

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-681237

A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

M. H. Daniels, K. A. Lundquist, J. D. Mirocha, D.
J. Wiersema, T. K. Chow

January 25, 2016

Monthly Weather Review of the American Meteorological
Society

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **A new vertical grid nesting capability in the Weather Research and**
2 **Forecasting (WRF) model**

3 Megan H. Daniels, Katherine A. Lundquist ^{*}, Jeffrey D. Mirocha

4 *Lawrence Livermore National Laboratory, Livermore, CA, USA*

5 David J. Wiersema, Fotini K. Chow

6 *University of California, Berkeley*

7 ^{*}*Corresponding author address:* Katherine A. Lundquist, Computational Engineering Division,
8 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550-9234, USA.
9 E-mail: lundquist3@llnl.gov

ABSTRACT

10 Mesoscale atmospheric models are increasingly used for high resolution (<
11 3 km) simulations to better resolve smaller-scale flow details. Increased reso-
12 lution is achieved using mesh refinement via grid nesting, a procedure where
13 multiple computational domains are integrated either concurrently or in se-
14 ries. A constraint in the concurrent nesting framework offered by the Weather
15 Research and Forecasting (WRF) model, is that mesh refinement is restricted
16 to the horizontal dimensions. This limitation prevents control of the grid as-
17 pect ratio, leading to numerical errors due to poor grid quality and preventing
18 grid optimization. Herein, a procedure permitting vertical nesting for con-
19 current simulation is developed and validated through idealized cases. The
20 benefits of vertical nesting are demonstrated using both mesoscale and large-
21 eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor
22 Experiment (T-REX) show that vertical grid nesting can alleviate numerical
23 errors due to large aspect ratios on coarse grids, while allowing for higher
24 vertical resolution on fine grids. Furthermore, the coarsening of the parent
25 domain does not result in a significant loss of accuracy on the nested domain.
26 LES of neutral boundary-layer flow shows that, by permitting optimal grid
27 aspect ratios on both parent and nested domains, use of vertical nesting yields
28 improved agreement with the theoretical logarithmic velocity profile on both
29 domains. Vertical grid nesting in WRF opens the path forward for multiscale
30 simulations, allowing more accurate simulations spanning a wider range of
31 scales than previously possible.

32 **1. Introduction**

33 Advances in high-performance computing have made multiscale atmospheric simulations possi-
34 ble, covering scales ranging from global to large-eddy simulations (LES). The Weather Research
35 and Forecasting (WRF) model represents one such multiscale simulation framework including ef-
36 ficient parallel computing routines, a suite of physical process parameterizations appropriate for a
37 broad range of scales, and dynamic downscaling capabilities enabled via concurrent grid nesting,
38 a procedure in which multiple computational domains of increasing resolution are integrated si-
39 multaneously. With grid nesting, information from the coarse “parent” domain is interpolated and
40 provided as lateral boundary conditions to the fine “child” domain (referred to as one-way nest-
41 ing). Two-way nesting additionally aggregates information from the fine domain, and feeds the
42 information back onto the coarse domain. While WRF has one and two-way concurrent grid nest-
43 ing capabilities, resolution may only be increased in the horizontal dimension, with all domains
44 using a common vertical grid.

45 It is well known in computational fluid mechanics that grid quality affects the accuracy of nu-
46 merical solutions (Lee and Tsuei 1992; You et al. 2006), meaning that the lack of flexible gridding
47 in WRF constrains the model’s ability to produce high-quality multiscale simulations. When as-
48 sessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell
49 volume are commonly considered. Mesoscale models generally use terrain-following coordinates
50 where the vertical grid lines are aligned with the gravity vector, with large aspect ratios ($\Delta x / \Delta z$)
51 near the surface. As multiscale simulations are increasingly used, the high vertical resolution de-
52 sired on the finest domain yields extremely large aspect ratios on coarser domains. Additionally,
53 a high degree of non-orthogonality (skewness) is introduced in the vicinity of steep terrain slopes.
54 Both grid skewness and aspect ratio have been shown to contribute to numerical errors in atmo-

55 spheric simulations using the WRF model (Lundquist et al. 2008, 2010; Mirocha et al. 2013),
56 therefore, it is desirable to reduce these numerical errors by optimizing the grid independently for
57 each domain.

58 Terrain-following coordinates used by most mesoscale models can be a large source of error for
59 simulations over complex terrain. With terrain-following coordinates, a coordinate transforma-
60 tion is introduced which maps a domain with an irregular lower boundary onto a rectangular grid.
61 While this simplifies the application of lower boundary conditions, it also introduces additional nu-
62 merical errors (Gal-Chen and Somerville 1975). Inaccuracies from the coordinate transformation
63 are present in each spatially discretized term of the governing equations, and arise from truncation
64 errors due to the coordinate transformation (including grid stretching and skewness) as well as
65 the numerical calculations of the additional metric terms. Numerical errors have been noted in
66 the calculation of the horizontal pressure gradient (Janjic 1977, 1989; Klemp 2011; Zängl 2012),
67 diffusion (Zängl 2003; Zängl et al. 2004), and horizontal advection (Schär et al. 2002) terms in the
68 presence of sloping coordinate surfaces and steep topography.

69 Mahrer (1984) notes that numerical errors in the calculation of horizontal derivatives occur when
70 large grid aspect ratios are used with sloping coordinates, and states that the minimum vertical
71 grid spacing must be larger than the elevation difference over a grid cell. Mahrer explains that
72 when this condition is not satisfied, accurate horizontal derivatives cannot be calculated based on
73 a traditional numerical stencil using adjacent nodes, and suggests alternative (larger) stencils for
74 the calculation which would increase accuracy. Most mesoscale models, including WRF, do not
75 use the alternative stencil. Figure 1 illustrates the skewness of computational cells as a function of
76 terrain slope and grid aspect ratio. The grey area on this plot indicates the parameter space which
77 violates Mahrer’s condition that the vertical grid spacing be larger than the elevation change over
78 the horizontal span of the cell. For illustrative purposes, aspect ratios of 1/2 to 2 are used in this

79 figure, however, a mesoscale model would normally use much larger aspect ratios. For example, a
80 horizontal resolution of 3 km and a vertical resolution of 30 m yields an aspect ratio of 100, and a
81 terrain slope of just 0.6 degrees would violate the condition.

82 Grid aspect ratio has additionally been shown to affect the accuracy of LES results over flat
83 terrain. Mirocha et al. (2010, 2013) conducted LES of a neutral boundary layer using WRF, and
84 found that the near-surface grid aspect ratio impacted WRF's ability to accurately reproduce the
85 theoretical logarithmic velocity profile. Nested simulations were constrained by the lack of vertical
86 grid nesting, so that the optimal aspect ratio could be used on either the parent or the child domain,
87 leading to errors on either the parent or the nested domain. Mirocha et al. (2013) hypothesized
88 that vertical grid nesting would improve WRF's agreement with similarity theory by allowing the
89 optimal grid aspect ratio to be used on each domain.

90 Many authors have investigated WRF as a multiscale modeling tool (Talbot et al. 2012; Munoz-
91 Esparza et al. 2014; Marjanovic et al. 2014; Mirocha et al. 2014), which could span from meso-
92 to LES scales, however, this is cumbersome without vertical grid nesting. For example, Lundquist
93 et al. (2012) used the WRF model with 2 m horizontal and 1 m near-surface vertical resolution
94 for LES over Oklahoma City. Vertical resolution on the order of 1 m generally requires the use of
95 idealized lateral boundary conditions, as it is impractical to use the high-resolution vertical grid
96 on all nested domains. Only with vertical nesting does it become practical to perform multiscale
97 simulations with high-resolution nested domains receiving realistic lateral boundary conditions
98 through nesting from mesoscale simulations and meteorological reanalysis data.

99 A stand-alone program called *ndown* processes WRF simulation output and writes initial and
100 boundary condition files to allow for grid nesting of domains integrated in series. This program al-
101 lows for both increased horizontal and vertical resolution by including interpolation routines for all
102 dimensions, and provides linear interpolation between output times as is done in WRF when forc-

103 ing from an external file. The vertical interpolation routines in *ndown* use a high-order monotonic
104 interpolant, and were developed in Moustaoui et al. (2009), where use of vertical nesting improved
105 agreement with observations for simulations near Lompoc, California. Mahalov and Moustaoui
106 (2009), Moustaoui et al. (2010) and Mahalov et al. (2011) coupled WRF to a microscale model
107 using a procedure similar to that in *ndown*, and found increased vertical resolution was critical
108 to resolving small-scale processes associated with regions of high shear and strong stratification
109 created by mountain lee waves in the Terrain-Induced Rotor Experiment (T-REX). Vertical grid
110 refinement using *ndown* within the WRF model was used in Shaffer et al. (2015), and showed an
111 improvement in WRF's ability to predict the near-surface structure of temperature inversions and
112 low-level jet-like features through comparisons to ground-based observations of temperature and
113 wind speed.

114 Our vertical nesting method follows from the work of Moustaoui et al. (2009); it utilizes the
115 vertical interpolation method included in *ndown*, but has been integrated into the WRF framework
116 for concurrent simulation, which has several advantages. First, when *ndown* is used, a zero gradi-
117 ent boundary condition is applied to vertical velocity, rather than passing vertical velocity between
118 domains. Second, lateral boundary condition updates are limited to the frequency of output on the
119 parent domain, with linear interpolation applied between output times. Both of these limitations
120 make the use of *ndown* inappropriate for high-resolution simulations and simulations over com-
121 plex terrain, where high frequency information and vertical velocity are critical. This is especially
122 true in LES, where it is necessary to pass information on the timescale of turbulent fluctuations
123 between domains. Mahalov and Moustaoui (2009) investigated the treatment of vertical velocity
124 at lateral nested boundaries in their microscale model; they showed reduced errors when passing
125 vertical velocity, as opposed to applying a zero gradient boundary condition, and also noted that
126 a large savings in computational resources would be achieved if the frequent data input/output

127 required was eliminated. Michioka and Chow (2008) found that more frequent lateral updates im-
128 proved predictions of passive scalar concentration fields when compared to observations of a tracer
129 gas at Mount Tsukuba, Japan. Our method addresses these limitations by passing boundary data to
130 nested domains, including vertical velocity, at each time step, while avoiding computational over-
131 head from writing frequent output files, and facilitating the use of multiple nests. An additional
132 benefit is that while *ndown* requires vertical resolution be increased with integer refinement (i.e.
133 every N^{th} grid level is aligned), our method permits levels to be specified independently on each
134 domain, allowing additional control of the grid.

135 This work details the implementation, validation, and use of our new one-way vertical grid
136 nesting capability, which enhances WRF's ability as a multiscale solver. Work presented here
137 uses a modified version of WRFv3.6.1, however, vertical nesting is planned for inclusion in the
138 WRFv3.8.0 release. Details of the WRF solver and the vertical nesting implementation are given
139 in section 2. Vertical nesting is then used in three types of simulations: idealized, mesoscale, and
140 large-eddy. The idealized simulations in section 3 validate our implementation of vertical nesting
141 and allow for quantification of errors associated with the nesting procedure. Mesoscale simulations
142 with vertical nesting are presented in section 4 for the T-REX field campaign and comparisons are
143 made to observations. These simulations demonstrate the use of vertical grid nesting in mesoscale
144 mode with a full suite of atmospheric physics. In section 5, LES of a neutral boundary layer is
145 performed to investigate the effects of vertical nesting and grid aspect ratio on WRF's ability to
146 reproduce the theoretical logarithmic velocity profile. Finally, conclusions and further work are
147 discussed in section 6.

148 **2. Implementation of vertical nesting in the WRF solver**

149 *a. Governing equations and treatment at lateral boundaries*

150 WRF is a conservative finite-difference model that solves the non-hydrostatic compressible
 151 Navier-Stokes equations (Skamarock et al. 2008). Model equations are cast in an isobaric terrain-
 152 following coordinate η , which is defined as $\eta = (p_{hs} - p_{hs,top})/\mu_d$, where p_{hs} is the dry hydro-
 153 static pressure and $\mu_d(x,y) = p_{hs,surface} - p_{hs,top}$ is the dry column mass of fluid per unit area.
 154 In WRF, the moist Euler equations are transformed into the isobaric terrain-following coordinate,
 155 while additional terms such as Coriolis, diffusion, and parameterized physics (represented by F)
 156 are computed in physical space. A velocity $\dot{\eta}$, defined as the contravariant velocity of the vertical
 157 coordinate, is introduced in the coordinate transformation, necessitating the solution of an addi-
 158 tional equation. Perturbation variables are introduced to reduce numerical errors, and are defined
 159 as the deviation from a time invariant hydrostatically balanced reference state. Pressure p , inverse
 160 density α , geopotential $\phi = gz$, and dry column mass μ_d are cast as mean and perturbation values
 161 as $\varphi = \bar{\varphi} + \varphi'$, where φ represents a generic variable and the overbar indicates the hydrostatic base
 162 state. The subscripts d and m represent dry and moist variable states. The transformed equations
 163 for conservation of mass and momentum are given in equation (1).

$$\partial_t \mu'_d + \nabla_\eta \cdot (\mu_d \mathbf{V}) = 0 \quad (1a)$$

$$\begin{aligned} \partial_t (\mu_d \mathbf{V}_H) + \nabla_\eta \cdot (\mu_d \mathbf{V}_H \otimes \mathbf{V}) + \mu_d (\alpha_m \nabla_\eta p' + \alpha'_m \nabla_\eta \bar{p}) \\ + \frac{\alpha_m}{\alpha_d} (\mu_d \nabla_\eta \phi' + (\nabla_\eta \phi)(\partial_\eta p' - \mu'_d)) = \mathbf{F} \end{aligned} \quad (1b)$$

$$\partial_t (\mu_d w) + \nabla_\eta \cdot (\mu_d \mathbf{V}_w) - g \left(\frac{\alpha_m}{\alpha_d} \partial_\eta p' + \frac{\alpha_m - \alpha_d}{\alpha_d} \bar{\mu}_d - \mu'_d \right) = F \quad (1c)$$

$$\partial_t \phi' + \mathbf{V} \cdot \nabla_\eta \phi - gw = 0 \quad (1d)$$

164 In the above equations the velocity vector is $\mathbf{V} = (u, v, \dot{\eta})$, \mathbf{V}_H includes only the horizontal ve-
 165 locity components u and v , and $\nabla_\eta = (\partial_x, \partial_y, \partial_\eta)$ operates on coordinate surfaces. Furthermore, a
 166 conservation equation (2) is solved for each additional scalar quantity, such as potential tempera-
 167 ture θ , water vapor q_v , and passive scalars.

$$\partial_t(\mu_d \phi) + \nabla_\eta \cdot (\mu_d \mathbf{V} \phi) = F_\phi \quad (2)$$

168 In addition to solving the prognostic equations above, diagnostic relationships are used to solve
 169 for thermodynamic variables. The hydrostatic relationship is used to diagnose perturbations to the
 170 dry inverse density α'_d , which in the transformed coordinate is given as

$$\alpha'_d = (1/\mu_d)(\partial_\eta \phi' - \mu'_d \bar{\alpha}_d). \quad (3)$$

171 Pressure is diagnosed from the equation of state below, where γ_d is the ratio of heat capacities of
 172 dry air C_p/C_v , p_o is a reference pressure, and R_d is the universal gas constant.

$$p = p_o \left(\frac{R_d \theta}{p_o \alpha_d} \right)^{\gamma_d} \quad (4)$$

173 Several options for lateral boundary conditions exist in the WRF model, of which the ‘specified’
 174 and ‘nested’ options are relevant here. Specified boundary conditions are used when boundary
 175 conditions are being supplied by an external forcing file, such as from a forecast, analysis, or
 176 the program *ndown*. With specified boundary conditions, variables are temporally interpolated
 177 between times in the external forcing file, which are often an hour or more apart. Nested boundary
 178 conditions are used on the child domain when multiple domains are integrated simultaneously,
 179 and are the option for which we have developed vertical grid nesting. In this case, variables
 180 are passed from the parent domain to the child domain, and are temporally interpolated over the
 181 parent time step, which is generally on the timescale of seconds. Specified boundary conditions
 182 apply to \mathbf{V}_H , θ , ϕ' , μ'_d , and q_v . Nested boundary conditions apply to each variable for which a

183 prognostic equation is solved (Equations 1 and 2), which additionally includes vertical velocity
184 and other scalars ranging from microphysical variables (i.e. moisture constituents such as ice)
185 to passive tracers. Specified and nested boundary conditions utilize a ‘specified’ zone, where
186 the variable values are directly imposed, and a ‘relaxation’ zone, which uses a forcing term to
187 nudge the solution on the child domain towards the boundary condition value. The width of these
188 zones is run-time configurable; here, the default width of one point for the specified zone and four
189 additional points for the relaxation zone is used.

