
LLNL-CONF-681480

BurstFS: A Distributed Burst
Buffer File System for Scientific
Applications

T. Wang, W. Yu, K. Sato, A. Moody, K. Mohror

January 28, 2016

International Conference on Supercomputing
Istanbul, Turkey
May 30, 2016 through January 1, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

An Ephemeral Burst Buffer File System for
Scientific Applications

Teng Wang† Kathryn Mohror‡ Adam Moody‡ Kento Sato‡ Weikuan Yu†
†Florida State University ‡Lawrence Livermore National Lab
{twang, yuw}@cs.fsu.edu {kathryn, moody20, sato5}@llnl.gov

Abstract—Burst buffers are becoming an indispensable hard-
ware resource on large-scale supercomputers to buffer the bursty
I/O from scientific applications. However, there is a lack of
software support for burst buffers to be efficiently shared by
applications within a batch-submitted job and recycled across
different batch jobs. In addition, burst buffers need to cope with
a variety of challenging I/O patterns from data-intensive scientific
applications. In this study, we have designed an ephemeral
Burst Buffer File System (BurstFS) that supports scalable and
efficient aggregation of I/O bandwidth from burst buffers while
having the same life cycle as a batch-submitted job. BurstFS
features several techniques including scalable metadata indexing,
co-located I/O delegation, and server-side read clustering and
pipelining. Through extensive tuning and analysis, we have
validated that BurstFS has accomplished our design objectives,
with linear scalability in terms of aggregated I/O bandwidth for
parallel writes and reads.

I. INTRODUCTION

With the explosive growth of scientific and analytic datasets,
burst buffers have been stipulated as an indispensable com-
ponent on large-scale high performance computing (HPC)
systems [2, 3, 6, 9, 10, 11, 13, 24]. There are two main
strategies for deploying burst buffers. One strategy is to attach
fast storage locally to each compute node, referred to as node-
local burst buffers. The other is to provision an additional
layer of fast storage that can be remotely shared by compute
nodes, referred to as remote or shared burst buffers. While both
strategies are being employed on current and next-generation
systems [9, 10, 12], we focus on the node-local burst buffer
strategy in this work.

Burst buffers are a powerful hardware resource for scientific
applications to buffer their bursty I/O traffic. However, the
usage of burst buffers is not yet well-studied, nor are burst
buffer software interfaces standardized across systems. Cur-
rently, users are left with the freedom to explore the use of
burst buffers in an ad-hoc manner. However, domain scientists
would rather focus on their scientific problems instead of
fiddling with the complexity of how to best use burst buffers.

Several efforts have explored the use of locality-aware dis-
tributed file systems (e.g., HDFS [37]) to manage node-local
burst buffers [4, 45, 48]. In such file systems, each process
stores its primary data to the local burst buffer. Because com-
pute processes can be co-located with their data, it is feasible
to achieve linearly scalable aggregated bandwidth [48, 32].

However, burst buffers are only available to user jobs tem-
porarily. A user job can utilize local burst buffers within the
duration of its allocation, but the job loses access to the burst
buffer storage when the allocation terminates. Conventional
file systems such as HDFS [37] or Lustre [17, 31] are typically
designed to persist data indefinitely, on the order of an HPC
system’s lifetime. They utilize long-running daemons for I/O
services, which are not necessary for temporary burst buffer
usage. In addition, the construction and cleanup of I/O services
for these file systems can lead to a waste of resources in terms
of compute cores, storage and memory. Therefore, for effective
use of burst buffers by scientific users, it is critical to develop
software for standardizing the use of burst buffers, so that they
can be seamlessly integrated into the repertoire of HPC tools
on leadership supercomputers.

HPC applications typically exhibit two main I/O patterns:
shared file (N-1) and file-per-process (N-N) [15] (see details
in Section II-A). For node-local burst buffers, with the N-N
pattern, applications can achieve scalable bandwidth by having
each process write/read its files locally. The difficulty for node-
local burst buffers lies with the N-1 I/O pattern, in which all
processes write a portion of a shared file. In particular, a shared
file requires the metadata for all data segments to be properly
constructed, indexed, and collected at the time of writes, then
later formulated with a global layout before any process can
locate its targeted data for read access. While this issue has
been investigated on persistent parallel file systems [15, 47],
the problem of efficiently formulating and serving the global
layout of a shared file remains a critical issue for a temporary
file system across burst buffers.

In addition, datasets from scientific applications are typi-
cally multi-dimensional. Such datasets are usually stored in
one particular order of multiple dimensions, but frequently
read from different dimensions based on the nature of scientific
simulation or analysis. Often, there is an incompatibility
between the order of writes and the order of reads for data
elements in a multi-dimensional dataset, which typically leads
to many small non-contiguous read operations for one process
to retrieve its desired data elements [39] (see Section II-B for
more details). An effective node-local burst buffer file system
also needs to provide a mechanism for scientific applications
to efficiently read multi-dimensional datasets without many
costly small read operations.

In this research, we have designed an ephemeral Burst978-1-4673-8815-3/16/$31.00 c©2016 IEEE

Buffer File System (BurstFS) that has the same temporary
life cycle as a batch-submitted job. BurstFS organizes the
metadata for the data written in local burst buffers into a dis-
tributed key-value store. To cope with the challenges from the
aforementioned I/O patterns, we designed several techniques
in BurstFS including scalable metadata indexing, co-located
I/O delegation, and server-side read clustering and pipelining.
We used a number of I/O kernels and benchmarks to evaluate
the performance of BurstFS, and validate our design choices
through tuning and analysis.

In summary, our research makes the following contributions.
• We present the design and implementation of a burst-

buffer file system to meet the need of effective utilization
of burst buffers on leadership supercomputers.

• We introduce several mechanisms inside BurstFS, includ-
ing scalable metadata indexing for quickly locating data
segments of a shared file, co-located I/O delegation for
scalable and recyclable I/O management, and server-side
clustering and pipelining to support fast access of multi-
dimensional datasets.

• We evaluate the performance of BurstFS with a broad
set of I/O kernels and benchmarks. Our results demon-
strate that BurstFS achieves linear scalability in terms of
aggregated I/O bandwidth for parallel writes and reads.

• To the best of our knowledge, BurstFS is the first file
system designed to have a co-existent and ephemeral life
cycle with one or a batch of scientific applications in the
same job.

II. BACKGROUND ON I/O PATTERNS FOR BURST BUFFERS

In this section, we provide an overview of typical I/O
patterns that need to be supported on burst buffers, in order to
facilitate understanding of our design objectives for BurstFS.

A. Checkpoint/Restart I/O Using Shared or Per-Process Files

P1 P3P2

P1 P3P2

P1 P3P2

N-1 Segmented I/O
with a Shared File

N-1 Strided I/O
with a Shared File

N-N I/O with
Individual Files

Fig. 1: Checkpoint/restart I/O patterns (adapted from [15]).

