

Secure Embedded System Design Methodologies
for Military Cryptographic Systems

Gary N. McGovney and Deborah L. Jensen
Sandia National Laboratories

High Integrity Software Systems
PO Box 5800

Mail Stop 0860
Albuquerque, NM 87185

Abstract: Cryptographic embedded systems are used to

safeguard both access to classified data and controls for

external subsystems. The assurance required for these

systems extends beyond simply denying access to

unauthorized users, hardware failures must not lead to the

inadvertent activation of protected subcomponents or allow

access to classified data. As more systems are

transitioning from fixed hardware and state machine

designs, for which more formalized failure type and rate

calculations exist, there is an increasing need for this level

of assurance for software-based processor systems in the

absence of equivalent failure type and rate calculations for

software. This paper presents a method to guarantee to a

quantifiable level of confidence that external components

are driven if-and-only-if an authenticated request is

received. This is accomplished through the use of software

algorithms, data storage formats, and analyzable

comparator hardware detection and blocking logic.

Keywords: Secure Embedded System Design; Fail-Safe

Design Assurance; Secure Software; Fault-Tree Analysis

(FTA); Built-In Self-Test (BIST)

Introduction

Secure access-control systems restrict operations to

authorized users via methods as simple as a password or as

complex as encrypted messages with digital signatures. In

the case of systems which limit access to or control of

external components, the concern is not only that access be

denied to unauthorized users, but that operations cannot

occur autonomously even under failure conditions. In

software-based processor systems that control external

interfaces with access granted or denied based upon

password validation, there are hypothetical failures in

which, through a number of mechanisms, program

execution could transfer to the output functions in the

absence of a valid password.

While this is very unlikely, particularly in a dual-redundant

processor comparator design which would require

common-mode failures in the individual software/processor

elements, the question of exactly how unlikely is difficult

to answer. Fault-Tree Analysis (FTA) has a wealth of

information backing probability, types, and behavior of

hardware failures – but far less for software. We present a

method that removes software error calculations from FTA

by using the analyzed, validated, and tested comparator

hardware circuitry as the final arbiter for output operations.

That is to say, the probability of software failure can be

assumed to be 1 and the probability of successfully driving

outputs in the absence of a valid password can be made as

small as desired by appropriate selection of comparator bit-

width and signal complexity.

We do this by removing all knowledge from the software

of how to control the outputs correctly (including how

many outputs are driven, which outputs are driven,

assertion/de-assertion order, etc.) and instead use a set of

output register patterns that the software output function

dutifully writes to the comparator output register until the

data is exhausted.

Furthermore, the data used by the software output function

is not stored as plaintext, it is covered by a logical XOR

function with a secure hash of the password (not stored in

the system) and a data phrase unique to each processor

(stored in the system). In a properly functioning system

this output function will never be called unless a valid

password is received and authenticated. In the case of a

hypothetical failure that attempts to operate without a

password, or with an invalid password, the data to correctly

control the outputs cannot be generated. Not only that, the

stored data is dramatically different in each of the two

processors which will guarantee comparator mismatch and

alarm lockup if the output function is accidentally initiated.

Comparator Design

The use of dual-redundant processor comparator designs in

security-critical applications, such as those requiring NSA

Type 1 cryptographic certification, is certainly not new, but

there are differences in implementations. In order to meet

Fail-Safe Design Assurance (FDSA) requirements in which

systems secure data against multiple failures, comparators

must have redundant parallel mismatch detection,

redundant serial data blocking, and regular self-testing

which verifies all detection, alarm, and blocking circuitry.

Figure 1 shows an example of mismatch detection and

blocking circuitry logic with a single bit output as an

example. The two XNOR gates act as the parallel compare

mismatch detectors. Having two mismatch detectors in

parallel prevents a single fault from hiding a bit error. The

two AND gates act as the redundant serial blocking

SAND2016-0686C

https://sharepoint.sandia.gov/sites/EDI/Pages/2622.aspx

element. Having two blocking gates prevents a single fault

from allowing mismatched data to pass. In practice,

comparator designs will have multiple n-bit wide interfaces

for communication and peripheral I/O.

