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ABSTRACT

MPIT includes all processes in MPI.COMM_WORLD:; this is
untenable for reasons of scale, resiliency, and overhead. This
paper offers a new approach, extending MPI with a new
concept called Sessions, which makes two key contributions:
a tighter integration with the underlying runtime system;
and a scalable route to communication groups. This is a
fundamental change in how we organise and address MPI
processes that removes well-known scalability barriers by
no longer requiring the global communicator MPL_COMM_-
WORLD.

CCS Concepts

eSoftware and its engineering — Message oriented
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1. INTRODUCTION

Throughout its long history, from version 1.0 in 1994 un-
til today’s version 3.1 [2], the Message Passing Interface
(MPI) has proven to be a widely successful approach for
explicit parallel programming. MPI applications represent
a multi-billion dollar development investment across gov-
ernments, academia, and industry. Thus, the MPI Forum,
the standardisation body for MPI, carefully considers pro-
posed changes to the interface with respect to the impact the
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changes will have on existing MPI codes and works to ensure
backwards compatibility, while standardising improvements
in functionality, scalability, and performance.

However, in the twenty-two years since the first version of
MPI, the landscape of high performance computing (HPC)
has changed dramatically, largely in terms of the scale of
HPC systems and MPI application runs. When MPI was
introduced, large-scale jobs used 100’s or 1,000’s of proces-
sor cores [4], but today million-core jobs are not uncommon
and this trend towards larger systems and larger jobs is ex-
pected to continue. The continued increase in the number of
hardware cores will continue to lead to an increase in MPI
process counts, even when mixing programming models in
order to support the use of more than one core for each MPI
process. Consequently, MPI implementations and applica-
tions are facing unprecedented scalability challenges [6].

A key challenge is the management of a potentially mas-
sive process space. MPI currently requires that all commu-
nication peers are included in the MPI_COMM_WORLD commu-
nicator during initialisation. In practice, active connections
to peer processes are commonly made on a lazy basis. How-
ever, the amount of global state required to make these con-
nections is more than strictly needed for many applications
at massive scale. As the number of MPI processes grows,
and consequently MPI_COMM_WORLD grows, the memory re-
quirement and initialisation time for rank mappings and
other large data structures can grow unacceptably high un-
less complex measures are taken to address the problem [9,
17, 19]. The requirement to include all possible communica-
tion peers in MPI_COMM_WORLD is an unfortunate legacy, since
many applications do not incorporate communication pat-
terns in which a given process must communicate with all
other processes on a point-to-point basis. Even when third
party libraries are involved, communication patterns that
are truly all-to-all occur only in some applications. While
applications do perform collective operations that span all
MPI processes, scalable implementations of those operations
rarely require any process to communicate directly with all
other processes. Each process only communicates directly



with a limited subset of the processes.

MPI applications must also deal with this massive increase
in scale. One popular approach is to use hybrid program-
ming models, such as MPI with threads, most commonly re-
lying on OpenMP [3] to implement threading. This is attrac-
tive because OpenMP can be integrated into existing MPI
application codes without refactoring the larger code base.
However, it can require a large amount of developer time
to choose the appropriate integration strategy and to tune
the code to achieve desired speedup. Also, many of those
integration strategies make use of per-thread network ad-
dressability leading to extremely large MPI process spaces.

In order to address these scalability challenges, we propose
MPI Sessions, a fundamental change in how we organise and
address MPI processes that remove the known scalability
barriers by no longer requiring all possible communication
peers to be included in MPI_COMM_WORLD. With MPI Sessions,
we provide both backwards compatibility as well as a simple
path forward to scalability for developers of MPI implemen-
tations and MPI applications. While scalability challenges
can be addressed by intelligent, advanced MPI implementa-
tion techniques (like dynamic, lazy connection establishment
on large communicators), our goal for MPI Sessions is to re-
move the need for “heroic developer efforts” to adapt MPI
implementations and applications for the future scaling chal-
lenges. Instead, MPI Sessions facilitates these efforts with
two key contributions: a tighter integration of MPI appli-
cations with the underlying runtime system; and a scalable
representation of communication groups, effectively resolv-
ing the scalability issues of MPI_COMM_WORLD.

