‘ ! ! . LLNL-CONF-694162

LAWRENCE
LIVERM ORE
NATIONAL

wouroe | Transactional Memory for
Algebraic Multigrid Smoothers

B. L. Bihari, U. M. Yang, M. Wong, B. R. de
Supinski

June 3, 2016

12th International Workshop on OpenMP
Nara, Japan
October 5, 2016 through October 8, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Transactional Memory for Algebraic Multigrid
Smoothers

Barna L. Bihari!, Ulrike M. Yang!, Michael Wong? and Bronis R. de Supinski !

! Lawrence Livermore National Laboratory
2 Codeplay Software
{biharil, yangll, desupinskil}@llnl.gov
{fraggamuffin}@gmail.com

Abstract. This paper extends our early investigations in which we com-
pared transactional memory to traditional OpenMP synchronization mech-
anisms [7,8]. We study similar issues for algebraic multigrid (AMG)
smoothers in hypre [16], a mature and widely used production-quality
linear solver library. We compare the transactional version of the Gauss-
Seidel AMG smoother to an omp critical version and the default hybrid
Gauss-Seidel smoother, as well as the [y variations of both Gauss-Seidel
and Jacobi smoothers. Importantly, we present results for real-life 2-D
and 3-D problems discretized by the finite element method that demon-
strate the TM option outperforms the existing methods, often by orders
of magnitude, in terms of residual behavior and run time.

1 Introduction

Transactional memory (TM) is widely recognized as an easy-to-use shared mem-
ory synchronization mechanism. However, the next version of the OpenMP spec-
ification does not currently seem likely to support it despite previous proposals
to do so [9,31], The lack of interest stems partly from limited availability of
hardware support but perhaps even more so from the lack of demonstrations
that it offers reasonable performance for production applications.

Most TM studies focus on the design of TM mechanisms and their optimiza-
tion. Nearly all only consider benchmarks or kernels, particularly when applying
TM to scientific computing [3,6 9,26,29,31,33]. For example, our prior work
used a small example code to explore TM performance when application seman-
tics allow a degree of nondeterminism. In this work, we consider similar issues for
a production code base with over two decades of development and widespread
use: the hypre linear solver library [16]. Our results demonstrate that TM not
only can simplify development but also provide significant performance benefits
for mature applications. Overall, we show that TM outperforms alternative syn-
chronization mechanisms by up to two orders of magnitude in hypre’s algebraic
multigrid (AMG) smoother for 2-D and 3-D problems. These results indicate
that the OpenMP arsenal of optimization techniques should include TM.

The paper is structured as follows. Section 2 covers related work, focused pri-
marily on the current state of the art of TM. Section 3 provides a brief overview

of the AMG method and then details how we use TM to simplify its implemen-
tation and to improve its performance. Section 4 compares experimental results
for five AMG smoothers, including two OpenMP synchronization options that
we implement for this work. In Section 5 we conclude with a brief review of our
results.

2 Transactional Memory State-of-the-Art

Many studies have explored TM programmability and performance compared
to locks for a range of benchmarks and kernels including Delaunay triangula-
tion [27], minimum spanning forest of sparse graphs [17], and Lee’s routing algo-
rithm [2], among others 15,23, 18]. QuakeTM [13], Atomic Quake [34] (using a
lock-based version), and SynQuake [20], which use TM to implement the Quake
game server [1], provide the most significant application studies. These studies
demonstrate that TM can improve performance as well as programmability for
production multi-player games; our work provides similar proof for a production
scientific computing application.

Other studies have investigated the usability of TM. For example, Rossbach
et al. found that programs using fine-grain locking were more likely to contain
errors than those using coarse grain locks or TM [25]. Pankratius and Adl-
Tabatabai concluded that TM is not a panacea for parallel programming: it
still requires good programmers although it has promise compared to fine-grain
locking for large and complex parallel programming tasks [24]. While we are not
specifically studying programmability, we have found that TM simplifies writing
data-race free programs without sacrificing performance.

Substantial recent effort has explored mechanisms to add TM support to
C++ [14]. This activity includes participation from HP, IBM, Intel, Oracle and
RedHat and has led the C++ Standards Committee to form Study Group 5:
Transactional Memory (SG5, for short) [32]. SG5 is now working with the C+-+
Standards Committee with the goal of creating an acceptable set of transactional
language constructs for Standard C+-+. We have proposed OpenMP pragmas
and semantics [30] that are closely related to a recent C++ SG5 proposal [19] and
would simplify interoperability with a likely addition to the C++ Standard. This
direction within the C++ community indicates that OpenMP should strongly
consider adding TM support, as we advocate in this paper.

In addition to our prior work [6-9, 26, 31], others have proposed adding trans-
actional memory support to OpenMP [22,4]. These efforts have concluded that
TM is well suited to a directive-based approach since transactions are naturally
represented as sequential code blocks. As already discussed, our work has found
that TM can provide competitive performance for toy benchmarks that represent
scientific computing patterns found in mesh-based algorithms [6-9]. Our current
work shows that production applications can benefit even more.

Setup Phase
Select coarse “grids”

Define interpolation, P™ 5 m=1,2,...
Define restriction, RM = (PM)T
Define coarse-grid operators, A(M*1) = R(M A(m) p(m)

Solve Phase (level m)

Smooth AM ym = fm Smooth AM ym = fm
\ /
Compute rm = fm . A(M ym Correct u™ «— u™ + e™m
Restrict r™1 = R(M) ym Interpolate e™ = P(m gm*1

Omummm Solve AlM1) @M1 = M+ e

Fig.1. AMG building blocks.

3 Applying Transactional Memory to the AMG Smoother

3.1 Brief Review of Algebraic Multigrid Methods

Algebraic multigrid (AMG) methods [28] are well-suited for large-scale scien-
tific applications because they are algorithmically scalable: they solve a sparse
linear system Au = f with n unknowns with O(n) computations. They obtain
this optimality by reducing error using two separate operations: smoothing and
coarse grid correction between successively coarser levels. Coarse grid correction
involves restriction and prolongation or interpolation operators between levels.
The restriction is generally defined as the transpose of the prolongation.

Smoothers must reduce errors in the directions of eigenvectors. These “smooth
errors”’ can be characterized with Ae =~ 0. For an effective AMG method the
prolongation operator P(™) that interpolates the approximate error ¢! from
the m + 1-st level to the mth level must be defined so that the smooth errors
on the mth level are approximately in the range of P(™. Simple point-wise
smoothers, such as Jacobi or Gauss-Seidel, or their combinations, reduce smooth
errors associated with large eigenvalues rapidly. Reducing errors associated with
small eigenvalues can be more time consuming. Algebraic multigrid (AMG) does
not require an explicit grid. Instead, coarse grid selection and the generation of
interpolation and restriction operators only depend on the matrix coefficients.

AMG consists of two phases: setup and solve, as shown in Fig. 1. The primary
computational kernels in the setup phase are the selection of the variables for the
coarser grids, the definition of the interpolation (P(™) and restriction (R(™)
operators, and the creation of the coarse grid matrix operator A*Y for m =
0,1,...,L, where L + 1 is the number of levels. The variables for the (m + 1)st
level as well as the entries in P(") and R(™ are determined by making use of
the coefficients of A(™). These algorithms can be quite complicated.

In the solve phase, a smoother is applied on each level m = 0,...,k — 1, and
then the residual ™ is transferred to the next coarser grid, where the process

continues. On the coarsest level, the linear system A®eF = rF is solved by

Gaussian elimination. The error e* is then interpolated to the next finer grid,
followed by relaxation, which continues to the finest grid. Figure 1 describes the
m-th level of the solve phase. The process of starting on the fine grid, restricting
to the coarse grid, and interpolating back to fine grid again is called a V-cycle.

