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A Comparative Study of Multi-material Data
Structures for Computational Physics Applications

Garimella, R. (rao@lanl.gov), T-5, Los Alamos National Laboratory
Robey, R. (robey@lanl.gov), XCP-2, Los Alamos National Laboratory

Abstract

The data structures used to represent the multi-material state of a computational physics
application can have a drastic impact on the performance of the application. We look at
efficient data structures for sparse applications where there may be many materials, but only
one or few in most computational cells. We develop simple performance models for use in
selecting possible data structures and programming patterns. We verify the analytic models
of performance through a small test program of the representative cases.

1 Introduction
A state manager in a multiphysics simulation helps physics kernels efficiently represent and
query field or state variables pertinent to the simulation. The state variables are typically
tied to a specific type of mesh entity (like cells, faces or nodes) or even discrete particles.

It is now relatively well established that the most efficient way to represent such data
is in linear arrays so that the data is in contiguous memory and can be accessed efficiently
without excessive cache misses. This is quite simple when each mesh entity has a single
value of a variable type (density or temperature) associated with it. However, it is much
more challenging in some multiphysics simulations where a mesh entity may have multiple
materials or phases, each with its own value of a state variable such as density and only a
few materials are present on most entities.

This is illustrated in Figure 1 where the different shaded regions represent material re-
gions from which the mesh cells get material volume fractions. Note that not all materials
are in all cells. Cells 0, 2 and 8 are pure cells (single material) with materials 1, 2 and 3
respectively. Cell 7 is the most complex with all four materials.

Assume that the physical state of materials is given by density ρC,m, temperature tC,m,
pressure pC,m and volume, VC,m, where the subscript C refers to the mesh cell index and
m refers to the material index. The state of a cell is described by these physical variables
for as many materials as are present in the cell as well as the fractional volume Vf of each
material. The fractional volume will be defined in cm2 so that loops will have to divide by
the volume of a cell, Vc or simply V where the meaning is clear, to get the average density.
Thus, pure cell 8 would have state variables (ρ8,3, t8,3, p8,3, Vf8,3) but mixed cell 3 would
have state variables (ρ3,1, t3,1, p3,1, Vf3,1 , ρ3,4, t3,4, p3,4,Vf3,4). By the same token, mixed
cell 7 would have these four variables for all four materials. Managing this complexity for
large meshes where there are a lot of materials in the problem but each cell has only a small
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Figure 1: 3×3 mesh showing the presence of 4 materials in the mesh

subset of the materials (often just 1) and writing efficient computational kernels using these
data structures is challenging.

To analyze storage schemes and how they may be used by computational scientists, we
will consider three representative computational scenarios:

1. Compute, ρave[C], the weighted average density of materials in cells of a mesh (weighted
by fractional volumes of the materials). This computation is a proxy for homogeniza-
tion or material closure models in a cell.

2. Evaluate, p[C][m], the pressure in each material contained in each cell using the ideal
gas law p(ρ, t) = nrt/v. This computation is a proxy for more complex equation of
state evaluations.

3. Evaluate, ρ̄[C][m], the weighted average density of each material over the node-
connected neighbors of each cell, C. The weighting is inversely proportional to the
square of the distance between the centroid of the cell and its neighbor. This compu-
tation explores more complex computations that access values over a neighborhood
and is a proxy for a material-wise gradient calculation in each cell.

Performance Analysis

Even a cursory analysis of the first two of these computations shows that at best these will
be one 8 byte memory load or store (referred to collectively as memops) per floating point
operations (flops1). The first case will load the density plus the fractional volume (two loads)
for each material in a cell and do one multiply and a reduction add. Also, there is a load of
the cell volume and a divide by this volume but this is a small effect when there are lots of
materials. This is a 1:1 memops to flops ratio. The second case must load material density,
temperature, fractional volume and store pressure in each cell. The material constant has to
be loaded for each material. This is just over four memops. There are two multiplications
and a division in the ideal gas equation giving three flops. So the second case results in a
1.3:1 memops to flops ratio.

1Note that flops is the plural of flop but we will write FLOPS when we want to discuss floating point operations
per second
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This roughly 1:1 memops to flops ratio is pretty common in explicit finite difference
loops. As a result these codes are almost always memory bandwidth limited. So to analyze
the cost of each loop operation, we mainly count the loads and stores. In addition, we note
whether memory accesses are contiguous or not.