190 *b. Vertical interpolation algorithm*

191 The interpolation algorithm used here follows the implementation in *ndown* (Moustaoui et al.
192 2009), but has been integrated into the WRF framework for one-way concurrent nesting. The
193 interpolation employs an intermediate vertical coordinate based on log-pressure height, which
194 yields more accurate results than direct use of the η coordinate, according to Moustaoui et al.
195 (2009). A cubic monotonic polynomial described in Steffen (1990) is used, in which a piecewise
196 polynomial is constructed which satisfies the variable value and derivative at given interpolation
197 points (Hermite-type interpolation). One known problem of cubic polynomials is producing over-
198 shoot/undershoot in interpolation regions between given values. Steffen (1990) solves this prob-
199 lem by adjusting the derivative at interpolation points, if the resulting polynomial will produce
200 local extrema. This method is appropriate for arbitrary data sets, and behaves monotonically on
201 each data interval, by not permitting minima/maxima to occur between known data points. Fields
202 defined at half levels require extrapolation to the model top and surface of the coarse domain, as
203 the new fine grid levels may lie in this region. This is accomplished using the standard Lagrange
204 polynomial, which WRF uses elsewhere for the purpose of extrapolating variables on half-levels
205 to the model top and surface.

206 The interpolation in *ndown* requires integer refinement, which requires that the number of ver-
207 tical levels follow Equation 5 where N_r and N_c are the number of levels on the refined and coarse
208 grids, and C_r is the integer refinement factor.

$$N_r = (N_c - 1)C_r + 1 \quad (5)$$

209 Integer refinement can be used in the vertical nesting implementation developed here, however,
210 additional capability is developed here to use independent η levels on each domain. Independent
211 vertical grid levels may be set by specifying η levels for each domain in the namelist, or using
212 default η levels as calculated by WRF. When more than two domains are used, the user must
213 choose either integer refinement or independent η levels, and cannot use a mix of the two methods.
214 It is possible however, to vertically refine some domains, while other domains are not vertically
215 refined. Test cases presented here use two domains, and only basic testing has been completed for
216 setups with three or more domains.

217 *c. Integration of vertical interpolation into the WRF framework for one-way concurrent nesting*

218 When variables are interpolated from a parent to a child domain, data from the parent grid is first
219 passed to an intermediate grid, as part of the parallel communications procedure. The intermediate
220 grid has the vertical resolution of the child, but the horizontal resolution of the parent domain. The
221 vertical interpolation procedure is called for each column of data on the intermediate grid, and
222 then the data is horizontally interpolated onto the nest using the existing routines in WRF.

223 Our first implementation of vertical nesting followed the method used for concurrent simulations
224 with horizontal nesting, by interpolating the base state and perturbation values from the parent to
225 the child domain at instantiation of the nest, and then passing values at lateral boundaries for
226 all of the prognostic equations during integration. This procedure left the reference state for the

227 child domain out of hydrostatic balance, causing errors, as was also noted in Moustaoui et al.
 228 (2009), where reference fields were rebalanced to minimize the transients introduced by these
 229 errors. Moustaoui et al. (2009) additionally recalculated ϕ' from the coordinate definition, which is
 230 followed here. Therefore as part of the vertical grid nesting implementation, rebalancing routines
 231 are added to the nest instantiation procedure, and during integration, values for the prognostic
 232 variable ϕ' (Equation 1d) are recalculated at lateral boundaries, rather than passed directly from
 233 the parent to the child domain. The additional routines added for initialization and integration
 234 recalculate the reference state, as well as ϕ' on the vertically nested grid using the set of Equations
 235 6a - 6d, which are also the equations used at initialization in the WRF model (see Skamarock et al.
 236 (2008) for details).

$$\partial_\eta p' = \mu'_d (1 + \bar{q}_v^\eta) + \bar{q}_v^\eta \bar{\mu}_d \quad (6a)$$

$$\alpha_d = \frac{R_d}{p_o} \theta \left(1 + \frac{R_v}{R_d} q_v \right) \left(\frac{p'_d + \bar{p}_d}{p_o} \right)^{-C_v/C_p} \quad (6b)$$

$$\alpha'_d = \alpha_d - \bar{\alpha}_d \quad (6c)$$

$$\partial_\eta \phi' = -\mu_d \alpha'_d - \mu'_d \bar{\alpha}_d \quad (6d)$$

237 Interpolated values of μ'_d , q_v and θ from the parent domain are used in Equation 6 to calculate the
 238 value of ϕ' on the vertically nested grid. An alternative formulation of equation 6d based on the
 239 hypsometric equation can also be used in WRF, and may be used with vertical nesting as well.

240 *d. Activation of vertical nesting*

241 Vertical grid nesting is planned for inclusion in WRF v3.8.0 for real cases and the ideal LES
 242 case. A namelist variable, *vert_refine_method*, activates vertical nesting and determines which
 243 vertical refinement method to use. The default value of 0 indicates no vertical nesting, 1 is used
 244 for integer refinement, and 2 is used for arbitrary η levels. If option 2 is selected, the user may

245 specify η levels in the namelist for each domain using *eta_levels*. If η levels are not specified with
246 option 2, default WRF levels will be calculated. A sample namelist for three domains is shown in
247 Table 1, where vertical levels are set arbitrarily for each domain. The variable *e_vert* should be set
248 independently for each domain, and feedback (i.e. two-way nesting) must be turned off. If setting
249 arbitrary η levels, the variable *eta_levels* must be a concatenated vector of values ranging from 1
250 to 0 for each domain. If integer refinement is used, then *e_vert* should be set so that the number of
251 levels results in the desired nesting ratio according to Equation 5, and *vert_refine_method* should
252 be set to 1.

253 *e. Atmospheric physics*

254 The vertical nesting code was tested with a variety of atmospheric physics parameterizations.
255 Our vertical nesting modifications were found to be compatible with most of the parameteri-
256 zations without modification. Parameterizations that have been successfully used with vertical
257 nesting without modification include the Yonsei University (YSU) and Mellor-Yamada Nakan-
258 ishi and Niino Level 2.5 (MYNN2) planetary boundary layer, thermal diffusion and Noah land-
259 surface, WRF Single-Moment 3 and 5-class microphysics, Dudhia and Goddard shortwave radi-
260 ation, slope dependent radiation, topographic shading, Kain-Fritsch cumulus, and Smagorinsky
261 LES schemes (see Skamarock et al. (2008) for references). Initially, the Rapid Radiative Trans-
262 fer Model (RRTM), Community Atmosphere Model (CAM), and RRTM for General Circulation
263 Models, GCMs (RRTMG) longwave radiation schemes all failed, as they were written with the
264 expectation that concurrently run domains use a common number of vertical grid levels. This lim-
265 itation is removed from the RRTM scheme by recalculating the number of levels for the scheme,
266 i.e. by passing the number of WRF levels for each domain to RRTM, and adding required supple-

267 mental levels for integration to 0 mb. Also, calculation of the number of levels for RRTM is done
268 at each call to the scheme, rather than once at initialization.

269 **3. Idealized simulations**

270 *a. Model setup*

271 Idealized nested simulations were carried out over flat terrain to validate the newly implemented
272 vertical nesting method, and quantify errors associated with nesting. The two test cases included
273 here use a two domain setup with periodic lateral boundary conditions on the parent domain, and
274 nested boundary conditions on the child domain. Common soundings of potential temperature and
275 moisture are used for initialization of both cases, however, velocity differs. For all cases, initial
276 conditions are horizontally homogeneous. The first test case is initialized as quiescent and the
277 simulation includes no forcing terms, so that velocities should remain zero and errors are easier to
278 observe. We will refer to this case as the ‘quiescent case’. The second test case is initialized with
279 a constant velocity profile of $U = 10 \text{ m s}^{-1}$ and includes forcing through a horizontal pressure
280 gradient and surface drag. This case allows for validation with the additional complexity of flow
281 through the lateral boundaries at the parent-child interface, and is referred to as the ‘forced case’.
282 These cases were chosen to validate our modified nest instantiation and treatment of geopotential,
283 assess the method’s ability to accurately interpolate vertical profiles, and examine the effects of
284 surface forcing where the height of the first grid point, and therefore the reference height used in
285 the similarity theory applied at the first grid level, is discontinuous across the nest interface.

286 Three grid nesting scenarios which differ only in the vertical grid are presented for each case,
287 shown in Figure 2, which we label: ‘Vert. Coarse’, ‘Vert. Nested’, and ‘Vert. Fine’. Grid parame-
288 ters are summarized in Table 2. All three grid setups use the same horizontal grid, with $\Delta x = 99 \text{ m}$

289 on the parent domain (d01) and $\Delta x = 33$ m on the child domain (d02). Vert. Coarse and Vert. Fine
290 are control cases which do not use vertical grid nesting, and have 40 and 118 vertical levels, respec-
291 tively. Vert. Nested has coarse vertical resolution on d01 (40 levels), and fine vertical resolution
292 on d02 (118 levels). Integer refinement is used in the vertical, so that collocated points exist on
293 the coarse and fine grids, enabling direct comparisons between simulations. The number of verti-
294 cal levels was chosen to satisfy Equation 5 with $N_r = 118$, $N_c = 40$, and refinement ratio $C_r = 3$.
295 The coarse grid has $\Delta z^1 = 47.3$ m for the first full grid level, and the fine grid has $\Delta z^1 = 15.8$ m.
296 Superscript 1 denotes the first grid point above the surface here and throughout. The top of the
297 domain is 4000 m, to allow for a realistic scale for the vertical profiles of potential temperature
298 and moisture, assuming a boundary layer height of ~ 1000 m.

299 Test cases are initialized with the potential temperature (θ) and specific humidity (q_v) profiles
300 shown in Figure 3 at $t = 0$. Potential temperature is neutral to 1000 m, and then stable above with
301 a lapse rate of 10 K km^{-1} . Similarly, specific humidity is held constant at 5 g kg^{-1} for the first
302 1000 m, then decreases linearly over 500 m to a value of 0.05 g kg^{-1} and is held constant at that
303 value to the domain top. These soundings of temperature and moisture were chosen, in part, for
304 the profiles they yielded in geopotential (ϕ , determined by Equation 6d), which is additionally
305 shown in Figure 3. In contrast, using a neutral temperature profile in a dry atmosphere leads to
306 zero perturbation geopotential, and therefore did not test our treatment of this variable. In tests
307 performed with a neutral, dry atmosphere, errors were so small that they were indistinguishable
308 from errors in simulations with horizontal nesting alone. The cases shown here challenge the
309 vertical interpolant as they include sharp vertical gradients, which are inherently represented less
310 accurately on the coarse vertical grid than the fine, creating a discontinuity across the nest interface.
311 The aim of these tests is to demonstrate that our vertical nesting implementation is accurate and

312 errors introduced at the interface are sufficiently small (i.e. are of the same magnitude as errors
313 introduced by horizontal interpolation alone).

314 Simulations are run for a total of 48 hours with a time step of 1 second on the parent and $0.3\bar{}$
315 seconds on the nested domain. This lengthy simulation run time is chosen to rigorously quantify
316 the error growth within the nested domains. All simulations are carried out with a constant eddy
317 viscosity of $\nu_t = 1 \text{ m}^2 \text{ s}^{-1}$, which contributes to the highly idealized nature of this simulation, and
318 avoids the added complication of allowing the eddy viscosity to change discontinuously across the
319 nest interface. A Rayleigh damping layer is used in the top 500 m of the domain which damps
320 toward the initial sounding. The surface roughness coefficient is specified as $z_0 = 0.1 \text{ m}$, and a
321 standard parameterization of the surface stresses τ_{i3}^s , $i = 1, 2$ is used, according to the following
322 relation:

$$\tau_{i3}^s = -C_D W_{spd}^1 u_i^1 \quad (7)$$

323 where drag coefficient $C_D = \kappa^2 \{ \ln[z^1/z_0] \}^{-2}$, $\kappa = 0.4$, W_{spd}^1 is the horizontal wind speed, and u_i^1
324 is a component of the horizontal wind vector.

325 *b. Results and discussion*

326 Profile comparisons for θ , q_v , U , and ϕ' from the quiescent case result in the same conclusions
327 as profile comparisons for the forced case. We therefore present and discuss only profiles from the
328 forced case here, so that the development of the forced U profile can be examined. Profiles of θ ,
329 q_v , U , and ϕ' are shown at initialization and after 24 and 48 hours of simulation at the center of the
330 nested domain for the forced test case in Figure 3. Differences between Vert. Coarse, Vert. Nested,
331 and Vert. Fine are nearly imperceptible, indicating that the vertical nesting implementation is cor-
332 rect. With further investigation, however, the effects of vertical nesting become evident. Figure 4
333 shows θ , q_v , U , and p in the specified zone of d02, along with the collocated profile from d01 for

334 all three sets of simulations at initialization and after 1 hour. These profiles focus on regions of
335 strong gradients to show how the solution differs between Vert. Coarse and Vert. Fine, and also
336 how the interpolator represents the vertical profile on Vert. Nested. It can clearly be seen in pro-
337 files of θ and q_v that the Hermite-type polynomial matches the value and slope at given points,
338 and behaves monotonically on interpolation intervals. Profiles of U show that variables defined
339 on half levels are extrapolated onto lower points on the fine grid. Note that while θ , q_v , and U are
340 interpolated from d01 to d02 at initialization and during integration, pressure is determined from
341 a diagnostic relationship, and therefore does not match exactly at collocated points. Also for the
342 vertically nested case, geopotential is diagnosed from the interpolated variables on d02, rather than
343 being interpolated from the coarse domain as in the cases without vertical nesting. We have not
344 included profiles of geopotential in Figure 4 because differences between solutions on the three
345 vertical grids are nearly imperceptible given the mild gradient of this variable.

346 Next, errors arising from nesting are quantified for the quiescent case, for which in a perfect
347 simulation with no numerical errors, velocities would remain zero. In this case, U and V remain
348 identically zero, and vertical velocity component W is small throughout d01. While the solution on
349 d01 remains constant, errors arising from both horizontal and vertical nesting appear on d02. Due
350 to the different grid resolution on d01 and d02, the solutions evolve in slightly different ways. This
351 creates small horizontal gradients between the specified zone where the solution is given by d01,
352 and the interior of d02 where the governing equations are solved on the finer grid. Flows result
353 from these differences, and are quantified in Figure 5, which shows the maximum value of each
354 velocity component within the nested domain as a function of time. Errors due to horizontal grid
355 nesting are seen in all three simulations; additional errors induced by the vertical nesting procedure
356 are included in the maximum error for Vert. Nested. Peak maximum error values of 0.008 m s^{-1}
357 in the horizontal components of velocity occur in Vert. Nested 30 minutes after initialization,

358 and in W (0.011 m s^{-1}) 1 hour after initialization. The velocity fields subsequently adjust to the
359 vertical nest configuration, likely as the sharp vertical gradients become smoother, but small errors
360 ($\sim 5 \times 10^{-3} \text{ m s}^{-1}$) continue to be observed over the course of 48 hours. Although errors in U and
361 V in Vert. Nested are roughly twice those of the simulations without vertical nesting, these errors
362 are still small in magnitude, and do not grow in time. Vertical nesting errors are approximately the
363 same order of magnitude of those introduced by horizontal nesting.

364 Contours of velocity components for the quiescent case are shown in Figure 6 at 1 hour after
365 initialization, corresponding to the peak errors in W observed in Figure 5. The maximum errors
366 indicated in the time series in Figure 5 do not appear in Figure 6, because these values occurred
367 near the corners of the domain, in the relaxation zone where nudging to boundary values from
368 two intersecting lateral boundaries is effectively added together. Small horizontal gradients be-
369 tween the specified zone (along the lateral boundaries) and the interior of d02 cause weak flows,
370 which are strongest at the edges of the relaxation zone, near the height with the greatest change
371 in vertical gradients ($\sim 1000 \text{ m}$), evident in U and W (panels b and h). These errors appear just
372 after initialization and move downward to the surface over the course of the simulation. Contours
373 of V (panels d, e, and f) show errors an order of magnitude smaller than those in U and W , and
374 largest in the simulation with the coarse vertical grid. Contours of V in a y-z slice would appear
375 with errors of the same magnitude as those shown here for U in the x-z slice. Horizontal “stripes”
376 can be seen in U above 1500 m in all simulations. This numerical error is a result of the ‘ideal’
377 initialization procedure in WRF, which calculates inverse density and pressure via iteration of a
378 set of coupled equations. Following iteration, inverse density is visibly not converged between the
379 vertical intervals of the input sounding. This lack of convergence yields a jagged “shark tooth”
380 pattern that affects the model solution throughout integration.

381 Figure 7 shows velocity contours as appearing in Figure 6, but at the end of the simulation
382 period (48 hours). At this time, errors are closer in value between the three grid configurations,
383 and remain small. The largest errors in the vertically nested case are seen near the surface, just
384 inside of the relaxation zone. Errors at this location are also present in the cases without vertical
385 nesting, but to a lesser degree. Here, again, the solution is equilibrating between the specified
386 zone, and the domain interior where the prognostic equations are solved.

387 The forced case has the added complication of flow through the lateral boundaries, and the
388 application of a surface drag model, resulting in errors near the surface at the inflow and outflow
389 boundaries on d02. As seen in Figure 3, the differences between the three setups are almost
390 imperceptible at the center of the domain, and this is also the case throughout the domain for the
391 duration of the simulation. Figure 8 shows an x-transect of U and W at the center of d02 at the
392 end of 48 hours. These values are taken from the first collocated point above the surface (for U
393 $k=1$ for Vert. Coarse and $k=2$ for Vert. Nested and Vert. Fine, for W $k=2$ for Vert. Coarse and $k=4$
394 for Vert. Nested and Vert. Fine). The Vert. Coarse U value is slower than Vert. Fine, which also
395 results in a slower velocity at the first grid point of Vert. Nested after extrapolation down from the
396 coarse grid. U in Vert. Nested enters the domain with the value of the coarse solution, and though
397 it increases slightly due to the finer vertical discretization, it is forced back toward the coarse
398 solution at the outflow boundary. Values of W are consistent with changes in U on Vert. Nested.
399 The surface boundary condition for momentum (defined in Equation 7) experiences a discontinuity
400 across the nest interface in Vert. Nested due to the change in reference height, however, effects of
401 this discontinuity are not obvious with constant eddy viscosity. We will see in the discussion of
402 section 5 that with the LES turbulence closure, in which the eddy viscosity depends on the scales
403 being resolved, the effect of the discontinuity in τ_{ij} on the velocity profile becomes pronounced.

404 Additional simulations not presented herein were carried out with different grids (e.g. domain
405 top extended to 20 km, varying resolutions), physics parameterizations, initialization and surface
406 boundary condition options (e.g. surface heating, different initial temperature, humidity, velocity
407 profiles). With the results of the simulations presented in this section, along with additional tests,
408 we conclude that the interpolation procedure is working properly and that errors due to vertical
409 interpolation are within an acceptable range.

410 **4. Mesoscale simulations**

411 The T-REX field campaign took place in Owens Valley, California, a region of complex, moun-
412 tainous terrain, between the Sierra Nevada and Inyo mountain ranges, shown in Figure 9. The
413 Intense Observation Periods (IOPs) of T-REX focused on observing mountain waves and rotors
414 under strong synoptic forcing, while Enhanced Observation Periods (EOPs) focused on valley
415 flows and boundary layer development under weak synoptic forcing. We selected T-REX for our
416 case study because a large observational dataset, including high-resolution soundings, is available
417 for model validation. Additionally, the complexity of the topography coupled with the strength of
418 the synoptic winds during the IOPs, allow us to investigate model errors over complex terrain and
419 the effects of vertical grid nesting.

420 *a. Model setup*

421 A set of mesoscale simulations are carried out corresponding to IOP6 (24-26 March 2006), as
422 well as EOP4 and EOP5 (28-30 April 2006) of T-REX. These simulations use a two domain nested
423 setup for four different vertical grid configurations, with details summarized in Table 3. For all
424 configurations, horizontal resolution is $\Delta x = 3$ km on d01 and $\Delta x = 1$ km on d02, and the model
425 top is approximately 20 km above sea level (asl). We employ the same terminology as in the

426 previous section, where ‘Vert. Coarse’ uses 40 vertical levels on both domains without vertical
427 nesting, ‘Vert. Nested’ uses 40 levels on the outer domain and 120 levels on the inner domain,
428 and ‘Vert. Fine’ uses 120 vertical levels on both domains (no vertical nesting). This relatively
429 large increase in the number of vertical grid points was chosen to provide a greater challenge to
430 the interpolation method, with additional motivation following the work of Mahalov and Mous-
431 taoui (2009), Mousttaoui et al. (2010) and Mahalov et al. (2011), who reported improvement in
432 comparisons of simulations to observations at even higher vertical grid resolutions. Additionally,
433 $nz = 120$ allows a factor of 3 increase in resolution in both the horizontal and vertical directions
434 for our simulations. Grid stretching is used in the vertical dimension, and when vertical nest-
435 ing is used, the vertical levels are defined independently on each domain. Additional simulations
436 are performed for EOP4/5 using the stand-alone program *ndown* with vertical refinement, so that
437 comparisons may be made to simulations using concurrent vertical grid nesting. In the simulations
438 using *ndown*, 40 vertical levels are used on the larger domain, and 118 vertical levels are used on
439 the subsequently run finer domain. Because *ndown* is limited to integer refinement, 118 vertical
440 levels had to be used, according to Equation 5. History is output at 15 minute intervals for all
441 simulations, and these output files are processed to create the lateral forcing files for the *ndown*
442 nested simulations.

443 Initial and boundary conditions are obtained from the North American Mesoscale (NAM) model
444 at 12 km horizontal grid resolution every 6 hours. Simulations are run for an 11-hour spin-up pe-
445 riod before the start of the sounding observation comparison period. The Mellor-Yamada Nakan-
446 ishi and Niino (MYNN) Level 2.5 Planetary Boundary Layer (PBL) scheme is employed, with
447 MM5 surface layer physics and the Noah Land Surface Model. The RRTM and Dudhia radiation
448 schemes are used, with slope-dependent radiation and topographic shading effects included, on all
449 domains. We employ the WRF single-moment 5-class microphysics scheme. Rayleigh damping

450 is applied in the top 5,000 meters of the domain, with a coefficient of 0.003 s^{-1} , damping toward
451 the base state. References for these schemes can be found in Skamarock et al. (2008). A time step
452 of 12 seconds is used on d01, and 3 seconds on d02.

453 *b. Results and discussion*

454 Four nested simulations are performed for the duration of EOP4 and 5: Vert. Coarse,
455 Vert. Nested, Vert. Fine, and a simulation using *ndown*. Figure 10 shows vertical (x-z) slices
456 of W at the middle of d02 for all four simulations. In general, the three concurrent simulations
457 appear similar, with the Vert. Nested solution more closely resembling the Vert. Fine than the
458 Vert. Coarse solution due to the increased vertical resolution. Most noticeable are the general
459 differences in structure and magnitude between the concurrent simulations and the simulation pro-
460 duced using *ndown*. The *ndown* solution shows lower vertical velocity magnitudes of the mountain
461 waves coming off the Sierra crest, as well as locations where the flow direction is opposite that in
462 our concurrent simulations, namely the top of the mountain crest between 60 and 70 km on the
463 x-axis. At this location in the concurrent simulations, there is a small patch of positive W sur-
464 rounded by negative or near zero values, while the *ndown* simulation has a wide capping region of
465 relatively strong positive W values at the top of the ridge. This is likely due to the different lateral
466 boundary conditions in the *ndown* simulations, as they are the only significant difference from the
467 concurrent simulations.

468 These simulations are compared to observational soundings, with data for the comparison ex-
469 tracted from the center of the slices shown in Figure 10, at 50 km, the center of the domain,
470 corresponding to the sounding release location at Independence, California. Horizontal position
471 data was not available from the EOP soundings taken during T-REX. A total of thirty sounding
472 observation profiles from T-REX during EOP4 and EOP5 are compared to simulated profiles at

473 times within 15 minutes after the recorded sounding release time. In general comparisons of wind
 474 speed and direction, potential temperature, and specific humidity were as expected, based on our
 475 previous modeling experience with T-REX (Daniels et al. 2006, 2008; Schmidli et al. 2009). These
 476 sounding comparisons, however, indicate that the increase in vertical resolution seems to provide
 477 little advantage in accuracy for our setup. Figure 11 shows an example comparison from the 18:04
 478 UTC sounding on 29 April 2006, where all simulations give similar results, with the exception
 479 of wind direction below ridge crest height. There are exceptions where increased vertical resolu-
 480 tion improved the comparisons to observations, such as where abrupt changes in wind direction
 481 near ridge crest height are partially captured by both the Vert. Fine and Vert. Nested simulations,
 482 and completely missed by Vert. Coarse (not shown). The *ndown* simulation frequently diverged
 483 from the concurrent simulations. Wind direction is the variable with the highest variability be-
 484 tween simulations and observations as well as in comparing the sets of simulations to each other,
 485 which is not surprising given the complex terrain of the simulation domain. As observed in Fig-
 486 ure 11, Vert. Nested simulations produced results similar to Vert. Fine, despite receiving boundary
 487 conditions from a simulation with less vertical resolution.

488 Figure 12 shows height and time averaged bias and root mean squared error (RMSE), given by
 489 Equations 8 and 9, for 28 soundings from EOP4/5 (2 of the 30 original soundings had too few
 490 observation points to be included in the averages).

$$bias = \frac{1}{N} \sum_{n=1}^N X_{sim} - X_{obs} \quad (8)$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^N (X_{sim} - X_{obs})^2} \quad (9)$$

491 Here X_{sim} is the predicted variable from the simulation interpolated to the observed sounding
 492 heights and X_{obs} is the observed variable from the sounding observations. N is the total number of
 493 observations recorded for each sounding, and n is an index referring to a particular time and height

495 where the comparison between simulations and observations is made. Special consideration was
496 given to wind direction to calculate bias as the smallest angle between two wind vectors. RMSE
497 is root mean square error. Bias and RMSE are calculated over each sounding and then averaged
498 over all viable soundings (28) taken during the observation period to produce the values shown
499 in Figure 12. In general, all four simulations show similar values of both RMSE and bias in
500 wind magnitude and direction, potential temperature, and specific humidity, and increased vertical
501 resolution did not yield better comparisons with observations, though simulations using vertical
502 nesting performed similarly to those on the fine grid.

503 This set of simulations demonstrates that our new method for concurrent vertical nesting is cor-
504 rectly implemented and able to perform predictions similarly to WRF without vertical nesting
505 or WRF using *ndown*. Although previous researchers have shown improved agreement with in-
506 creased vertical resolution, this was not seen in the T-REX simulations here. One advantage to
507 using vertical nesting in these mesoscale simulations was to decrease the vertical resolution on
508 outer grids without loss of accuracy on inner grids with finer horizontal resolution. This results in
509 computational savings, but may also be used to reduce numerical errors associated with poor grid
510 quality in simulations over complex terrain. For example, in our simulations of IOP6, which had
511 stronger winds than in EOP4/5, d01 of the Vert. Fine simulation exhibited numerical errors not
512 seen in the Vert. Coarse and Vert. Nested simulations. While Vert. Coarse and Vert. Nested run
513 to completion for IOP6 and compare reasonably well with sounding observations, the Vert. Fine
514 simulation for IOP6 “blows up”, as shown in Figure 13 where *U-W* vectors are overlaid with ver-
515 tical slices of *V* contours and spurious velocity values are apparent. Decreasing the time step, even
516 to 1 s, did not reliably allow the simulation to run to completion, however, *decreasing* the verti-
517 cal resolution did allow the simulation to run with results similar to the sounding observations.