Checkpoint/restart is a common fault tolerance mechanism
used by HPC applications. During a run, application processes
periodically save their in-memory state in files called check-
points, typically written to a parallel file system (PFS). Then,
in the event of a failure, the most recent checkpoint can be read

to restart the job. For simplicity, checkpointing operations are
usually concurrent across all processes in an application, and
occur at program synchronization points when no messages
are in flight. On current HPC systems, checkpointing can
account for 75%-80% of the total I/O traffic [32]. While
there is ongoing debate on how checkpointing operations will
change on exascale systems compared to today’s systems,
there is general consensus that the data size per checkpoint
will increase due to larger job scales and the interval between
checkpoints will decrease due to increased overall failure
rates [18, 29]. The larger file sizes and shorter intervals for
checkpointing will require orders of magnitude faster storage
bandwidth [25].

There are two dominant I/O patterns for checkpoint/restart,
N-1 and N-N patterns as shown in Fig. 1. In N-N I/O, each
process writes/reads data to/from a unique file. In N-1 I/O,
all processes write to, or read from, a single shared file. N-1
I/O can be further classified into two patterns: N-1 segmented
and N-1 strided. In N-1 segmented I/O, each process accesses
a non-overlapping, contiguous file region. In N-1 strided I/O,
processes interleave their I/O amongst each other.

In conventional parallel file systems [31, 34, 36, 43] large
files are striped over one or more storage servers. While
striping allows each process to interact with multiple storage
servers in parallel, it also leads to striping overhead [46] and
I/O contention [15, 41] when multiple processes concurrently
access the same storage server. A distributed burst buffer file
system that localizes writes/reads is highly beneficial for such
checkpoint/restart workload because of the reduced contention
and the performance advantage of burst buffer device (e.g.
NVRAM and SSD).

B. Multi-dimensional I/O Access in Scientific Applications

(a) Reading columns from a 2-D variable

P1 P2

P3 P4

SSD SSD

(b) Reading a subvolume from a 3-D variable

Fig. 2: I/O access patterns with multi-dimensional variables.

Another common I/O pattern on HPC systems is data access
to multi-dimensional data variables in scientific applications.
While multi-dimensional variables are written in one particular
order, they are often read for analysis or visualization in a
different order than the write order [27, 39].

Fig. 2(a) shows a sample read pattern on a two-dimensional
variable. This variable is initially decomposed into four blocks,
which are written to two SSDs as four data blocks. When this
variable is read back for analysis, one process may require only
one or more columns from this variable. However, these two
columns are stored non-contiguously across the data blocks.

Comp Node Burst Buffer

BurstFS
Scalable

Metadata Indexing

Parallel
Program #1

Parallel
Program #2

Co-located
I/O Delegation

Read Clustering
and Pipelining

Batch Job

Fig. 3: BurstFS system architecture.

Therefore, this process needs to issue small read requests to
four different data blocks in order to retrieve its data for anal-
ysis. Fig. 2(b) illustrates a similar but more complex scenario
with a three-dimensional variable. The 3-D variable is initially
stored as eight different blocks across burst buffers. A process
may only need a subvolume in the middle of the variable
for analysis. This subvolume has to be gathered from eight
different blocks to complete its data access, resulting in many
small read operations. Taken together, a high-performance
file system for burst buffers must provide a mechanism to
efficiently read multi-dimensional datasets without many small
read operations.

III. EPHEMERAL BURST BUFFER FILE SYSTEM

We designed the Burst Buffer File System (BurstFS) as
an ephemeral file system, with the same lifetime as an HPC
job. Our overarching goal for BurstFS is to support scalable
aggregation of I/O operations across distributed, node-local
storage for data-intensive simulations, analytics, visualization,
and checkpoint/restart. BurstFS instances are launched at
the beginning of a batch job, provide data services for all
applications in the job, and terminate at the end of the job
allocation. Fig. 3 shows the system architecture of BurstFS.

When a batch job is allocated a set of compute nodes on
an HPC system, an instance of BurstFS will be constructed
on-the-fly across these nodes, using the locally-attached burst
buffers, which may consist of memory, SSD, or other fast
storage devices. These burst buffers enable very fast log-
structured local writes; i.e., all processes can store their writes
to the local logs. Next, one or more parallel programs launched
on a portion of these nodes can leverage BurstFS to write data
to, or read data from, the burst buffers. In addition, a BurstFS
instance exists only during the lifetime of the batch job. All
allocated resources and nodes will be cleaned up for reuse
at the end of the scheduled execution. This avoids any post-
mortem interference with other jobs or potential unforeseeable
complications to the operation of file and storage systems.
Furthermore, parallel programs within the same job allocation
(e.g., programs launched within the same batch script) can
share data and storage on the same BurstFS instance, which
can greatly reduce the need of back-end persistent file systems
for data sharing across these programs.

BurstFS is mounted with a configurable prefix and trans-
parently intercepts all POSIX functions under that prefix [40].

Fig. 4: Diagram of the distributed key-value store for BurstFS.

Data sharing between different programs can be accomplished
by mounting BurstFS using the same prefix. Upon the un-
mount operation from the last program, all BurstFS instances
sequentially flush their data for data persistence (if requested),
clean up their resources and exit.

To support the challenging I/O patterns discussed in Sec-
tion II, we designed several techniques in BurstFS including
scalable metadata indexing, co-located I/O delegation, and
server-side read clustering and pipelining as shown in Fig. 3.
BurstFS organizes the metadata for the local logged data into
a distributed key-value store. It enables scalable metadata
indexing such that a global view of the data can be generated
quickly to facilitate fast read operations. It also provides a lazy
synchronization scheme to mitigate the cost and frequency of
metadata updates. In addition, BurstFS supports co-located I/O
delegation for scalable and recyclable I/O management. Fur-
thermore, we introduce a mechanism called server-side read
clustering and pipelining for improving the read performance.
We elaborate on these techniques in the rest of this section.

A. Scalable Metadata Indexing

As discussed in Section I, one of the challenges for the N-
1 I/O pattern is accessing the metadata of segments scattered
across all nodes. This leads to a huge scalability problem when
all processes are reading their data and each one needs to
gather the metadata from all nodes.

1) Distributed Key-Value Store for Metadata: BurstFS
solves this issue using a distributed key-value store for meta-
data, along with log-structured writes for data segments. It
leverages MDHIM [23] for the construction of distributed
key-value stores and provides additional features for efficient
handling of bursty read and write operations.

Fig. 4 shows the organization of data and metadata for
BurstFS. Each process stores its data to the local burst buffer as
data logs, which are organized as data segments. New data are
always appended to the data logs, i.e., stored via log-structured
writes. With such log-structured writes, all segments from one
process are stored together regardless of their global logical
position with respect to data from other processes.