To check the rough analysis given above, we test the average density loop for one million
pure (single material) cells. We run this on a 2.7 Ghz MacBook Pro with 6 MB L3 Cache
for a measured stream scale benchmark[2] of 13, 375 MB/sec. For two loads of eight bytes,
one million element arrays, the memory size is 16 MB. The calculated performance should
be 16 MB/ (13375 MB/sec) = 1.2 msec. The measured performance is 1.15 msec. For a
second check, the pressure calculation loop with 4 memops has a 2.4 msec calculated time
and a 2.66 msec measured performance.

The floating point cost for the average density loop is 2 flops per cell for a million cells
or 2 Mflops. The theoretical peak performance for a single-threaded process without vec-
torization is 2.7 GHz times 2 flops for a multiply-add or 5.4 Gflops/sec. We then calculate
2 Mflops/1.2 msec = 1.67 Gflops/sec or about 1/3 the floating point capability.

In addition to counting loads and stores, we will take into account some other costs
associated with cache management and branch prediction. In accounting for cache misses,
we have to account for the spatial and temporal locality (or lack thereof) of the accessed
data. If the data has excellent spatial and temporal locality, we can expect the performance
to match the stream performance. At the other extreme, if we have no locality, we may have
to evict the entire cache for every load and it is as if we are loading 8 times the amount of
data (assuming that the cache line is 64 bytes and each ’memop’ in our calculation loads
an 8 byte double). Thus, when there is a potential for cache misses, we must multiply the
loads/stores by a cache miss cost, Cp, 1 <= Cp <= 8. To keep it simple, we will use
Cp = 8, if there is no spatial or temporal locality and Cp = 4 if there is one or the other.

In algorithms that have branching, we add a branch prediction cost, Bc, for the cases
where the ’if’ statement code is executed and a cache miss cost, Pc, for a late prefetch
operation. The hardware prefetch only occurs if the frequency of the branch is high and
the instruction stream needs to be reset when the branch is true. From Agner [1], page
44, “If the wrong branch is fed into the pipeline then the error is not detected until 10–20
clock cycles later and the work it has done by fetching, decoding and perhaps speculatively
executing instructions during this time has been wasted”. For this processor architecture, a
16 cycle branch cost and a 112 cycle cache cost gives good match to measured performance.
The processor frequency, ν, is 2.7 GHz for this architecture. We further tune the branch
and cache miss penalties by multiplying by the branch miss frequency, Bf , to account for
the higher miss rate of the branch prediction when the data lacks spatial locality. For the
random data problem, we set the branch miss frequency to 1.0 and for the geometric shape
initialization, we set it to 0.7. This accounts for the data already being in memory when
traversing a nearly contiguous row of data for lower and upper regions of the rectangular
shape. The selection of 0.7 is empirically determined to give a best fit to the performance
data. Thus we can compute the branch penalty Bp = NbBf (Bc + Pc)/ν, where Nb is
number of times we encounter the branch.

Finally, if an algorithm executes small loops of unknown length (say 2-5), we assign a
loop cost, Lc, taken to be about 20 cycles per exit. Then the penalty is Lp = Lc/ν.
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Figure 2: Material shapes used to generate fractional volumes for performance tests of various
data structures. Note that corners of the condominant rectangles have been tweaked to force a
larger number of mixed cells.

Test Cases

The test case used for the performance measurements is a 50 material (Nm), 1 million
cell problem (Nc) with 4 state variables (Nv). This problem size is large enough to avoid
being stored in L3 cache between iterations thereby forcing main memory accesses. This
will more closely reflect real code performance. For systems with large caches, it may
be necessary to increase the number of cells in the test. The stream benchmark recently
increased their array size from 2 million to 10 million due to cache sizes getting larger. We
also use a C memory allocator for two dimensional arrays that allocates a single contiguous
block of memory.

We consider two test problems with different distributions of materials - the first is com-
posed of 95% pure cells and 5% mixed cells initialized from geometric shapes as shown
in Figure 2. Of the mixed cells, about 99.9% are 2 material cells (4.9% of the total),
0.06% (0.0032% of the total) are 3 material cells and 0.04% (0.0019% of the total) are
4 material cells. The number of variable values stored for mixed material cells, ML, is
2(0.049Nc) + 3(0.000032Nc) + 4(0.000019Nc) ≈ 0.098Nc. The total number of variable
values including mixed cell and pure cell values is (0.95 + 0.098)Nc = 1.048Nc.