518 Lundquist et al. (2008) and Lundquist et al. (2010) noted in their investigations of errors arising

519 from terrain-following coordinates in WRF, that although errors due to the terrain-following coordinate
520 began directly above steep topography, where grid skewness is at a maximum, these errors
521 continued to grow as they advected downstream of the steep topography. Their results may point
522 to why we see large unphysical velocity values downstream of the Sierra ridgeline. Given that the
523 Vert. Nested and Vert. Coarse simulations (both with smaller aspect ratios on the parent grid than
524 Vert. Fine) run to completion while Vert. Fine becomes numerically unstable, our IOP6 simulation
525 results could be an indication that the ability to control grid aspect ratio with vertical grid nesting,
526 and thus improve grid quality over steep terrain, may not only allow greater numerical stability,
527 but could also save computational resources by allowing fewer grid points and a larger time step.

528 Additional vertically nested mesoscale simulations, while not described in detail herein, were
529 performed for different grids, locations and time periods, including the January 2000 snow storm
530 and Hurricane Katrina test cases from the WRF tutorial, and standard testing for inclusion in
531 the WRF distribution, including simulations over 5 summer and 5 winter days. All simulations
532 showed expected model behavior, and good agreement was found between vertically nested and
533 non-vertically-nested solutions on the inner domain(s) when the number of grid points was the
534 same (equivalent to our Vert. Nested to Vert. Fine comparisons).

535 **5. Large-eddy simulations**

536 *a. Model setup*

537 LES of neutral boundary layer flow are performed with the goal of examining how grid aspect
538 ratio affects model accuracy in achieving the theoretical solution of a mean logarithmic velocity
539 profile in the lowest region of the boundary layer. Mirocha et al. (2010) and Mirocha et al. (2013)
540 demonstrated that the accuracy of LES in the logarithmic layer was dependent on grid aspect ratio,

541 and found that using the WRF model, an aspect ratio in the range of 2 to 4 gave the most accurate
542 results. Following our convention in the previous sections, three nested simulations are performed
543 here, and are referred to as ‘Vert. Coarse’, ‘Vert. Nested’, and ‘Vert. Fine’ in reference to the
544 vertical grid resolution. The model setup is summarized in Table 4, where domain size, resolution,
545 and aspect ratio follow Mirocha et al. (2013). Vert. Coarse has 46 vertical levels on both domains,
546 Vert. Nested has 46 vertical levels on the outer domain, and 67 vertical levels on the inner domain,
547 while Vert. Fine has 67 vertical levels on both domains. All simulations are horizontally nested,
548 using the same horizontal grid, which has $\Delta x = 33$ m on the parent domain and $\Delta x = 11$ m on
549 the child domain. Two additional stand-alone (i.e. no nesting) simulations with periodic boundary
550 conditions are performed on grids at the same resolution as d02 in the nested setup as control
551 simulations for comparison with the nested simulations. These stand-alone simulations will be
552 referred to as ‘SA’. For all simulations, a time step of 0.25 seconds was used on the parent domain,
553 and $0.08\bar{3}$ seconds on the child domain (one third the parent time step).

554 In the nested setup, d01 uses periodic lateral boundary conditions, while d02 uses nested bound-
555 ary conditions. Vertical grid spacing is prescribed similarly to Mirocha et al. (2013), with 5% grid
556 stretching up to the model top of 1400 m. Vertical grid spacing at the first level is $\Delta z^1 = 8.68$ m
557 on the coarse grid, and $\Delta z^1 = 2.88$ m on the fine vertical grid. Rayleigh damping is applied in the
558 top 300 m of each domain, with a coefficient of 0.003 s^{-1} , damping toward the initial sounding.
559 Standard parameterization of the surface stresses τ_{i3}^s , $i = 1, 2$ is used, as defined in Equation 7. The
560 simulations are forced with a geostrophic wind of $U_g = 10 \text{ m s}^{-1}$ and have a Coriolis parameter
561 $f = 0.0001 \text{ s}^{-1}$ ($\approx 45^\circ N$), as in many LES investigations (e.g. Andren et al. (1994); Chow et al.
562 (2005); Mirocha et al. (2013)). Simulations are run for 24 hours of spin-up to allow damping of
563 inertial oscillations. Time averaging in post-processing was performed over 4 hours following the
564 spin-up period for each simulation.

565 The simulations presented here use the standard Smagorinsky turbulence closure model included
566 in WRF. The Smagorinsky model is known to have difficulty in accurately reproducing the log-
567 law (e.g. Andren et al. (1994); Porté-Agel et al. (2000); Chow et al. (2005)) compared to more
568 sophisticated models, however its simplicity and known sensitivity to grid aspect ratio make it a
569 desirable choice for this study.

570 *b. Results and discussion*

571 Figure 14 shows instantaneous contours of U velocity after 28 hours of simulation (i.e. at the
572 end of the averaging time) for d01 and d02 of the nested simulations, along with the stand-alone
573 simulations. The effect of grid nesting can be seen in d02 (panels (c), (d), and (e)), where large-
574 scale features from d01 pass into d02 and persist to the outlet, though small-scale features do
575 appear within these larger features in the second half of d02 (after about 2000 m), also observed
576 by Mirocha et al. (2013). In contrast, the SA simulations (panels (f) and (g)) display small-scale
577 features throughout the horizontal and vertical extents of the domain. The snapshots in Figure 14
578 show qualitatively that the SA simulations exhibit more intricate structure than any of the nested
579 simulations; all of the nested cases exhibit development of some smaller-scale features in addition
580 to the main structures passed from the parent domain, and vertical nesting produces similar results
581 to using both vertical and horizontal nesting.

582 Spatially and temporally averaged surface stresses are shown in Figure 15 along the x-direction
583 for all simulations. Here it can be seen that SA simulations and d01 with common vertical grids
584 have different τ_w values, despite both having periodic boundary conditions, due to the differ-
585 ent horizontal resolutions ($\Delta x = 33$ on d01 and $\Delta x = 11$ for the SA simulations). For d02 of
586 Vert. Coarse and Vert. Fine, τ_w takes the value from the outer domain at the inlet, dips, recovers,
587 and then dips and recovers again just before the outlet. This behavior is consistent with results in

588 Mirocha et al. (2013), where it was shown that smaller scales responsible for the vertical trans-
589 port of momentum take time to develop as the flow enters and moves across the nested domain,
590 so that downward transport of momentum is reduced in this developing ‘transition zone’, which
591 creates a velocity deficit near the surface of the nested domain, and thus reduced surface stresses.
592 Vert. Nested follows this pattern of development along the streamwise direction, however, τ_w is
593 much higher at the inlet and outlet than on the parent domain. This is because the velocity used to
594 calculate τ_w on d02 at the inflow and outflow boundaries must be extrapolated from the first point
595 above the surface on the coarse vertical grid of d01, and this extrapolated value ends up being
596 larger ($\sim 1 \text{ m s}^{-1}$) than the value on d02 of Vert. Fine. The SA simulations represent an ideal value
597 for d02 of the nested simulations, which the nested simulations should be ‘adjusting’ to. The spike
598 at the outlet of d02 for the nested simulations is due to readjustment leading up to and through the
599 relaxation zone to the conditions on d01.

600 Figure 16 shows a comparison of each of the three nested simulations on their respective inner
601 (d02) and outer (d01) domains, along with the SA simulations performed on the d02 grids. The
602 left three panels (a, c, and e) show mean velocity profiles along the streamwise direction, while
603 the right three panels (b, d, and f) show the same profiles normalized by u_* versus normalized
604 height. On the inner domain, spatial averages are performed at individual i -indices, and averaged
605 over $[30 < j < 210]$ to capture the developing turbulent flow as it progresses across the domain.
606 On the outer domain, flow is fully developed throughout with periodic boundary conditions, so
607 spatial averages are performed over the entire domain. The time average is performed as a post-
608 processing step over 4 hours following the 24-hour spin-up, using data saved at one minute history
609 intervals.

610 Figure 16, panels (a), (c), and (e) show that the mean horizontal wind velocity on the inner
611 domain is heavily influenced by the lateral boundary conditions coming from the outer domain,

612 to a distance past 20% of the length of the inner domain ($i=80$). Profiles from the inner and outer
613 domains are nearly identical in this region near the inflow boundary. In all cases, as the fully
614 developed flow passes $i=320$ (within 15% of the outflow boundary), the mean wind speed profiles
615 closely match the SA simulations up to approximately 20 m above the surface. Above this height,
616 the flow adjusts to match the lateral boundary conditions (mean wind speed profile of the outer
617 domain). Horizontal nesting alone accounts for significant divergence of the inner domain solution
618 from the outer domain solution and from the SA solution (Figure 16 panels (a) and (e)). At just
619 below 120 m ($k=23$ and $k=11$ on the fine and coarse vertical grids respectively) all d01 and d02
620 Vert. Coarse and Vert. Fine profiles differ from their respective corresponding SA simulations by
621 $\sim 0.1 \text{ m s}^{-1}$, while the Vert. Nested simulation differs from SA Fine by $\sim 0.2 \text{ m s}^{-1}$, approximately
622 double the difference in the other two simulations, however, these differences decrease with height
623 above 120 m in Vert. Nested and increase with height above 120 m in Vert. Coarse and Vert. Fine
624 (not shown).

625 These observations can also be made in Figure 16 panels (b), (d), and (f) where comparison is
626 made to the log law. In this column of profiles, H is the boundary layer height of ~ 1000 m, the
627 approximate height above which stresses are attenuated. According to Mirocha et al. (2013), the
628 best comparisons with the log law, using a roughness length of 0.1 m, are achieved when the grid
629 aspect ratio is $AR \approx 4$. In their study, it was only possible to optimize AR on either the inner or the
630 outer domain, while with vertical nesting, we are able to control AR on each domain independently.
631 Thus in Figure 16b, the outer domain (d01) is optimized with $AR \approx 4$, while the inner domain (d02)
632 has $AR \approx 1.3$; d01 shows the optimal comparison with the log law, while the lines corresponding
633 to Vert. Coarse d02 and SA Coarse (also on d02) are further from the theoretical log law line. We
634 see that in Figure 16f, d02 aligns with the log law, having $AR \approx 4$, while d01 with $AR \approx 11.5$
635 does not compare as well. Mirocha et al. (2013) hypothesized that if $AR \approx 4$ could be achieved

636 on both domains, then good agreement with the log law could also be achieved on both domains;
637 our results shown in Figure 16d demonstrate that this is true in our simulations. The tradeoff is
638 slightly slower equilibration within the nested domain due to inlet boundary conditions from a
639 domain with a coarser vertical grid, and therefore fewer resolved small scale structures.

640 6. Summary and Conclusions

641 This paper describes our implementation of concurrent vertical grid nesting in WRF based on
642 the program *ndown* created by Moustaqi et al. (2009). Vertical nesting is now fully integrated
643 into the nesting framework of WRF so that lateral boundary condition updates for nested domains
644 can take place at every parent grid time step. Thus vertically-nested simulations can now be run
645 concurrently.

646 Results of idealized simulations and rigorous error analysis validate the implementation, and
647 indicate that errors resulting from vertical nesting are bounded, i.e. reach small, constant values
648 by 48 hours of simulation time. Mesoscale simulations of three case study days from T-REX show
649 no measurable change in accuracy when employing vertical nesting (compared to WRF without
650 vertical nesting), based on comparisons to sounding observations. Large-eddy simulation results
651 validate the hypothesis of Mirocha et al. (2013), that the ability to control grid aspect ratio through
652 vertical nesting allows better agreement of the log law on both the outer and the nested domains.

653 Our results indicate that it may be possible to decrease the vertical grid resolution on the outer
654 domain without sacrificing accuracy on the inner, nested domain. This means that grid aspect
655 ratio adjustment is possible in regions of complex terrain, so that errors over steep slopes may be
656 reduced, and overall simulation accuracy may be increased even when vertical grid resolution is
657 decreased. This result could also mean computational savings for mesoscale weather forecasting
658 and for cutting-edge research in multiscale modeling.

659 In the interest of providing useful guidance and opening the way forward for more modeling
660 studies with vertical nesting, we have intentionally exercised the model in ways that were likely
661 to expose problems and errors. Vertical nesting is one step toward a robust, general multiscale
662 modeling framework, but there remains an array of possible improvements and open questions to
663 be explored. Ongoing and future work therefore includes: exploring effects of using more sophis-
664 ticated turbulence closure models with vertical nesting, improving the surface boundary condition
665 by modifying the extrapolation function used near the surface with the goal of eliminating the dis-
666 continuity in surface stress across the lateral boundary, further exploring errors due to grid aspect
667 ratio especially over complex terrain, implementation of vertical nesting with two-way nesting,
668 and modifications to use vertical nesting with additional radiation models and physical parameter-
669 izations.

670 *Acknowledgments.* This work was performed under the auspices of the U.S. Department of En-
671 ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was
672 supported by the U.S. DOE Office of Energy Efficiency and Renewable Energy and the LLNL
673 Laboratory Directed Research and Development program as project 14-ERD-024.

674 **References**

675 Andren, A., A. Brown, J. Graf, P. Mason, C. Moeng, F. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary-layer - a comparison of 4 computer codes. *Quart. J. of the Roy. Meteor. Soc.*, **120** (520), 1457–1484, doi:{10.1002/qj.49712052003}.

676

677

678

679 Chow, F., R. Street, M. Xue, and J. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. *J. of the Atmos. Sci.*, **62** (7, 1), 2058–2077, doi:{10.1175/JAS3456.1}.

680

681

682 Daniels, M., F. Chow, and R. Maxwell, 2008: Providing high-resolution surface conditions using a coupled land-surface groundwater model: effects on atmospheric boundary layer simulations over owens valley, ca. *18th Symposium on Boundary Layers and Turbulence*, Stockholm, Sweden, Amer. Meteor. Soc., 9, [Paper 11A.1].

683

684

685

686 Daniels, M., F. Chow, and G. Poulos, 2006: Effects of soil moisture initialization on simulations of atmospheric boundary layer evolution in owens valley. *12th Conference on Mountain Meteor.*, Santa Fe, NM, Amer. Meteor. Soc., 8, [Paper 7.2].

687

688

689 Gal-Chen, T., and R. Somerville, 1975: On the use of a coordinate transformation for the solution of the navier-stokes equations. *J. Comp. Phys.*, **17**, 209–228.

690

691 Janjic, Z., 1977: Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. *Contributions to Atmos. Physics*, West Germany, Vol. 50, 186–99, International Conference on Simulation of Large-Scale Atmos. Processes, 30 Aug.-4 Sept. 1976, Hamburg, West Germany.

