SAND2016- 0686C
Secure Embedded System Design Methodologies
for Military Cryptographic Systems

Gary N. McGovney and Deborah L. Jensen
Sandia National Laboratories
High Integrity Software Systems
PO Box 5800
Mail Stop 0860
Albuquerque, NM 87185

Abstract: Cryptographic embedded systems are used to
safeguard both access to classified data and controls for
external subsystems. The assurance required for these
systems extends beyond simply denying access to
unauthorized users, hardware failures must not lead to the
inadvertent activation of protected subcomponents or allow
access to classified data. As more systems are
transitioning from fixed hardware and state machine
designs, for which more formalized failure type and rate
calculations exist, there is an increasing need for this level
of assurance for software-based processor systems in the
absence of equivalent failure type and rate calculations for
software. This paper presents a method to guarantee to a
quantifiable level of confidence that external components
are driven if-and-only-if an authenticated request is
received. This is accomplished through the use of software
algorithms, data storage formats, and analyzable
comparator hardware detection and blocking logic.

Keywords: Secure Embedded System Design; Fail-Safe
Design Assurance; Secure Software; Fault-Tree Analysis
(FTA); Built-In Self-Test (BIST)

Introduction

Secure access-control systems restrict operations to
authorized users via methods as simple as a password or as
complex as encrypted messages with digital signatures. In
the case of systems which limit access to or control of
external components, the concern is not only that access be
denied to unauthorized users, but that operations cannot
occur autonomously even under failure conditions. In
software-based processor systems that control external
interfaces with access granted or denied based upon
password validation, there are hypothetical failures in
which, through a number of mechanisms, program
execution could transfer to the output functions in the
absence of a valid password.

While this is very unlikely, particularly in a dual-redundant
processor comparator design which would require
common-mode failures in the individual software/processor
elements, the question of exactly how unlikely is difficult
to answer. Fault-Tree Analysis (FTA) has a wealth of
information backing probability, types, and behavior of
hardware failures — but far less for software. We present a
method that removes software error calculations from FTA

by using the analyzed, validated, and tested comparator
hardware circuitry as the final arbiter for output operations.
That is to say, the probability of software failure can be
assumed to be 1 and the probability of successfully driving
outputs in the absence of a valid password can be made as
small as desired by appropriate selection of comparator bit-
width and signal complexity.

We do this by removing all knowledge from the software
of how to control the outputs correctly (including how
many outputs are driven, which outputs are driven,
assertion/de-assertion order, etc.) and instead use a set of
output register patterns that the software output function
dutifully writes to the comparator output register until the
data is exhausted.

Furthermore, the data used by the software output function
is not stored as plaintext, it is covered by a logical XOR
function with a secure hash of the password (not stored in
the system) and a data phrase unique to each processor
(stored in the system). In a properly functioning system
this output function will never be called unless a valid
password is received and authenticated. In the case of a
hypothetical failure that attempts to operate without a
password, or with an invalid password, the data to correctly
control the outputs cannot be generated. Not only that, the
stored data is dramatically different in each of the two
processors which will guarantee comparator mismatch and
alarm lockup if the output function is accidentally initiated.

Comparator Design

The use of dual-redundant processor comparator designs in
security-critical applications, such as those requiring NSA
Type 1 cryptographic certification, is certainly not new, but
there are differences in implementations. In order to meet
Fail-Safe Design Assurance (FDSA) requirements in which
systems secure data against multiple failures, comparators
must have redundant parallel mismatch detection,
redundant serial data blocking, and regular self-testing
which verifies all detection, alarm, and blocking circuitry.