In the rest of this paper, we describe the motivation and
reasoning behind MPI Sessions and its current status. Our
goal is not to provide a finalised interface for integration
into the MPI Standard. We expect that whatever is finally
presented to the MPI Forum for possible inclusion into the
standard will differ from what is described here. Section 2
provides background information on the problems that exist
for MPI that we hope to solve with MPI Sessions. Section 3
details the current state of the MPI Sessions interface and
explains how we expect it to be used. Section 4 discusses the
potential impacts MPI Sessions may have on other proposals
being considered for inclusion into the MPI Standard. Sec-
tion 5 summarises related efforts, Section 6 discusses future
directions, and Section 7 concludes this paper.

2. BACKGROUND

This section discusses some of the challenges currently
faced by MPI, namely: scalability, library isolation, runtime
integration, MPI’s use and impact outside of HPC, fault tol-
erance within MPI and, finally, the code legacy of MPI with
its corresponding backwards compatibility requirements.

2.1 Scalability

Since its inception, MPI has mandated the creation of a
default communicator, called MPI_COMM_WORLD, which spans
the entire process set associated with that MPI job at start-
up. The process space can be extended by creating inter-
communicators to join together disparate MPI executions
or by spawning additional sets of processes, but typically
all communication is confined within the MPI_COMM_WORLD
process set. The memory overhead that is required to store
the mappings and state can be large (many GBs), which
restricts the amount of memory available for computation.

As systems are growing, the dense rank space mapping in
this default communicator is becoming unacceptably large.

2.2 Isolation of Libraries

MPI has always been process-oriented; there is an implicit
assumption that the code for each process is monolithic or,
at least, that libraries are sub-programs that depend on the
main program. This assumption manifests, for example, in
the requirement that MPI can only be initialised once in
each process and there is no thread-safe method to negotiate
which thread should perform the initialisation. This means
that the only option available to programmers is to have the
main application initialise MPI and write all libraries such
that they assume MPI will be initialised for them in a timely
manner by an agent external to the library. The method of
checking the assumption of timely initialisation was made
thread-safe by changes in MPI 3.1, but did not address the
more fundamental issue.

2.3 Interaction with Runtime Systems

Historically, the MPI Forum has been conservative about
including functionality in the standard for allowing interac-
tion with runtime systems; that is, the operating system,
resource managers, job launchers, or any layer that an MPI
application depends on for services beyond what is provided
through the MPI API. These services include managing or
querying processes as well as raising and handling signals.
While multiple interfaces for interacting with runtime sys-
tems have been suggested in the past [1], they have largely
been rejected.

There are exceptions to this rule in the MPI Standard,
with features such as MPI_Get_processor_name, which re-
turns a string indicating the name of the processor on which
the MPI process is running; memory allocation routines, for
potentially optimising message-passing and remote-memory-
access (RMA) operations; and dynamic process creation, for
extending the currently running MPI job by starting new
MPI processes. The MPI Forum felt that each of these fea-
tures could be added because they are sufficiently useful to
application developers and only require functionality from
an external runtime system that is commonly provided by
all known and foreseen computing systems.

However, many have argued that a greater interaction
with runtime systems could benefit many MPI applications.
For example, information about the physical topology is
useful for mapping MPI processes onto allocated nodes to
improve communication performance [1, 15, 19]. However,
this is not a straightforward process with the current MPI
functionality because there is no interaction with the run-
time system to get this information beyond MPI_Get_pro-
cessor_name, which does not necessarily give any topology
information.

Another example is in the area of fault tolerance. While
we discuss this topic later in this section, it is worth noting
here that interaction with runtime systems could be bene-
ficial to assist with notification of failed processes and with
requesting replacement hardware or processes from the re-
source manager.

2.4 Applicability of MPI Outside HPC

MPIT has seen some use outside of the area of HPC. Some
of the most notable examples are interfaces for languages,
like Java, Python, and R, that are not typically used for



HPC, but are widely used for scientific computing at work-
station scale. However, outside of scientific computing, MPI
is not typically used, even though it has support for the con-
nect/accept client-server model typically used in consumer
applications. MPI connect/accept functions have some el-
ements of fault tolerance, e.g., the ability to disconnect from
broken connections, through the MPI_COMM_DISCONNECT func-
tion, without causing failure of the MPI processes. How-
ever, this only applies in cases where the processes are dis-
tinct MPI jobs; that is, they do not share the same MPI_-
COMM_WORLD. Therefore, it would be helpful to have limited
connection groups to avoid unnecessarily aborting processes
that are hosting working servers/clients. Such improvements
should make MPI easier to leverage in non-HPC environ-
ments and allow for MPI performance benefits to be utilised
by a larger portion of the computing community.