692

693

694

695 Janjic, Z., 1989: On the pressure-gradient force error in sigma-coordinate spectral models. *Mon.*
696 *Wea. Rev.*, **117** (10), 2285–2292, doi:{10.1175/1520-0493(1989)117<2285:OTPGFE>2.0.CO;
697 2}.

698 Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. *Mon. Wea.*
699 *Rev.*, **139** (7), 2163–2169, doi:10.1175/MWR-D-10-05046.1.

700 Lee, D., and Y. Tsuei, 1992: A formula for estimation of truncation errors of convective terms in
701 a curvilinear coordinate system. *J. Comp. Phys.*, **98**, 90–100.

702 Lundquist, K., F. Chow, and J. Lundquist, 2008: An immersed boundary method for flow over
703 complex terrain. *13th Conference on Mountain Meteor.*, Whistler, BC, Amer. Meteor. Soc., 10,
704 [Paper 9A.5].

705 Lundquist, K., F. Chow, and J. Lundquist, 2010: Numerical errors in flow over steep topogra-
706 phy: analysis and alternatives. *14th Conference on Mountain Meteor.*, Lake Tahoe, CA, Amer.
707 Meteor. Soc., 19, [Paper 10.1].

708 Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2012: An Immersed Boundary Method En-
709 abling Large-Eddy Simulations of Flow over Complex Terrain in the WRF Model. *Mon. Wea.*
710 *Rev.*, **140** (12), 3936–3955, doi:{10.1175/MWR-D-11-00311.1}.

711 Mahalov, A., and M. Moustaqui, 2009: Vertically nested nonhydrostatic model for multiscale
712 resolution of flows in the upper troposphere and lower stratosphere. *J. of Computational Physics*,
713 **228** (4), 1294–1311, doi:{10.1016/j.jcp.2008.10.030}.

714 Mahalov, A., M. Moustaqui, and V. Grubisic, 2011: A numerical study of mountain waves in the
715 upper troposphere and lower stratosphere. *Atmos. Chemistry and Physics*, **11** (11), 5123–5139,
716 doi:{10.5194/acp-11-5123-2011}.

717 Mahrer, Y., 1984: An improved numerical approximation of the horizontal gradients in
718 a terrain-following coordinate system. *Mon. Wea. Rev.*, **112** (5), 918–922, doi:{10.1175/1520-0493(1984)112<0918:AINAOT>2.0.CO;2}.

719

720 Marjanovic, N., S. Wharton, and F. K. Chow, 2014: Investigation of model parameters for high-
721 resolution wind energy forecasting: Case studies over simple and complex terrain. *J. of Wind
722 Engineering and Industrial Aerodynamics*, **134**, 10–24, doi:{10.1016/j.jweia.2014.08.007}.

723 Michioka, T., and F. K. Chow, 2008: High-Resolution Large-Eddy Simulations of Scalar Trans-
724 port in Atmos. Boundary Layer Flow over Complex Terrain. *J. of Appl. Meteor. and Climatol.*,
725 **47** (12), 3150–3169, doi:{10.1175/2008JAMC1941.1}.

726 Mirocha, J., G. Kirkil, E. Bou-Zeid, F. K. Chow, and B. Kosovic, 2013: Transition and Equili-
727 bration of Neutral Atmos. Boundary Layer Flow in One-Way Nested Large-Eddy Simulations
728 Using the Weather Research and Forecasting Model. *Mon. Wea. Rev.*, **141** (3), 918–940, doi:
729 {10.1175/MWR-D-11-00263.1}.

730 Mirocha, J., B. Kosovic, and G. Kirkil, 2014: Resolved Turbulence Characteristics in Large-Eddy
731 Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting
732 Model. *Mon. Wea. Rev.*, **142** (2), 806–831, doi:{10.1175/MWR-D-13-00064.1}.

733 Mirocha, J. D., J. K. Lundquist, and B. Kosovic, 2010: Implementation of a Nonlinear Subfilter
734 Turbulence Stress Model for Large-Eddy Simulation in the Advanced Research WRF Model.
735 *Mon. Wea. Rev.*, **138** (11), 4212–4228, doi:{10.1175/2010MWR3286.1}.

736 Moustaoui, M., A. Mahalov, J. Dudhia, and D. Gill, 2009: Nesting in WRF with Vertical Grid
737 Refinement and Implicit Relaxation. *10th WRF Users' Workshop, Boulder, CO, National Center
738 for Atmos. Research*, 1–7.

739 Moustaqui, M., A. Mahalov, H. Teitelbaum, and V. Grubisic, 2010: Nonlinear modulation of O-3
740 and CO induced by mountain waves in the upper troposphere and lower stratosphere during
741 terrain-induced rotor experiment. *J. of Geophysical Research-Atmospheres*, **115**, doi:{10.1029/
742 2009JD013789}.

743 Munoz-Esparza, D., B. Kosovic, J. Mirocha, and J. van Beeck, 2014: Bridging the Transition from
744 Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models. *Boundary-Layer*
745 *Meteor.*, **153** (3), 409–440, doi:{10.1007/s10546-014-9956-9}.

746 Porté-Agel, F., C. Meneveau, and M. Parlange, 2000: A scale-dependent dynamic model for large-
747 eddy simulation: application to a neutral atmospheric boundary layer. *J. of Fluid Mechanics*,
748 **415**, 261–284, doi:{10.1017/S0022112000008776}.

749 Schär, C., D. Leuenberger, O. Fuhrer, D. Luthi, and C. Girard, 2002: A new terrain-following
750 vertical coordinate formulation for atmospheric prediction models. *Mon. Wea. Rev.*, **130** (10),
751 2459–2480, doi:{10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2}.

752 Schmidli, J., G. S. Poulos, M. H. Daniels, and F. K. Chow, 2009: External Influences on Nocturnal
753 Thermally Driven Flows in a Deep Valley. *J. of Appl. Meteor. and Climatol.*, **48** (1), 3–23, doi:
754 {10.1175/2008JAMC1852.1}.

755 Shaffer, S. R., H. J. S. Fernando, N. C. Ovenden, M. Moustaqui, and A. Mahalov, 2015: Simulating
756 meteorological profiles to study noise propagation from freeways. *Appl. Acoustics*, **92**, 102–114,
757 doi:{10.1016/j.apacoust.2014.12.010}.

758 Skamarock, W., and Coauthors, 2008: A description of the advanced research WRF version 3.
759 Tech. Rep. NCAR/TN-475+STR, NCAR Technical Note, National Center for Atmos. Research,
760 Boulder, CO.

761 Steffen, M., 1990: A simple method for monotonic interpolation in one dimension. *Astronomy &*
762 *Astrophysics*, **239 (1-2)**, 443–450.

763 Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested Mesoscale Large-Eddy Simulations with
764 WRF: Performance in Real Test Cases. *J. of Hydrometeor.*, **13 (5)**, 1421–1441, doi:{10.1175/
765 JHM-D-11-048.1}.

766 You, D., R. Mittal, M. Wang, and P. Moin, 2006: Analysis of stability and accuracy of finite-
767 difference schemes on a skewed mesh. *J. Comp. Phys.*, **213**, 184–204.

768 Zängl, G., 2003: A generalized sigma-coordinate system for the MM5. *Mon. Wea. Rev.*, **131 (11)**,
769 2875–2884, doi:{10.1175/1520-0493(2003)131<2875:AGSSFT>2.0.CO;2}.

770 Zängl, G., 2012: Extending the numerical stability limit of terrain-following coordinate models
771 over steep slopes. *Mon. Wea. Rev.*, **140 (11)**, 3722–3733, doi:10.1175/MWR-D-12-00049.1.

772 Zängl, G., L. Gantner, G. Hartjenstein, and H. Noppel, 2004: Numerical errors above steep to-
773 polography: A model intercomparison. *Meteorologische Zeitschrift*, **13 (2)**, 69–76, doi:{10.1127/
774 0941-2948/2004/0013-0069}, International Conference on Alpine Meteor. and MAP Meeting,
775 Brig, Switzerland, May 19-23, 2003.

776 **LIST OF TABLES**

777	Table 1. Sample namelist with relevant variables for vertical nesting. The variable <i>e_vert</i>	
778	determines the number of vertical levels for each domain. There are 3 do-	
779	domains defined by <i>grid_id</i> , in this case d01, d02, and d03. Variable <i>parent_id</i>	
780	defines within which domain each domain defined by <i>grid_id</i> is nested. Thus	
781	in this case, d02 is nested within d01 and d03 is nested within d02. Variable	
782	<i>vert_refine_method</i> = 2 means that arbitrary vertical nesting has been chosen,	
783	and <i>eta_levels</i> defines those arbitrary levels in terms of the variable η , ranging	
784	from 1 to 0 for each domain in a concatenated vector. Refer to section 2d for	
785	full details.	38
786	Table 2. Idealized simulations: Grid setup for nested idealized simulations, where d01 is	
787	the outer domain, d02 is the inner domain. Horizontal grid spacing and height	
788	of the first full vertical grid level above the surface are given by Δx and Δz^1	
789	respectively. L_x , L_y , and L_z represent the domain size in physical space, nx , ny ,	
790	and nz are the numbers of computational grid points in each direction.	39
791	Table 3. Mesoscale simulations: Physical and computational dimensions of simulation	
792	domains. All quantities are as defined in Table 2.	40
793	Table 4. LES: Physical and computational dimensions of simulation domains. All quan-	
794	tities are as defined in Table 2. Grid aspect ratio ($\Delta x/\Delta z$) is represented by AR.	
795	41	

796 TABLE 1. Sample namelist with relevant variables for vertical nesting. The variable *e_vert* determines the
 797 number of vertical levels for each domain. There are 3 domains defined by *grid_id*, in this case d01, d02, and
 798 d03. Variable *parent_id* defines within which domain each domain defined by *grid_id* is nested. Thus in this
 799 case, d02 is nested within d01 and d03 is nested within d02. Variable *vert_refine_method* = 2 means that arbitrary
 800 vertical nesting has been chosen, and *eta_levels* defines those arbitrary levels in terms of the variable η , ranging
 801 from 1 to 0 for each domain in a concatenated vector. Refer to section 2d for full details.

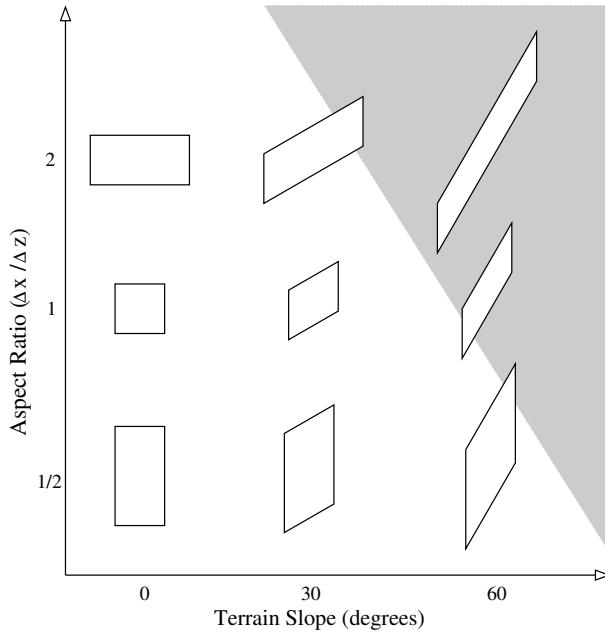
&domains			
e_vert	=	40,	80, 120,
grid_id	=	1,	2, 3,
parent_id	=	0,	1, 2,
vert_refine_method	=	0,	2, 2,
feedback	=	0,	
eta_levels	=	1, ... , 0, 1, ... , 0, 1, ... , 0	

802 TABLE 2. Idealized simulations: Grid setup for nested idealized simulations, where d01 is the outer domain,
 803 d02 is the inner domain. Horizontal grid spacing and height of the first full vertical grid level above the surface
 804 are given by Δx and Δz^1 respectively. L_x , L_y , and L_z represent the domain size in physical space, nx , ny , and nz
 805 are the numbers of computational grid points in each direction.

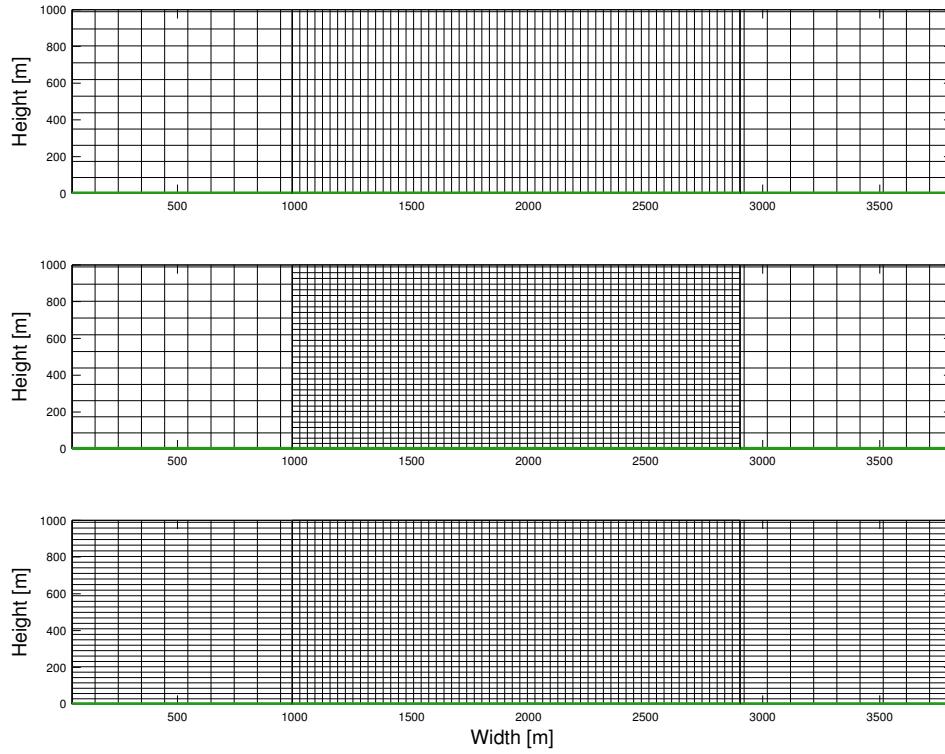
Vertical Grid		Δx (m)	Δz^1 (m)	L_x (m)	L_y (m)	L_z (m)	nx	ny	nz
Coarse	d01	99	47.3	3960	3960	4000	40	40	40
	d02	33	47.3	1980	1980	4000	61	61	40
Nested	d01	99	47.3	3960	3960	4000	40	40	40
	d02	33	15.8	1980	1980	4000	61	61	118
Fine	d01	99	15.8	3960	3960	4000	40	40	118
	d02	33	15.8	1980	1980	4000	61	61	118

806 TABLE 3. Mesoscale simulations: Physical and computational dimensions of simulation domains. All quan-
 807 tities are as defined in Table 2.

