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Abstra
t. This paper extends our early investigations in whi
h we 
om-

pared transa
tional memory to traditional OpenMP syn
hronization me
h-

anisms [7, 8℄. We study similar issues for algebrai
 multigrid (AMG)

smoothers in hypre [16℄, a mature and widely used produ
tion-quality

linear solver library. We 
ompare the transa
tional version of the Gauss-

Seidel AMG smoother to an omp 
riti
al version and the default hybrid

Gauss-Seidel smoother, as well as the l1 variations of both Gauss-Seidel

and Ja
obi smoothers. Importantly, we present results for real-life 2-D

and 3-D problems dis
retized by the �nite element method that demon-

strate the TM option outperforms the existing methods, often by orders

of magnitude, in terms of residual behavior and run time.

1 Introdu
tion

Transa
tional memory (TM) is widely re
ognized as an easy-to-use shared mem-

ory syn
hronization me
hanism. However, the next version of the OpenMP spe
-

i�
ation does not 
urrently seem likely to support it despite previous proposals

to do so [9, 31℄, The la
k of interest stems partly from limited availability of

hardware support but perhaps even more so from the la
k of demonstrations

that it o�ers reasonable performan
e for produ
tion appli
ations.

Most TM studies fo
us on the design of TM me
hanisms and their optimiza-

tion. Nearly all only 
onsider ben
hmarks or kernels, parti
ularly when applying

TM to s
ienti�
 
omputing [3, 6�9, 26, 29, 31, 33℄. For example, our prior work

used a small example 
ode to explore TM performan
e when appli
ation seman-

ti
s allow a degree of nondeterminism. In this work, we 
onsider similar issues for

a produ
tion 
ode base with over two de
ades of development and widespread

use: the hypre linear solver library [16℄. Our results demonstrate that TM not

only 
an simplify development but also provide signi�
ant performan
e bene�ts

for mature appli
ations. Overall, we show that TM outperforms alternative syn-


hronization me
hanisms by up to two orders of magnitude in hypre's algebrai


multigrid (AMG) smoother for 2-D and 3-D problems. These results indi
ate

that the OpenMP arsenal of optimization te
hniques should in
lude TM.

The paper is stru
tured as follows. Se
tion 2 
overs related work, fo
used pri-

marily on the 
urrent state of the art of TM. Se
tion 3 provides a brief overview
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of the AMG method and then details how we use TM to simplify its implemen-

tation and to improve its performan
e. Se
tion 4 
ompares experimental results

for �ve AMG smoothers, in
luding two OpenMP syn
hronization options that

we implement for this work. In Se
tion 5 we 
on
lude with a brief review of our

results.

2 Transa
tional Memory State-of-the-Art

Many studies have explored TM programmability and performan
e 
ompared

to lo
ks for a range of ben
hmarks and kernels in
luding Delaunay triangula-

tion [27℄, minimum spanning forest of sparse graphs [17℄, and Lee's routing algo-

rithm [2℄, among others [15, 23, 18℄. QuakeTM [13℄, Atomi
 Quake [34℄ (using a

lo
k-based version), and SynQuake [20℄, whi
h use TM to implement the Quake

game server [1℄, provide the most signi�
ant appli
ation studies. These studies

demonstrate that TM 
an improve performan
e as well as programmability for

produ
tion multi-player games; our work provides similar proof for a produ
tion

s
ienti�
 
omputing appli
ation.

Other studies have investigated the usability of TM. For example, Rossba
h

et al. found that programs using �ne-grain lo
king were more likely to 
ontain

errors than those using 
oarse grain lo
ks or TM [25℄. Pankratius and Adl-

Tabatabai 
on
luded that TM is not a pana
ea for parallel programming: it

still requires good programmers although it has promise 
ompared to �ne-grain

lo
king for large and 
omplex parallel programming tasks [24℄. While we are not

spe
i�
ally studying programmability, we have found that TM simpli�es writing

data-ra
e free programs without sa
ri�
ing performan
e.