2.5 Fault Tolerance

The MPI_COMM_WORLD communicator is always impacted
by any non-trivial error because its functionality depends
on the set of all processes involved in the job. MPI Sessions
break this guaranteed impact by not requiring the existence
of a communicator that spans the entire job. This means
that only processes which need to communicate with the
failed node are required to react to a failure. Therefore,
error handling and fault tolerance are easier to accomplish
as errors and faults do not necessarily have global job im-
pact and recovery can be done only where it is needed. The
MPI Forum is currently considering mechanisms to deter-
mine whether communicators have experienced a fault, to
remove faulty members of a communicator, and to repair
a communicator after a fault without triggering a complete
application abort [8].

2.6 Backwards Compatibility

Backwards compatibility requires that MPI_COMM_WORLD
and MPI_COMM_SELF are available to all MPI jobs, MPI_-
Init[_thread] enables all MPI functionality, and MPI_Fi-
nalize releases all resources used by MPI. As long as these
objects and functions are still supported and still exhibit the
same behaviour, then adding new mechanisms to access MPI
functionality can be considered to be backwards compatible.

The additions to MPI to support MPI Sessions proposed
in this paper do not prevent an existing standard-compliant
MPI program from executing correctly without code changes.
Sections 3.7 and 3.8, discuss how an existing MPI program
can be modified incrementally to take advantage of MPI Ses-
sions in some parts of the code without requiring changes in
the rest of the application.

3. MPI SESSIONS

The basic intent behind MPI Sessions is to introduce a
concept of isolation into MPI by relaxing the requirements
for global initialisation that currently produces a global com-
municator. Each MPI Session creates its own isolated MPI
environment, potentially with different settings, optimisa-
tion opportunities, and communication data structures.

This concept of MPI Sessions and its isolation properties
can be used to overcome several limitations of the MPI inter-
face tied to having only a single, global group of processes:

e Threading levels can be handled on a per session basis,
allowing MPT libraries to optimise for different thread-

ing styles within a single application.

e When using separate sessions per thread, any thread
can use MPI at any time, without the complexity and
overheads of requiring MPI_THREAD_MULTIPLE in the
main application.

e MPI-based libraries can create their own unique ses-
sions and thereby be isolated from decisions and tun-
ing steps taken in the main application. In the extreme
case, this enables the use of multiple independent MPI-
based libraries even in non-MPI-based codes.

e Several components (libraries, code modules, infras-
tructure elements) can make use of MPI without con-
cern for whether MPI has already been initialised or
finalised beforehand; that is, without having to deter-
mine whether MPI is in a usable state.

e Operations and events that previously had global scope
can happen on a per process-set basis, avoiding global
impact. This can be especially useful for error han-
dling, since the scope of an error can now be restricted
to a subset of processes.

There are two identified uses for an MPI Session: to query
the runtime system (see section 3.3) and to create scalable
MPI_Group objects (see section 3.4). A scalable MPI_Group
can then be used to create a scalable MPI_Communicator (see
section 3.5).

3.1 MPI Session Handles

MPI_Sessions are local handles to the MPI library; they
contain no global state. Consequently, managing session
handles is intended to be light-weight, requiring no signifi-
cant resources to create or maintain them. Session handles
themselves are immutable, although objects created from
them or linked to them can be changed. Each MPI Session
forms an isolation domain; a unique identification for a se-
quence of future MPT function calls. A new MPI Session can
be created and destroyed at any time during the execution
of the program.

3.2 Creating and Destroying Sessions

The lifetime of a session begins when the constructor is
called and ends when the matching destructor is called. List-
ing 1 shows prototypes for these two functions.

int MPI_Session_init (
MPI_Info info ,
MPI_Errhandler errhandler ,
MPI_Session *session );

int MPI_Session_finalize (
MPI_Session *session );

Listing 1: Session constructor and destructor

The MPI_Session_init function creates a new session and
returns a valid handle to it. The error handling behaviour of
MPI during creation of this session is controlled by the “er-
rhandler” parameter passed in to this function. The “info”
parameter allows for future expansion by offering the user
a mechanism to supply information that MPI can use to
guide the creation of this session. The MPI_Session_final-
ize function destroys a session and sets the session handle
to MPI_SESSION_NULL, which represents an invalid session.




These functions are defined to be thread-safe because it is
intended that they can be called from library code without
reference to, or coordination with, the main application or
other libraries. Multiple libraries could, for instance, create
sessions concurrently so that each one has its own handle to
the MPI library and can interact with MPI independently.

3.3 Named Sets of Processes

We introduce the concept of “named sets” of processes
that are discoverable by querying the local runtime system.
MPI processes can query which named sets exist and then
use them to create a matching MPI group. An MPI group
can then be used to create an MPI communicator.

For simplicity and as a proof of concept, we initially define
sets to be static and immutable; that is, their memberships
do not change during the lifetime of the program. Allowing
dynamic sets, whose membership can change in response to
a variety of events, is discussed as future work in section 6.

The names of all sets known to the runtime can be re-
trieved using MPI_Session_get_names, shown in Listing 2.

3.4 Creating Scalable Groups

Any named set of processes that is exposed by a ses-
sion can be converted into an MPI_Group using the proposed
new function, shown in Listing 4. If the internal descrip-
tion of the set obtained by MPI from the runtime is scal-
able, then the internal representation of the resulting MPI_-
Group can also be scalable. It is common-place for the meta-
information maintained by runtime systems about all system
resources to be stored in a scalable manner. For example,
the processors might be numbered sequentially according to
some pre-defined pattern so that a single {start, count} tu-
ple can describe a NUMA region, a node, or a rack.

int MPI_Group_create_session (
MPI_Session session ,
char *name,
MPI_Group *group);

int MPI_Session_get_names (
MPI_Session session ,
char *xnames);

Listing 2: Obtaining set names from the runtime via
a session

The data returned in the “names” parameter is formatted
as an argv-style, null-char-terminated array-of-strings. The
memory for the array of strings (called “names” in the list-
ing) is allocated by MPI and will be freed by MPI when
the session is destroyed. It is strongly encouraged that each
string name is formatted as a URI.

In order to smooth the transition for legacy code, two
named sets are guaranteed to exist: “mpi://WORLD” and
“mpi://SELF”. The set with name “mpi://WORLD?” refers
to a set containing all processes that were started by this job
execution. This set does not include dynamically created
processes; those created, for example, by a call to MPI_-
Spawn. It represents the set of processes that would ordinar-
ily be members of the default communicator, MPI_COMM_-
WORLD. The set name “mpi://SELF” refers to a set contain-
ing only the calling process. It represents the set of pro-
cesses that would ordinarily be members of the communica-
tor, MPI_COMM_SELF.

int MPI_Session_get_info (
MPI_Session session ,
char *name,
MPI_Info xinfo);

Listing 4: Creating a group from a session

The MPI Standard already defines a rich set of functions
for manipulating groups of processes. This allows any ar-
bitrary group to be created from the members of the ini-
tial groups provided by the runtime. Some possible group
manipulations may produce a non-scalable storage require-
ment to represent the resulting group. For example, a call to
MPI_Comm_split with a single value for the “color” parameter
and randomly chosen values for the “key” parameter would
require storage of the mapping from child-rank to parent-
rank. Non-scalable group operations must be avoided to
achieve good scalability.

3.5 Creating Scalable Communicators

The MPI Standard already defines a function for creating
a communicator from a group. However, that function re-
quires a parent communicator that contains a super-set of
the processes represented by the target group. The parent
communicator is used by MPI to orchestrate the commu-
nication needed to create the new communicator. In the
absence of a suitable parent communicator, such as having
created a group from a session as in Section 3.4 (and ignor-
ing the existence of MPI_COMM_WORLD), this existing function
cannot be used. Therefore, we propose a new function that
does not require a parent communicator but instead relies
on the same mechanisms that MPI libraries currently use
during initialisation to create and wire-up the default built-
in communicators, in particular MPI_COMM_WORLD itself. A
prototype for this new function is shown in Listing 5.