When the processes in a parallel program create a global
shared file, a key-value pair (e.g., M1 or M2, etc) is generated
for each segment. A key consists of the file ID (8-byte
hash value) and the logical offset of the segment in the
shared file. The value describes the actual location of the
segment, including the hosting burst buffer, the log containing
the segment (there can be more than one log from multiple
processes on the same node), the physical offset in the log,
and the length. The key-value pairs (KVP) for all the segments
can then provide the global layout for the shared file. All
the KVPs are consistently hashed and distributed among the
key-value servers (e.g., KVS0, KVS1 and so on). With such
an organization, the metadata storage and services are spread
across multiple key-value servers. Many processes from a
parallel application can quickly retrieve the metadata and form
a global view of the layout of a shared file.

2) Lazy Synchronization: In BurstFS, we also develop lazy
synchronization to provide efficient support for bursty writes.
Each process provides a small memory pool for holding the
metadata KVPs from write operations, and, at the end of
a configurable interval, KVPs are periodically stored to the
distributed key-value stores. An fsync operation can force
an explicit synchronization. BurstFS leverages the batch put
operation from MDHIM to transfer these KVPs together in
a few round-trips, minimizing the latency incurred by single
put operations. During the synchronization interval, BurstFS
searches for contiguous KVPs in the memory pool to poten-
tially combine. A combined KVP can span a bigger range.
As shown in Fig. 4, segments [2-3) MB and [3-4) MB are
contiguous and map to the same server (KVS0), so their
KVPs are combined into one KVP. Lazy synchronization can
significantly reduce the number of KVPs required when many
data segments issued by each process are logically contiguous
(e.g. N-1 segmented and N-N write in Fig. 1).

3) Parallel Range Queries: To begin a read operation,
BurstFS has to first look up the metadata for the distributed
data segments. Thus, it searches for all KVPs whose offsets
fall in the requested range, e.g., [offset, offset+count]
is the requested range in pread. With batched read requests,
BurstFS needs to search for all KVPs that are targeted by the
read requests in the batch. To retrieve the requested metadata
entries for different read operations, we need support for a
variety of range queries to the key-value store. However, range
queries are not directly supported by MDHIM; the clients can
indirectly perform range queries by iterating over consecutive
KVPs within a range with repeated cursor-type operations.
Clients must sequentially invoke one or more cursor operations
for one range server, and must search multiple range servers
until all KVPs have been located. The additive round-trip
latencies by all cursor operations to multiple range servers
can severely delay read operations.

To mitigate this, we introduce parallel extensions for both
MDHIM clients and servers. On the client side, we transform
an incoming range request and break it into multiple small
range queries to be sent to each server based on consistent
hashing. Compared with sequential cursor operations, this

P1 P0
Shared
Memory

Delegator

Request
Send Queue

Data Recv
Queue

I/O Service
Manager

Shared Memory

Pipes

Request
Manager

Q1 Q0
Shared
Memory

Delegator

R1 R0
Shared
Memory

Delegator

Burst
Buffer

Fig. 5: Diagram of Co-located I/O Delegation on three com-
pute nodes P, Q and R, each with 2 processes.

extension allows a range query to be broken into many small
range queries, one for each range server. These small queries
are then sent in parallel to all range servers to retrieve all
KVPs. On the server side, for the small range query within
its scope, all KVPs inside that range are retrieved through a
single sequential scan in the key-value store. With this parallel
optimization, any combination of queries can be accomplished
through only parallel range queries to all servers and a single
local scan operation at each key-value server.

B. Co-located I/O Delegation

In contrast to BurstFS write operations that store data
locally, read operations in BurstFS may need to transfer data
from remote burst buffers to a process initiating a read.
To ensure the efficiency of reads, we need to support fast
and scalable data transfer for read operations. A common
approach adopted by many parallel programming models such
as MPI [28] and PGAS [20] is to have each process make read
function calls to persistent file and storage service daemons.
Because BurstFS has a limited lifetime to that of a single job,
BurstFS has special requirements for I/O services. One im-
plementation option might be to have persistent I/O daemons
to support BurstFS; however, that would lead to a waste of
computation and memory resources. Another implementation
choice could be to utilize a simple I/O service thread spawned
from the parent process in a parallel program. However, with
this approach, the service thread can only serve the I/O
needs for processes in the same program, and cannot serve
subsequent or concurrent programs in the batch job.

In BurstFS, we introduce scalable read services through
a mechanism called co-located I/O delegation. We launch
an I/O proxy process on each node, a delegator. Delegators
are decoupled from the applications in a batch job, and are
launched across all compute nodes. The delegators collectively
provide data services for all applications in the job.

As shown in Fig. 5, processes on three compute nodes will
have all their I/O activities delegated to the delegator on the
same node. Each delegator consists of two main components:
a request manager and an I/O service manager. In this
way, a conventional client-server model for I/O services is
transformed into a peer-peer model among all delegators. With
this arrangement, individual processes no longer communicate
with I/O servers directly, but go through their I/O delegators.
This leads to a great reduction on the total number of network
communication channels and the associated resources across
the compute nodes. The I/O service manager in each delegator
is dedicated to serve the incoming read requests from peer
delegators. The I/O service managers exploit opportunities
to consolidate requests, pipeline data retrieval from local
storage, and transfer data back to requesting delegators (See
Section III-C for details).

The request manager of a delegator is composed of two
main data structures: a request send queue and a data receive
queue, as shown in Fig. 5. The request send queue is a circular
list with a configurable number of entries. When not full, it
receives the read requests from all client processes through
named pipes. Requests are queued based on the destination
delegator. Requests to the same delegator are chained together,
which consolidates multiple requests into a single network
message. The data receive queue resides in a shared memory
pool constructed across delegator and client processes on the
same node. For each I/O request, an outstanding request entry
is created in the receive queue. Data returned from remote
delegators is directly deposited in the shared memory pool,
and the receive queue is searched for a matching outstanding
request entry. When a match is found, the outstanding request
is marked as complete. An additional acknowledgment is sent
via the pipe to notify the client process to consume the data.

The request manager monitors the utilization level of the
shared memory pool. When it is higher than a configurable
threshold (default 75%), the delegator (1) informs processes
of the urgent need to consume their data and (2) throttles
request injection to remote delegators. The request manager
also monitors the ingress bandwidth based on the received
data for read requests in the send queue. When the ingress
bandwidth is saturated, the request manager creates additional
network communication channels to send requests and receive
data.