The second test case is composed of 80% pure cells (Pf ) and 20% mixed cells (Mf )
initialized randomly. Of the mixed cells about 62.5% of the (12.5% of the total) have 2
materials, 25% (or 5% of the total) have 3 materials and 12.5% (or 2.5% of the total) have
4 materials. Therefore, the number of variable values stored for 2 material cells will be
2(0.125Nc), 3 material cells will be 3(0.05Nc) and 4 material cells will be 4(0.025Nc)
or a total of 0.5NcorNc/2 variable values for mixed material cells which we will refer to
as ML. The total number of variable values including mixed cell and pure cell values is
(0.80 + 0.5)Nc = 1.3Nc.

The two are end cases of a realistic simulation - materials are neatly distributed in ge-
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ometric patterns in the domain only in the initial stages and become more deformed and
fragmented as the simulation proceeds but they never quite reach a completely random dis-
tribution (Note that even with considerable tweaking of the geometric shapes, we could not
generate more than 5% mixed cells of which 99.99% were 2 material cells). Therefore, one
might expect the actual performance to be somewhere in between the two cases.

2 Full storage
The simplest approach is to assume that every material lives in every cell and just set the
variables for the absent materials to be 0.0. This simplifies the storage of materials as well
as the access of material states in a cell at the cost of overusing storage space for data. We
will refer to this storage scheme as a as full matrix representation. It could also be called a
sparse matrix but that can easily be confused with the compressed sparse form which we
will introduce later.

There are two possible full matrix representations for the data based on which variable
constitutes the outer loop of the proper storage access as the centric variable. This can be
either cells or materials.

2.1 Cell-centric Full Matrix Representation
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Figure 3: The Cell-centric full matrix data structure with materials stored contiguously for each
cell.

The cell-centric data structure is shown in Figure 3. The diagram uses the C program-
ming language notation of ρ[C][m] with the convention of row data varying fastest so that
materials 1 and 2 are closer in memory than cells 1 and 2.
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Storage requirements

As before, assume that there are Nc cells in the mesh, Nm materials in the problem, Nmv

material-wise variables and Ncv cell-wise variables. Then the storage requirements of the
full matrix data structure, Storagefm, are:

Storagefm = (NmvNcNm +NmvNc +NcvNc) ∗ 8

= [Nmv(Nm + 1) +Ncv] ∗Nc ∗ 8
(1)

The first term is for the material-wise variable arrays such as ρ, t, p, and Vf . The second
term is for the row pointers since we are using C. The last term is the storage for the cell-wise
variables.

2.1.1 First Computational Loop – Average Cell Density

Then the first computational loop, written using cell-dominant logic, is shown in Algo-
rithm 1.

Algorithm 1 Cell-centric algorithm to compute average density of cells using full matrix storage

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0 # Not a main memory access, zero cost
3: for all material IDs, m, in the problem, up to Nm do
4: ave← ave+ ρ[C][m] ∗ Vf [C][m]
5: # 2NcNm loads (ρ,Vf )
6: # 2NcNm flops (+, ∗)
7: end for
8: ρave[C]← ave/V [C] # Nc loads (V)
9: # Nc stores (ρave)

10: # Nc flops (/)
11: end for

Performance analysis

We can also calculate the loads and stores for this computational loop. We will access the ρ
and Vf arrays NcNm times each. There will be one load (V ) and one store (ρave) per cell
for an additional 2Nc memops. Note that we do not account for the cost of local variables,
such as ave, which are assumed to be in cache. Counting the flops, the first loop needs a
multiply and an add for every material in every cell (2NcNm flops) and then a division by
V for each cell which is exactly one flop per word loaded. The number of arrays accessed
is 4, namely, ρ, Vf , ρave and V . The array data is accessed in contiguous order since the
inner loop matches the second (row) index of the array. We summarize the performance as
follows:

memops = 2Nc(Nm + 1), f lops = Nc(2Nm + 1)

PM = 2Nc(Nm + 1) ∗ 8/Stream
(2)

LA-UR-16-23889, Version 2 – Proceedings of NECDC 2016 6



2.1.2 First Computational Loop - Average Cell Density - Conditional Variant

We can get some small improvement in the data loads and stores by testing the fractional
volume for each cell and only add to the average where it is greater than zero as shown in
Figure 2. This modification is shown in algorithm 2.

Algorithm 2 Modified Cell-dominant algorithm to compute average density of cells using full
matrix storage

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0
3: for all material IDs, m, in the problem, up to Nm do
4: if Vf [C][m] > 0.0 then # NcNm loads (Vf )
5: # BpNcNm branch penalty
6: ave← ave+ ρ[C][m] ∗ f [C][m]
7: # FfNcNm loads (ρ)
8: # 2FfNcNm flops (+, ∗)
9: end if

10: end for
11: ρave[C]← ave/V [C] # Nc stores (ρave)
12: # Nc loads (V)
13: # Nc flops (/)
14: end for

Performance Analysis

For the modified algorithm performance analysis we need to define a sparsity of Sf cor-
responding to the frequency that the ‘if’ statement is false. The sparsity fraction Sf is the
number of zero entries where Vf (C,m) = 0.0 (for the data shown in Figure 1 this is 17/36).
We define the complementary term, filled fraction, Ff , as 1 − Sf . We can also express Ff

as the average number of non-zero materials per cell or Nmave/Nm. For our test problems,
since there are 1 million cells and 50 materials, the total number of variable entries is 50
million. However, in the first test problem only 1.048Nc = 1048000 of those entries are
non-zero (see description of the test problem in the introduction). This gives us a filled
fraction, Ff = 0.0209 and a sparsity fraction, Sf = 0.979 for this problem. For the second
problem with the random initialization, the number of non-zero variable values stored is
1.3Nc giving us a filled fraction of Ff = 0.026 and a sparsity fraction of Sf = 0.974. By
testing for non-zero fractional materials the equations become:

memops = Nc(Nm + FfNm + 2), f lops = Nc(2FfNm + 1)

PM = Nc(Nm + FfNm + 2) ∗ 8/Stream +BpFfNcNm
(3)

Note that the performance model as stated above is not based only on memops. This is
because accounting only for memops greatly underestimates the actual performance (as seen
in the tables in the summary section). To get a more accurate model, we added a penalty for
branch predicition and cache miss due to late prefetch as discussed earlier.
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Testing with an example code shows, despite reducing the memory loads by a factor
of two, the ‘if’ statement in this algorithm slows down the code a factor of three from the
memory bandwidth capability. The reason for this is the branch misprediction cost and the
resulting delay in memory fetching. The branch penalty is actually what we want even
though the performance is slower than the earlier code because the alternative is that we
unnecessarily saturate the memory bus. When there are multiple cores accessing data, this
will cause a limit to performance as well as increasing the energy usage of the algorithm.

2.1.3 Second Computational Loop – Pressure for each cell and each material

The second computational loop is shown in Algorithm 3. In this case we use an ‘if’ test to
avoid dividing by zero. This also avoids accessing all the array data where Vf (C,m) = 0.0
other than the fractional volume array itself.

Algorithm 3 Cell-centric algorithm to update material state using the full storage scheme

1: for all cells, C, in the mesh, up to Nc do
2: for all material IDs, m, in the problem, up to Nm do
3: if Vf [C][m] > 0.0 then # NcNm loads (Vf )
4: # BpNcNm branch penalty
5: nm ← n(m) # FfNcNm loads (n)
6:
7: p[C][m]← (nm ∗ ρ[C][m] ∗ t[C][m])/Vf [C][m]
8: # FfNcNm stores (p)
9: # 2FfNcNm loads (ρ, t)

10: # 3FfNcNm flops (∗, ∗, /)
11: else
12: p[C][m]← 0.0 # SfNcNm stores (p)
13: end if
14: end for
15: end for

Performance Analysis

The main loop will have NcNm accesses for Vf and 2FfNcNm for ρ and t. In addition,
we will have FfNcNm accesses for the n array. Finally, there will also be NcNm stores
for the p array split across the two branches. The loop takes advantage of the sparsity for
3FfNmNc flops.

memops = NcNm(2 + 3Ff ), f lops = 3FfNcNm

PM = NcNm(2 + 3Ff ) ∗ 8/Stream +BpFfNcNm
(4)

In the second loop, the number of arrays accessed is 5 (n, ρ, t, Vf and p). The ‘if’ state-
ment causes some difficulties, but otherwise the array data is mostly accessed in contiguous
order since the inner loop, matches the second (row) index of the array. The exception is n
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which has to be brought in multiple times (NcNm) using the cell-centric logic whereas it
should only need to be brought inNm times using a material-dominant logic. If the material
data table represented by n is very large, this would be extremely wasteful and there would
be a strong reason to use a material-dominant loop ordering to avoid the cost of the data
loads.

2.1.4 Third Computational Loop – Average density of each material over
neighborhood of each cell

A third computational loop that computes the average density of each material in the neigh-
borhood of each cell is shown in Algorithm 4. We denote this average density by ρ̄ to distin-
guish it from the average density of a materials in a cell, ρave. Note that the neighborhood
of a cell can be defined in any way we want (face-connected neighbors, node-connected
neighbors or something else). Also, in the algorithm, it is assumed that the problem is 3D.

For simplicity we assume that the number of neighbors of a cell is constant (N̄n) and the
neighbors of a cell are computed a priori, making their retrieval a constant cost operation.

The algorithm introduces a cost term, Lf , which indicates roughly what fraction of cells
around a candidate cell contain a particular material if the candidate cell itself contains that
material. Given that material generally stays together even under considerable stretching
and formation of filamentary structures we hazard to guess that Lf is approximately 0.8.
As before, we account for the conflicting costs from lack of spatial locality but presence of
some temporal locality using the cache miss penalty term Cp whose values we take to be 4.

Performance Analysis

In computing the performance model, note that the cost of storing ρ̄ isFfNcNm+SfNcNm =
NcNm since Ff +Sf = 1.0. Also, note, we do not add in a branch penalty for the inner ’if’
statement in the algorithm because Lf is high (as opposed to Ff ).

We can then write the following performance model:

memops = Nc(3 + 2Nm + 12.5N̄n) + 4FfNcNmN̄n(1 + Lf )),

f lops = 9NcN̄n + 3FfLfNcNmN̄n

PM = (Nc(3 + 2Nm + 12.5N̄n) + 4FfNcNmN̄n(1 + Lf )) ∗ 8/Stream +

BpFfNcNm

(5)

2.2 Material-centric Full Matrix Representation
Now we look at the material-centric data structure as shown in Figure 4. The cells 1 and 2
are closer in memory than materials 1 and 2 which are a Nc stride apart in memory. The C
notation for this data access is ρ[m][C] and the outer loop should be over materials.

2.2.1 First Computational Loop – Average Cell Density

If we switch to material-centric data structure and loop logic (iterate over materials first),
the algorithm will be as shown in Algorithm 5.

We can see right away from the additional complexity of the loop structures that the first
computational case has become inefficient due to the multiple loads/stores of ρave[C]. The
number of memops will include Nc stores for initialization of ρave, plus loads of 3NcNm
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Algorithm 4 Cell-dominant algorithm to compute average density of each material over a neigh-
borhood of each cell (Assume problem is 3D)

1: for all cells, C, in the mesh, up to Nc do
2: x̄c ← x̄[C] # 3Nc loads (x̄[C])
3: {cnbrs} ← nbrs[C] # NcN̄n integer loads
4: # Integer loads, multiply by 0.5
5: for all neighbors, i, up to N̄n do
6: Ci ← cnbrs[i]
7: dsqr[i]← 0.0
8: for j ← 0, 2 do
9: dsqr[i]← dsqr[i] + (x̄c[j]− x̄[Ci][j])

2

10: # 3NcN̄n loads (x̄)
11: # Partial reuse, multiply by Cp = 4

12: # 9NcN̄n flops (-,*,+)
13: end for
14: end for
15: for all material IDs, m, in the problem, up to Nm do
16: if Vf [C][m] > 0.0 then # NcNm loads (Vf )
17: # BpNcNm branch penalty
18: ρsum ← 0
19: Nn ← 0 # local variable Nn, not global variable N̄n

20: for all neighbors, i up to N̄n do
21: Ci ← cnbrs[i]
22: if Vf [Ci][m] > 0.0 then # FfNcNmN̄n loads (Vf )
23: # Partial reuse, multiply by Cp = 4

24: ρsum ← ρsum + ρ[Ci][m]/dsqr[i]
25: # FfNcNmLfN̄n loads (ρ)
26: # Partial reuse, multiply by Cp = 4

27: # 2FfNcNmLfN̄n flops (/,+)
28: Nn ← Nn + 1 # FfNcNmLfN̄n flops (+)
29: end if
30: end for
31: ρ̄[C][m]← ρsum/Nn # FfNcNm stores (ρ̄)
32: # FfNcNm flops (/)
33: else
34: ρ̄[C][m]← 0.0 # SfNcNm stores
35: end if
36: end for
37: end for

for ρ, and Vf and NcNm stores of ρave in the main loop. Note that we count the load and
store of ρave as a single memop instead of two. Then in the final loop there are Nc loads
for V and ρave plus Nc stores of ρave. We get contiguous access of variables at the cost of
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Figure 4: The Material-centric full data structure has cells stored contiguously for each material.

Algorithm 5 Material-dominant algorithm to compute average density of cells using full storage

1: for all cells, C, in the mesh, up to Nc do
2: ρave[C]← 0.0 # Nc stores (ρave)
3: end for
4: for all material IDs, m, in the problem, up to Nm do
5: for all cells, C, in the mesh, up to Nc do
6: ρave[C]← ρave[C] + ρ[m][C] ∗ Vf [m][C]
7: # NcNm stores (ρave)
8: # 2NcNm loads (ρ, Vf )
9: # 2NcNm flops (+, ∗)

10: end for
11: end for
12: for all cells, C, in the mesh, up to Nc do
13: ρave[C]← ρave[C]/V [C] # 2Nc loads/stores (ρave, V )
14: # Nc flops (/)
15: end for

loading them multiple times. The resulting performance equations are:

memops = 3Nc(Nm + 1), f lops = 2NcNm +Nc,

PM = 3Nc(Nm + 1) ∗ 8/Stream
(6)

We could get some better performance by ”blocking” loops. In this case, we could block
the cell loop for a cache line size of about 8 doubles and with memory aligned properly.
Most codes, however, do not write loops this way as it is more tedious.

Another optimization would be to only do the operation for VF > 0.0, as before. The
algorithm for the modified loop and its performance analysis is included in the appendix
(See Algorithm 21). Although the memops to flops ratios degrade for this problem it does
not affect the performance of the algorithm appreciably. The performance statistics for the
two large problems are presented in tables in the summary section.
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2.2.2 Second Computational Loop – Pressure for each cell and each material

A reordering of loops and data accesses also can be made for the second computational loop
as shown in Algorithm 6.

Algorithm 6 Material-dominant algorithm to update material state using the full storage scheme

1: for all material IDs, m, in the problem, up to Nm do
2: nm ← n(m) # Nm loads (nm)
3: for all cells, C, in the mesh, up to Nc do
4: if Vf [m][C] > 0.0 then # NcNm loads (Vf )
5: # BpNcNm branch penalty
6:
7: p[m][C]← nm ∗ ρ[m][C] ∗ t[m][C]/Vf [m][C]
8: # 2FfNcNm loads (ρ, t)
9: # FfNcNm stores (p)

10: # 3FfNcNm flops (∗, ∗, /)
11: else
12: p[m][C]← 0.0 # SfNcNm stores (p)
13: end if
14: end for
15: end for

Performance Analysis

The multiple material table data loads represented by nwill be far more ideal and the second
loop becomes more efficient. The material loop loads the material constantNm times. Then
there are NcNm loads of Vf for the ‘if’ test and FfNcNm stores of p and 2FfNcNm loads
in the main loop with 3FfNcNm flops. Finally, there are SfNcNm stores of zero into p. We
account for the ’if’ statement as before with a penalty due to branching.

memops = Nm(1 + 2FfNc + 2Nc), f lops = 3FfNcNm

PM = Nm(1 + 2FfNc + 2Nc) ∗ 8/Stream +BpFfNcNm
(7)

2.2.3 Third Computational Loop – Average density of each material over
neighborhood of each cell

The third computational loop computing the average density of each material in the neigh-
borhood of each cell is shown in Algorithm 7. The only difference between this algorithm
and the cell-centric one (Algorithm 4) is that the outer loop is on materials.