Figure 1. Basic dual-redundant processor comparator

architecture

A self-test capability is required to guard against the

gradual accumulation of errors degrading the designed and

validated level of fault protection. Figure 1 does not show

the hardware Built-In Self-Test (BIST) which executes at

power-on, only releasing the processors from reset upon

successful test completion. The BIST should inject test

signals at every compare input (XNOR gates) and monitor

every blocking gate output (AND gates) to independently

verify that each element is functioning correctly. Complete

and correct execution of each self-test phase should

generate a unique checksum which is not stored in the

comparator and that software validates upon release from

reset. We feed the test inputs and outputs through a Linear

Feedback Shift Register (LFSR) to generate this value

which is checked by both the BIST hardware and the

processor software to validate test completion. The

software check guards against hardware BIST functional

failures and completes the hardware-checking-

software/software-checking-hardware synergy that is an

essential design philosophy in secure embedded systems.

Alarm circuitry is also not shown in these simplified

diagrams, but external access must be prevented on the first

sign of erratic behavior. In addition to blocking output,

mismatch detection must latch an alarm state that 1) clears

all output registers and 2) cannot be cleared by either

processor. A system reset that forces a comparator

hardware BIST and processor initialization is the best

option to avoid any possibility of indefinite thrashing on

the processor output registers until a match occurs.

The method of synchronizing the dual processors

(transparent synchronization via bus locking or slow-

peripheral wait states, handshake-based interlocks, etc.) is

not important for this discussion, what is important is that

the external outputs be implemented as a parallel write or at

least compared as a single parallel operation. Increasing

the number of output signals will result in an increased

level of confidence that random activity will not only fail to

properly control the outputs but will alarm and lock the

system. This alarm will occur regardless of whether the

outputs are actually used externally, or are simply there to

force additional bit-compare operations which increase the

likelihood of a mismatch during invalid operations.

The diagram in Figure 2 shows a basic comparator

configuration. When both the alpha and beta processors

attempt a write to the outputs, one of two actions will

occur. If every bit in each processor register is identical,

the external outputs will be latched to the new state; if

instead even a single-bit mismatch occurs, the comparator

will alarm, clear all outputs, and require a system reset to

recover.

Figure 2. Comparator general purpose output configuration

Knowledge Separation
As a simplified example of a protected external signal, we

present a device which sends a single transition to output 0,

changing from the initial “0” off state to the “1” on state, in a

system with a 16-bit wide comparator output register.

There is no knowledge that output 0 is the correct line or

that the line must be driven from low to high in the

software algorithm. The output could depend upon any

number of other lines driving high or low. For this simple

example there is only one 16-bit output value to write to the

general purpose output register, 0x0001 (with output 0 as

the least significant bit).

The plaintext value 0x0001 is not stored in either processor.

Instead, as shown in Figure 3, it has been covered by

logical XOR with the hash (SHA-256 in the example) of

the valid password (“Laconic” in the example) concatenated

with a processor-specific constant (“-alpha” and “-beta” in

the example) prior to storage in each processor's private

memory. Note that only the first 16 bits of the hash value

comparator

alpha

processor

beta

processor

processor outputs

comparator external output

alpha

processor

beta

processor

Software and data

comparator

n-bit output latch

Software and data

n-bit output register n-bit output register

are used. The value created for processor alpha is 0x72FE

and the value created for processor beta is 0xF770.

Figure 3. Creating covered output data for each processor

The output algorithm in each processor, after having

received and validated the correct password, performs the

following operations (shown in Figure 4) to reveal the

plaintext output value and assert the external signal:

1. Concatenate the provided password with the

processor-specific constant and hash the concatenation

2. XOR the first 16 bits of the hash value with the

covered data to reveal the plaintext value

3. Write all output values (only one in this example)

Obviously this approach is readily extensible to more

complex signal requirements with multiple outputs and

complex waveforms or even communication protocols.

