insertion requires
tree traversal teaflevel [] [s] [o] [oo]
@ Same cost as quer
query B Tree

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 8 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

ﬁ:%«:: @ Add buffers at every node
B¢ Tree @ Insert into root buffer

@ When buffers fill, flush down
one level

@ Amortized insertion cost

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 9 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

insert
Optimal
tradeoff o (logHBs m
(function of €=0...1) Bl
B-tree
O (I N
(=) (logp N)
logg N
€=1/2 o
(%
log N

&=0

10x-100x faster inserts

)

point query

O (log, | - N)

O (logp N)

O (logg N)

O (log N)

Performance Bounds

Bridger Hahn, Helen Xu, Thomas Kroeger, N|

TWIAD

Clear Winner:
Indexing With
Write-Optimization

October 28, 2015 10 / 23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

Common IDS Queries:
@ “Have | seen x IP before?”

@ "Have | seen x IP between
times y and z?”

@ “Have | seen x subnet
before?”

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 11 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

TWIAD Key Construction:
@ Origin IP - 4 bytes
@ Timestamp - 8 bytes
@ Origin Port - 3 bytes
@ Destination IP - 4 bytes

@ All inserts are stored twice

@ Origin and Destination are
reversed in the second insert

@ Origin and Destination are now
@ Destination Port - 3 bytes interchangeable

22 byte key

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 12 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

TWIAD Value Fields:

Protocol - 4 bytes

Duration - 8 bytes
Origin Bytes - 8 bytes

Response Bytes - 8 bytes @ We include most BRO
Connection Log fields

Connection State - 5 bytes

@ Origin Packets Bytes (sans @ Bytes are payload bytes vs
header) - 4 bytes Packets Bytes are all IP level

byt
@ Response Packets Bytes yres

(sans header) - 4 bytes
@ Version - 6 bytes
o IsReversed Bit - 1 byte
48 byte value

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 13 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

B-tree

e | =)
A uses) queries uses /I\
/\ results /\
Admin Authorized User
. results
inserts

queries:
TWIAD Architecture Diagram

Data File
Handers

File Task Data File
Channel Parsers

Row Channel DB Inserters

Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD October 28, 2015 14 /23

TWIAD: Why You Should Index Your IDS Data In
Write-Optimized Databases

Write Optimized databases should provide a faster infrastructure for
storing IDS data

This lends itself to faster intrusion response with less hardware and lower
costs

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 15 / 23

Preliminary TWIAD Results

@ When designing TWIAD, we decided to build on top of an open
source Write-Optimized index: FT-Index

o We wrote TWIAD in GO, though FT-Index is written in C++

@ CGO acts as an intermediary to link and execute C/C++ code with
GO code

@ GO has many convenient features for parallel computation:
GoRoutines, Channels, Scheduling, etc.

@ However, the CGO bridge to C++ may have hurt our performance

<<
= BN

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 16 / 23

Preliminary TWIAD Insertion Results

@ TWIAD started with an insertion rate on the order of 10,000
inserts/second

@ TWIAD's insertion rate then declined until it steadied out on the
order of 100 inserts/second

@ These results are from a desktop with 32GB of RAM and a 3.4GHz
processor

102 mw

10!

Inserts Per Second

\ — 95.0 inserts/sec |

10

0 10 20 30 40 50 60 70
Total Inserts (in millions)

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 17 / 23

Preliminary TWIAD Query Results

Table: TWIAD Querying 43M Entry DB For
Fixed IP Over Time Range

Number of Entries Returned | Time (ms) @ TWIAD boasts sub-second
query responses to
0 1318 non-empty queries on a
nontrivial DB
1 14 e TWIAD has order of one
second query responses to
35 192 empty queries on a
nontrivial DB
1665 192
2132 222

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 18 / 23

TokuMX Results

iiBench Benchmark (throughput)
TokuMX vs. MongoDB
(higher is better)
25000
TokuMX ——
MongoDB ——
20000
15000
10000
5000
0 1 1
10000000

1 |
30000000 50000000 70000000 90000000
Inserted Rows
o 5 = = DA

Lessons Learned & Future Work

@ Executing across several languages impacts performance
@ Write Optimized indexes demand familiarity and tuning

@ We plan to experiment with TWIAD running on top of alternative
write-optimized indexes

@ Also plan to experiment with inserting into multiple indexes and
investigating more interesting IDS queries

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 20/ 23

Credits

Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

Credits

Optimal
B-Tree Index Structure tradeoff
(function of £=0...1)

Root Level B-tree
(e=1)
Ei!rlmednate g &=112
i
LeafLevel g &8
3

simple-talk.com

Py

Bender and Kuszmaul

o (IOKHB' N

O (logp

sert

Bl-¢

N)

)

Bender and Kuszmaul

m

point query

O (logy 4 pe N)

O (log N)

0 (logs N)

O(log N)

Warner Brothers Entertainment

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD

October 28, 2015

22 /23

Credits

iiBench Benchmark (throughput)
TokuMX vs. MongoDB
(higher is better)
25000
TokuMX ——
MongoDB ——
20000
15000
10000
5000
| 1 1 h ——
10000000 30000000 50000000 70000000 90000000
Inserted Rows
Bender and Kuszmaul

o & = E DA
Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD

