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ABSTRACT

In complex visual recognition systems, feature fusion has
become crucial to discriminate between a large number
of classes. In particular, fusing high-level context infor-
mation with image appearance models can be effective in
object/scene recognition. To this end, we develop an auto-
context modeling approach under the RKHS (Reproducing
Kernel Hilbert Space) setting, wherein a series of supervised
learners are used to approximate the context model. By pos-
ing the problem of fusing the context and appearance models
using multiple kernel learning, we develop a computationally
tractable solution to this challenging problem. Furthermore,
we propose to use the marginal probabilities from a kernel
SVM classifier to construct the auto-context kernel. In addi-
tion to providing better regularization to the learning problem,
our approach leads to improved recognition performance in
comparison to using only the image features.

Index Terms— Feature fusion, Marginalized kernel,
Multiple kernel learning, Image classification

1. INTRODUCTION

In state of the art visual recognition systems, it is typical to
adopt multiple descriptors (or features), which describe dif-
ferent aspects of the data. For example, in classical bag-of-
words approaches, merging features from diverse cues such
as shape, color and texture has been shown to improve the
recognition performance. The success of feature fusion meth-
ods can be attributed to the use of a complementary set of feat-
ues that can provide salient aspects for discriminating a large
number of classes, while being robust to variations within a
class. Though a variety of feature fusion technique exist in
the computer vision literature, kernel methods provide a prin-
cipled framework for fusing diverse descriptors into a unified
feature space [1]. Commonly referred to as Multiple Kernel
Learning (MKL) [2, 3, 4, 5, 6], this approach builds a Re-
producing Kernel Hilbert Space (RKHS) for each descriptor
and then fuses the multiple kernels as a non-negative linear
combination [7]. or a hadamard product [8]. More recently,
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Fig. 1: Proposed approach for integrating auto-context with
image features under the RKHS setting (illustrated for two
iterations). This problem is solved efficiently by posing the
fusion in each step as Multiple Kernel Learning (MKL).

the use of randomized strategies for kernel construction has
enabled the use of kernel methods in large scale [9], and in
many applications they have been shown to perform as well
as state of the art deep neural networks [10].

A common characteristic of several existing feature fu-
sion algorithms is that features employed are often low-level
in nature i.e., they describe the local variabilities without
taking the global context into account. However, it is known
that high-level information, referred to as the context, is
curcial to object/scene understanding. From a Bayesian
viewpoint, context can be interpreted as the joint statistics
of the multi-variate in the posterior probability, wherein the
likelihood models the image appearance (observed data). In
general, building a context model is challenging due to both
the computational complexity in solving the MAP (Maxi-
mum A Posteriori) formulation and the difficulty in modeling
complex patterns using limited training data. Consequently,
auto-context models [11] have been developed, which can



approximate the posterior using an iterative, supervisory
approach. More specifically, these models integrate the
low-level features with context information in the form of
probability maps, obtained using a series of classifiers. By
enabling the classifier to choose different supporting neigh-
bors to modify the current probabilities towards the ground
truth, auto-context methods lead to better regularization.

In this paper, we propose to adopt auto-context models
under the RKHS setting. In addition to providing the flexibil-
ity of auto-context models, the proposed approach can build
highly effective kernel models for object recognition. Since
auto-context probability maps cannot be directly incorporated
into the RKHS, we first estimate marginal probabilities using
a classifier (e.g. Kernel Logistic Regression or Kernel SVM)
and construct an auto-context kernel based on these probabil-
ities. For example, the marginalized kernel construction in
[12] can be used. Since any symmetric positive definite ker-
nel defines a unique RKHS, we can use other forms of kernels
by treating the probability map for each image as a feature
vector directly. Interestingly, the process of fusing the auto-
context model with the image appearance can be viewed as
multiple kernel learning, for which a variety of efficient so-
lutions exist. Figure 1 illustrates the proposed approach with
two iterations. We demonstrate using standard object/scene
classification datasets that the proposed approach results in
highly effective recongition systems.