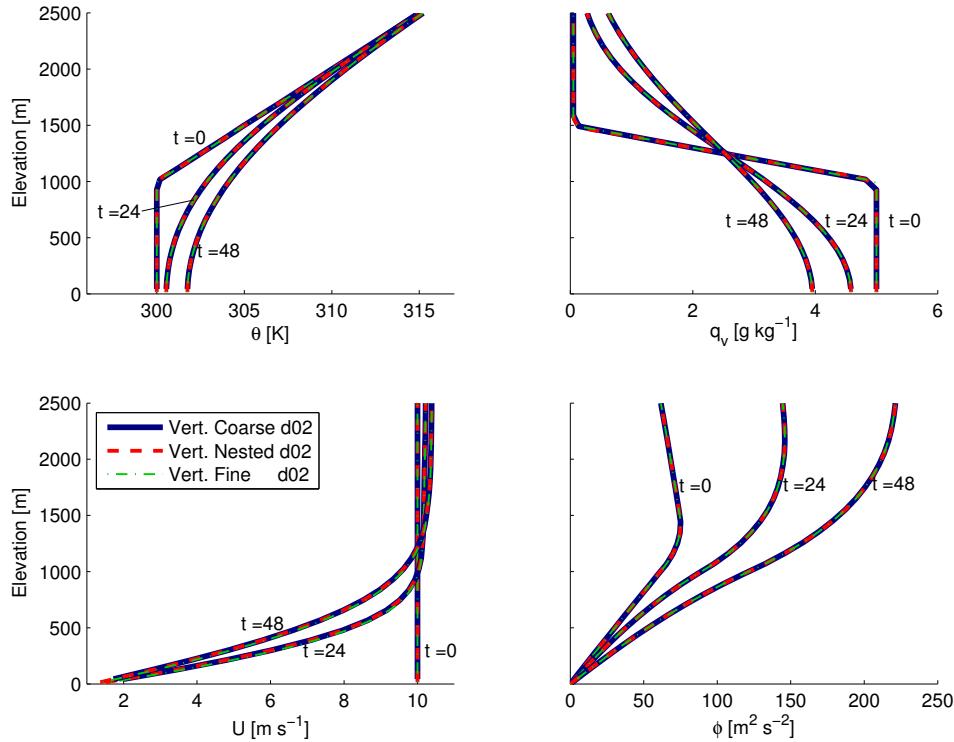
Vertical Grid		Δx (km)	L_x (km)	L_y (km)	L_z (km)	nx	ny	nz
Coarse	d01	3	300	300	20.7	100	100	40
	d02	1	100	100	20.7	100	100	40
Nested	d01	3	300	300	20.7	100	100	40
	d02	1	100	100	20.7	100	100	120
Fine	d01	3	300	300	20.7	100	100	120
	d02	1	100	100	20.7	100	100	120
$ndown$	d01	3	300	300	20.7	100	100	40
	d02	1	100	100	20.7	100	100	118

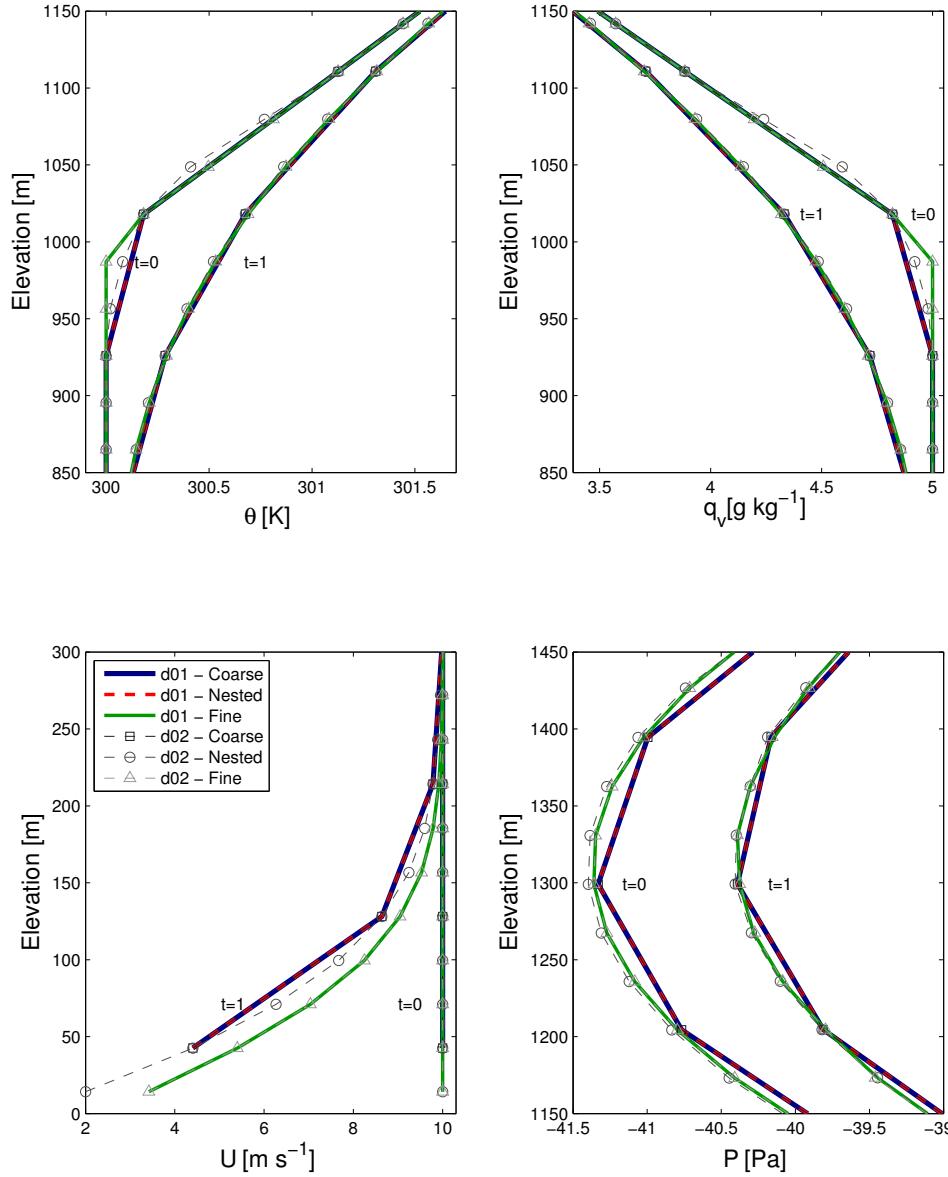

808 TABLE 4. LES: Physical and computational dimensions of simulation domains. All quantities are as defined
 809 in Table 2. Grid aspect ratio ($\Delta x/\Delta z$) is represented by AR.

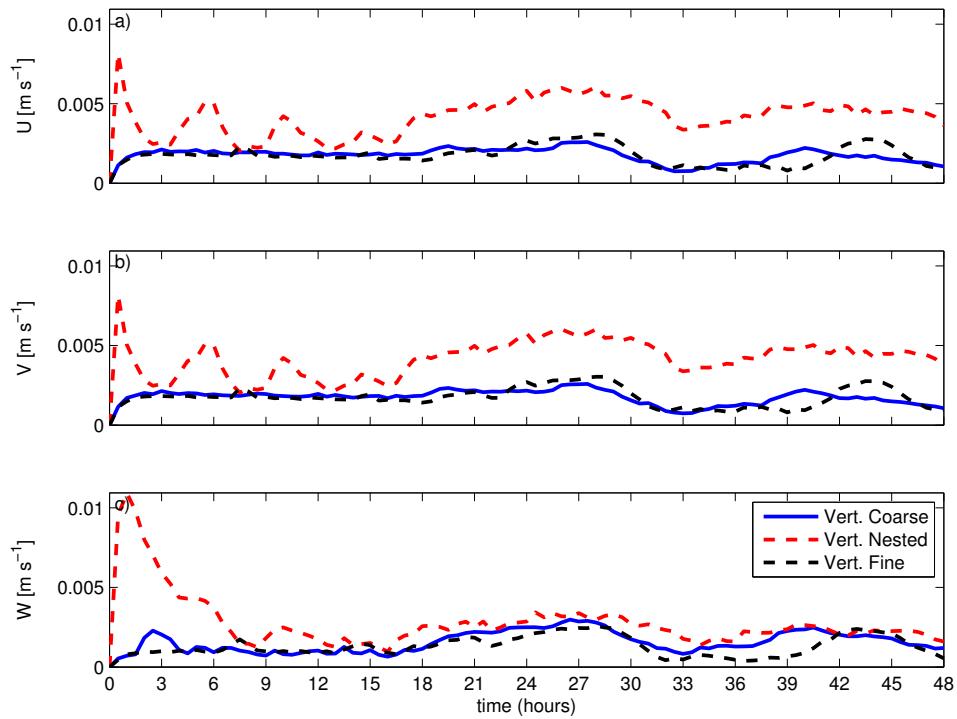
Vertical Grid		<i>AR</i>	Δx (m)	Δz^1 (m)	L_x (m)	L_y (m)	L_z (m)	n_x	n_y	n_z
Coarse	d01	4	33	8.68	4950	3300	1400	151	101	46
	d02	1.3	11	8.68	3960	2640	1400	361	241	46
Nested	d01	4	33	8.68	4950	3300	1400	151	101	46
	d02	4	11	2.88	3960	2640	1400	361	241	67
Fine	d01	11.5	33	2.88	4950	3300	1400	151	101	67
	d02	4	11	2.88	3960	2640	1400	361	241	67
Coarse SA		1.3	11	8.68	3960	2640	1400	361	241	46
Fine SA		4	11	2.88	3960	2640	1400	361	241	67

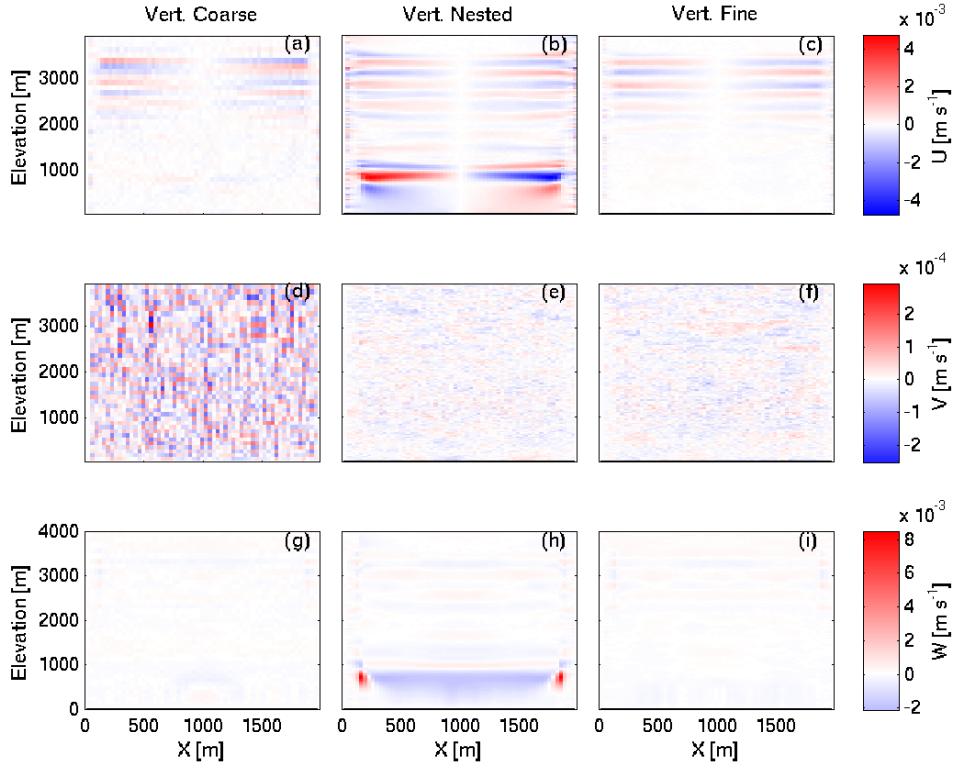

810 LIST OF FIGURES

811	Fig. 1. Example computational cells are shown at a variety of terrain slopes and aspect ratios. The shaded region denotes the parameter space where the use of terrain-following coordinates is questionable, as the resulting computational cell violates the condition that the change in height over two horizontally adjacent points be less than the vertical grid spacing Δz	44
812		
813		
814		
815	Fig. 2. Computational grids for the 3 idealized simulations up to 1000 m (domain top is at 4000 m), with grids for the child domain shown nested within the parent domain. Vert. Coarse uses 40 vertical levels on both domains (top), Vert. Nested uses 40 levels on the parent domain and 118 on the child domain (middle), Vert. Fine uses 118 levels on both domains (bottom). X-axis labels correspond to the parent domain x-coordinate.	45
816		
817		
818		
819		
820	Fig. 3. Forced idealized simulations: Profiles from the center of d02 for the idealized simulation forced with a pressure gradient and drag coefficient. $t=0$ is initialization, $t=24$ and $t=48$ are at 24 and 48 hours of simulation respectively.	46
821		
822		
823	Fig. 4. Forced idealized simulations: 300-meter sections at the heights of steepest gradients in variable profiles from the edge of d02 at $(i = 1, j = 31)$, along with the collocated point on d01. $t=0$ is initialization, $t=1$ is after 1 hour of simulation.	47
824		
825		
826	Fig. 5. Quiescent idealized simulations: Shown are the maximum velocity values in d02 as a function of time, which for the quiescent case is equal to the maximum error in the domain at each time.	48
827		
828		
829	Fig. 6. Quiescent idealized simulations: top row shows x-z slice contours of U , middle row V , and bottom row W at 1 hour after initialization, at the center of the nested domain (d02). The left column is from Vert. Coarse, middle column Vert. Nested, and right column Vert. Fine.	49
830		
831		
832	Fig. 7. Quiescent idealized simulations: Panels are the same as in Figure 6, but at 48 hours after initialization.	50
833		
834	Fig. 8. Forced idealized simulations: x-transects of U and W [m s^{-1}] at the first collocated point above the surface on d02 at $j = 31$ (center) for the three different vertical grid configurations at 48 hours.	51
835		
836		
837	Fig. 9. Mesoscale simulations: (a) Map of surrounding geographical area with green box indicating location of simulation domain shown in panel (b). (b) Contours of terrain height in meters above sea level (asl). The outer domain (d01), centered at Independence, California, has 3 km horizontal resolution. The dashed line outlines the extent of the inner domain (d02), which has 1 km horizontal resolution. The floor of Owens Valley is around 1000 m asl, with the peaks of the Sierra Nevada mountains to the west above 3000 m asl, and the peaks of the White-Inyo mountains to the east above 2500 m asl.	52
838		
839		
840		
841		
842		
843		
844	Fig. 10. Contours of the vertical velocity W [m s^{-1}] in an x-z slice at $j = 50$ (the center of the domain), on d02 at 1815 UTC (1015 Pacific Daylight Savings Time (PDST)) on 29 April 2006 for a) Vert. Coarse, b) Vert. Nested, c) Vert. Fine, and d) <i>ndown</i> simulations.	53
845		
846		
847	Fig. 11. Profiles from the center of d02 compared to observations from rawinsondes released at Independence Airport. The sonde was released at 1804 UTC (1004 PDST) on 29 April 2006. The simulated profiles are from 1815 UTC on the inner domain (d02).	54
848		
849		




881 FIG. 1. Example computational cells are shown at a variety of terrain slopes and aspect ratios. The shaded re-
 882 gion denotes the parameter space where the use of terrain-following coordinates is questionable, as the resulting
 883 computational cell violates the condition that the change in height over two horizontally adjacent points be less
 884 than the vertical grid spacing Δz .