Substantial re
ent e�ort has explored me
hanisms to add TM support to

C++ [14℄. This a
tivity in
ludes parti
ipation from HP, IBM, Intel, Ora
le and

RedHat and has led the C++ Standards Committee to form Study Group 5:

Transa
tional Memory (SG5, for short) [32℄. SG5 is now working with the C++

Standards Committee with the goal of 
reating an a

eptable set of transa
tional

language 
onstru
ts for Standard C++. We have proposed OpenMP pragmas

and semanti
s [30℄ that are 
losely related to a re
ent C++ SG5 proposal [19℄ and

would simplify interoperability with a likely addition to the C++ Standard. This

dire
tion within the C++ 
ommunity indi
ates that OpenMP should strongly


onsider adding TM support, as we advo
ate in this paper.

In addition to our prior work [6�9, 26, 31℄, others have proposed adding trans-

a
tional memory support to OpenMP [22, 4℄. These e�orts have 
on
luded that

TM is well suited to a dire
tive-based approa
h sin
e transa
tions are naturally

represented as sequential 
ode blo
ks. As already dis
ussed, our work has found

that TM 
an provide 
ompetitive performan
e for toy ben
hmarks that represent

s
ienti�
 
omputing patterns found in mesh-based algorithms [6�9℄. Our 
urrent

work shows that produ
tion appli
ations 
an bene�t even more.
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Fig. 1. AMG building blo
ks.

3 Applying Transa
tional Memory to the AMG Smoother

3.1 Brief Review of Algebrai
 Multigrid Methods

Algebrai
 multigrid (AMG) methods [28℄ are well-suited for large-s
ale s
ien-

ti�
 appli
ations be
ause they are algorithmi
ally s
alable: they solve a sparse

linear system Au = f with n unknowns with O(n) 
omputations. They obtain

this optimality by redu
ing error using two separate operations: smoothing and


oarse grid 
orre
tion between su

essively 
oarser levels. Coarse grid 
orre
tion

involves restri
tion and prolongation or interpolation operators between levels.

The restri
tion is generally de�ned as the transpose of the prolongation.

Smoothers must redu
e errors in the dire
tions of eigenve
tors. These �smooth

errors� ' 
an be 
hara
terized with Ae ≈ 0. For an e�e
tive AMG method the

prolongation operator P (m)
that interpolates the approximate error em+1

from

the m + 1-st level to the mth level must be de�ned so that the smooth errors

on the mth level are approximately in the range of P (m)
. Simple point-wise

smoothers, su
h as Ja
obi or Gauss-Seidel, or their 
ombinations, redu
e smooth

errors asso
iated with large eigenvalues rapidly. Redu
ing errors asso
iated with

small eigenvalues 
an be more time 
onsuming. Algebrai
 multigrid (AMG) does

not require an expli
it grid. Instead, 
oarse grid sele
tion and the generation of

interpolation and restri
tion operators only depend on the matrix 
oe�
ients.

AMG 
onsists of two phases: setup and solve, as shown in Fig. 1. The primary


omputational kernels in the setup phase are the sele
tion of the variables for the


oarser grids, the de�nition of the interpolation (P (m)
) and restri
tion (R(m)

)

operators, and the 
reation of the 
oarse grid matrix operator A(m+1)
for m =

0, 1, ..., L, where L + 1 is the number of levels. The variables for the (m + 1)st
level as well as the entries in P (m)

and R(m)
are determined by making use of

the 
oe�
ients of A(m)
. These algorithms 
an be quite 
ompli
ated.

In the solve phase, a smoother is applied on ea
h level m = 0, ..., k − 1, and
then the residual rm

is transferred to the next 
oarser grid, where the pro
ess
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ontinues. On the 
oarsest level, the linear system A(k)ek = rk
is solved by

Gaussian elimination. The error ek
is then interpolated to the next �ner grid,

followed by relaxation, whi
h 
ontinues to the �nest grid. Figure 1 des
ribes the

m-th level of the solve phase. The pro
ess of starting on the �ne grid, restri
ting

to the 
oarse grid, and interpolating ba
k to �ne grid again is 
alled a V-
y
le.

The solve phase primarily 
onsists of a matrix-ve
tor multipli
ation (MatVe
)

and the smoother. The 
lassi
al smoother used for algebrai
 multigrid is Gauss-

Seidel, whi
h is highly sequential. Therefore AMG often uses a parallel variant,


alled hybrid Gauss-Seidel (HGS), whi
h 
an be viewed as an inexa
t blo
k-

diagonal (Ja
obi) smoother with Gauss-Seidel sweeps inside ea
h pro
ess. In

other words, we use a sequential Gauss-Seidel algorithm lo
ally on ea
h pro
ess,

with delayed updates a
ross pro
esses. One HGS sweep is similar to a MatVe
.

For our experiments, we use the parallel AMG 
ode BoomerAMG as a pre-


onditioner to a GMRES solver, both 
ontained in the hypre software library

[16℄. We use HMIS 
oarsening [11℄ with extended+i interpolation [10℄. Sparse

matri
es in BoomerAMG are stored in the ParCSR matrix data stru
ture, in

whi
h the matrix A is partitioned by rows into matri
es Ak, k = 0, . . . , p − 1,
where p is the number of MPI pro
esses or OpenMP threads. Ak is stored lo
ally

as two matri
es in sequential CSR (
ompressed sparse row) format, Dk and Ok.

Dk 
ontains all entries in Ak for whi
h 
olumn indi
es point to rows stored on

pro
ess k. Ok 
ontains the remaining entries, whi
h have 
olumn indi
es that

point to rows stored on other pro
esses. Matrix-ve
tor multipli
ation Ax involves


omputing Akx = DkxD + OkxO
on ea
h pro
ess, where xD

is the portion of x

stored lo
ally and xO
is the portion that needs to be sent by other pro
esses.

Both the MPI- and OpenMP-based parallelism for Gauss-Seidel relaxation is

a

omplished in the same �hybrid� fashion: on node- or thread-boundaries the

previous iterate's information is passed and used, while within ea
h node or

thread a full Gauss-Seidel iteration is performed [12℄.

3.2 TM-Assisted Error-Smoothing in AMG

We now des
ribe how we use TM to simplify the implementation of multi-

grid smoothing and how our approa
h 
an improve its 
onvergen
e. Multigrid

smoothing is symboli
ally represented by the equation:

u
(n+1)
i =

1

Aii

Ni∑

j=1

Aiju
(l)
j (1)

where u is a s
alar, Aij represent the non-zero 
omponents of row i in matrix A,

n is the 
urrent (old) iteration (so n+1 is the next), Ni is the number of entries

in row i, and l is either n or n+1, depending on whether that entry has already

been updated. Sin
e u(l)

an imply dependen
es within the straightforward loop-

based 
al
ulation of u(n+1)
, threading the 
omputation over index i is non-trivial.

However, we 
an apply the TM-based threading approa
h that we previously

used for mesh smoothing operations [7, 8℄,
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. . . . . . . . . .

#pragma omp parallel for private ( i , i i , j j , r e s ) HYPRE_SMP_SCHEDULE

for ( i = 0 ; i < n ; i++)

{ // s t a r t o f for−loop threaded over rows

i f ( 
f_marker [ i ℄ == re lax_po ints &&

A_diag_data [ A_diag_i [ i ℄ ℄ != zero )

{ // s t a r t o f i f−statement

r e s = f_data [ i ℄ ;

for ( j j = A_offd_i [ i ℄ ; j j < A_offd_i [ i +1℄ ; j j++)

{

i i = A_offd_j [ j j ℄ ;

r e s −= A_offd_data [ j j ℄ ∗ Vext_data [ i i ℄ ;

}

#pragma tm_atomi


{ // s t a r t o f t r an sa 
 t i on

// Step 1 : Take weighted−average .

for ( j j = A_diag_i [ i ℄+1; j j < A_diag_i [ i +1℄ ; j j++)

{ // s t a r t o f averag ing for−loop

i i = A_diag_j [ j j ℄ ;

r e s −= A_diag_data [ j j ℄ ∗ u_data [ i i ℄ ;

} // end o f averag ing for−loop

// Step 2 : Update 
ur rent u .

u_data [ i ℄ = r e s / A_diag_data [ A_diag_i [ i ℄ ℄ ;

} // end o f t r an sa 
 t i on

} // end o f i f−statement

} // end o f for−loop threaded over rows

. . . . . . . . . .