Listing 3: Obtaining information about a set from
the runtime with via a session

The function prototyped in Listing 3 exposes information
about a particular named set by providing an MPI_Info ob-
ject. The only key that is mandated for this MPI_Info object
by this proposal is called “size” and its value is the number
of processes in the named set. Further keys could be in-
cluded by particular runtime systems with implementation-
dependent meanings. The information provided by the run-
time about each of the sets can guide the user’s decisions
about which groups to create in order to gain access to the
exact resources required.

int MPI_Comm_create_group_X (
MPI_Group group,
char xtag,
MPI_Info info ,
MPI_Errhandler errhandler ,
MPI Comm *comm ) ;

Listing 5: Creating a communicator from a group

The input “group” and output “comm” parameters are
used to supply the targeted group and to return the new
communicator respectively. The “tag” parameter is needed
for the same reason it is needed in the existing, communicator-
based, function: to disambiguate multiple concurrent oper-
ations involving overlapping groups of processes. The “info”



and “errhandler” parameters are included to provide addi-
tional useful customisation options that are not available
from existing communicator creation functions in MPI. The
“info” parameter provided will be applied to the new com-
municator and could also guide its creation method and sup-
ported functionality. The “errhandler” parameter provided
will be attached to the new communicator and could be used
during creation in the case of certain classes of failure.

If the internal group representation is scalable then the
internal representation of the resulting MPI_Comm can also
be scalable. These functions also provide a means to create
any communicator containing any group of processes with-
out referencing MPI_COMM_WORLD or requiring its existence.

The resulting communicators can be manipulated in the
same ways as other communicators, including being used to
create inter-communicators with MPI_Intercomm_create.

3.6 Creating Scalable Topologies

Topology communicators enable the use of neighbourhood
collective operations in MPI and allow MPI to optimise the
internal representation and implementation of a communi-
cator, e.g., by using knowledge of the underlying hardware
topology. MPI currently requires a parent communicator
when creating a topology communicator. The parent com-
municator must contain a superset of the MPI processes that
will be contained within the topology communicator.

By using an MPI Session, it is possible to omit the inter-
mediate step (and consequent use of resources) of creating
a non-topology parent communicator. This is achieved by
directly forming the MPI_Group representing the appropri-
ate MPI processes and creating the topology communicator
from that group. We propose four new functions that all
include parameters needed for communicator creation (iden-
tical to the non-topology function from 3.5) and each add
specific parameters needed for a particular type of topology;

e cartesian, shown in Listing 6;

e graph, shown in Listing 7;

e distributed graph from all known edges, shown in List-
ing 8; and,

e distributed graph from all adjacent edges, shown in
Listing 9.

int edges]|[],
int reorder ,
MPI Comm *comm ) ;

Listing 7: Creating a graph communicator from a
group

int MPI_Comm_dist_graph_create_group (
MPI_Group group,
char xtag,
MPI_Info info ,
MPI_Errhandler errhandler ,
int nedges,
int sources][],
int degrees|[],
int destinations|[],
int weights|[],
int reorder ,
MPI Comm *comm ) ;

Listing 8: Creating a distributed graph communica-
tor from a group by specifying all known edges

int MPI_Comm_dist_graph_adj_create_group (
MPI_Group group,
char xtag,
MPI_Info info,
MPI_Errhandler errhandler ,
int indegree,
int sources][],
int sourceweights|[],
int outdegree,
int destinations|[],
int destweights|[],
int reorder ,
MPL Comm *comm ) ;

int MPI_Comm_cart_create_group (
MPI_Group group,
char xtag,
MPI_Info info ,
MPI_Errhandler errhandler ,
int ndims,
int dims][],
int periods (],
int reorder ,
MPI Comm *comm ) ;

Listing 6: Creating a cartesian communicator from
a group

int MPI_Comm_graph_create_group (
MPI_Group group,
char xtag,
MPI_Info info ,
MPI_Errhandler errhandler ,
int nnodes,
int index[],

Listing 9: Creating a distributed graph communica-
tor from a group by specifying all adjacent edges

Attaching a topology to a communicator during its cre-
ation is an additional step that is, semantically, entirely or-
thogonal to the creation itself. A simple implementation
for these functions would be to create a communicator from
the group that does not have a topology (using the function
described in Section 3.5) and then use that communicator
as the parent in a call to one of the existing topology cre-
ation functions in MPI. All the parameters needed for these
two internal function calls are provided in each of the new
topology-from-group functions.