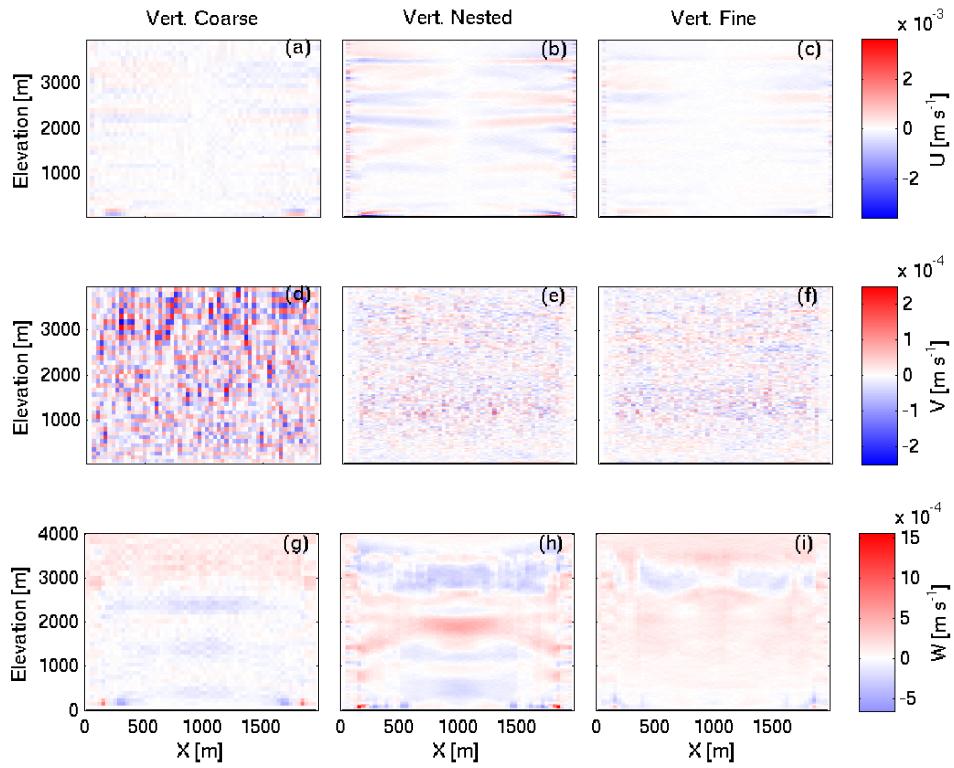
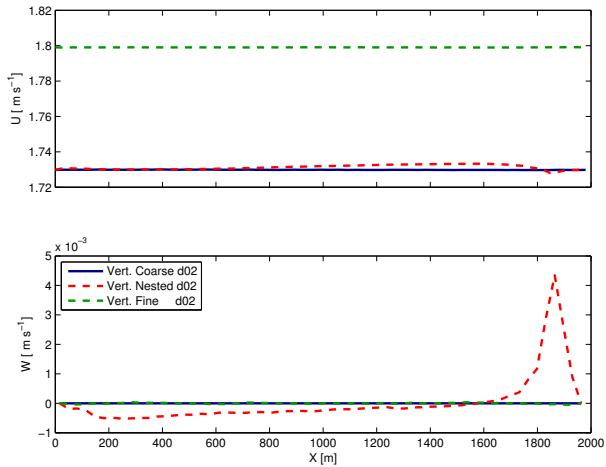

885 FIG. 2. Computational grids for the 3 idealized simulations up to 1000 m (domain top is at 4000 m), with
 886 grids for the child domain shown nested within the parent domain. Vert. Coarse uses 40 vertical levels on both
 887 domains (top), Vert. Nested uses 40 levels on the parent domain and 118 on the child domain (middle), Vert. Fine
 888 uses 118 levels on both domains (bottom). X-axis labels correspond to the parent domain x-coordinate.

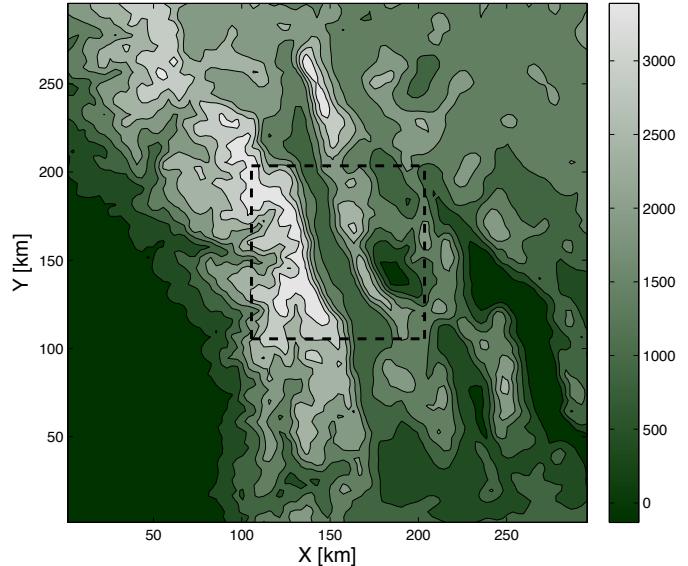

889 FIG. 3. Forced idealized simulations: Profiles from the center of d02 for the idealized simulation forced with
 890 a pressure gradient and drag coefficient. t=0 is initialization, t=24 and t=48 are at 24 and 48 hours of simulation
 891 respectively.

892 FIG. 4. Forced idealized simulations: 300-meter sections at the heights of steepest gradients in variable
 893 profiles from the edge of d02 at $(i = 1, j = 31)$, along with the collocated point on d01. t=0 is initialization, t=1
 894 is after 1 hour of simulation.

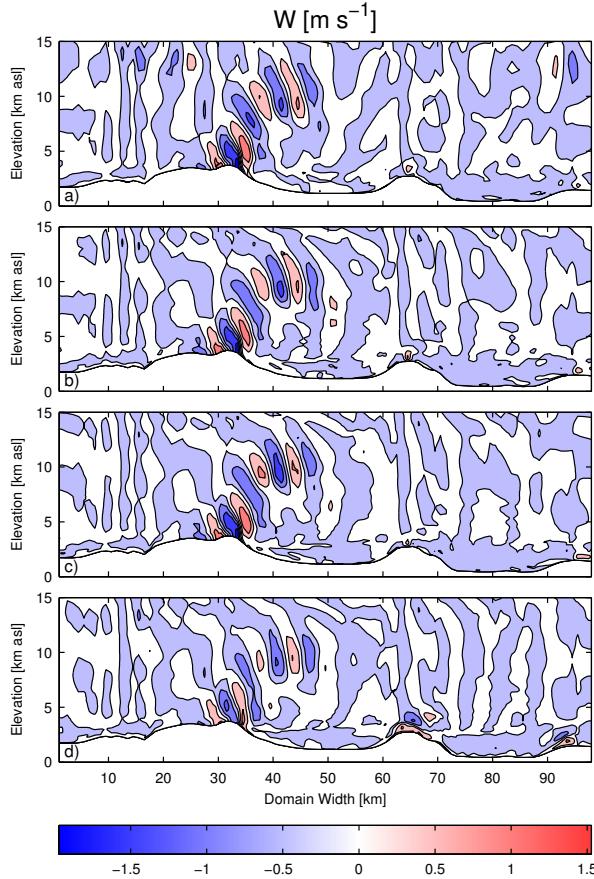
895 FIG. 5. Quiescent idealized simulations: Shown are the maximum velocity values in d02 as a function of
 896 time, which for the quiescent case is equal to the maximum error in the domain at each time.

897 FIG. 6. Quiescent idealized simulations: top row shows x-z slice contours of U , middle row V , and bottom row
 898 W at 1 hour after initialization, at the center of the nested domain (d02). The left column is from Vert. Coarse,
 899 middle column Vert. Nested, and right column Vert. Fine.

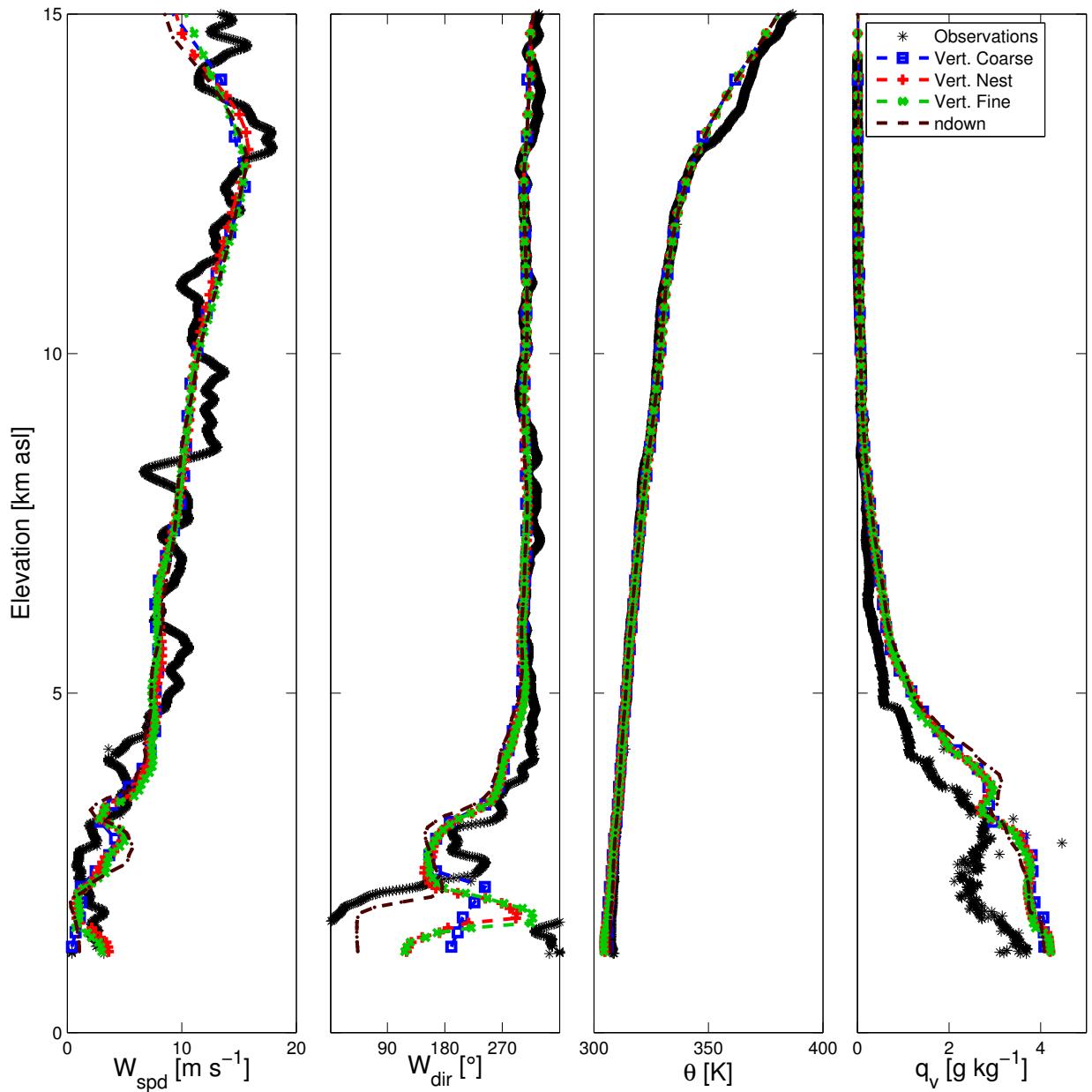




FIG. 7. Quiescent idealized simulations: Panels are the same as in Figure 6, but at 48 hours after initialization.

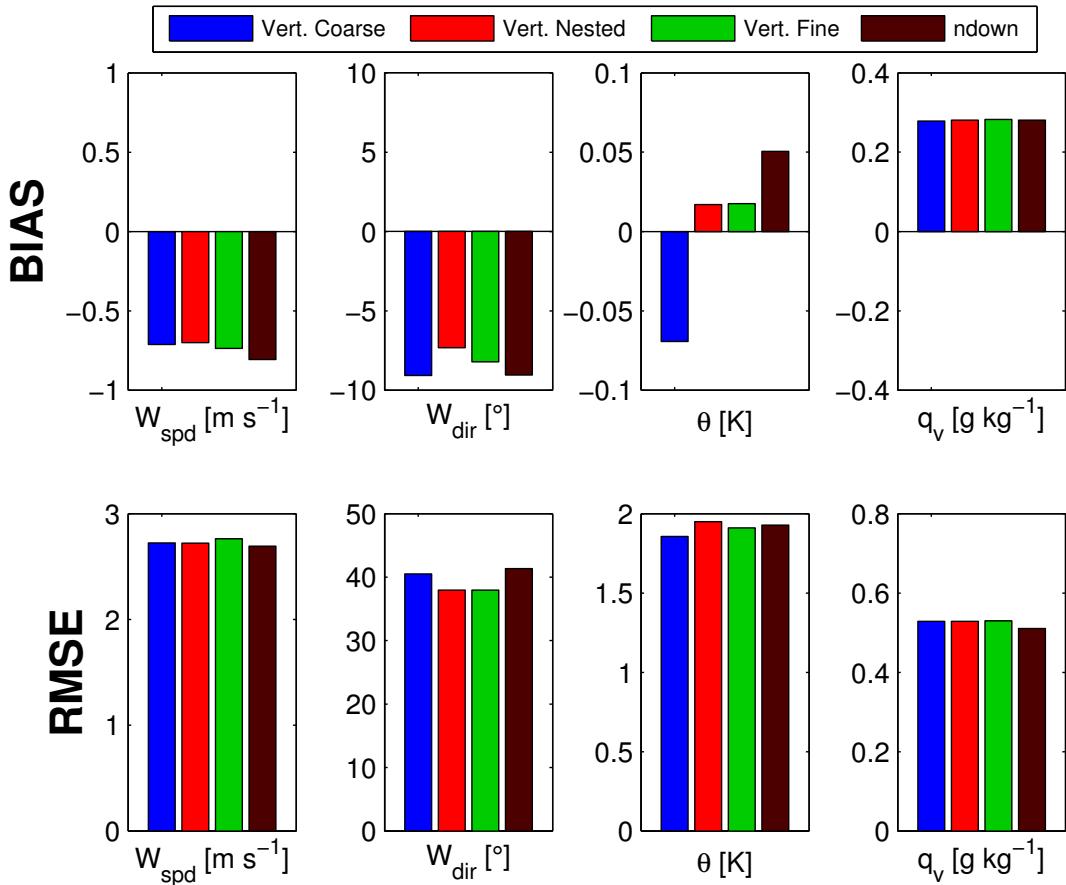
900 FIG. 8. Forced idealized simulations: x-transects of U and W [m s^{-1}] at the first collocated point above the
 901 surface on d02 at $j = 31$ (center) for the three different vertical grid configurations at 48 hours.

