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In this note, the laser focal plane intensity profile for a beam modeled using the 3D ray trace package in
HYDRA is determined. First, the analytical model is developed followed by a practical numerical model
for evaluating the resulting computationally intensive normalization factor for all possible input parameters.

1 The Analytical Model

The superg3d card in HYDRA is used to specify the focal plane laser profile. Formally, the power distri-
bution — or to think of it another way, the probability of launching a ray directed at the point (x,y) in the
focal plane — is given in the HYDRA manual as

n

P(r(z,y)=re" (1)
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The notation has been simplified for the purposes of this document according to o,=spotx, o,=spoty, and
n=npower from the HYDRA manual. This distribution is not normalized. That is, this is only relative.
Given this power (probability) formalism, the intensity distribution may be derived. The functional form

is evidently super Gaussian:
2?2 n/2
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The complexity lies in deriving the required normalization Iy so that the units are properly W/cm? and the
values accurately reflect the incident power and beam spot sizes. To do this, note that the area integral of
the intensity over the elliptical (bm-model=+3) or rectangular (bmmodel=+4) beam spot must equal the
total laser power Py. In HYDRA, P, is the product of the user specified pmult from the superg3d card and
the current interpolated value from the associated lastimes card. The normalization Iy is then determined
from the integral relation

22 g2 n/2
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where the integration is carried out over the entire spot: either elliptical or rectangular.

One must be careful in setting the limits of this integration. To avoid launching laser rays with negligible
power — or probability — HYDRA truncates the laser spot at three times the spot size. When bm_model
= £3, power is sampled within a finite ellipse with semi-major and semi-minor axes of length 30, and 30,.
The total launched power within this ellipse is equal to the total power requested by the user, Py. When
bm_model=+4, the entirety of the laser power is instead launched into a rectangle in the focal plane with
edges spanning z € [—30,,30,] and y € [—30,, 30,] in the lens coordinate system.

To determine the normalization Ij in the elliptical [bm model==13] case, the area integral is converted to

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
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polar coordinates

Py
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Making use of the definition of the incomplete v function?, the intensity distribution within the 30 laser spot

is found to be P
P, 22 y2 n
Ia,y) = . e (- |5+ 5] ). @)
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where the normalization factor I is, of course, the factor in square brackets.
In the rectangular beam case — that is, when bm_model=+4 —
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Again making use of the incomplete ~ function and rearranging, the intensity profile of the rectangular super
Gaussian beam mode is given by

Py
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where the symmetry of the underlying super Gaussian beam has been invoked to break the polar angle
integration into eight equal pieces.

2 The Numerical Model

The total power Py, spot sizes o, (spotx) and o, (spoty), and super Gaussian exponent n (npower) are
specified by the user, and with the coordinate of interest (x, y) known, the intensity I(z,y) is easily computed,
in principle, from Eq. 2 or 3. The prefactors Iy are, however, computationally prohibitive to evaluate
directly as numerical integrals. To ameliorate this for bm_model=+3, HYDRA makes use of the logarithmic
polynomial and Padé approximant fits

2T exp (co +en + ean? 4+ csnd + ean* + c5n5) n<l1
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where the coefficients are defined in Tables 1 and 2. The Padé approximant is accurate to 0.003% for
1 < n <40 and is good to better than 0.0115% for 1 < n < 25000, and the exponential expression is good
to better than 0.00153% for 0.02 < n < 1. When bm_model=+4, the Padé approximants
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are used. The coefficients are defined in Tables 2 and 3. The n > 2 Padé approximant is accurate to 0.006%
for 2 < n < 40 and is good to better than 0.0115% for 2 < n < 25000, and the n < 2 Padé approximant
is good to better than 0.0059% for 0.02 < n < 2. The Padé approximants have been derived using the
eigenvalue method of Curtis and Osborne [1], and the exponential fit by polynomial least squares fitting to
the logarithm of the incomplete v function integral.

Notice that for n 2 2 one can make use of the limits
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which is why the bm_model = 4+3 and +4 normalization factors use the same approximant for large n.
Physically, this results because the beam becomes sufficiently centrally peaked that there is effectively no
intensity at or beyond the 30 boundary. Incidentally, the second (n — o) limit is also the reason that the
polynomial orders for the numerator and denominator are the same.

The small n limits may also be analytically determined. The limit as n tends zero of the bm_model==3
normalization factor is first computed by making use of the Maclaurin series of the exponential function in
computing the v function integral:
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Numerically, this is a value approximately equal to 10.4015461481183. Similarly, the bm_model=44 normal-
ization factor limit may be computed using the same technique:
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for a numerical value of 13.2436598821719. The numerical errors of the approximations in Eqgs. 4 and 5 in
the limits as n — 0 are 0.003% and 0.012%, respectively. In addition to this relatively small error even to
n = 0, these functional forms do not require the evaluation of factorials of large numbers or infinity as most
built-in « function formulations do.

With the intensity normalization factors I calculated, the laser beam intensity from HYDRA’s 3D laser
ray trace package in the focal plane for both super Gaussian beam models is now fully specified by Egs. 2-5
for all values of the super Gaussian order n (npower), spot sizes o, and o, (spotx and spoty), and laser
power Py (pmultxlastimes).
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Table 1: Fitting coefficients for an elliptical beam [bm_-model==+3] with npower < 1.

co || 0.50410935866033502
c1 || -0.59960370647330696
¢z || -0.17079985465238293
c3 || -0.03114525147846556
cq || 0.07913248428147572
cs || -0.00375285384930669

Table 2: Fitting coefficients for an elliptical beam [bm_model=+3] with npower > 1 and for a rectangular
beam [bm model=+4] with npower > 2.

ao || 6.001911243595717
a1 || -5.394377353542378 | by || -1.764463010691547
az || 3.286001028025678 | by || 2.400240048677038
as || 0.179793458490833 | b3 || -1.050131004267564
ayq || -1.204662992085034 | by || -0.105429575820128
as || 0.751902653309727 | bs || 0.239310679629733

Table 3: Fitting coeflicients for a rectangular beam [bm_model==+4] with npower < 2.

oo || 13.2452217950014166
a1 || -20.3075205938825718 | 81 || -0.80259438691477270
oo || 15.3824084867438717 | By || 0.57488756423204912
ag || -5.9000243145711257 | 3 || -0.14368538649811363
oy || 1.2533918458702606 Ba || 0.04139209383610994
as || -0.0753919083195495 | B5 || 0.00804441340039306