Fig. 2. Transa
tional version of a
tual 
ode se
tion from Hypre.

Figure 2 shows the relevant hypre 
ode se
tion. We add exa
tly one OpenMP

dire
tive. In essen
e, this be
omes a simpli�ed version of HGS where the inter-

thread Ja
obi update is eliminated, or rather, repla
ed by TM. We have write-

after-read (WAR) ra
e 
onditions as Figure 2 shows. Be
ause the value of the

other elements of u_data might 
hange during �Step 1�, the resulting average


ould depend signi�
antly on whether the update in �Step 2� uses old or new

data. Therefore, the transa
tion must prote
t the entire 
ode se
tion that in-


ludes both steps, and not just the update operations of u_data in �Step 2�.

The latter update, by itself, is embarrasingly parallel. In other words, we have a

write-after-read (WAR) 
on�i
t for whi
h we 
annot use #pragma omp atomi
.

4 Experimental Results

Our experiments evaluate the 
onvergen
e rate and run time of the algorithm in

Se
tion 3.2 for two �nite element dis
retizations in 2-D and 3-D [5℄. All results use

the modi�
ation of the BoomerAMG bran
h of hypre, HMIS 
oarsening [11℄ with

extended+i interpolation [10℄ and AMG-pre
onditioned GMRES as the solver.

Several existing smoother options provide state-of-the-art 
omparisons [16℄.
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Fig. 3. Original unstru
tured mesh and 
ut-outs for multi-material 2-D LLNL mesh.

We stop 
al
ulations after a preset iteration 
ount and use the residuals to

measure quality instead of allowing the run to 
onverge to a toleran
e value. We

do not use iteration 
ount for the latter sin
e our metri
 provides mu
h more

a

urate timings per unit redu
tion in residuals (i.e., �quality�) 
omparison. We

used the built-in hypre timers asso
iated with the solve phase of Figure 1 . We run

our experiments on IBM Blue Gene/Q systems using its hardware transa
tional

memory (HTM) support with TM_ENABLE_INTERRUPT_ON_CONFLICT = YES and

TM_MAX_NUM_ROLLBACKS=10.

4.1 Problem Des
riptions

Both test problems solve the s
alar di�usion problem des
ribed by (see also [5℄):

−∇(̇a(x, y, z)∇u) = f (2)

It is dis
retized on unstru
tured meshes using the MFEM �nite element pa
k-

age [21℄, whi
h results in matri
es that are not diagonally dominant. Both 
ases

use homogeneous Diri
hlet boundary 
onditions. In addition to our 
urrent de-

tailed tests, we 
an also qualitatively 
ompare with results from a prior study [5℄.

2-D LLNL is a two-dimensional problem on a unit-square dis
retized into tri-

angular elements with four material subdomains that form the LLNL logo (Fig-

ure 3). The 
oe�
ient a(x, y) is 1 in the three Ls and 10−3
in the outer domain.

3-D Sphere is a three-dimensional sphere dis
retized with trilinear hexahe-

dral �nite elements and two material subdomains that are pla
ed in arbitrary

lo
ations. Their material 
oe�
ients a(x, y, z) are 1 and 103
(see Figure 4).

4.2 Convergen
e

We measure 
onvergen
e as the l2 norm of the residuals after ea
h GMRES

iteration. In addition to our TM algorithm, we run both problems using hy-

brid Gauss-Seidel (HGS), l1 Gauss-Seidel and l1 Ja
obi, denoted by L1-GS and
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Fig. 4. Coarse version of 3-D sphere mesh and its two material subdomains in 
olor.
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Fig. 5. Convergen
e on 2 threads, LLNL.
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Fig. 6. Convergen
e on 64 threads, LLNL.