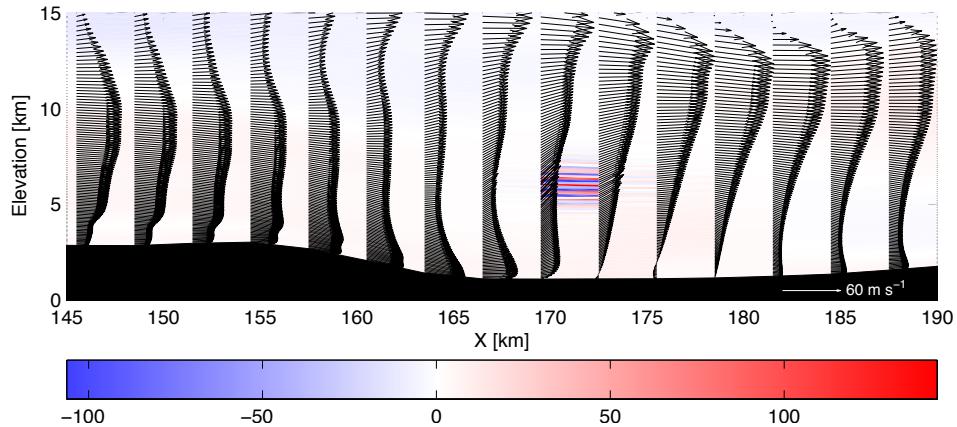


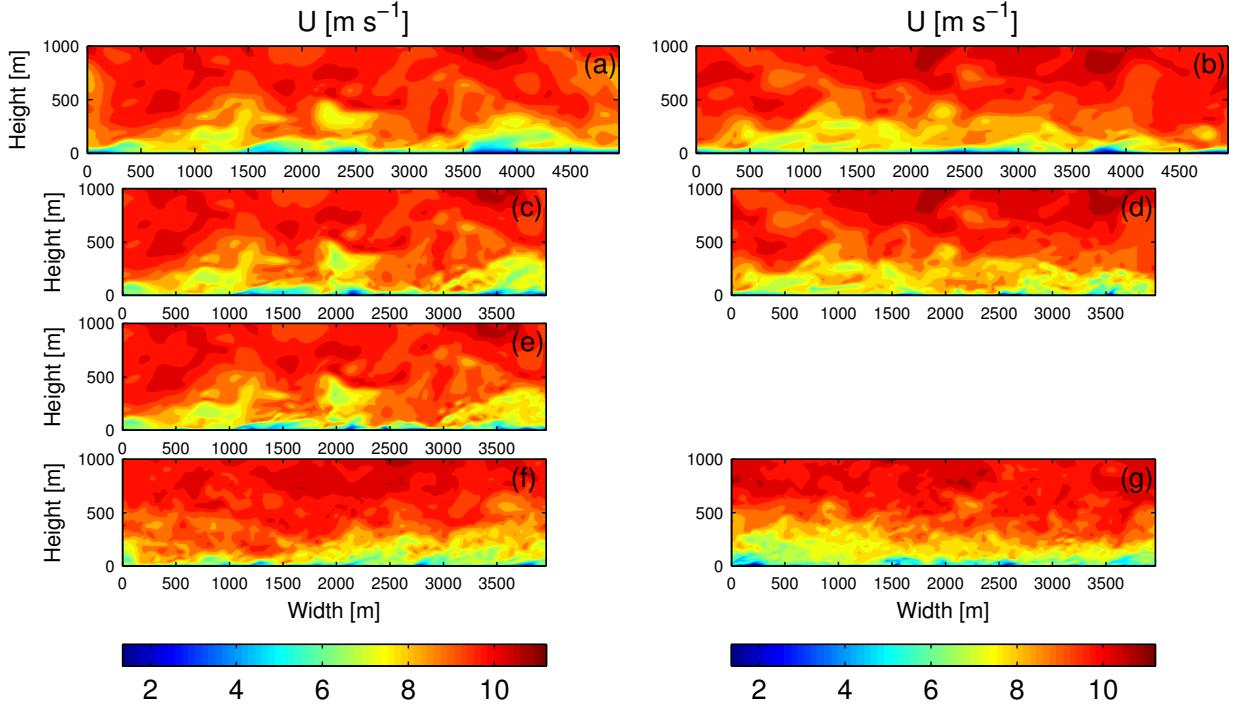
(a)

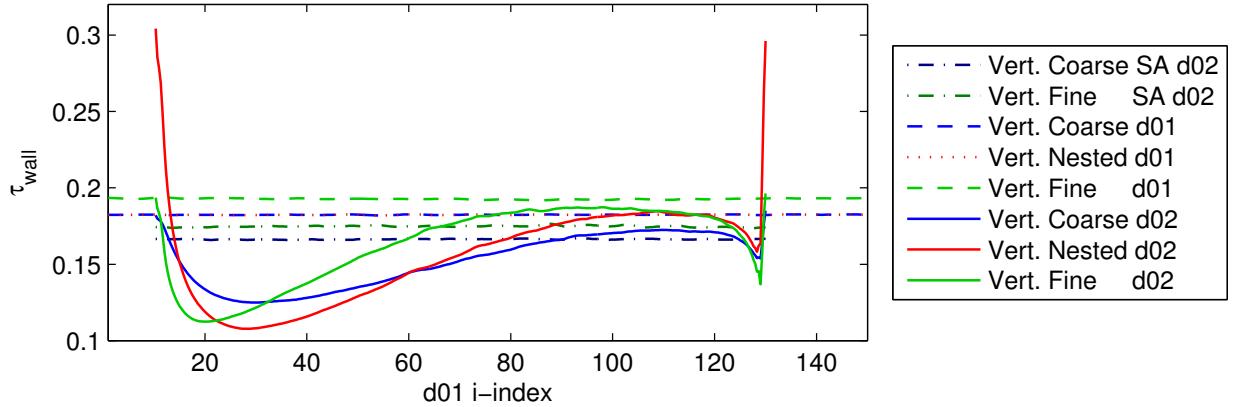


(b)


902 FIG. 9. Mesoscale simulations: (a) Map of surrounding geographical area with green box indicating location
 903 of simulation domain shown in panel (b). (b) Contours of terrain height in meters above sea level (asl). The outer
 904 domain (d01), centered at Independence, California, has 3 km horizontal resolution. The dashed line outlines
 905 the extent of the inner domain (d02), which has 1 km horizontal resolution. The floor of Owens Valley is around
 906 1000 m asl, with the peaks of the Sierra Nevada mountains to the west above 3000 m asl, and the peaks of the
 907 White-Inyo mountains to the east above 2500 m asl.


908 FIG. 10. Contours of the vertical velocity W [m s^{-1}] in an x - z slice at $j = 50$ (the center of the domain),
 909 on d02 at 1815 UTC (1015 Pacific Daylight Savings Time (PDST)) on 29 April 2006 for a) Vert. Coarse, b)
 910 Vert. Nested, c) Vert. Fine, and d) *ndown* simulations.


911 FIG. 11. Profiles from the center of d02 compared to observations from rawinsondes released at Independence
912 Airport. The sonde was released at 1804 UTC (1004 PDST) on 29 April 2006. The simulated profiles are from
913 1815 UTC on the inner domain (d02).


914 FIG. 12. Average bias (top row) and RMSE (bottom row) between simulations and the sounding observations
 915 averaged over 28 soundings from T-REX EOP4 and 5 (28-30 April 2006).

916 FIG. 13. Filled grid-cell pixels of V [m s^{-1}] (positive into the page), with U - W vectors overlaid. 45 km section
 917 of x - z slice from d01 (full domain is 300 km across) at $j = 35$ (this slice across d01 coincidentally coincides with
 918 the southern lateral boundary of d02), at 12 seconds after 0006 UTC on 26 March 2006 (1606 Pacific Daylight
 919 Savings Time (PDST) on the previous day) for Vert. Fine simulation.

920 FIG. 14. Large-eddy simulations: Instantaneous contours of U [m s^{-1}] in a vertical x-z slice from the center
 921 of d02 at the end of 28 hours of simulation. Panels (a) and (b) are parent domains d01 from Vert. Coarse and
 922 Vert. Fine respectively, with (c) and (d) corresponding to d02 of Vert. Coarse and Vert. Fine. Panel (e) is d02
 923 for Vert. Nested, which has an identical d01 to Vert. Coarse shown in (a). Panels (f) and (g) are stand-alone
 924 simulations with periodic boundary conditions performed on the same grid as d02 in the nested simulations for:
 925 coarse vertical grid spacing (f) and fine vertical grid spacing (g). Mean flow is along the slice from left to right,
 926 corresponding to the imposed geostrophic flow. Panels (c), (d), and (e), (child domains) are positioned on the
 927 page to show where the child is nested relative to the parent domain (panels (a) and (b)). Panels (f) and (g)
 928 for the SA simulations are aligned with the child domains above them only because they have the same grid
 929 dimensions as the child domains.

930 FIG. 15. Large-eddy simulations: Average surface stress boundary condition along the x-direction of the
 931 domain. τ_w has been averaged temporally over 4 hours and over all points in the y-direction for d01 and the
 932 stand-alone (SA) simulations. Nested domains are averaged over $[30 < j < 210]$ to exclude influences from the
 933 nested boundary. τ_w differs greatly at the inlet (left) and outlet (right) for d02 of Vert. Nested (red line) because
 934 at these locations, the velocity used to calculate τ_w must be extrapolated from the first point above the surface
 935 on the coarse vertical grid of d01.

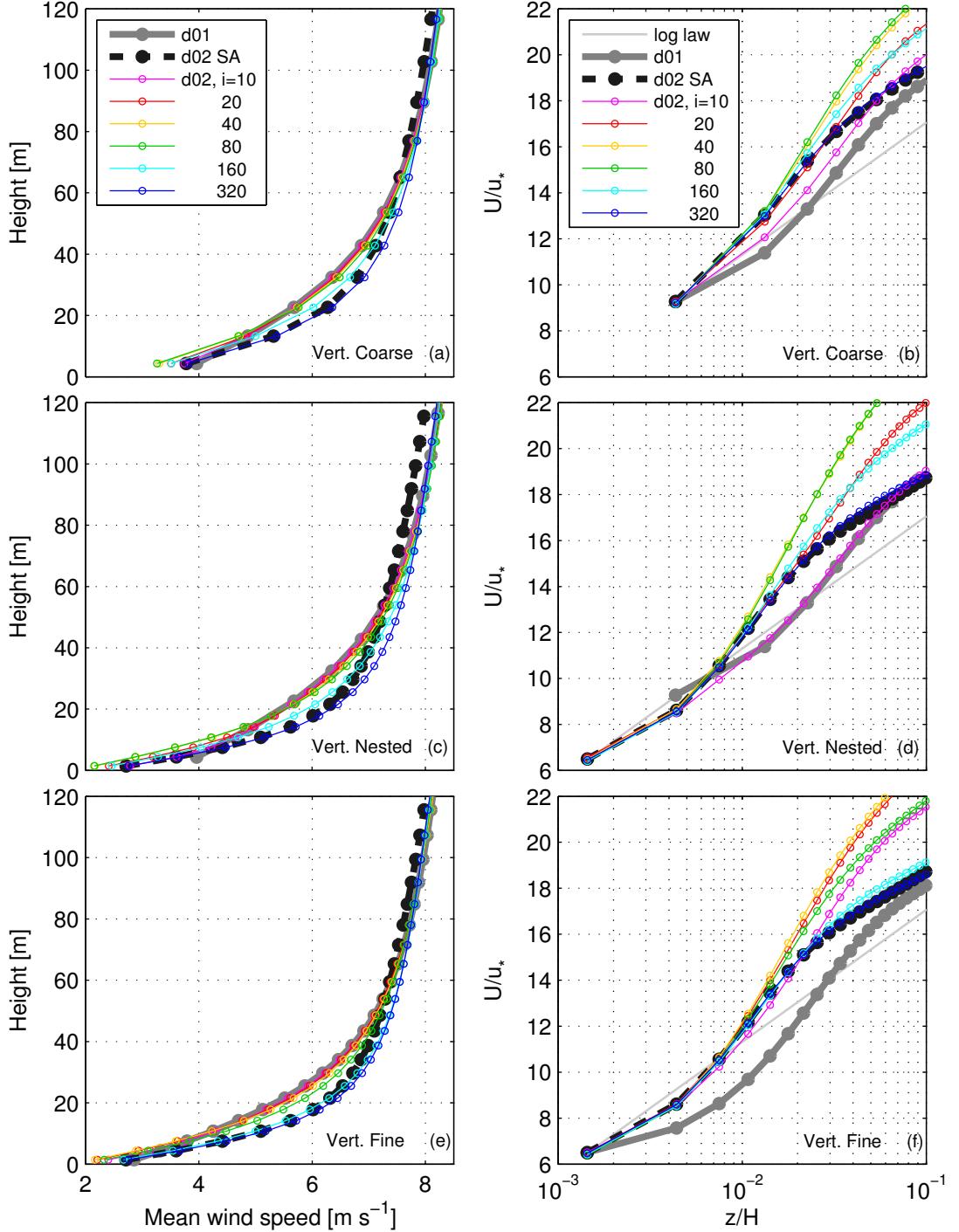


FIG. 16. Large-eddy simulations: Panels (a), (c), and (e): time-averaged profiles of mean wind speed ($U_{mean} = \sqrt{U^2 + V^2}$) at the i -indices indicated, averaged over $[30 < j < 210]$. Panels (b), (d), and (f): non-dimensional wind (U_{mean} normalized by the friction velocity, u_*), versus non-dimensional height (physical height above the surface z normalized by boundary layer height, H). Time averages were performed over 4 hours following a 24 hour spin-up period.