3.7 Shunning vr1_comv_worLD and MPI_COMM_SELF

MPI sessions alleviate the problem of having a default
MPI_COMM_WORLD by not requiring the creation of a world
communicator during MPI start-up. All communicators that
the application code needs for useful MPI operations, such
as point-to-point, single-sided, or collective communication,
can be created without requiring the existence of MPI_-
COMM_WORLD. The primary benefit of only creating communi-
cators that require a subset of the entire rank/process map-
ping space is a reduction in the overhead required for en-
abling typical MPI communication to occur. There are other
approaches that could also provide this benefit. One such




approach is to use lazy initialisation of dynamic connections.
Open MPI uses such a dynamic scheme, in which it uses a
sparse, rather than a dense, mapping and only fetches ad-
dresses of, and establishes connections to, processes when
they are needed. MPI Sessions allow exactly the same ap-
proach but can also guide (and simplify implementation of)
the heuristics that decide when to create and destroy these
dynamic connections.

3.8 Downplaying ¥PI_1nit and MPI_Finalize

Removing MPI_Init[_thread] and MPI_Finalize from the
MPI Standard would immediately break backwards compat-
ibility for every single MPI program that currently exists.
However, sessions offer a semantically independent route to
access all the functionality of MPI. The compromise we pro-
pose is that, in the future, these functions will still exist but
it will no longer be mandatory to call MPI_Init[_thread]
before accessing MPI functionality and it will no longer be
mandatory to call MPI_Finalize before exiting the MPI pro-
cess. MPI will initialise and finalise itself when needed, and
partial initialisation or finalisation is permitted.

Sessions provides backwards compatibility for traditional
MPI applications that use MPI_COMM_WORLD by re-defining
MPI_Init[_thread] and MPI_Finalize functions to be the
constructor and destructor of the built-in communicators,
MPI_COMM_WORLD and MPI_COMM_SELF. In this way, MPI can
support all current function calls, with identical semantics,
and can provide the same optimisations, e.g., dynamic sparse
communicator data structures, as a current MPI implemen-
tation would be capable of doing.

In contrast, applications that fully adopt the Sessions model
will not call MPI_Init[_thread] and MPI_Finalize at all.
Instead, MPI will be initialised and finalised implicitly upon
the creation and destruction routines of MPI objects (see
Listing 10 for an example). The rationale behind this de-
cision is that the creation and destruction of MPI objects
is not generally considered as performance critical as other
MPI functionality, such as point-to-point message passing
or RMA operations, so the additional time for performing
these actions will not be in the critical path. Additionally,
this allows MPI implementations to initialise lazily. For ex-
ample, on an MPI Datatype create, only the functionality
for MPI Datatypes will need to be instantiated, if the MPI
implementation chooses. The MPI implementation can use
reference counting to track when the last MPI object is de-
stroyed and can then finalise the state of MPI.

int main() {
/x Create a datatype.
This will initialise MPI x/
MPI_Type_contiguous (2, MPILINT,
&mytype);
/+ Free the datatype
This will finalise MPI if it is
the last object x/
MPI_Type_free(&mytype);

/+ Valgrind clean at point of exit x/
return 0;

Listing 10: Initialise and finalise MPI during object
create and free

3.9 Example usage

A simple example usage of session functionality is pre-
sented in Listing 11. The example provides a basic template
for a halo-exchange domain-decomposition code that uses
MPI I/O for reading/writing data and neighbourhood col-
lective MPI functions for communication during an iterative
calculation (not shown for brevity). MPI may, or may not,
be in use by other parts of the application before, during,
or after the execution of this function. The set name passed
as an argument could be a pre-defined set name, such as
"mpi://WORLD", or a name obtained from a session query in
another part of the code.

