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Abstract: Cryptographic embedded systems are used to 

safeguard both access to classified data and controls for 

external subsystems.  The assurance required for these 

systems extends beyond simply denying access to 

unauthorized users, hardware failures must not lead to the 

inadvertent activation of protected subcomponents or allow 

access to classified data.  As more systems are 

transitioning from fixed hardware and state machine 

designs, for which more formalized failure type and rate 

calculations exist, there is an increasing need for this level 

of assurance for software-based processor systems in the 

absence of equivalent failure type and rate calculations for 

software.  This paper presents a method to guarantee to a 

quantifiable level of confidence that external components 

are driven if-and-only-if an authenticated request is 

received.  This is accomplished through the use of software 

algorithms, data storage formats, and analyzable 

comparator hardware detection and blocking logic. 
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Introduction 

Secure access-control systems restrict operations to 

authorized users via methods as simple as a password or as 

complex as encrypted messages with digital signatures.  In 

the case of systems which limit access to or control of 

external components, the concern is not only that access be 

denied to unauthorized users, but that operations cannot 

occur autonomously even under failure conditions.  In 

software-based processor systems that control external 

interfaces with access granted or denied based upon 

password validation, there are hypothetical failures in 

which, through a number of  mechanisms, program 

execution could transfer to the output functions in the 

absence of a valid password. 

While this is very unlikely, particularly in a dual-redundant 

processor comparator design which would require 

common-mode failures in the individual software/processor 

elements, the question of exactly how unlikely is difficult 

to answer.  Fault-Tree Analysis (FTA) has a wealth of 

information backing probability, types, and behavior of 

hardware failures – but far less for software.  We present a 

method that removes software error calculations from FTA 

by using the analyzed, validated, and tested comparator 

hardware circuitry as the final arbiter for output operations.  

That is to say, the probability of software failure can be 

assumed to be 1 and the probability of successfully driving 

outputs in the absence of a valid password can be made as 

small as desired by appropriate selection of comparator bit-

width and signal complexity. 

We do this by removing all  knowledge from the software 

of how to control the outputs correctly (including how 

many outputs are driven, which outputs are driven, 

assertion/de-assertion order, etc.) and instead use a set of 

output register patterns that the software output function 

dutifully writes to the comparator output register until the 

data is exhausted. 

Furthermore, the data used by the software output function 

is not stored as plaintext, it is covered by a logical XOR 

function with a secure hash of the password (not stored in 

the system) and a data phrase unique to each processor 

(stored in the system).  In a properly functioning system 

this output function will never be called unless a valid 

password is received and authenticated.  In the case of a 

hypothetical failure that attempts to operate without a 

password, or with an invalid password, the data to correctly 

control the outputs cannot be generated.  Not only that,  the 

stored data is dramatically different in each of the two 

processors which will guarantee comparator mismatch and 

alarm lockup if the output function is accidentally initiated. 

Comparator Design 

The use of dual-redundant processor comparator designs in 

security-critical applications, such as those requiring NSA 

Type 1 cryptographic certification, is certainly not new, but 

there are differences in implementations.  In order to meet 

Fail-Safe Design Assurance (FDSA) requirements in which 

systems  secure data against multiple failures, comparators 

must have redundant parallel mismatch detection, 

redundant serial data blocking, and regular self-testing 

which verifies all detection, alarm, and blocking circuitry. 

Figure 1 shows an example of mismatch detection and 

blocking circuitry logic with a single bit output as an 

example.  The two XNOR gates act as the parallel compare 

mismatch detectors.  Having two mismatch detectors in 

parallel prevents a single fault from hiding a bit error.  The 

two AND gates act as the redundant serial blocking 

SAND2016-0686C

https://sharepoint.sandia.gov/sites/EDI/Pages/2622.aspx


element.  Having two blocking gates prevents a single fault 

from allowing mismatched data to pass.  In practice, 

comparator designs will have multiple n-bit wide interfaces 

for communication and peripheral I/O. 

 

 

Figure 1. Basic dual-redundant processor comparator 

architecture 

A self-test capability is required to guard against the 

gradual accumulation of errors degrading the designed and 

validated level of fault protection.  Figure 1 does not show 

the hardware Built-In Self-Test (BIST) which executes at 

power-on, only releasing the processors from reset upon 

successful test completion.  The BIST should inject test 

signals at every compare input (XNOR gates) and monitor 

every blocking gate output (AND gates) to independently 

verify that each element is functioning correctly.  Complete 

and correct execution of each self-test phase should 

generate a unique checksum which is not stored in the 

comparator and that software validates upon release from 

reset.  We feed the test inputs and outputs through a Linear 

Feedback Shift Register (LFSR) to generate this value 

which is checked by both the BIST hardware and the 

processor software to validate test completion.  The 

software check guards against hardware BIST functional 

failures and completes the hardware-checking-

software/software-checking-hardware synergy that is an 

essential design philosophy in secure embedded systems. 

Alarm circuitry is also not shown in these simplified 

diagrams, but external access must be prevented on the first 

sign of erratic behavior.  In addition to blocking output, 

mismatch detection must latch an alarm state that 1) clears 

all output registers and 2) cannot be cleared by either 

processor.  A system reset that forces a comparator 

hardware BIST and processor initialization is the best 

option to avoid any possibility of indefinite thrashing on 

the processor output registers until a match occurs. 