The solve phase primarily consists of a matrix-vector multiplication (MatVec)
and the smoother. The classical smoother used for algebraic multigrid is Gauss-
Seidel, which is highly sequential. Therefore AMG often uses a parallel variant,
called hybrid Gauss-Seidel (HGS), which can be viewed as an inexact block-
diagonal (Jacobi) smoother with Gauss-Seidel sweeps inside each process. In
other words, we use a sequential Gauss-Seidel algorithm locally on each process,
with delayed updates across processes. One HGS sweep is similar to a MatVec.

For our experiments, we use the parallel AMG code BoomerAMG as a pre-
conditioner to a GMRES solver, both contained in the hypre software library
[16]. We use HMIS coarsening [11] with extended+i interpolation [10]. Sparse
matrices in BoomerAMG are stored in the ParCSR matrix data structure, in
which the matrix A is partitioned by rows into matrices Ag, k = 0,...,p — 1,
where p is the number of MPI processes or OpenMP threads. Ay is stored locally
as two matrices in sequential CSR, (compressed sparse row) format, Dy, and Ok.
Dy, contains all entries in Ay for which column indices point to rows stored on
process k. Oy contains the remaining entries, which have column indices that
point to rows stored on other processes. Matrix-vector multiplication Az involves
computing Apx = Dpz? + O,x° on each process, where z” is the portion of z
stored locally and z© is the portion that needs to be sent by other processes.
Both the MPI- and OpenMP-based parallelism for Gauss-Seidel relaxation is
accomplished in the same “hybrid” fashion: on node- or thread-boundaries the
previous iterate’s information is passed and used, while within each node or
thread a full Gauss-Seidel iteration is performed [12].

3.2 TM-Assisted Error-Smoothing in AMG

We now describe how we use TM to simplify the implementation of multi-
grid smoothing and how our approach can improve its convergence. Multigrid
smoothing is symbolically represented by the equation:

N
n+1 1 - l
i j=1

where v is a scalar, A;; represent the non-zero components of row ¢ in matrix A,
n is the current (old) iteration (so n+ 1 is the next), N; is the number of entries
in row 4, and [is either n or n + 1, depending on whether that entry has already
been updated. Since u(?) can imply dependences within the straightforward loop-
based calculation of ("t threading the computation over index 7 is non-trivial.
However, we can apply the TM-based threading approach that we previously
used for mesh smoothing operations [7, §],

#pragma omp parallel for private(i,ii,jj,res) HYPRE SMP SCHEDULE
for (i = 0; i < n; i++)

{ // start of for—loop threaded over rows
if (cf marker[i] = relax points &&
A diag data|A _diag i[i]] != zero)
{ // start of if—statement
res = f data[i];

for (jj = A_offd i[i]; jj < A_offd i[i+1]; jj++)

ii = A offd j[jjl;
res —= A_offd data[jj| * Vext_data|ii];
}
#pragma tm atomic
// start of transaction
// Step 1: Take weighted—average.
for (jj = A diag i[i]+1; jj < A diag i[i+1]; jj++)
{ // start of averaging for—loop
i~ A_diag_j[ijl;
res —= A diag data[jj] * u_data[ii];
} // end of averaging for—loop
// Step 2: Update current u.
u data|i] = res / A diag data|A diag i[i]];
} // end of transaction
} // end of if—statement
} // end of for—loop threaded over rows

Fig. 2. Transactional version of actual code section from Hypre.

Figure 2 shows the relevant hypre code section. We add exactly one OpenMP
directive. In essence, this becomes a simplified version of HGS where the inter-
thread Jacobi update is eliminated, or rather, replaced by TM. We have write-
after-read (WAR) race conditions as Figure 2 shows. Because the value of the
other elements of u_data might change during “Step 17, the resulting average
could depend significantly on whether the update in “Step 2”7 uses old or new
data. Therefore, the transaction must protect the entire code section that in-
cludes both steps, and not just the update operations of u_data in “Step 2.
The latter update, by itself, is embarrasingly parallel. In other words, we have a
write-after-read (WAR) conflict for which we cannot use #pragma omp atomic.

4 Experimental Results

Our experiments evaluate the convergence rate and run time of the algorithm in
Section 3.2 for two finite element discretizations in 2-D and 3-D [5]. All results use
the modification of the BoomerAMG branch of hypre, HMIS coarsening [11] with
extended+i interpolation [10] and AMG-preconditioned GMRES as the solver.
Several existing smoother options provide state-of-the-art comparisons [16].

el

VAVAVAVATAY

¥ATATAVAYATA

vl

I ATATAT AT AT AT AT AP XAV AVL Y A AN A AN ANV AV AV AT AWAVAVAV
LT A AT ATV Y Y AVAa vy VAT ATAVATATATAYATATAYAT

/A

X

A
7 DY AVAY AT AT AV AVAVAVAVAVAVAVAVAVAVAN AVAVANAVAVAVAV.V,
-

a3
I\

7

AT AT AT VAT ATAVAYAVATAYAY)

b
iTaviva?

s
Yava¥i

2
TP TAVAVAVAVAVAVAVAVAVAVAVAYA

TS
PR

P VaTiPA VAT ANA VAV VAT AT AN AT AT

%
K
Kl

]
Kl
5
4
B4
S
B
B
&
5
5
K
&Y
N
i

VAFAT AT AT AVAY AVAVATAYAVAVANAVAVAS

YAV AY AV AT A AVATAVAVATAYAY)
]

i

N
s

FATAY)
)
B

v

{SVAYAN)
%

7
o
Py

>
"
7

Ty
i
K

2

S VAT AVARAVATAYA VA Vi AN SN AR ARAAYATAVAYAY,

Tav

5

i

e

[ATV
¥

FAYATAYATAYAVATAV, WALV
 TATAY AT AAVAA Y ATAY sVAVAVAVAVAVATATA YA ATAYAVAVAT

v,
%
]

5
VATATA
ey,
%
s

<
VAl

X
IR
S,
iy

v,
D iy d
T YA A AT AT A A S Ay A VA VA VATAVAVAVAVAVAVAVAVAVA)
AV AT AT AT AT AT AN S AT A AN AY A AVAVAVAVAVAVAVAVAVAV AV AP T VA

PAYaY

{AYANAV.AYA AV ATAV. A

]
i
i

i)

Fig. 3. Original unstructured mesh and cut-outs for multi-material 2-D LLNL mesh.

We stop calculations after a preset iteration count and use the residuals to
measure quality instead of allowing the run to converge to a tolerance value. We
do not use iteration count for the latter since our metric provides much more
accurate timings per unit reduction in residuals (i.e., “quality”) comparison. We
used the built-in hypre timers associated with the solve phase of Figure 1 . We run
our experiments on IBM Blue Gene/Q systems using its hardware transactional
memory (HTM) support with TM_ENABLE_INTERRUPT_ON_CONFLICT = YES and
TM_MAX_NUM_ROLLBACKS=10.

4.1 Problem Descriptions

Both test problems solve the scalar diffusion problem described by (see also [5]):

—V(a(m, Y, Z)VU) =f (2)
It is discretized on unstructured meshes using the MFEM finite element pack-
age [21], which results in matrices that are not diagonally dominant. Both cases
use homogeneous Dirichlet boundary conditions. In addition to our current de-
tailed tests, we can also qualitatively compare with results from a prior study [5].

2-D LLNL is a two-dimensional problem on a unit-square discretized into tri-
angular elements with four material subdomains that form the LLNL logo (Fig-
ure 3). The coefficient a(x,y) is 1 in the three Ls and 1072 in the outer domain.

3-D Sphere is a three-dimensional sphere discretized with trilinear hexahe-
dral finite elements and two material subdomains that are placed in arbitrary
locations. Their material coefficients a(z,y, 2) are 1 and 10% (see Figure 4).

4.2 Convergence

We measure convergence as the ls norm of the residuals after each GMRES
iteration. In addition to our TM algorithm, we run both problems using hy-
brid Gauss-Seidel (HGS), l; Gauss-Seidel and Iy Jacobi, denoted by L1-GS and

Fig. 4. Coarse version of 3-D sphere mesh and its two material subdomains in color.

Residuals, 2-D LLNL, 2 threads Residuals, 2-D LLNL, 64 threads
s i
107 % 107"
(2] Ly (2]
£ y £
210™ G, 210™
% * T™ . %‘ * T™
3 " 2 . "
2107 | g fas 2107 o fes
o Serial @ Serial
L1-GS L1-GS
10_10 A [1-Jacobi & 10_10 A [1-Jacobi s
0 10 20 30 0 10 20 30
Iteration number Iteration number

Fig. 5. Convergence on 2 threads, LLNL. Fig. 6. Convergence on 64 threads, LLNL.

L1-Jacobi, respectively. HGS is the default option in hypre used for problems
parallelized both via MPI and OpenMP, while the latter two appeared to rem-
edy some shortcomings of HGS observed in prior work [5]. They represent a fair
comparison as they are often used as AMG smoothers in conjunction with GM-
RES to solve non-symmetric problems. We also run a version of the algorithm
in Section 3.2 that replaces #pragma tm_atomic with the OpenMP standard
#pragma omp critical (called critical), which is the only OpenMP synchro-
nization mechanism that is comparable to TM.

2-D LLNL: We stop this calculation at 25 iterations. The serial solution, which
should be optimal in some sense, serves as our reference in all plots. Figure 5
shows that differences in convergence of the six different smoothers already
emerge with 2 threads. As expected, LI-Jacobi is the slowest to converge, while
TM and critical are almost indistinguishable from serial, with L1-GS and HGS
being somewhere in between. 64 threads results in a larger spread between the
different methods and HGS becomes the slowest to converge, with LI1-GS ap-
proaching L1-Jacobi, which, of course, is invariant to thread count (Figure 6). As
initial evidence that synchronization matters as the thread count increases, TM
and critical are the closest to serial, the latter being the overall fastest converg-
ing. We observe two orders of magnitude difference in the residuals of HGS at 25
iterations and serial with 64 threads, which is consistent with prior results [5].
The convergence plots for other thread counts are in between the 2 and 64 ones.

Convergence, 3-D Sphere, 2 threads Convergence, 3-D Sphere, 4 threads

10" 107" 48888200000,
%) n °°°°°o
T 1nt T 114
g 10 g 10 00
g -7 ™ g 7 ™ -
o 10 O critical o 10 & critical
O HGS O HGS
— Serial — Serial
1079 | & 555, 107 | A 25
0 10 20 30 0 10 20 30
Iteration number Iteration number

Fig. 7. Convergence, 2 threads, sphere. Fig. 8. Convergence, 4 threads, sphere.

Convergence, 3-D Sphere, 8 threads Convergence, 3-D Sphere, 64 threads
107 | R 107 |
n n
—_— -4 —_ -4
< 10 AAM‘AAMA S 10
S s 2 N
(%]
0] -7 ™ O] -7 ™
10 rtical 10
I g e I g g
= Serial — Serial
107" | 4 H8, 107 | 4 B8,
0 10 20 30 0 10 20 30
Iteration number Iteration number

Fig. 9. Convergence on 8 threads, sphere. Fig.10. Convergence, 64 threads, sphere.

3-D Sphere: We stop the calculation at 30 iterations. This problem exhibits
a much more dramatic change with increasing thread count so we show plots
for 2, 4, 8 and 64 threads. While on one thread all of TM, critical, and HGS
are identical to serial (not shown), 2 threads already results in a substantial
difference between HGS and those other options. Its convergence deteriorates by
orders of magnitude, approaching that of L1-Jacobi (Figure 7). HGS convergence
continues to deteriorate as we increase the thread count to 4 (Figure 8) and it
stops converging altogether for 8 threads (Figure 9); the 64-thread case is similar
(Figure 10).