C. Server-Side Read Clustering and Pipelining

As discussed in Section II-B, with multi-dimensional vari-
ables, a process can issue many small, noncontiguous read re-
quests for scattered data segments in each data log. Various I/O
libraries and tools have provided special support for such non-
contiguous read access. For instance, POSIX lio_listio
allows read requests to be transferred in batches; and Or-
angeFS supports batched read requests. While being able to
combine small requests into a list or a large request, these
techniques mainly work from the client side and rely on
the underlying storage system such as the disk scheduler to
prefetch or merge requests for fast data retrieval. However,

768KB	

Read	SSD	

Memory	Buffer	

Xmit	

Read	SSD	

Xmit	

256KB	

628KB	

278KB	

320KB	

1MB	 512KB	

Transfer

Read

32KB	

Read	SSD	
…

Xmit	

A
rrival tim

e

120KB	

320KB	

200KB	

…	

C
onsolidate

Copy

Two-Level Request Queue

size categories

Individual and combined read requests

Fig. 6: Server-Side Read Clustering and Pipelining.

there is still a lack of distributed file systems that can globally
optimize these batch read requests from all processes.

As an ephemeral file system in a batch job, BurstFS directly
manages accesses to the datasets from scientific applications
via delegators. Therefore, besides leveraging the existing tech-
niques of batched reads from the client side, BurstFS can
exploit its visibility of read requests at the server side (via the
I/O service manager) for further performance improvements.
To this end, we introduce a mechanism called server-side read
clustering and pipelining (SSCP) in the I/O service manager
to improve the read performance of BurstFS.

SSCP addresses several concurrent, sometimes conflicting
objectives: (1) the need of detecting spatial locality among
read requests and combining them for large contiguous reads.
(2) and the need of serving on-demand read requests as soon
as possible for execution progress. As shown in Fig. 6, SSCP
provides two key components to achieve these objectives, a
two-level request queue for read clustering and a three-stage
pipeline for fast data movement.

In the two-level request queue, SSCP first creates several
categories of request sizes, ranging from 32KB to 1MB (see
Fig. 6). Incoming requests will be inserted to the appropriate
size category either individually, or if contiguous with other
requests, combined with the existing contiguous requests and
then inserted into the suitable size category. As shown in the
figure, two contiguous requests of 120KB and 200KB are
combined by the service manager. Within each size category,
all requests are queued based on their arrival time. A combined
request will use the arrival time from its oldest member. For
best scheduling efficiency, the category with largest request
size is prioritized for service. Within the same category, the
oldest request will be served first. BurstFS enforces a threshold
on the wait time of each category (default 5ms). If there is any
category having not been serviced longer than this threshold,
BurstFS selects the oldest read request from this category for
service and resets the category’s wait time.

The I/O service manager creates a memory pool to tem-

porarily buffer outgoing data. This facilitates the rearrange-
ment of data segments for network transfer and allows the
formulation of a pipeline. Fig. 6 shows the three-stage data
movement pipeline: reading, copying, and transferring. In the
reading stage, the I/O service manager picks up a request from
the request list based on the aforementioned scheduling policy,
reads the requested data from the local burst buffer to a slot
in the memory buffer. In the copying stage, the data in the
memory buffer is prepared as an outgoing reply for the remote
delegator, and then copied from the memory buffer to the
network packet. Data inside the memory buffer may need to
be divided into multiple replies for different remote delegators.
The I/O service manager then creates multiple network replies,
one for each delegator. In the transferring stage, the I/O service
manager can pack one or more network replies for the same
remote delegator into one network message (1MB maximum),
and transmit (Xmit in Fig. 6) it to the delegator.

IV. EXPERIMENTAL EVALUATION

A. Testbed

Our experiments are conducted on the Catalyst cluster [3] at
Lawrence Livermore National Laboratory (LLNL), consisting
of 384 nodes. Each node is equipped with two 12-core Intel
Xeon E5-2695v2 processors, 128 GB DRAM and an 800-GB
burst buffer comprised of PCIe SSDs.

Configuration: We focus on comparing BurstFS with two
contemporary file systems: OrangeFS 2.8.8, and the Parallel
Log-Structured File System 2.5 (PLFS [15]). As a representa-
tive parallel file system (PFS), OrangeFS stripes each file over
multiple storage servers to enable parallel I/O with high ag-
gregate bandwidth. In our experiments, we establish OrangeFS
server instances across all the compute nodes allocated to a
job to manage all the node-local SSDs. PLFS is designed to
accelerate N-1 writes by transforming random, dispersed, N-1
writes into sequential N-N writes in a log-structured manner.
Data written by each process are stored on the backend PFS as
a log file. In our experiments, we use OrangeFS (over node-
local SSDs) as the backend PFS for PLFS. We use PLFS’s
MPI interface for read and write.

Since version 2.0, PLFS has had burst buffer support. In
PLFS with burst buffer support (referred to as “PLFS burst
buffer” in the rest of this paper), instead of writing the log
file on the backend PFS, processes store their metalinks on
the backend PFS, which point to the real location of their log
files in the burst buffers. This allows each process to write
its log file to the burst buffer instead of the backend PFS. In
our experiments, we have each process write to its node-local
SSD, and the location is recorded in the metalink stored on the
center-wide Lustre parallel file system. This configuration can
deliver scalable write bandwidth. In order to read data from
PLFS burst buffer, each node-local SSD has to be mounted on
all other compute nodes as a global file system (e.g., NFS),
which requires system administrator support. A primary goal
for BurstFS is that it be completely controllable from user
space, including mounting the file system. Thus, due to the

requirement of administrator intervetion to establish the cross-
mount environment for read with PLFS burst buffer, we only
evaluated the write scalability of PLFS burst buffer and include
this result in Section IV-B.

Benchmarks: We have employed microbenchmarks that
exhibit three checkpoint/restart I/O patterns (see Fig. II-A).
Note that N-1 strided pattern is a case of 2-D scientific I/O as
described in Section II-B.

To assess BurstFS’s potential to support scientific applica-
tions, we evaluate BurstFS using I/O workloads extracted from
MPI-Tile-IO [33] and BTIO [44]. MPI-Tile-IO is a widely
adopted benchmark used for simulating the workloads that
exist in visualization and numerical applications. The two-
dimensional dataset is partitioned into multiple tiles, each
process rendering pixels inside one tile. Developed by NASA
Advanced Supercomputing Division, BTIO partitions a three-
dimensional array across a square number of processes, each
process processing multiple Cartesian subsets. In both work-
loads, all processes first write their data into a shared file,
then read back into their memory. To evaluate the support for
a batch job of multiple applications, we employ the Interleaved
Or Random (IOR) benchmark [26] to read data provided by
Tile-IO and BTIO programs in the same job.

B. Overall Write/Read Performance

We first evaluate the overall write/read performance of
BurstFS. In this experiment, 16 processes are placed on each
node, each writing 64MB data following an N-1 strided, N-1
segmented, or N-N pattern. After each process writes all of
its data, we use fsync to force all writes to be synchronized
to the node-local SSD. We set the stripe size on OrangeFS as
1MB and fix the transfer size at 1MB to align with the stripe
size, and each file is striped across all nodes in OrangeFS. This
configuration gives OrangeFS the best read/write bandwidth
over other tuning choices (e.g. 64KB default stripe size).