The method of synchronizing the dual processors 

(transparent synchronization via bus locking or slow-

peripheral wait states, handshake-based interlocks, etc.) is 

not important for this discussion, what is important is that 

the external outputs be implemented as a parallel write or at 

least compared as a single parallel operation.  Increasing 

the number of output signals will result in an increased 

level of confidence that random activity will not only fail to 

properly control the outputs but will alarm and lock the 

system.  This alarm will occur regardless of whether the 

outputs are actually used externally, or are simply there to 

force additional bit-compare operations which increase the 

likelihood of a mismatch during invalid operations. 

The diagram in Figure 2 shows a basic comparator 

configuration.  When both the alpha and beta processors 

attempt a write to the outputs, one of two actions will 

occur.  If every bit in each processor register is identical, 

the external outputs will be latched to the new state; if 

instead even a single-bit mismatch occurs, the comparator 

will alarm, clear all outputs, and require a system reset to 

recover. 

 

 

Figure 2. Comparator general purpose output configuration 

Knowledge Separation 
As a simplified example of a protected external signal, we 

present a device which sends a single transition to output 0, 

changing from the initial “0” off state to the “1” on state, in a 

system with a 16-bit wide comparator output register.  

There is no knowledge that output 0 is the correct line or 

that the line must be driven from low to high in the 

software algorithm.  The output could depend upon any 

number of other lines driving high or low.  For this simple 

example there is only one 16-bit output value to write to the 

general purpose output register, 0x0001 (with output 0 as 

the least significant bit). 

The plaintext value 0x0001 is not stored in either processor.  

Instead, as shown in Figure 3, it has been covered by 

logical XOR with the hash (SHA-256 in the example) of 

the valid password (“Laconic” in the example) concatenated 

with a processor-specific constant (“-alpha” and “-beta” in 

the example) prior to storage in each processor's private 

memory.  Note that only the first 16 bits of the hash value 
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are used.  The value created for processor alpha is 0x72FE 

and the value created for  processor beta is 0xF770. 

 

 

Figure 3. Creating covered output data for each processor 

The output algorithm in each processor, after having 

received and validated the correct password, performs the 

following operations (shown in Figure 4) to reveal the 

plaintext output value and assert the external signal: 

1. Concatenate the provided password with the 

processor-specific constant and hash the concatenation 

2. XOR the first 16 bits of the hash value with the 

covered data to reveal the plaintext value 

3. Write all output values (only one in this example) 

Obviously this approach is readily extensible to more 

complex signal requirements with multiple outputs and 

complex waveforms or even communication protocols.  

The data fields can be given more complex functions than 

simple output register write values (such as mask values to 

protect specific output lines from changing state during a 

given write operation) in order to accommodate systems 

driving multiple independent outputs attached to the same 

output register. 

Failure Calculations 
Should a fault condition cause the software to begin 

directly driving the outputs without uncovering the 

plaintext output values, or to uncover the values with an 

incorrect password, the software will either write the 

covered data values to the comparator or the covered data 

XORed with the hash of an invalid password and 

processor-unique string.  Fail-safe operation at this point 

depends upon the output of the two processors 

mismatching. 

For cryptographically-strong hash algorithms, such as 

SHA-256 in the example, the probability of two output bit 

positions having the same value for different input strings is 

effectively ½.  Each output bit is considered independently 

in the comparator prior to output and even a single bit 

failure will alarm and lock down the system - there are no 

second chances with the comparator. 

 

 

Figure 4. Uncovering and using output data in each 

processor 

Avoiding an alarm condition with an exact match between 

the processors in this 16-bit example is equivalent to 

tossing a coin 16 times and coming up heads each time.  

Figure 5 shows the probability that random data will be 

caught (the comparator will alarm) for the 16-bit example 

described as well as for a system with a 32-bit wide output 

register. 

 

16 − bit output width calculation:

1 − (
1

2
)

16

= 1 − 1.526 ∙ 10−5 = 0.99998

32 − bit output width calculation:

1 − (
1

2
)

32

= 1 − 2.328 ∙ 10−10 = 0.9999999998

 

 

Figure 5. Probability that invalid operations will be detected 

There are a couple of conservative simplifications in these 

calculations.  In order to control the external system 

without a valid password the random data must not only 

match in each processor to make it through the comparator, 

it must also create the required signal.  For example, while 

a resulting value of 0x0000 in each processor would make 
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it through the comparator without alarming, it would not 

create the correct signal to control the system.  An 

alignment of random matching data with actual control 

signals becomes even more unlikely for systems that 

require more than one output line. 

Also, we have chosen the most trivial signal possible - one 

with a single state change.  Adding a second required state 

change doubles the number of bit matches required and has 

the same effect as seen with doubling the register bit-width 

in Figure 5. 

Conclusion 

It is possible to prevent software from driving external 

signals without authorization to a quantifiable level of 

confidence using a simple, secure comparator design with a 

parallel interface for general purpose output control, an 

algorithm which writes all of the outputs at once based 

blindly upon data rather than knowledge of which outputs 

are of importance, and control data unique to each 

processor which is covered by a hash dependent upon 

authorization data that is not stored in the system.  This is 

done without knowledge or dependence upon software 

failure rates or mechanisms and requires only an analyzable 

hardware design. 
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