int haloExchange(char* setName) {
/+* Create a session %/
MPI_Session_init (info , err,
&mySession );
/* Get INFO about the input set x/
MPI_Session_get_info (mySession ,
setName, &setInfo);
/+* Get size of the input set */
MPI_Info_get (setInfo, ”size”, len,
&strSize , &flag);
/% No longer need info handle */
MPI_Info_free(&setInfo );
size = atoi(strSize);
if (size < bigEnough) return —1;
/x create a group x/
MPI_Group_create_session (mySession ,
setName, &myGroup);
/* No longer need session handle x/
MPI_Session_finalize (&mySession );
/+* Get size of group */
MPI_Group_size (myGroup, &size);
/+ Calculate desired topology */
MPI_Dims_create (size , ndims, dims);
/* create a cart comm */
MPI_Comm_cart_create_group (myGroup,
tag, info, err, ndims, dims,
periods , reorder , &myCartComm);
/* No longer need group handle x/
MPI_Group-_free(&myGroup);
/* MPI 1/0 using myCartComm x*/
/* mneighbourhood collectives */
MPI_Comm_free(&myCartComm ) ;
return 0;

Listing 11: Example usage of new sessions for a sim-
ple halo-exchange template code

The function shown in the listing initiates a session, ob-
tains information about the set, creates a group from that
set, and creates a topology communicator from that group.
At each stage, resource-sensitive decisions and actions can be
taken. The information about the set provides the size of the
set, which determines if the set contains enough processes
to proceed. The MPI_Group allows group maniuplation func-
tions (not shown for brevity) to refine which processes will
be used by this function. Only one communicator is cre-
ated, with a topology but with no requirement for a 'parent’
communicator. Once the topology communicator exists, all
other MPI objects can be freed, which releases the maximum
resources for the application code.




For each MPI process, the semantic correctness of this
function does not depend on MPI function calls made by
other functions or by other threads within that MPI pro-
cess.

4. CONSEQUENCES AND PROBLEMS

The changes to MPI described in Section 3 have implica-
tions for other active proposals currently being considered
by the MPI Forum. The consequences for major topics are
set out in this section; MPI endpoints is discussed in Sec-
tion 4.1 and fault tolerance is discussed in Section 4.2.

4.1 MPI Endpoints

In the current MPI Standard, there are no group manip-
ulation functions that can create new members; all existing
group functions select the members for the new group from
the members of one or more groups provided as input pa-
rameters. The current proposal for endpoints [22, 10] pro-
vides a way to create a communicator with additional ranks
that do not correspond to any ranks in other communica-
tors. It is possible to obtain the underlying group from any
communicator, so the proposed new endpoint communica-
tor creation function gives a round-about route to create a
group with new members that did not previously exist in
any other group.

An alternative way to create an endpoints communica-
tor would be to first form the endpoints group and then
to create a communicator from that group. Instead of the
communicator creation function currently proposed for end-
points (i.e., MPI_Comm_create_endpoints), this would need
a group creation function; that is, MPI_Group_create_end-
points. An endpoints communicator could then be created
directly from this group, without supplying a parent com-
municator, by using the function described in section 3.5.

This alternative route avoids the need to create the parent
communicator in addition to the endpoints communicator,
which could reduce the pressure on resource usage.

4.2 Fault Tolerance

When communicators fail, the task of rebuilding them can
be difficult, if not impossible, with traditional MPI imple-
mentations. The current proposal for fault tolerance being
considered by the MPI Forum (i.e., ULFM [8]) would be
potentially impacted by MPI Sessions. This impact results
from the overlap in capabilities between the ULFM proposal
and features in MPI Sessions®.

With MPI Sessions, the task of recovering failed commu-
nicator(s) is not made easier from the application side, but
rebuilding communication mechanisms is easier for a system
using MPI Sessions. Replacing failed processes in MPI can
be difficult to achieve, especially within the job constraints
offered by the scheduler/launcher. Sessions is an interac-
tion method with this runtime that can help ease recovery
through easier expression of the needs of the MPI job in
terms of it’s current allocation of hardware.

5. RELATED WORK

Many efforts have been undertaken to improve the scal-
ability of MPI. In particular, a study by Balaji et al. [6]
outlined potential problems with MPI implementations and

1Other emerging approaches to MPI fault tolerance would
potentially benefit from MPI Sessions too.

with the MPI Standard itself that prevent or limit scalabil-
ity. The authors identified several facets of MPI that imple-
mentations must focus on in order to achieve scalable MPI
libraries, including point-to-point communications, process-
to-communicator maps, and memory usage of MPI data-
structures.