Fig. 7 compares the write bandwidth with PLFS burst buffer
(PLFS-BB), PLFS, and OrangeFS. In all three write patterns,
both BurstFS and PLFS burst buffer scale linearly with process
count. This is because processes in both systems write locally
and the write bandwidth of each node-local SSD is saturated.
While we also observe linear scalability in OrangeFS and
PLFS, their bandwidths increase at a much slower rate. This
is because both PLFS and OrangeFS stripe their file(s) across
multiple nodes, which can cause degraded bandwidth due to
contention when different processes write to the same remote
node. On average, BurstFS delivers 3.5×, 2.7×, and 1.3× the
performance of OrangeFS for N-1 segmented, N-1 strided,
and N-N patterns, respectively. Its performance is 1.6×, 1.6×,
and 1.5× the performance of PLFS, respectively, for the three
patterns.

We observe that PLFS initially delivers higher bandwidth
than BurstFS at small process counts (16 and 32 processes),
for all three patterns. After further investigation, we find this
is because, internally, PLFS transforms the N-1 writes into
N-N writes. However, when fsync is called to force these
N-N files to be written to PLFS’s back end file system, (i.e.,

 0.5

 1

 2

 4

 8

 16

 32

 64

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

PLFS-BB
PLFS
OrangeFS
BurstFS

(a) N-1 Segmented Write

 0.5

 1

 2

 4

 8

 16

 32

 64

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

PLFS-BB
PLFS
OrangeFS
BurstFS

(b) N-1 Strided Write

 0.5

 1

 2

 4

 8

 16

 32

 64

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

PLFS-BB
PLFS
OrangeFS
BurstFS

(c) N-N Write

Fig. 7: Comparison of BurstFS with PLFS and OrangeFS under different write patterns.

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

BurstFS
OrangeFS
PLFS

(a) N-1 Segmented Read

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

BurstFS
OrangeFS
PLFS

(b) N-1 Strided Read

 1

 2

 4

 8

 16

 32

 64

 128

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

BurstFS
OrangeFS
PLFS

(c) N-N Read

Fig. 8: Comparison of BurstFS with PLFS and OrangeFS under different read patterns.

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024

Th
ro

u
gh

p
u

t
(M

B
/s

)

Transfer Size (KB)

BurstFS OrangeFS PLFS

(a) Write

PLFS

3.514
BurstFS OrangeFS PLFS

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024

Th
ro

u
gh

p
u

t
(M

B
/s

)

Transfer Size (KB)

BurstFS OrangeFS OrangeFS_List PLFS

(b) Read

Fig. 9: Comparison of BurstFS with PLFS and OrangeFS under different transfer sizes.

OrangeFS), OrangeFS does not completely flush the files to
the SSDs before fsync returns. The measured bandwidth is
even higher than the aggregate SSD bandwidth on the local
file systems.

Fig. 8 compares the read bandwidth of BurstFS with Or-
angeFS and PLFS. Each process reads 64MB data under N-1
strided, N-1 segmented and N-N patterns. For the N-1 strided
reads, we first create a shared file using N-1 segmented writes,
then read all data using the N-1 strided reads. In this way, each
process needs to read data from multiple logs as discussed
in Section II-B. In order to cluster the non-contiguous read
requests under this pattern, we use POSIX lio_listio to
transfer read requests to BurstFS in batches. In the case of
OrangeFS, when we enable its list I/O operations, we observe

the bandwidth is two times lower than the configuration
without list I/O operations. This is because OrangeFS list
I/O does not benefit large read operations. Thus, for this
experiment, we report only the performance of N-1 strided
pattern in OrangeFS without its list I/O support.

As we can see from Fig. 8(a), the bandwidth of N-1
segmented read scales linearly with process count for BurstFS,
since each process reads all data directly from its local node.
In contrast, both PLFS and OrangeFS need to read data
from remote nodes, losing the benefit from locality. On the
other hand, the bandwidth of N-1 strided read in Fig. 8(b)
increases at a much slower rate in BurstFS compared with
segmented read. This is because the strided read pattern results
in higher contention due to all-to-all reads from remote burst

buffers. BurstFS with N-1 strided read still scales better and
outperforms both OrangeFS and PLFS. This is because instead
of servicing each request individually, BurstFS delegators
cluster read requests from numerous processes and serve them
through a three-stage read pipeline. On average, BurstFS
delivers 2.2×, 2.5× and 1.4× the performance of OrangeFS,
respectively, for N-1 segmented, N-1 strided and N-N patterns.
It delivers 1.6×, 1.4× and 1.6× the performance of PLFS,
respectively, for the three patterns.

C. Performance Impact of Different Transfer Sizes

Fig. 9 shows the impact of transfers sizes on the bandwidth
of BurstFS. We focus on N-1 strided I/O, because it is a chal-
lenging I/O pattern. Similar to the experiment in Section IV-B,
for BurstFS strided read operations, we first create a shared
file using N-1 segmented writes and then read the data back
using an N-1 strided pattern. In this way, BurstFS will not
benefit from local reads.

The results in Fig. 9(a) demonstrate the impact of transfer
sizes on write bandwidth when 64 processes write to a shared
file. BurstFS outperforms OrangeFS and PLFS by having
each process write data locally, and it delivers outstanding
performance improvement at small transfer sizes, for example,
24.4× and 16.7× at 1KB compared to OrangeFS and PLFS,
respectively. This is because both PLFS and OrangeFS suffer
from the cost of random writes and repeated data transfers to
the remote burst buffers.

Fig. 9(b) shows the impact of transfer size on read band-
width. For small read requests, OrangeFS provides list I/O
support so that a list of read requests can be combined into
one function call. The result of this type of read operations
is shown in Fig. 9(b) as OrangeFS List. As we can see from
this figure, although OrangeFS List enhances the performance
of small reads, it is still lower than BurstFS. This is because
the additional benefits of server-side clustering and pipelining
in BurstFS. Overall, BurstFS yields up to 10.2×, 3× and
12.3× performance improvement compared to OrangeFS, Or-
angeFS List and PLFS, respectively.

D. Analysis of Metadata Performance

As discussed in Section III-A1, BurstFS distributes the
global metadata indices over distributed key-value store. Dur-
ing file open, each process in PLFS needs to construct a global
view of a shared file by reading and combining metadata
from other processes. After this step, all look-up operations
are conducted locally. To evaluate the benefit of our design,
we compare the metadata look-up time of BurstFS with
that of PLFS (i.e. PLFS’s total time on index construction
during file open and local look-up during read), as well as
the original look-up time from the MDHIM functions. We
examine the look-up performance using both cursor and batch
get functions from MDHIM. Each cursor operation triggers a
round-trip transfer for each key-value pair, and a look-up for
a range can invoke multiple cursor operations as described in
Section III-A3. The total look-up time is significantly higher
than other cases. For instance, it takes 81 seconds for the 4KB

case in Fig. 10(a). So we omit the look-up time with cursor
operations in our figures.