Figure 1 shows an example of mismatch detection and
blocking circuitry logic with a single bit output as an
example. The two XNOR gates act as the parallel compare
mismatch detectors. Having two mismatch detectors in
parallel prevents a single fault from hiding a bit error. The
two AND gates act as the redundant serial blocking

https://sharepoint.sandia.gov/sites/EDI/Pages/2622.aspx

element. Having two blocking gates prevents a single fault
from allowing mismatched data to pass. In practice,
comparator designs will have multiple n-bit wide interfaces
for communication and peripheral 1/0.

alpha beta
processor processor

processor outputs

comparator

comparator external output

Figure 1. Basic dual-redundant processor comparator
architecture

A self-test capability is required to guard against the
gradual accumulation of errors degrading the designed and
validated level of fault protection. Figure 1 does not show
the hardware Built-In Self-Test (BIST) which executes at
power-on, only releasing the processors from reset upon
successful test completion. The BIST should inject test
signals at every compare input (XNOR gates) and monitor
every blocking gate output (AND gates) to independently
verify that each element is functioning correctly. Complete
and correct execution of each self-test phase should
generate a unique checksum which is not stored in the
comparator and that software validates upon release from
reset. We feed the test inputs and outputs through a Linear
Feedback Shift Register (LFSR) to generate this value
which is checked by both the BIST hardware and the
processor software to validate test completion. The
software check guards against hardware BIST functional
failures and completes the hardware-checking-
software/software-checking-hardware synergy that is an
essential design philosophy in secure embedded systems.

Alarm circuitry is also not shown in these simplified
diagrams, but external access must be prevented on the first
sign of erratic behavior. In addition to blocking output,
mismatch detection must latch an alarm state that 1) clears
all output registers and 2) cannot be cleared by either
processor. A system reset that forces a comparator
hardware BIST and processor initialization is the best
option to avoid any possibility of indefinite thrashing on
the processor output registers until a match occurs.

The method of synchronizing the dual processors
(transparent synchronization via bus locking or slow-

peripheral wait states, handshake-based interlocks, etc.) is
not important for this discussion, what is important is that
the external outputs be implemented as a parallel write or at
least compared as a single parallel operation. Increasing
the number of output signals will result in an increased
level of confidence that random activity will not only fail to
properly control the outputs but will alarm and lock the
system. This alarm will occur regardless of whether the
outputs are actually used externally, or are simply there to
force additional bit-compare operations which increase the
likelihood of a mismatch during invalid operations.

The diagram in Figure 2 shows a basic comparator
configuration. When both the alpha and beta processors
attempt a write to the outputs, one of two actions will
occur. If every bit in each processor register is identical,
the external outputs will be latched to the new state; if
instead even a single-bit mismatch occurs, the comparator
will alarm, clear all outputs, and require a system reset to
recover.

Software and data Software and data

alpha beta

processor processor

n-bit output register n-bit output register

L] L]

comparator

L]

n-bit output latch

Figure 2. Comparator general purpose output configuration

Knowledge Separation

As a simplified example of a protected external signal, we
present a device which sends a single transition to output 0,
changing from the initial “0” off state to the “1” on state, in a
system with a 16-bit wide comparator output register.
There is no knowledge that output 0 is the correct line or
that the line must be driven from low to high in the
software algorithm. The output could depend upon any
number of other lines driving high or low. For this simple
example there is only one 16-bit output value to write to the
general purpose output register, 0x0001 (with output O as
the least significant bit).

The plaintext value 0x0001 is not stored in either processor.
Instead, as shown in Figure 3, it has been covered by
logical XOR with the hash (SHA-256 in the example) of
the valid password (“Laconic” in the example) concatenated
with a processor-specific constant (“-alpha” and “-beta” in
the example) prior to storage in each processor's private
memory. Note that only the first 16 bits of the hash value

are used. The value created for processor alpha is 0x72FE
and the value created for processor beta is 0xF770.

valid input password: “Laconic”
alpha beta

unique phrase: "@PM@" nique phrase: Petd”
plaintext 0x0001 covered 0x0001
output value = output value =
(57}

failure will alarm and lock down the system - there are no
second chances with the comparator.

valid input password: “Laconic”

alpha memory

beta memory

phrase: “alpha”
covered output: Qx72FE

phrase: “beta”
covered output: QxF770

covered

covered

hash of
“Laconic-alpha” =

plaintext
output value =

hash

0x72FF...“Laconic-beta” = OxF771...

plaintext
Ox72FE output value = OxF770

output value = 0x72FE output value = OxF770

hash of hash of
“Laconic-alpha” = Ox72FF... Laconic-beta” = OxF771...