2. BRIEF REVIEW OF KERNEL METHODS

Let us consider the problem of binary classification using a
Support Vector Machine (SVM) classifier that attempts to find
a linear decision boundary between the two classes. When
the classes are not linearly separable, it is beneficial to de-
fine a mapping function onto a high-dimensional space φ :
Rd → RD (D > d), such that SVM can yield a linear de-
cision boundary in the resulting space. It is well known that
this SVM formulation can be effeciently solved by consider-
ing its Lagrangian dual based on the kernel trick [1]. In other
words, since finding the appropriate mapping function φ can
be difficult, the dual formulation allows us to solve it solely
based on the kernel matrices.

Definition Given the data domain X ⊂ Rd, a function k :
X × X → R is a valid kernel if it gives rise to a positive def-
inite kernel matrix. i.e., zTKz ≥ 0,∀z ∈ Rd. In addition,
a valid kernel defines an inner product and a lifting (trans-
formation) φ, such that k(xi,xj) = 〈φ(xi), φ(xj)〉 where
〈·, ·〉 denotes the inner product in the lifted space. This trans-
formed space is referred as the reproducing kernel Hilbert
space (RKHS).

Another interesting property of kernel methods is that fusing
kernels from multiple sources (e.g. different features or repre-
sentations) is straightforward. A commonly adopted strategy

is to consider a convex combination of the kernels:

k(xi,xj) =
∑
m

βmkm(xi,xj),∀βm ≥ 0,
∑
m

βm = 1. (1)

The process of simultaneously inferring the kernel weights
{βm} and minimizing the structural risk (SVM objective) is
referred to as Multiple Kernel Learning (MKL). For example,
the SimpleMKL algorithm [13] solves a simplex constrained
MKL formulation using its Lagrangian dual as follows:

min
β

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyj
∑
m

βmkm(xi,xj)

s.t.
∑
i

αiyi = 0, 0 ≤ αi ≤ C,∀i,
∑
m

βm = 1,β � 0, (2)

where αi, αj are the Lagrangian multipliers. As described
earlier, solving this problem does not require the explicit
knowledge of the mapping φ.

3. PROPOSED APPROACH

In this section, we describe the proposed approach for build-
ing an auto-context model in the RKHS, which is comprised
of two main steps: (a) constructing the auto-context kernel,
(b) integrating image features and the context model using
multiple kernel learning.
Feature Extraction: Let us denote the dataset of N sam-
ples belonging to M different classes by {(x(n), y(n)), n =
1, ..., N}, where x(n) and y(n) ∈ {1, ...,M} are the feature
vector and the class label of the image n respectively. For sim-
plicty, we adopt the popular bag-of-words model for building
the feature representation. Assuming that there are S diverse
descriptors, the visual word dictionaries of sizes d1, ..., dS
are learned using k-means clustering from the extracted de-
scriptors. For a given image In, its feature representation is
x(n) = (x

(n)
1 , ..., x

(n)
d ), where d =

∑
s ds is the feature di-

mension. Each feature component x(n)j represents the nor-
malized occurrence frequency of the j-th visual word (which
is from the s-th dictionary) in the image n.

3.1. Constructing the Auto-Context Kernel

In order to construct the auto-context kernel, we begin by es-
timating the probability map for each image using a classi-
fier in the RKHS. In particular, we propose to learn a kernel
SVM, which can determine the relative importance of the vi-
sual words in classifying the image. In general, SVM classi-
fiers predict only the class label without providing the proba-
bility information explicitly. GivenM classes of data, for any
sample x, the goal is to estimate

pi = P (y = i|x), i ∈ 1, 2 · · ·M.