Fig. 10(a) compares the look-up time of BurstFS, PLFS,
and MDHIM batch get (denoted as MDHIM). In all three
cases, we launch 32 processes, each to look up the locations
of 64MB data written under the N-1 strided pattern. The total
data volume is the product of the transfer size and the number
of segments. Thus a smaller transfer size will lead to more seg-
ments, therefore more indices. As we can see from the figure,
the look-up time of all cases drops along with the increasing
transfer size. This is because of fewer metadata look-ups. The
look-up time of BurstFS is significantly faster than PLFS.
This validates that the scalable metadata indexing technique in
BurstFS can quickly establish a global view of the metadata
for a shared file. In contrast, every process in PLFS has to
load all the indices generated during write and construct the
global indices for read, this all-to-all load dominates the look-
up time. BurstFS also outperforms MDHIM by minimizing the
number of read operations with only one sequential scan at the
range server because of its support for parallel range queries
(see Section III-A3). On average, BurstFS reduces the look-
up time by 77% and 58% compared with PLFS and MDHIM,
respectively.

Fig. 10(b) shows the metadata performance with an increas-
ing process count. In this test, each process looks up 64 MB
data written with a transfer size of 64 KB. More processes lead
to more look-up operations. As shown in the figure, the look-
up time of PLFS increases sharply with the process count. In
contrast, the look-up time for BurstFS and MDHIM increases
slowly with more processes, because of the use of a distributed
key-value store for metadata.

E. Tile-IO Test

Fig. 11 shows the performance of BurstFS with Tile-IO.
In this experiment, a 32GB global array is partitioned over
256 processes. Each process first writes its tile to several non-
contiguous regions of the shared file, then reads it back to
its local memory. For write operations, BurstFS outperforms
OrangeFS and PLFS by directly writing data to local SSDs.
For reads, although all three file systems benefit from the
buffer cache, BurstFS still performs best since each process
reads data locally. Overall, BurstFS delivers 6.9× and 2.5×
improvement over OrangeFS for reads and writes, respectively,
and 7.3× and 1.4× improvement over PLFS for reads and
writes, respectively.

F. BTIO Test

Fig. 12 shows the performance of BurstFS under the BTIO
workload with problem size D. In this experiment, the 408
× 408 × 408 global array is decomposed over 64 processes.
Similar to Tile-IO, each process first writes its own cells to
several noncontiguous regions of the shared file, then reads
them back to its local memory. Due to the 3-D partitioning,
the transfer size (2040B) of each process is much smaller
than Tile-IO (32KB), so the I/O bandwidth of both PLFS
and OrangeFS with BTIO decreases rapidly, compared with

 0

 1

 2

 3

 4

 5

 6

 1 4 16 64 256 1024

L
o

o
ku

p
 T

im
e

(s
)

Transfer Size (KB)

BurstFS
MDHIM
PLFS

(a) Metadata performance with varying transfer sizes

 0

 1

 2

 3

 4

 16 32 64 128 256 512 1024

L
o

o
ku

p
 T

im
e

(s
)

Number of Processes

BurstFS
MDHIM
PLFS

(b) Metadata Performance with varying process counts

Fig. 10: Analysis of metadata performance as a result of transfer size and process count.

0

1

2

3

4

5

6

7

8

D

B
an

d
w

id
th

 (
G

B
/s

)
BurstFS

0

20

40

60

80

WRITE READ

B
an

d
w

id
th

 (
G

B
/s

)

BurstFS OrangeFS PLFS

Fig. 11: Performance of Tile-IO.

Tile-IO. BurstFS sustains this small-message workload with
the benefits of local reads and server-side read clustering.
Overall, it delivers 15.6× and 9.5× performance improvement
over OrangeFS for reads and writes, respectively. It also
outperforms PLFS by 16.2× and 7×, respectively, for reads
and writes.

G. IOR Test

In order to evaluate the support for data sharing among
different programs in a batch job, we conduct a test with IOR.
We run IOR with a varying number of processes reading a
shared file written by another set of processes from a Tile-
IO program. Processes in both MPI programs are launched
in the same job. Each node hosts 16 Tile-IO processes and
16 IOR processes. Once Tile-IO processes complete writing
on the shared file, this file is read back by IOR processes
using the N-1 segmented read pattern. We keep the same
transfer size of IOR as Tile-IO. Since the read pattern does
not match the initial write pattern of Tile-IO, each process
needs to read from multiple logs on remote nodes. We fix
the size of each tile as 128MB and the number of tiles along

0

0.5

1

1.5

2

2.5

3

3.5

Write Read

B
an

d
w

id
th

 (
G

B
/s

)

BurstFS OrangeFS PLFS

Fig. 12: Performance of BTIO.

Y axis as 4, and then increase the number of tiles along X
axis. Thus the number of tiles on the X axis will increase
along with the number of reading processes. Fig. 13 compares
the read bandwidth of BurstFS with PLFS and OrangeFS.
Both PLFS and OrangeFS are vulnerable to small transfer size
(32KB). BurstFS maintains high bandwidth because of locally
combining small requests and server-side read clustering and
pipelining. On average, when reading data produced by Tile-
IO, BurstFS delivers 2.3× and 2.5× the performance of
OrangeFS and PLFS, respectively.

We also evaluate the read bandwidth of IOR over the dataset
generated by BTIO, using two BTIO classes D and E. For
Class D, we use 64 processes to write an array of 408 ×
408 × 408 to a shared file. For Class E, 225 processes write
an array of 1020 × 1020 × 1020 to a shared file. In both
cases, the shared file is then read back by the IOR processes
using the N-1 segmented read pattern. Fig. 14 shows the read
bandwidth. Due to the much smaller transfer size (2040B for
Class D and 2550B for Class E), the bandwidths of OrangeFS
and PLFS with BTIO are much lower than with Tile-IO. While
the performance of BurstFS is also impacted by the small

 0.5

 1

 2

 4

 8

 16

 32

 64

 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

ec
)

Number of Processes

BurstFS
OrangeFS
PLFS

Fig. 13: Read bandwidth of IOR on the shared file written by
Tile-IO.

0

1

2

3

4

5

6

7

8

D E

B
an

d
w

id
th

 (
G

B
/s

)

Problem Size

BurstFS OrangeFS PLFS

Fig. 14: Read bandwidth of IOR on the shared file written by
BTIO.

transfer size, it delivers much better bandwidth to these small
requests. On average, when reading data produced by BTIO,
BurstFS delivers 10× and 12.2× performance improvement
compared to OrangeFS and PLFS, respectively.

