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In this note, the laser focal plane intensity profile for a beam modeled using the 3D ray trace package in
HYDRA is determined. First, the analytical model is developed followed by a practical numerical model
for evaluating the resulting computationally intensive normalization factor for all possible input parameters.

1 The Analytical Model

The superg3d card in HYDRA is used to specify the focal plane laser profile. Formally, the power distri-
bution — or to think of it another way, the probability of launching a ray directed at the point (x, y) in the
focal plane — is given in the HYDRA manual as

P (r (x, y)) = re−r
n

(1)

where

r (x, y) =

√
x2

σ2
x

+
y2

σ2
y

.

The notation has been simplified for the purposes of this document according to σx=spotx, σy=spoty, and
n=npower from the HYDRA manual. This distribution is not normalized. That is, this is only relative.

Given this power (probability) formalism, the intensity distribution may be derived. The functional form
is evidently super Gaussian:

I = I0 exp

(
−
[
x2

σ2
x

+
y2

σ2
y

]n/2)
.

The complexity lies in deriving the required normalization I0 so that the units are properly W/cm2 and the
values accurately reflect the incident power and beam spot sizes. To do this, note that the area integral of
the intensity over the elliptical (bm model=±3) or rectangular (bm model=±4) beam spot must equal the
total laser power P0. In HYDRA, P0 is the product of the user specified pmult from the superg3d card and
the current interpolated value from the associated lastimes card. The normalization I0 is then determined
from the integral relation

P0 =

∫
dP =

∫∫
I dA =

∫∫
I0 exp

(
−
[
x2

σ2
x

+
y2

σ2
y

]n/2)
dxdy,

where the integration is carried out over the entire spot: either elliptical or rectangular.
One must be careful in setting the limits of this integration. To avoid launching laser rays with negligible

power — or probability — HYDRA truncates the laser spot at three times the spot size. When bm model

= ±3, power is sampled within a finite ellipse with semi-major and semi-minor axes of length 3σx and 3σy.
The total launched power within this ellipse is equal to the total power requested by the user, P0. When
bm model=±4, the entirety of the laser power is instead launched into a rectangle in the focal plane with
edges spanning x ∈ [−3σx, 3σx] and y ∈ [−3σy, 3σy] in the lens coordinate system.

To determine the normalization I0 in the elliptical [bm model=±3] case, the area integral is converted to
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polar coordinates

P0 =

∫
dP =

∫∫
I dA = I0

∫ 3σy

−3σy

∫ 3σx

√
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y

−3σx

√
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y

exp

(
−
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σ2
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+
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σ2
y

]n/2)
dxdy

= σxσyI0

∫ 3

−3

∫ √1−y2/9σ2
x

−
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1−y2/9σ2
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(
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σ2
x
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y

])
d

(
x

σx

)
d

(
y

σy

)
= σxσyI0

∫ 2π

0

∫ 3

0

re−r
n

dr dθ.

Making use of the definition of the incomplete γ function2, the intensity distribution within the 3σ laser spot
is found to be

I(x, y) =

[
P0

σxσy
(
2π
n

)
γ
(
2
n , 3

n
)] exp

(
−
[
x2

σ2
x

+
y2

σ2
y

]n/2)
, (2)

where the normalization factor I0 is, of course, the factor in square brackets.
In the rectangular beam case — that is, when bm model=±4 —

P0 = I0

∫ 3σy

−3σy

∫ 3σx

−3σx

exp

(
−
[
x2

σ2
x

+
y2

σ2
y

]n/2)
dxdy

= 4σxσyI0

{∫ π/4

0

∫ 3/cos θ

0

re−r
n

dr dθ +

∫ π/2

π/4

∫ 3/sin θ

0

re−r
n

dr dθ

}

= 8σxσyI0

∫ π/4

0

∫ 3/cos θ

0

re−r
n

dr dθ.

Again making use of the incomplete γ function and rearranging, the intensity profile of the rectangular super
Gaussian beam mode is given by

I(x, y) =

 P0

σxσy
(
8
n

) ∫ π/4
0

γ
(

2
n ,
[

3
cos(θ)

]n)
dθ

 exp

(
−
[
x2

σ2
x

+
y2

σ2
y

]n/2)
(3)

where the symmetry of the underlying super Gaussian beam has been invoked to break the polar angle
integration into eight equal pieces.

2 The Numerical Model

The total power P0, spot sizes σx (spotx) and σy (spoty), and super Gaussian exponent n (npower) are
specified by the user, and with the coordinate of interest (x, y) known, the intensity I(x, y) is easily computed,
in principle, from Eq. 2 or 3. The prefactors I0 are, however, computationally prohibitive to evaluate
directly as numerical integrals. To ameliorate this for bm model=±3, HYDRA makes use of the logarithmic
polynomial and Padé approximant fits

(
2π

n

)
γ

(
2

n
, 3n
)

=


2π exp

(
c0 + c1n+ c2n

2 + c3n
3 + c4n

4 + c5n
5
)

n < 1

a0 + a1n+ a2n
2 + a3n

3 + a4n
4 + a5n

5

1 + b1n+ b2n2 + b3n3 + b4n4 + b5n5
n ≥ 1

(4)

where the coefficients are defined in Tables 1 and 2. The Padé approximant is accurate to 0.003% for
1 ≤ n ≤ 40 and is good to better than 0.0115% for 1 ≤ n ≤ 25000, and the exponential expression is good
to better than 0.00153% for 0.02 ≤ n ≤ 1. When bm model=±4, the Padé approximants