L1-Ja
obi, respe
tively. HGS is the default option in hypre used for problems

parallelized both via MPI and OpenMP, while the latter two appeared to rem-

edy some short
omings of HGS observed in prior work [5℄. They represent a fair


omparison as they are often used as AMG smoothers in 
onjun
tion with GM-

RES to solve non-symmetri
 problems. We also run a version of the algorithm

in Se
tion 3.2 that repla
es #pragma tm_atomi
 with the OpenMP standard

#pragma omp 
riti
al (
alled 
riti
al), whi
h is the only OpenMP syn
hro-

nization me
hanism that is 
omparable to TM.

2-D LLNL: We stop this 
al
ulation at 25 iterations. The serial solution, whi
h

should be optimal in some sense, serves as our referen
e in all plots. Figure 5

shows that di�eren
es in 
onvergen
e of the six di�erent smoothers already

emerge with 2 threads. As expe
ted, L1-Ja
obi is the slowest to 
onverge, while

TM and 
riti
al are almost indistinguishable from serial, with L1-GS and HGS

being somewhere in between. 64 threads results in a larger spread between the

di�erent methods and HGS be
omes the slowest to 
onverge, with L1-GS ap-

proa
hing L1-Ja
obi, whi
h, of 
ourse, is invariant to thread 
ount (Figure 6). As

initial eviden
e that syn
hronization matters as the thread 
ount in
reases, TM

and 
riti
al are the 
losest to serial, the latter being the overall fastest 
onverg-

ing. We observe two orders of magnitude di�eren
e in the residuals of HGS at 25

iterations and serial with 64 threads, whi
h is 
onsistent with prior results [5℄.

The 
onvergen
e plots for other thread 
ounts are in between the 2 and 64 ones.
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Fig. 8. Convergen
e, 4 threads, sphere.
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Fig. 9. Convergen
e on 8 threads, sphere.
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Fig. 10. Convergen
e, 64 threads, sphere.

3-D Sphere: We stop the 
al
ulation at 30 iterations. This problem exhibits

a mu
h more dramati
 
hange with in
reasing thread 
ount so we show plots

for 2, 4, 8 and 64 threads. While on one thread all of TM, 
riti
al, and HGS

are identi
al to serial (not shown), 2 threads already results in a substantial

di�eren
e between HGS and those other options. Its 
onvergen
e deteriorates by

orders of magnitude, approa
hing that of L1-Ja
obi (Figure 7). HGS 
onvergen
e


ontinues to deteriorate as we in
rease the thread 
ount to 4 (Figure 8) and it

stops 
onverging altogether for 8 threads (Figure 9); the 64-thread 
ase is similar

(Figure 10).

For all thread 
ounts the 
onvergen
e of L1-GS remains in between serial

and L1-Ja
obi, with small deteriorations with in
reasing number of threads, as

Figures 7- 10 show. The performan
e of TM and 
riti
al remain the same in all


ases: very 
lose to that of the serial version, showing the value of syn
hroniza-

tion in these iterative algorithms. The most surprizing result is the signi�
ant

improvement of HGS from the addition of TM, whi
h, in e�e
t, made the di�er-

en
e between non-
onvergen
e and 
onvergen
e.

4.3 Transa
tional Memory Statisti
s

The rest of this se
tion fo
uses on the 3-D sphere problem sin
e it is the larger

and therefore more 
hallenging one. An important issue for TM algorithms is how
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sphere, on 2 through 64 threads.