V. RELATED WORK

The importance of burst buffers is shown by their inclusion
in the blueprint of many next-generation supercomputers [2, 8,
9, 10, 11, 12] with a broad investment in supporting software.
DataWarp [5], IME [7] and aBBa [1] are three ongoing
projects in Cray, DDN and EMC. Their potential benefits have
been explored from various research angles [25, 35, 42]. All
these works target remote, shared burst buffers. In contrast,
our work centers on node-local burst buffers, an equally im-
portant architecture that currently lacks standardized support
software. Compared with work on remote burst buffers, our
work delivers linear scalability for checkpointing/restart since
most I/O requests are serviced locally. PLFS burst buffer [14]

supports node-local burst buffers (see Section IV-A) and can
deliver fast, scalable write performance. It relies on a global
file system (e.g., Lustre, NFS) to manage metalinks, which can
be an overhead if the number of metalinks is large. In addition,
reading data from PLFS burst buffer requires each of the node-
local burst buffers to be mounted across all compute nodes.
BurstFS differs from PLFS burst buffer in that it is structured
as a standalone file system. BurstFS achieves scalable read
performance using the collective services of its delegators.
Moreover, BurstFS is specialized for managing node-local
burst buffers, while PLFS burst buffer supports both the node-
local burst buffers and remote shared burst buffers.

The I/O bandwidth demand from checkpoint/restart has
been increasing on par with the computing power. SCR [29],
CRUISE [32] and FusionFS [48] are notable efforts designed
to address this increasing I/O challenge and achieve linear
write bandwidth by having each process write individual files
to node-local storage (N-N). Different from these works,
BurstFS supports both N-1 and N-N I/O patterns and de-
livers scalable read/write bandwidth for both patterns. Mul-
tidimensional I/O has long been a challenging workload for
parallel file systems. The small, non-contiguous read/write
requests issued from individual processes can dramatically
constrain parallel file system bandwidth. Several state-of-the-
art approaches have been developed to address this issue. PLFS
accelerates small, non-contiguous N-1 writes by transforming
them into sequential, contiguous N-N writes [15]. However,
PLFS (without burst buffer support) still relies on a back end
parallel file system to store the individual files from the N-
N writes. Contention can occur when two files are striped
on the same storage server. In contrast, BurstFS provides an
independent file system service. It addresses write contention
via local writes, and is optimized for read-intensive workloads.
Two-phase I/O [38] is another widely adopted approach to
optimize small, non-contiguous I/O workloads. All processes
send their I/O requests to aggregators, which consolidate them
into large, contiguous requests. The read service of BurstFS
has some similarity to two-phase I/O: its delegators are akin
to making the I/O aggregators used in two-phase I/O into
a service. However, there are two key distinctions. First,
the consolidations of BurstFS are directly conducted at the
file system instead of the aggregators. This avoids the extra
transfer from aggregators to client processes. Second, the
consolidation is done by each delegator individually without
extra synchronization overhead.

Cross-application data sharing is a daunting topic since
many contemporary programming models (e.g. MPI, PGAS)
define separate name spaces for each program. A widely
adopted approach is leveraging existing distributed sys-
tems, such as distributed file systems (e.g. Lustre [17], Or-
angeFS [16], HDFS [37]) and distributed key-value stores (e.g.
Memcached [30], Dynamo [21], BigTable [19]). However,
these services are usually distant from computing processes,
yielding limited bandwidth. In addition, the heavy overhead
from start up, tear down, and management makes them un-
suitable to be co-located with applications in batch jobs. On

the other hand, a couple of service programs are developed
to be run with applications in batch jobs. Docan et al. [22]
develop DART, a communication framework that enables data
sharing via separate service processes located on a different
set of nodes from the simulation applications (in the same
job). Their later work DataSpaces [22] extends the original
design. In both studies, application processes write to and read
from the service process in an ad hoc manner. Each operation
requires a separate network transfer. In contrast, the delegator
in BurstFS is designed as an I/O proxy process co-located with
application processes on the same node. All writes are local.
Reads are deferred to the I/O delegator, which provides many
opportunities to optimize the read operations.

VI. CONCLUSION

In this paper, we examined the requirements of data man-
agement for node-local burst buffers, a critical topic since
node-local burst buffers are in the designs of next-generation,
large-scale supercomputers. Our approach to managing node-
local burst buffers is BurstFS, an ephemeral burst buffer file
system with the same lifetime as batch jobs and designed
for high performance with HPC I/O workloads. BurstFS
can be used by multiple applications within the same job,
sequentially as with checkpoint/restart, or concurrently as with
ensemble applications. We implemented several techniques in
BurstFS that greatly benefit challenging HPC I/O patterns:
scalable metadata indexing, co-located I/O delegation, and
server-side read clustering and pipelining. These techniques
ensure scalable metadata handling and fast data transfers. Our
performance results demonstrate that BurstFS can efficiently
support a variety of challenging I/O patterns. Particularly, it
can support shared file workloads across distributed, node-
local burst buffers with performance very close to that for non-
shared file workloads. BurstFS also scales linearly for parallel
write and read bandwidth and outperforms the state-of-the-art
by a significant margin.

Acknowledgment

We greatly appreciate Dr. John Bent from EMC for his
guidance on configuring and running PLFS with burst buffer
support. We are also thankful for the insightful comments from
the anonymous reviewers.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-CONF-
681480-DRAFT. This work was also supported in part by the
National Science Foundation award 1561041.

REFERENCES

[1] Active Burst Buffer Appliance. http://www.theregister.co.uk/
2012/09/21/emc abba//.

[2] Aurora. http://aurora.alcf.anl.gov/.
[3] Catalyst. http://computation.llnl.gov/computers/catalyst.
[4] Characterization and optimization of memory-resident mapre-

duce on hpc systems.
[5] Datawarp. http://www.cray.com/products/storage/datawarp.
[6] Hyperion. https://hyperionproject.llnl.gov/index.php.
[7] Infinite Memory Engine. http://www.ddn.com/products/

infinite-memory-engine-ime/.

[8] NERSC-8. https://www.nersc.gov/users/computational-systems/
cori/.

[9] Sierra. https://www.llnl.gov/news/
next-generation-supercomputer-coming-lab.

[10] Summit. https://www.olcf.ornl.gov/summit/.
[11] Theta. https://www.alcf.anl.gov/articles/

alcf-selects-projects-theta-early-science-program.
[12] Trinity. http://www.lanl.gov/projects/trinity.
[13] TSUBAME2. http://tsubame.gsic.titech.ac.jp/en/

hardware-architecture.
[14] John Bent, Sorin Faibish, Jim Ahrens, Gary Grider, John

Patchett, Percy Tzelnic, and Jon Woodring. Jitter-Free Co-
Processing on a Prototype Exascale Storage Stack. In IEEE
28th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–5. IEEE, 2012.

[15] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate.
PLFS: A Checkpoint Filesystem for Parallel Applications. In
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM, 2009.