Figure 3. Creating covered output data for each processor

The output algorithm in each processor, after having
received and validated the correct password, performs the
following operations (shown in Figure 4) to reveal the
plaintext output value and assert the external signal:

1. Concatenate the provided password with the
processor-specific constant and hash the concatenation

2. XOR the first 16 bits of the hash value with the
covered data to reveal the plaintext value

3. Write all output values (only one in this example)

Obviously this approach is readily extensible to more
complex signal requirements with multiple outputs and
complex waveforms or even communication protocols.
The data fields can be given more complex functions than
simple output register write values (such as mask values to
protect specific output lines from changing state during a
given write operation) in order to accommodate systems
driving multiple independent outputs attached to the same
output register.

Failure Calculations

Should a fault condition cause the software to begin
directly driving the outputs without uncovering the
plaintext output values, or to uncover the values with an
incorrect password, the software will either write the
covered data values to the comparator or the covered data
XORed with the hash of an invalid password and
processor-unique string. Fail-safe operation at this point
depends upon the output of the two processors
mismatching.

For cryptographically-strong hash algorithms, such as
SHA-256 in the example, the probability of two output bit
positions having the same value for different input strings is
effectively 2. Each output bit is considered independently
in the comparator prior to output and even a single bit

plaintext

plaintext

output value = 0x0001 output value = 0x0001

16-bit output 16-bit output

| comparator : successful compare and latch |

v

16-bit output latch Output 0
0x0001 set to “1”

Figure 4. Uncovering and using output data in each
processor

Avoiding an alarm condition with an exact match between
the processors in this 16-bit example is equivalent to
tossing a coin 16 times and coming up heads each time.
Figure 5 shows the probability that random data will be
caught (the comparator will alarm) for the 16-bit example
described as well as for a system with a 32-bit wide output
register.

16 — bit output width calculation:
16

1
1- (E) =1-1526-10-5 = 0.99998

32 — bit output width calculation:
32

1- (E) —1-2328-10-1° = 0.9999999998

Figure 5. Probability that invalid operations will be detected

There are a couple of conservative simplifications in these
calculations. In order to control the external system
without a valid password the random data must not only
match in each processor to make it through the comparator,
it must also create the required signal. For example, while
a resulting value of 0x0000 in each processor would make

it through the comparator without alarming, it would not
create the correct signal to control the system. An
alignment of random matching data with actual control
signals becomes even more unlikely for systems that
require more than one output line.

Also, we have chosen the most trivial signal possible - one
with a single state change. Adding a second required state
change doubles the number of bit matches required and has
the same effect as seen with doubling the register bit-width
in Figure 5.

Conclusion

It is possible to prevent software from driving external
signals without authorization to a quantifiable level of
confidence using a simple, secure comparator design with a
parallel interface for general purpose output control, an
algorithm which writes all of the outputs at once based
blindly upon data rather than knowledge of which outputs

are of importance, and control data unique to each
processor which is covered by a hash dependent upon
authorization data that is not stored in the system. This is
done without knowledge or dependence upon software
failure rates or mechanisms and requires only an analyzable
hardware design.

Acknowledgements

The authors wish to thank Elmer Collins of Sandia National
Laboratories for years of sharing his extensive knowledge
of Fail-Safe Design Assurance and Fault-Tree Analysis.
Countless discussions in which he shared insights into
potential error mechanisms and vulnerabilities, and acted as
a sounding board for our proposals, have been invaluable in
shaping our approach methodologies toward secure
embedded system design.