Over the years, there have been multiple efforts to address
the scalability of MPI implementations. Some have worked
to save memory by optimising the data structures used for
MPI communicators and groups [9, 17, 19]. Others have fo-
cused on developing threaded implementations of MPI, such
that the MPI processes are implemented as threads instead
of operating system processes [16], which can greatly re-
duce the amount of memory used by the MPI library [20],
and also significantly improve performance [18, 21]. Addi-
tionally, there has been research toward scalable collective
algorithms [5, 19] as well as point-to-point algorithms [11].

Generally, there have not been substantial changes to the
MPI Standard to address scalability issues identified by the
community [6]. MPI Sessions addresses several of these key
scalability issues. Sessions address the scalability of a greatly
increased rank space, which occurs when threads become a
communication target that includes their own addressable
ranks, as with the MPI endpoints proposal [10, 22], or due
to threaded MPI implementations [18, 20, 21]. Additionally,
Sessions introduce a method for MPI applications to interact
with runtime system software, which can provide benefit in
several ways. For example, process set names can be based
on the structural layout of machines, which can give ap-
plications a solid basis for re-ordering application data to
optimise communication performance [1, 15, 19]. Finally,
Sessions can help address problems with dynamic process
creation [1] and fault tolerance by enabling an application
to query the runtime resources allocated to it and to estab-
lish MPI connections with processes that were dynamically
created during its execution.

6. FUTURE WORK

Moving forward, there are several aspects of MPI Ses-
sions that will need to be considered carefully. Primarily,
these center around adding dynamic behavior to the gener-
ally static view offered by MPI today.

One of these in particular is the notion that the known set
of MPI processes in a job could be dynamic, with MPI pro-
cesses entering and leaving the MPI run environment. This
might occur due to MPI process failures and subsequent re-
placements, or due to growing or shrinking job demands that
result in adding and retiring MPI processes over time. While
we can see the potential benefits of a dynamic MPI process
space, this must be designed carefully. MPI was designed
with a static process space primarily for performance and
convenience reasons [13].

At the time MPI was being designed, there was a com-
peting interface in use called the Parallel Virtual Machine
(PVM) [7] that was dynamic in nature. In PVM, processes
and hosts could come and go during a run, and PVM pro-
vided an interface with resource managers. In contrast, MPI
was designed with a static process space for ease of program-
ming and performance, and an interface agnostic to resource
managers for portability [13, 14]. The dynamic nature of
PVM gave it natural support for fault tolerance, and for ap-
plications with growing and shrinking computing demands.
Also, PVM was implemented as a virtual machine, so hosts



could be added and deleted at will. However, PVM suffered
from some drawbacks due to its dynamic design, including
race-conditions and issues with performance and portabil-
ity [13, 14]. As we move forward with MPI Sessions and
consider introducing dynamic behavior into MPI, we must
look back to apply the lessons learned from the PVM design,
and avoid the problems that prevented PVM’s success.

Another dynamic behavior that MPI Sessions could facili-
tate is the easy integration of distinct MPI jobs via commu-
nicators that span multiple sets of processes. The URI nam-
ing scheme proposed in the interface for MPI Sessions could
allow sets of processes to be easily identified through a pub-
lish/discover mechanism. While the current MPI Standard
provides this capability via the publish/lookup and connec-
t/accept mechanisms, the existing capability is cumbersome
and may not perform well [12]. As a result, the existing
functionality is not often used in real applications. We an-
ticipate that the mechanisms can be cleaner and easier to
use by applications with the Sessions semantics and poten-
tially have better performance due to the information made
available from the resource manager. However, we will need
to investigate this further, especially with respect to issues
of scope, security, and scalability.

7. CONCLUSIONS

A key challenge for MPI at extreme scale is the handling
of large amounts of concurrency on future systems and the
management of a massive number of communicating pro-
cesses. Our concept, MPI Sessions, works to address this is-
sue while also tackling issues that are legacy concerns dating
back to 1994 with version 1.0 of the standard, notably the
issues surrounding the predefined all-to-all virtual commu-
nication fabric and state associated with MPI_COMM_WORLD.

Recently, the MPI Forum created a new working group
dedicated to further the development of the MPI Sessions
interface. The development will be based on the work pre-
sented here, and will consider current and future application
needs and use cases from industry, academia, and national
laboratories. We expect the interface will change before it is
presented to the MPI Forum and potentially included in the
MPI Standard. However, the goals and underlying rationale
for the initial design will remain relevant.
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