1 2 4 8 16 32 64
10

5

10
6

10
7

Total conflicts vs. thread count

Number of threads

N
um

be
r 

of
 c

on
fli

ct
s
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many times the TM subsystem rolled ba
k transa
tions. At the end of ea
h 
all

to the smoother we use the tm_print_all_stats() utility to output the TM-

report. Figure 11 shows that these numbers exhibit an uneven but regular pattern

for ea
h thread 
ount. Re
all from Se
tion 3.1 that smoothing is invoked on ea
h

level of matrix resolution, and, therefore, both the number of non-zero entries

that are averaged and the number of entries that are updated are di�erent on

ea
h level. Thus, the number of transa
tions and the number of rollba
ks varies

with the level m. While Figure 11 is extremely busy, one 
an still distinguish a


y
li
 pattern, for ea
h thread 
ount that 
orresponds to AMG's 
y
li
 nature

des
ribed in Se
tion 3.1.

Figure 12 shows that the per-thread breakdown of the total number of 
on-

�i
ts has an even patter between threads although the number of rollba
ks is

highly dependent on the order of the original �nite element mesh and it 
an vary

greatly between di�erent threads. The total number of rollba
ks versus thread


ount 
urve shows a monotoni
 in
rease that tapers o� at 32 threads (Figure 13).

4.4 Timed Performan
e

Strong S
aling: Given the limited memory 
apa
ity of a BG/Q node and

our emphasis on OpenMP threading, we show results for strong s
aling only.
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Figure 14 shows relatively linear s
aling for TM on up to 16 threads, for L1-

Ja
obi on up 32 threads, and for L1-GS and HGS (virtually on top of ea
h

other) on all thread 
ounts; 
riti
al, on the other hand, does not s
ale at all,

an expe
ted result. However, the same �gure also shows that, on a per-run (30

iterations) basis, 
riti
al is faster than TM on 1- or 2 threads, and L1-Ja
obi,

L1-GS and HGS are up to an order-of-magnitude faster than TM on all thread


ounts. However, these raw timings do not 
onsider quality of solution.

Time-to-quality: We slightly modify our performan
e measure introdu
ed in

[8℄ to de�ne �run time per quality� t
(n)
q , (assuming q(n)

is the inverse of the

l2-norm of the residual r(n)
) at ea
h iteration n:

t(n)
q =

t(n)

q(n)
= t(n)r(n). (3)

The results in Figure 15 for this performan
e measure show several orders of mag-

nitude di�eren
e between the various smoothing methods. As already indi
ated

by Figures 9-10, HGS does not 
onverge past four threads, thus its t
(n)
q → ∞,

despite its near perfe
t s
aling shown in Figure 14. On the other hand, 
riti
al

has strong performers in Figure 15 even though it does not s
ale at all. The best

performan
e is o�ered by TM on 8 through 64 threads, with its 32-thread t
(n)
q

being the overall best performer for this problem.

As with the simpler mesh optimization problem [7, 8℄, even though some

methods may be more expensive on a per-iteration basis, if they 
onverge faster

they may end up being more e�
ient overall sin
e fewer iterations are needed

to a
hieve 
onvergen
e, and the CPU-time to solution 
an a
tually be shorter.

5 Con
luding Remarks

Building upon our prior work [7, 8, 5℄, we studied two di�erent OpenMP syn
hro-

nization 
onstru
ts in the 
ontext of iterative AMG smoothers with emphasis

on transa
tional memory as a promising me
hanism to resolve write-after-read
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memory 
on�i
ts. On ea
h thread 
ount we 
ondu
ted detailed studies of the

behavior of residuals, TM statisti
s, strong s
aling, as well the overall �pri
e/per-

forman
e� of ea
h method 
onsidered. Using our �gure of merit [8℄, we 
on
luded

that TM outperformed the alternatives 
urrently o�ered in BoomerAMG and

hypre often by orders of magnitude. In all of our tests, OpenMP syn
hronization

made a signi�
ant di�eren
e in redu
ing the residuals for a given CPU time.

Surprisingly, OpenMP 
riti
al performed well under this metri
.

In our future work, we will use TM for other GS-�avored methods, su
h as

l1 GS and l1 symmetri
 GS. These implementation will allow explorations for

other 
lasses of solvers, su
h as 
onjugate gradient.
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