[16] Michael Moore David Bonnie, Becky Ligon, Mike Marshall,
Walt Ligon, Nicholas Mills, Elaine Quarles Sam Sampson,
Shuangyang Yang, and Boyd Wilson. OrangeFS: Advancing
PVFS.

[17] Peter J Braam and R Zahir. Lustre: A Scalable, High Perfor-
mance File System. Cluster File Systems, Inc, 2002.

[18] Michael J Brim, David A Dillow, Sarp Oral, Bradley W Settle-
myer, and Feiyi Wang. Asynchronous Object Storage with QoS
for Scientific and Commercial Big Data. In Proceedings of the
8th Parallel Data Storage Workshop, pages 7–13. ACM, 2013.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Berkeley, CA, USA, 2006. USENIX Association.

[20] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey,
François Cantonnet, Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi
Yao, and Daniel Chavarrı́a-Miranda. An Evaluation of Global
Address Space Languages: Co-array Fortran and Unified Paral-
lel C. In Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 36–
47. ACM, 2005.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazon’s Highly Available Key-Value Store.
In ACM SIGOPS Operating Systems Review, volume 41, pages
205–220. ACM, 2007.

[22] Ciprian Docan, Manish Parashar, and Scott Klasky. DataSpaces:
An Interaction and Coordination Framework for Coupled Sim-
ulation Workflows. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing,
HPDC ’10, pages 25–36, New York, NY, USA, 2010. ACM.

[23] Hugh Greenberg, John Bent, and Gary Grider. MDHIM: A Par-
allel Key/Value Framework for HPC. In 7th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 15),
2015.

[24] Jiahua He, Arun Jagatheesan, Sandeep Gupta, Jeffrey Bennett,
and Allan Snavely. DASH: a Recipe for a Flash-Based Data In-
tensive Supercomputer. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE Computer
Society, 2010.

[25] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers,
Robert Ross, Gary Grider, Adam Crume, and Carlos Maltzahn.

On the Role of Burst Buffers in Leadership-Class Storage
Systems. In IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–11. IEEE, 2012.

[26] LLNL. IOR Benchmark. https://github.com/LLNL/ior.
[27] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten

Schwan, Ron Oldfield, Matthew Wolf, and Qing Liu. Six
Degrees of Scientific Data: Reading Patterns for Extreme Scale
Science IO. In Proceedings of the 20th International Symposium
on High Performance Distributed Computing, pages 49–60.
ACM, 2011.

[28] Ewing Lusk, S Huss, B Saphir, and M Snir. MPI: A Message-
Passing Interface Standard, 2009.

[29] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bro-
nis R De Supinski. Design, Modeling, and Evaluation of a Scal-
able Multi-Level Checkpointing System. In 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE, 2010.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
Memcache at Facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages
385–398, 2013.

[31] Sarp Oral, David A Dillow, Douglas Fuller, Jason Hill, Dustin
Leverman, Sudharshan S Vazhkudai, Feiyi Wang, Youngjae
Kim, James Rogers, James Simmons, et al. OLCFs 1 TB/s,
Next-Generation Lustre File System.

[32] Raghunath Rajachandrasekar, Adam Moody, Kathryn Mohror,
and Dhabaleswar K Panda. A 1 PB/s File System to Check-
point Three Million MPI Tasks. In Proceedings of the 22nd
International Symposium on High-Performance Parallel and
Distributed Computing, pages 143–154. ACM, 2013.

[33] R. B. Ross. Parallel I/O Benchmark Consortium.
[34] Robert B Ross, Rajeev Thakur, et al. PVFS: A Parallel File

System for Linux Clusters. In Proceedings of the 4th annual
Linux Showcase and Conference, pages 391–430, 2000.

[35] Kiminori Sato, Kathryn Mohror, Adam Moody, Todd Gamblin,
Bronis R De Supinski, Naoya Maruyama, and Shingo Matsuoka.
A User-Level Infiniband-Based File System and Checkpoint
Strategy for Burst Buffers. In Cluster, Cloud and Grid Comput-
ing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, pages 21–30. IEEE, 2014.

[36] Frank B Schmuck and Roger L Haskin. GPFS: A Shared-Disk
File System for Large Computing Clusters. In FAST, 2002.

[37] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10. IEEE, 2010.

[38] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving

and Collective I/O in ROMIO. In Frontiers of Massively Parallel
Computation, 1999. Frontiers’ 99. The Seventh Symposium on
the, pages 182–189. IEEE, 1999.

[39] Yuan Tian, Scott Klasky, Hasan Abbasi, Jay Lofstead, Ray
Grout, Norbert Podhorszki, Qing Liu, Yandong Wang, and
Weikuan Yu. EDO: Improving Read Performance for Scientific
Applications through Elastic Data Organization. In 2011 IEEE
International Conference on Cluster Computing, pages 93–102.
IEEE, 2011.

[40] Teng Wang, Kathryn Mohror, Adam Moody, Weikuan Yu,
and Kento Sato. BurstFS: A Distributed Burst Buffer File
System for Scientific Applications. In Poster Presented at
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2015.

[41] Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang, and
Weikuan Yu. Trio: Burst buffer based i/o orchestration. In 2015
IEEE International Conference on Cluster Computing, pages
194–203. IEEE, 2015.

[42] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott
Atchley, and Weikuan Yu. BurstMem: A High-Performance
Burst Buffer System for Scientific Applications. In Big Data
(Big Data), 2014 IEEE International Conference on, pages 71–
79. IEEE, 2014.

[43] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson,
Brian Mueller, Jason Small, Jim Zelenka, and Bin Zhou. Scal-
able Performance of the Panasas Parallel File System. In FAST,
pages 1–17, 2008.

[44] Parkson Wong and R der Wijngaart. NAS Parallel Benchmarks
I/O Version 2.4. NASA Ames Research Center, Moffet Field,
CA, Tech. Rep. NAS-03-002, 2003.

[45] Jiangling Yin, Jun Wang, Jian Zhou, Tyler Lukasiewicz, Dan
Huang, and Junyao Zhang. Opass: Analysis and Optimization
of Parallel Data Access on Distributed File Systems. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 623–632. IEEE, 2015.

[46] W. Yu, J.S. Vetter, R.S. Canon, and S. Jiang. Exploiting Lustre
File Joining for Effective Collective I/O. In 7th Int’l Conference
on Cluster Computing and Grid (CCGrid’07), Rio de Janeiro,
Brazil, May 2007.

[47] W. Yu, J.S. Vetter, and H.S. Oral. Performance Characterization
and Optimization of Parallel I/O on the Cray XT. In 22nd IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’08), Miami, FL, April 2008.

[48] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li,
Ke Wang, Dries Kimpe, Philip Carns, Robert Ross, and Ioan
Raicu. FusionFS: Toward Supporting Data-Intensive Scientific
Applications on Extreme-Scale High-Performance Computing
Systems. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 61–70. IEEE, 2014.