For all thread counts the convergence of LI1-GS remains in between serial
and LI1-Jacobi, with small deteriorations with increasing number of threads, as
Figures 7- 10 show. The performance of TM and critical remain the same in all
cases: very close to that of the serial version, showing the value of synchroniza-
tion in these iterative algorithms. The most surprizing result is the significant
improvement of HGS from the addition of TM, which, in effect, made the differ-
ence between non-convergence and convergence.

4.3 Transactional Memory Statistics

The rest of this section focuses on the 3-D sphere problem since it is the larger
and therefore more challenging one. An important issue for TM algorithms is how

Conflicts vs. each smoothing call

2]

§ B RAKDARAIOARAAL AR KX AR AABX AL AABANR AR AARYS

Elo . "‘V‘%"’f‘\ "Vvvvrvlvvv lw"f"""i‘v"v‘ o [21::::

8 WW“&Y*WW*WW&%HV 87 o st

o :0v&\;tl»»ro)!at'bwvvxv»wtqvtc»tr*r 16t

by : A B : + 321

g e A64t

INSIINEN

3 & o0° &,

"7 771000

Smoothing call
Fig. 11. Rollbacks per call to the smoother for sphere, on 2 through 64 threads.

Conflicts vs. thread number Total conflicts vs. thread count
10
%) . %)
k3] % <) +0y Qe+, tH . * o b
= 00 =
g . = g
o Y o
e YV VLYY W Y N
g . g
E 2 oy E
= 32th =
104 A 6ath ‘ ‘ 105 \ ‘ ‘ ‘ ‘
1 16 32 48 64 1 2 4 8 16 32 64
Thread number Number of threads

Fig. 12. Rollbacks per thread number for Fig.13. Total number of rollbacks per
sphere, on 2 through 64 threads. thread count for sphere.

many times the TM subsystem rolled back transactions. At the end of each call
to the smoother we use the tm_print_all_stats() utility to output the TM-
report. Figure 11 shows that these numbers exhibit an uneven but regular pattern
for each thread count. Recall from Section 3.1 that smoothing is invoked on each
level of matrix resolution, and, therefore, both the number of non-zero entries
that are averaged and the number of entries that are updated are different on
each level. Thus, the number of transactions and the number of rollbacks varies
with the level m. While Figure 11 is extremely busy, one can still distinguish a
cyclic pattern, for each thread count that corresponds to AMG’s cyclic nature
described in Section 3.1.

Figure 12 shows that the per-thread breakdown of the total number of con-
flicts has an even patter between threads although the number of rollbacks is
highly dependent on the order of the original finite element mesh and it can vary
greatly between different threads. The total number of rollbacks versus thread
count curve shows a monotonic increase that tapers off at 32 threads (Figure 13).

4.4 Timed Performance

Strong Scaling: Given the limited memory capacity of a BG/Q node and
our emphasis on OpenMP threading, we show results for strong scaling only.

Timings vs. thread count T_izne per (to) quality vs. thread count
10

~C -5
5107 b 5 10
N = 107 —h—=T™
o | g =&~ Critical
= > -7 —e—HGS
i L1-GS
= b} 10 —d— L1-Jacoli
% 10 (= o 10—8 ;
In —4— Critical 8 Q
—e—HGS e)
L1-GS iz 10
100 =—r— |_1-Jacobji ~
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads
Fig. 14. Strong scaling for sphere, on 1 Fig.15. Time per quality for sphere, on 1
through 64 threads. through 64 threads.

Figure 14 shows relatively linear scaling for TM on up to 16 threads, for LI-
Jacobi on up 32 threads, and for L1-GS and HGS (virtually on top of each
other) on all thread counts; critical, on the other hand, does not scale at all,
an expected result. However, the same figure also shows that, on a per-run (30
iterations) basis, critical is faster than TM on 1- or 2 threads, and LI1-Jacobi,
L1-GS and HGS are up to an order-of-magnitude faster than TM on all thread
counts. However, these raw timings do not consider quality of solution.