(
8

n

)∫ π/4

0

γ

(
2

n
,

[
3

cos θ

]n)
dθ =


α0 + α1n+ α2n

2 + α3n
3 + α4n

4 + α5n
5

1 + β1n+ β2n2 + β3n3 + β4n4 + β5n5
n < 2

a0 + a1n+ a2n
2 + a3n

3 + a4n
4 + a5n

5

1 + b1n+ b2n2 + b3n3 + b4n4 + b5n5
n ≥ 2

. (5)

2γ (a, x) ≡
∫ x
0 ta−1e−t dt
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are used. The coefficients are defined in Tables 2 and 3. The n ≥ 2 Padé approximant is accurate to 0.006%
for 2 ≤ n ≤ 40 and is good to better than 0.0115% for 2 ≤ n ≤ 25000, and the n < 2 Padé approximant
is good to better than 0.0059% for 0.02 ≤ n ≤ 2. The Padé approximants have been derived using the
eigenvalue method of Curtis and Osborne [1], and the exponential fit by polynomial least squares fitting to
the logarithm of the incomplete γ function integral.

Notice that for n & 2 one can make use of the limits(
2π

n

)
γ

(
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n
, 3n
)

n&2−−−−−−→
(

2π

n

)
Γ

(
2
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)
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(
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)
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(
2

n

)
n→∞−−−−→ π,

which is why the bm model = ±3 and ±4 normalization factors use the same approximant for large n.
Physically, this results because the beam becomes sufficiently centrally peaked that there is effectively no
intensity at or beyond the 3σ boundary. Incidentally, the second (n → ∞) limit is also the reason that the
polynomial orders for the numerator and denominator are the same.

The small n limits may also be analytically determined. The limit as n tends zero of the bm model=±3
normalization factor is first computed by making use of the Maclaurin series of the exponential function in
computing the γ function integral:

lim
n→0

2π

n

∫ 3n

0

t2/n−1e−t dt = lim
n→0

(
2π

n

) ∞∑
m=0

(−1)
m

m!

∫ 3n

0

t2/n−1+m dt

= lim
n→0

∞∑
m=0

(−1)
m

m!

18π · 3mn

2− n+mn

= 9π

∞∑
m=0

(−1)
m

m!

= 9πe−1.

Numerically, this is a value approximately equal to 10.4015461481183. Similarly, the bm model=±4 normal-
ization factor limit may be computed using the same technique:

lim
n→0

8

n

∫ π/4

0

∫ (3/ cos θ)n

0

t2/n−1e−t dtdθ = lim
n→0

(
8

n

) ∞∑
m=0

(−1)
m

m!

∫ π/4

0

[∫ (3/ cos θ)n

0

t2/n−1+m dt

]
dθ

= lim
n→0

∞∑
m=0

(−1)
m

m!

72 · 3mn

2− n+mn

∫ π/4

0

(sec θ)
2+mn

dθ

= 36

{ ∞∑
m=0

(−1)
m

m!

}{∫ π/4

0

sec2θ dθ

}
= 36

{
e−1
}
{1}

= 36e−1

for a numerical value of 13.2436598821719. The numerical errors of the approximations in Eqs. 4 and 5 in
the limits as n → 0 are 0.003% and 0.012%, respectively. In addition to this relatively small error even to
n = 0, these functional forms do not require the evaluation of factorials of large numbers or infinity as most
built-in γ function formulations do.

With the intensity normalization factors I0 calculated, the laser beam intensity from HYDRA’s 3D laser
ray trace package in the focal plane for both super Gaussian beam models is now fully specified by Eqs. 2–5
for all values of the super Gaussian order n (npower), spot sizes σx and σy (spotx and spoty), and laser
power P0 (pmult×lastimes).
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Table 1: Fitting coefficients for an elliptical beam [bm model=±3] with npower < 1.

c0 0.50410935866033502
c1 -0.59960370647330696
c2 -0.17079985465238293
c3 -0.03114525147846556
c4 0.07913248428147572
c5 -0.00375285384930669

Table 2: Fitting coefficients for an elliptical beam [bm model=±3] with npower ≥ 1 and for a rectangular
beam [bm model=±4] with npower ≥ 2.

a0 6.001911243595717
a1 -5.394377353542378 b1 -1.764463010691547
a2 3.286001028025678 b2 2.400240048677038
a3 0.179793458490833 b3 -1.050131004267564
a4 -1.204662992085034 b4 -0.105429575820128
a5 0.751902653309727 b5 0.239310679629733

Table 3: Fitting coefficients for a rectangular beam [bm model=±4] with npower < 2.

α0 13.2452217950014166
α1 -20.3075205938825718 β1 -0.80259438691477270
α2 15.3824084867438717 β2 0.57488756423204912
α3 -5.9000243145711257 β3 -0.14368538649811363
α4 1.2533918458702606 β4 0.04139209383610994
α5 -0.0753919083195495 β5 0.00804441340039306
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