Performance Analysis

The performance model for this case is similar to that of the cell-centric case except that the
loads of x̄[C] and nbrs[C] have moved further inside the loops multiplying their costs by
Nm. Thus the performance model can be stated as shown below:
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Algorithm 7 Material-dominant algorithm to compute average density of each material over a
neighborhood of each cell (Assume problem is 3D)

1: for all material IDs, m, in the problem, up to Nm do
2: for all cells, C, in the mesh, up to Nc do
3: if Vf [m][C] > 0.0 then # NcNm loads (Vf )
4: # BpNcNm branch penalty
5: xc ← x̄[C] # 3FfNcNm loads (x̄[C])
6: ρsum ← 0
7: Nn ← 0.0 # Local var. Nn, not global var. N̄n

8: for neighbor cell index i← 0, N̄n − 1 do
9: Ci ← nbrs[C][i] # FfNcNmN̄n integer loads (nbrs)

10: # Integer loads, multiply by 0.5
11: if Vf [m][Ci] > 0.0 then # FfNcNmN̄n loads (Vf )
12: # Partial reuse, multiply by Cp = 4

13: dsqr ← 0.0
14: for j ← 0, 2 do
15: dsqr ← dsqr + (xc[j]− x̄[Ci][j])

2

16: # 3FfNcNmLfN̄n loads (x̄[Ci])
17: # Partial reuse, multiply by Cp = 4

18: # 9FfNcNmLfN̄n flops (-,*,+)
19: end for
20: ρsum ← ρsum + ρ[m][Ci]/dsqr
21: # FfNcNmLfN̄n loads (ρ)
22: # Partial reuse, multiply by Cp = 4

23: # 2FfNcNmLfN̄n flops (/,+)
24: Nn ← Nn + 1 # FfNcNmLfN̄n flops (+)
25: end if
26: end for
27: ρ̄[m][C]← ρsum/Nn # FfNcNm stores (ρ̄)
28: # FfNcNm flops (/)
29: else
30: ρ̄[m][C]← 0.0 # SfNcNm stores (ρ̄)
31: end if
32: end for
33: end for

memops = NcNm(2 + Ff (3 + N̄n(4.5 + 16Lf ))),

f lops = FfNcNm + 12FfLfNcNmN̄n

PM = (NcNm(2 + Ff (3 + N̄n(4.5 + 16Lf ))) ∗ 8/Stream +

BpFfNcNm

(8)
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3 Compact storage
Compact storage representations store the variable data for a material in a cell only if the
material is present in the cell (i.e., its volume fraction is non-zero). We also refer to this as a
compressed sparse representation since that is the terminology used in the matrix commu-
nity for their compact storage, such as compressed sparse row (CSR) and similar terms.

3.1 Cell-centric Compact Storage
Here we present a compact storage scheme for multimaterial data that is based on that cur-
rently used in the Roxane code2. The general strategy is to use a linked-list of materials.
As shown in Figure 5, the empty data cells are first squeezed out so that only those with
information are retained. Then the pure cells are removed since we already have that infor-
mation in the cell state arrays. The remaining data could then be accessed in ragged right
form such as ρ[C][m]. But for short lists, this adds an 8 byte pointer for each list for each
variable, which is too high an overhead. So we concatenate the list data and use a special
linked list that is in array form where the pointer to the start of the list for each cell is an
index into an array. The next set of fractional material immediately follows it. This gives
better cache behavior than the typical linked-list as the data is accessed in contiguous order.
The offset into all the mixed-material lists is the same for all the state variables, so we only
need a single offset value for all of them and the addressing is now a single-dimensioned
array accessor in the form ρ[mstart].

The resulting data structure with the abs(imaterial) and nmats pointing into the mixed-
material lists is shown in Figure 6. The length of each material list can be found either from
the nmats array or looping over the nextfrac array until it hits a -1, indicating the end of the
list. The advantage of the nextfrac array is that each entry points to the next item in the list,
allowing added materials to be placed at the end of the entire mixed material list instead of
copying all the existing materials in the cell to be moved there.

Storage costs

To compute the storage costs for this representation we use the length of the mixed material
arrays ML in the first test problem (approximately 0.5Nc as derived in the introduction).
The storage costs for this compact representation is ML for four doubles and three integers,
plus Nc for four double and two integers. For the million cell mesh with 50 materials and
a mixed material length, 500, 000, the storage would be 62.0 MB for a reduction of ≈96%
from the full matrix representation. The memory savings approaches that of the sparsity of
the data as would be expected. The net impact of this storage reduction is the ability to run
larger problems on a node and because these applications are bandwidth limited, we expect
to see a corresponding decrease in runtime.

Assuming, as before, that we have to represent Nmv material based variables and Ncv

cell based variables we can state the storage estimate for the cell-centric representation as

Storagecc = 4(3ML + 2Nc) + 8(ML +Nc)Nmv + 8NcNcv (9)
2Roxane is a LANL cell-based AMR Eulerian hydrocode
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Figure 5: The cell-centric compact data structure has a linked-list for each cell that has multiple
materials.