The data fields can be given more complex functions than

simple output register write values (such as mask values to

protect specific output lines from changing state during a

given write operation) in order to accommodate systems

driving multiple independent outputs attached to the same

output register.

Failure Calculations
Should a fault condition cause the software to begin

directly driving the outputs without uncovering the

plaintext output values, or to uncover the values with an

incorrect password, the software will either write the

covered data values to the comparator or the covered data

XORed with the hash of an invalid password and

processor-unique string. Fail-safe operation at this point

depends upon the output of the two processors

mismatching.

For cryptographically-strong hash algorithms, such as

SHA-256 in the example, the probability of two output bit

positions having the same value for different input strings is

effectively ½. Each output bit is considered independently

in the comparator prior to output and even a single bit

failure will alarm and lock down the system - there are no

second chances with the comparator.

Figure 4. Uncovering and using output data in each

processor

Avoiding an alarm condition with an exact match between

the processors in this 16-bit example is equivalent to

tossing a coin 16 times and coming up heads each time.

Figure 5 shows the probability that random data will be

caught (the comparator will alarm) for the 16-bit example

described as well as for a system with a 32-bit wide output

register.

16 − bit output width calculation:

1 − (
1

2
)

16

= 1 − 1.526 ∙ 10−5 = 0.99998

32 − bit output width calculation:

1 − (
1

2
)

32

= 1 − 2.328 ∙ 10−10 = 0.9999999998

Figure 5. Probability that invalid operations will be detected

There are a couple of conservative simplifications in these

calculations. In order to control the external system

without a valid password the random data must not only

match in each processor to make it through the comparator,

it must also create the required signal. For example, while

a resulting value of 0x0000 in each processor would make

alpha memory

alpha

unique phrase: “-alpha”
beta

unique phrase: “-beta”

plaintext

output value =

hash of

“Laconic-alpha” =

plaintext

output value =

0x0001

0x72FF…

0x72FE

covered

output value =

hash

“Laconic-beta” =

plaintext

output value =

0x0001

0xF771…

0xF770

beta memory

valid input password: “Laconic”

16-bit output

comparator : successful compare and latch

16-bit output latch

0x0001

phrase:

covered output:
“-alpha”

0x72FE

phrase:

covered output:
“-beta”

0xF770

covered

output value =

hash of

“Laconic-alpha” =

plaintext

output value =

0x72FE

0x72FF…

0x0001

alpha memory

covered

output value =

hash of

Laconic-beta” =

plaintext

output value =

0xF770

0xF771…

0x0001

beta memory

16-bit output

Output 0

set to “1”

valid input password: “Laconic”

it through the comparator without alarming, it would not

create the correct signal to control the system. An

alignment of random matching data with actual control

signals becomes even more unlikely for systems that

require more than one output line.

Also, we have chosen the most trivial signal possible - one

with a single state change. Adding a second required state

change doubles the number of bit matches required and has

the same effect as seen with doubling the register bit-width

in Figure 5.

Conclusion

It is possible to prevent software from driving external

signals without authorization to a quantifiable level of

confidence using a simple, secure comparator design with a

parallel interface for general purpose output control, an

algorithm which writes all of the outputs at once based

blindly upon data rather than knowledge of which outputs

are of importance, and control data unique to each

processor which is covered by a hash dependent upon

authorization data that is not stored in the system. This is

done without knowledge or dependence upon software

failure rates or mechanisms and requires only an analyzable

hardware design.

Acknowledgements

The authors wish to thank Elmer Collins of Sandia National

Laboratories for years of sharing his extensive knowledge

of Fail-Safe Design Assurance and Fault-Tree Analysis.

Countless discussions in which he shared insights into

potential error mechanisms and vulnerabilities, and acted as

a sounding board for our proposals, have been invaluable in

shaping our approach methodologies toward secure

embedded system design.