Adopting an one-vs-one classification scheme, we first esti-
mate pairwise class probabilities rij by assuming that

rij =
1

1 + eAf̂+B
,

where f̂ is the decision value at x. The parameters A and
B are optimized by minimizing the negative log-likelihood of
the training data. Upon estimation of the probabilities for all
pairs of classes, we can consider the formulation in [14] to
estimate the probabilities pi.

min
p

1

2

M∑
i=1

∑
j 6=i

(rijpi − rijpj)2

s.t. pi ≥ 0,

M∑
i=1

pi = 1. (3)

This can be efficiently solved by considering its dual problem
and using the iterative strategy proposed in [14]. Given the
marginal probabilities, p(y|x), for each image from SVM, we
build the auto-context kernel as follows:

kAC(xi,xj) = ψ(xi)
Tψ(xj),

=
∑
y

∑
y′

p(y|xi,γy)p(y
′|xj,γy′)S(y, y′), (4)

where y, y′ ∈ {0, 1} and S(y, y′) denotes the similarity be-
tween the classes. Note, kAC(xi,xj) will result in a large
similarity when the conditional probabilities that xi and xj

belong to a class y is high. When the weighting term S(y, y′)
is ignored, this corresponds to computing the linear kernel
for the probability maps. Alternately, we can also construct a
RBF kernel for the marginals.

3.2. Algorithm

The auto-context kernel measures how far the probability
maps are from the ground truth. Consequently, this high-level
information can effectively complement the image appear-
ance information. Integrating the auto-context model into
the feature kernel of the observed data is equivalent to fusing
the two kernels, and we propose to solve this using multi-
ple kernel learning. Denoting the RKHS corresponding to
the image features and auto-context by kF (., .) and kAC(., .)
respectively, the MKL formulation can be written as

k(xi,xj) = βF kF (xi,xj) + βACkAC(xi,xj), (5)

where βF , βAC ≥ 0 and βF + βAC = 1. We use the Sim-
pleMKL [13] algorithm to obtain the optimal coefficients.
SimpleMKL performs optimization based on gradient de-
scent on the SVM objective through a dual formulation. The
overall iterative algorithm is described in Algorithm 1. The
auto-context model can be progressively improved by learn-
ing a series of kernel classifiers using MKL. In each iteration,

Data: Image feature set {(x(n), y(n)), n = 1, ..., N},
where y(n) ∈ {1, ...,M}, tmax

Result: Set of trained classifiers {Ht}tmax
t=1

Build image feature kernel KF using RBF;
Initialize t = 1, K0 = KF ;
while t ≤ tmax, i.e., until preset number of iterations is
not reached do

1. For each pairwise class, build a kernel SVM
using the combined kernel Kt−1 and store the
classifier parameters in Ht;
2. For each sample, estimate the probability map
{pi}Mi=1 using (3);
3. Construct the auto-context kernel Kt

AC based on
the marginal probabilities using (4);
4. Perform MKL to obtain the fused kernel
Kt = βt

FKF + βt
ACK

t
AC using (5);

5. Set t→ t+ 1;
end
Return the set of classifiers {Ht}tmax

t=1 ;
Algorithm 1: Proposed algorithm for iterative estima-
tion of auto-context in a RKHS setting.

the marginal probabilities are estimated in the fused RKHS
from the image feature kernel and the auto-context kernel
from the previous iteration. Initially it is assumed that there
is an uniform distribution, and hence auto-context has no use-
ful information to improve the discrimination. Formally, the
auto-context kernel for iteration t is constructed by learning a
classifier using the fused kernel,

kt(xi,xj) = βt−1
F kF (xi,xj) + βt−1

AC k
t−1
AC (xi,xj). (6)

4. EXPERIMENTS

In this section, we evaluate the proposed approach using stan-
dard visual recognition datasets and study the impact of auto-
context modeling. The baseline comparison includes the case
of using the feature kernel, and the auto-context kernel inde-
pendently. Before we present the performance evaluation, we
demonstrate the convergence behavior of the proposed algo-
rithm in improving the marginal probabilities using the auto-
context model.