Time-to-quality: We slightly modify our performance measure introduced in
[8] to define “run time per quality” té"), (assuming ¢(™ is the inverse of the
ly-norm of the residual 7(™)) at each iteration n:
t(n)

tl(I”) = po) = ¢y, (3)
The results in Figure 15 for this performance measure show several orders of mag-
nitude difference between the various smoothing methods. As already indicated
by Figures 9-10, HGS does not converge past four threads, thus its té") — 00,
despite its near perfect scaling shown in Figure 14. On the other hand, critical
has strong performers in Figure 15 even though it does not scale at all. The best
performance is offered by TM on 8 through 64 threads, with its 32-thread tfln)
being the overall best performer for this problem.

As with the simpler mesh optimization problem [7,8], even though some
methods may be more expensive on a per-iteration basis, if they converge faster
they may end up being more efficient overall since fewer iterations are needed
to achieve convergence, and the CPU-time to solution can actually be shorter.

5 Concluding Remarks
Building upon our prior work [7,8, 5], we studied two different OpenMP synchro-

nization constructs in the context of iterative AMG smoothers with emphasis
on transactional memory as a promising mechanism to resolve write-after-read

10

memory conflicts. On each thread count we conducted detailed studies of the
behavior of residuals, TM statistics, strong scaling, as well the overall “price/per-
formance” of each method considered. Using our figure of merit [8], we concluded
that TM outperformed the alternatives currently offered in BoomerAMG and
hypre often by orders of magnitude. In all of our tests, OpenMP synchronization
made a significant difference in reducing the residuals for a given CPU time.
Surprisingly, OpenMP critical performed well under this metric.

In our future work, we will use TM for other GS-flavored methods, such as
l1 GS and [; symmetric GS. These implementation will allow explorations for
other classes of solvers, such as conjugate gradient.

Prepared by LLNL under Contract DE-AC52-07NA27344.
References

1. A. Abdelkhalek and A. Bilas. Parallelization and performance of interactive mul-
tiplayer game servers. In IPDPS, 2004.

2. M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, Kirkham C., and Watson. Lee-TM:
A nontrivial benchmark for transactional memory. In ICA3PP, 2008.

3. H. Bae, J. Cownie, M. Klemm, and C. Terboven. A User-Guided Locking API for
the OpenMP Application Program Interface. In IWOMP, pages 173—186, Salvador,
Brazil, September 2014.

4. W. Baek, C.C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun. The
OpenTM Transactional Application Programming Interface. In PACT, pages 376—
387, 2007.

5. A.H. Baker, R.D. Falgout, Tz.V. Kolev, and U.M. Yang. Multigrid Smoothers for
Ultraparallel Computing . SIAM J. Sci. Comput., 33:2864-2887, 2011.

6. B. L. Bihari. Applicability of transactional memory to modern codes. In ICNAAM,
pages 1764-1767, Rodos, Greece, 2010. APS.

7. B. L. Bihari, H. Bae, J. Cownie, M. Klemm, C. Terboven, and L. Diachin. On
the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms II: User-
Guided Speculative Locks. In IWOMP, pages 133 148, Aachen, Germany, Septem-
ber 2015.

8. B. L. Bihari, M. Wong, B. R. de Supinski, and L. Diachin. On the Algorithmic As-
pects of Using OpenMP Synchronization Mechanisms: The Effects of Transactional
Memory. In IWOMP, pages 115-129, Salvador, Brazil, September 2014.

9. B. L. Bihari, M. Wong, A. Wang, B. R. de Supinski, and W. Chen. A Case
for Including Transactions in OpenMP II: Hardware Transactional Memory. In
IWOMP, pages 44-58, Rome, Italy, June 2012.

10. Hans De Sterck, Robert D. Falgout, Joshua W. Nolting, and Ulrike Meier Yang.
Distance-two interpolation for parallel algebraic multigrid. Numerical Linear Al-
gebra With Applications, 15:115-139, April 2008.

11. Hans De Sterck, Ulrike Meier Yang, and Jeffrey J. Heys. Reducing complexity
in parallel algebraic multigrid preconditioners. STAM Journal on Matriz Analysis
and Applications, 27:1019-1039, 2006.

12. Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. Pursuing Scalability
for hypre’s Conceptual Interfaces. ACM Transactions on Mathematical Software,
31:326-350, September 2005.

13. V. Gajinov, F. Zyulkyarov, O.S. Unsal, A. Cristal, E. Ayguade, T. Harris, and
M. Valero. QuakeTM: Parallelizing a complex sequential application using trans-
actional memory. In ICS, pages 126-135, 2009.

11

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Transactional Memory Specification Drafting Group. Transactional language con-
structs for C++. https://sites.google.com/site/tmforcplusplus/, May 2014.

R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: A benchmark for software
transactional memory. In FuroSys, pages 315-324, 2007.

hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/.

S. Kang and D.A. Bader. An Efficient Transactional Memory Algorithm for Com-
puting Minimum Spanning Forest of Sparse Graphs. In PPoPP, pages 15-24, 2009.
G. Kestor, S. Stipic, O. Unsal, A. Cristal, and M. Valero. RMS-TM: A transactional
memory benchmark for recognition, mining and synthesis applications. In Proc.
Jth ACM SIGPLAN Workshop on Transactional Computing TRANSACT, 2009.

V. Luchangco and M. Wong. Transactional Memory Support for C-++-.
http://www.openstd.org/jtcl/sc22/wg21/docs/papers/2014/n3919.pdf, Feb 2014.
D. Lupei, B. Simion, Bogdan, D. Pinto, M. Misler, M. Burcea, W. Krick, and
C. C. Amza. Transactional Memory Support for Scalable and Transparent Paral-
lelization of Multiplayer Games. In EuroSys, pages 41-54, 2010.

MFEM: Modular parallel finite element methods library. http://mfem.
googlecode.com.

M. Milovanovic, R. Ferrer, A. Unsal, O.and Cristal, E. Ayguade, J. Labarta, and
M. Valero. Transactional Memory and OpenMP. In IWOMP, pages 37-53, 2007.
C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Trans-
actional Applications for Multi-Processing. In IISWC, pages 315-324, 2008.

V. Pankratius and A. Adl-Tabatabai. A study of transactional memory vs. locks
in practice. In SPAA, pages 43-52, 2011.

C.J. Rossbach, O.S. Hofmann, and W. Witchel. Is Transactional Programming
Actually Easier? In PPoPP, pages 47-56, 2010.

M. Schindewolf, J. Gyllenhaal, B.L. Bihari, A. Wang, M. Schulz, and W. Karl.
What Scientific Applications Can Benefit from Hardware Transacional Memory? .
In SC12, 2012.

M.L. Scott, M.F. Spear, L. Dalessandro, and V.J. Marathe. Delaunay Triangulation
with Transactions and Barriers. In IISWC, 2007.

K. Stiiben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee,
and A. Schiiller, editors, Multigrid, pages 413-528. 2001.

A. Wang, M. Gaudet, P. Wu, M. Ohmacht, J.N. Amaral, C. Barton, R. Silvera,
and M. MIchael. Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories . In PACT, 2012.

M. Wong, E. Ayguade, J. Gottschlich, V. Luchangco, B. R. de Supinski, and B. L.
Bihari. Towards Transactional Memory for OpenMP. In IWOMP, Salvador, Brazil,
September 2014.

M. Wong, B. L. Bihari, B. R. de Supinski, P. Wu, M. Michael, Y. Liu, and W. Chen.
A case for including transactions in OpenMP. In IWOMP, pages 149-160, Tsukuba,
Japan, June 2010.

M. Wong and Gottschlich. SG5: Software Transactional Memory (TM) Status
Report. http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3422.pdf,
Sept 2012.

R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of Intel Trans-
actional Synhcornization Extensions for High-Performance Computing. In SC13,
2013.

F. Zyulkyarov, V. Gajinov, O.S. Unsal, A. Cristal, E. Ayguade, T. Harris, and
M. Valero. Atomic Quake: Using Transactional Memory in an nteractive Multi-
player Game Server. In PPoPP, pages 25—34, 2009.

12

