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Write-Optimized Databases

@ State of the art IDS involves
logging all connections
across the network

@ Logging is bad but indexing
is too slow

@ Why should an IDS do the
work of maintaining a
database?

Your friendly neighborhood IDS
monitor

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 4/23
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Write-Optimized Databases

@ Indexes facilitate faster
queries

@ “The right read problem is a
write problem”

@ Slow queries indicate
bad/insufficient indexes

Indexing vs Logging
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@ The pipe can be very big

@ Connection logs generate
quickly

o Lower budget = better

@ How can we keep up and
store all of this data in
multiple indexes?

At first, logging is faster
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Goal: Ingest and query network
data quickly

@ More indexes expedite query
but slow insertion

@ Age-old tradeoff

@ What if we could ingest
more quickly to offset this
tradeoff?

Logging falls flat when you get to
queries
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B-Tree Index Structure

@ Start with a B-Tree

Root Level
@ Data stored at the
leaves Intermediate 1
Level 2500
@ Insertion requires
tree traversal teaflevel [ ] [ s ] [ o ] [ oo ]
@ Same cost as quer
query B Tree
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ﬁ:%«:: @ Add buffers at every node
B¢ Tree @ Insert into root buffer

@ When buffers fill, flush down
one level

@ Amortized insertion cost
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Common IDS Queries:
@ “Have | seen x IP before?”

@ "Have | seen x IP between
times y and z?”

@ “Have | seen x subnet
before?”
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TWIAD Key Construction:
@ Origin IP - 4 bytes
@ Timestamp - 8 bytes
@ Origin Port - 3 bytes
@ Destination IP - 4 bytes

@ All inserts are stored twice

@ Origin and Destination are
reversed in the second insert

@ Origin and Destination are now
@ Destination Port - 3 bytes interchangeable

22 byte key
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Write-Optimized Databases

TWIAD Value Fields:

Protocol - 4 bytes

Duration - 8 bytes
Origin Bytes - 8 bytes

Response Bytes - 8 bytes @ We include most BRO
Connection Log fields

Connection State - 5 bytes

@ Origin Packets Bytes (sans @ Bytes are payload bytes vs
header) - 4 bytes Packets Bytes are all IP level

byt
@ Response Packets Bytes yres

(sans header) - 4 bytes
@ Version - 6 bytes
o IsReversed Bit - 1 byte
48 byte value
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Write Optimized databases should provide a faster infrastructure for
storing IDS data

This lends itself to faster intrusion response with less hardware and lower
costs
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Preliminary TWIAD Results

@ When designing TWIAD, we decided to build on top of an open
source Write-Optimized index: FT-Index

o We wrote TWIAD in GO, though FT-Index is written in C++

@ CGO acts as an intermediary to link and execute C/C++ code with
GO code

@ GO has many convenient features for parallel computation:
GoRoutines, Channels, Scheduling, etc.

@ However, the CGO bridge to C++ may have hurt our performance
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Preliminary TWIAD Insertion Results

@ TWIAD started with an insertion rate on the order of 10,000
inserts/second

@ TWIAD's insertion rate then declined until it steadied out on the
order of 100 inserts/second

@ These results are from a desktop with 32GB of RAM and a 3.4GHz
processor
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Preliminary TWIAD Query Results

Table: TWIAD Querying 43M Entry DB For
Fixed IP Over Time Range

Number of Entries Returned | Time (ms) @ TWIAD boasts sub-second
query responses to
0 1318 non-empty queries on a
nontrivial DB
1 14 e TWIAD has order of one
second query responses to
35 192 empty queries on a
nontrivial DB
1665 192
2132 222
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TokuMX Results

iiBench Benchmark (throughput)
TokuMX vs. MongoDB
(higher is better)
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Lessons Learned & Future Work

@ Executing across several languages impacts performance
@ Write Optimized indexes demand familiarity and tuning

@ We plan to experiment with TWIAD running on top of alternative
write-optimized indexes

@ Also plan to experiment with inserting into multiple indexes and
investigating more interesting IDS queries

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD October 28, 2015 20/ 23



Credits

Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD



Credits

Optimal
B-Tree Index Structure tradeoff
(function of £=0...1)

Root Level B-tree
(e=1)
Ei!rlmednate g &=112
i
LeafLevel g &8
3

simple-talk.com

Py

Bender and Kuszmaul

o (IOKHB' N

O (logp

sert

Bl-¢

N)

)

Bender and Kuszmaul

m

point query

O (logy 4 pe N)

O (log N)

0 (logs N)

O(log N)

Warner Brothers Entertainment

Bridger Hahn, Helen Xu, Thomas Kroeger, N| TWIAD

October 28, 2015

22 /23



Credits

iiBench Benchmark (throughput)
TokuMX vs. MongoDB
(higher is better)
25000
TokuMX ——
MongoDB ——
20000
15000
10000
5000
| 1 1 h ——
10000000 30000000 50000000 70000000 90000000
Inserted Rows
Bender and Kuszmaul

o & = E DA
Bridger Hahn, Helen Xu, Thomas Kroeger, N TWIAD