4.1. Demonstration

The initial context model is equivalent to a uniform probabil-
ity map with respect to all classes and hence the classification
performance solely depends on the feature kernel. As the al-
gorithm progresses, the auto context kernel will attempt to
push the class probabilities closer to the ground truth using
a series of classifiers. To illustrate this behavior, we con-
sider a binary classification problem using a subset of the



Fig. 2: Illustration of the convergence behavior of the pro-
posed algorithm. Left axis shows the conditional probability
of an example training sample, with ground truth y = 1, es-
timated by the kernel SVM classifier. Right axis shows the
ratio of the importances between the auto-context kernel and
the image feature kernel respectively.

Soccer dataset (details in the next section). Figure 2 illus-
trates how the relative importance of the auto-context kernel
changes over the iterations, with respect to the image fea-
ture kernel. More specifically, we consider a training example
with ground truth y = 1 and analyze the ratio of the weights,
βt
AC/β

tF . In addition, we plot the probability estimate from
the kernel SVM, p(y = 1|x). In the first iteration, the uni-
form context provides no additional information and hence
the classifier is solely based on the feature kernel. How-
ever, as our algorithm proceeds, the auto-context kernel en-
ables better discrimination between the two classes and hence
betaAC becomes large. Interestingly, the marginal probabil-
ity for the sample also changes from 0.55 in iteration 1 to 0.96
in iteration 6 indicating that the auto-context model leads to a
more effective classifier.

4.2. Performance Evaluation

Soccer Dataset: This dataset contains images belonging to
7 soccer teams, comprised of 40 images per class. We used
25 images from each class for training and the 15 remaining
images for testing. We extracted bag-of-words features based
on both the shape and color cues. More specifically, the shape
information was characterized by the SIFT descriptors com-
puted at the set of keypoints determined by the Harris-Laplace
point detector. The Hue-histogram [?], which decribed the
color information, was evaluated at the same set of keypoints.
Both descriptors are concatenated to construct the image ap-
pearance representation. The dictionary sizes for the SIFT
and Hue descriptors were fixed at 400 and 300. The key points
locations are determined by Harris-Lapalace key point detec-

Table 1: Object recognition performance (% Accuracy) for
standard datasets. We compare the performance of our al-
gorithm against that obtained using only the image feature
kernel and one step auto-context kernel.

Dataset kF +SVM kAC+SVM Ours
Soccer 76.2 76.2 81.9

UCI Segmentation 86.9 85 87.9

tor. We constructed the RBF kernel for this image feature set
with the parameter σ = 50. The kernel SVM classifier was
designed with the parameter C = 10. Furthermore, the cost
parameter and `2 regularization parameter for multiple kernel
learning were set to 15 and 10 respectively. Table 1 shows the
performance of our algorithm in comparison to baseline re-
sults obtained using only the feature kernel and the one-step
auto-context kernel respectively. As the results indicate, the
auto-context information enables the marginal probabilities to
better match the ground truth in a few iterations, thereby lead-
ing to an improved recognition performance.
UCI Image Segmentation Dataset: This dataset containts
2310 samples which were drawn randomly from a database
of 7 outdoor images. The images were handsegmented to cre-
ate a classification for every pixel. Each sample corresponds
to a 3× 3 regions. For the classification task, we extracted 19
different attribtues corresponding to the color statistics and
used a RBF kernel with σ = 10. For multiple kernel learn-
ing, the `2 regularization was fixed at 0.1. As Table 1 indi-
cates, incorporating the auto-context model improves the per-
formance marginally. Note that, this dataset is comparatively
easier to classify since the marginal probabilities of the train-
ing samples were close to the ground truth even after a single
iteration.

5. CONCLUSIONS

In this paper, we presented a new approach for incoporat-
ing context modeling into a kernel learning formulation and
showed that the fusion can be viewed as a multiple kernel
learning formulation. By building a series of classifiers to
approximate the target posterior, we demonstrated improve-
ments in recognition perfomance. Future extensions to this
work include designing randomized techniques for building
auto-context kernels and exploring the use of other regular-
ization strategies in feature fusion.
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