3.1.1 First Computational Loop – Average Cell Density

For the C/C++ data structure, we use the ρ[abs(imaterial)] offset into the linear linked-list
data structure. Then we loop over the fractional materials, summing the fractional densities
times the fractional volumes, until we hit a -1 value as shown in Algorithm 8.

Note the loop over cells with an inner loop over materials that only loops for as many
materials as there are in each cell. This shows just how much of an advantage the compact
storage representation can achieve. First, if there are no fractional materials in a cell, we
do nothing because the stored density is already the average density. If there are fractional
materials, we average them by their weighted volume in the cell3.

Performance analysis

The number of loads is Nc for the integer array imaterial plus ML loads of nextfrac and
2ML of ρ and Vf . After the material loop, there are MfNc stores of ρ and MfNc loads of
V . In the material loop, there are 2ML flops plus MfNc flops after the loop. This gives us
the following performance equations:

3See Appendix for algorithm and performance analysis when the average density is not a stored variable but
must be created on the fly
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Figure 6: The mixed material arrays for the cell-centric compact data structure.

memops = Nc(1 + 2Mf ) + 3ML, membytes = (4 + 2Mf ∗ 8)Nc + 20ML,

f lops = 2ML +MfNc, PM = membytes/Stream + LpMfNc
(10)

For this analysis we have to separate out 4 byte integer and 8 byte memory loads. Note
that, the material loop has an unknown but small length thereby incurring a complex loop
cost, Lc, of 20 cycles per exit.

If the fractional material data are ordered in the same access pattern as the cell data, the
loads are pretty much contiguous. A careful reader will note that one of the advantages of
this data structure is that the cell average densities never have to be calculated since as a
pure cell, they are already stored in the ρ cell array. Also, we could use the nmats array to
determine how many iterations for the inner material loop. The modified algorithm and per-
formance analysis is shown in the appendix as Algorithm 22 and the estimated performance
and actual performance are included in the tables in the summary section.

3.1.2 Second Computational Loop – Pressure for each cell and each material

The loop to calculate pressure for each cell and each material for the cell-centric compact
storage is shown in Algorithm 9.

Most of the data is loaded in a contiguous order except for the material property n. This
will be loaded multiple times more for each material than necessary.

memops = (1 + 5Pf )Nc + 6ML, membytes = (4 + 5Pf ∗ 8)Nc + 40ML,

f lops = 3ML + 3PfNc, PM = membytes/Stream + LpMfNc
(11)

If the material property is something like an ideal gas law, this would not be too bad.
But for a table-based EOS with a couple of hundred data values, it would perform poorly.
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Algorithm 8 Cell-dominant algorithm to compute average density of cells using compact stor-
age

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0
3: ix← imaterial[C] # Nc loads (imaterial)
4: if ix <= 0 then
5: for ix← −ix, until ix < 0 do
6: # ML16 cycle branch miss
7: ave← ave+ ρ[ix] ∗ Vf [ix] # 2ML loads (ρ, Vf )
8: # ML flops (+, ∗)
9: ix← nextfrac[ix] # ML loads (nextfrac)

10: end for
11: ρ[C]← ave/V [C] # MfNc stores (ρave)
12: # MfNc loads (V )
13: # MfNc flops (/)
14: end if
15: end for

3.1.3 Third Computational Loop - Average density of each material over neigh-
borhood of each cell

Performance Analysis

The complex logic of the algorithm to compute average material density over a neighbor-
hood using the cell centric algorithm makes it challenging to account for its memops and
flops. Still, we can reduce the complexity by combining terms from the two branches using
the recognition that FfNcNm = PfNc + ML - in other words, the number of non-zero
entries for any variable is the number of of mixed cell entries in the mesh (ML) plus the
number of pure cell entries (PfNc). Then we can write the performance model as:

memops = Nc(3.5 + 12.5N̄n) + 0.5ML +NcNm(1 + 1.5Ff )+

2FfNcNmN̄n(1 + 2N̄mc + 2Lf )

flops = 9NcN̄n + 3FfNcNmN̄nLf + FfNcNm

PM = (Nc(3.5 + 12.5N̄n) + 0.5ML +NcNm(1 + 1.5Ff )+

2FfNcNmN̄n(1 + 2N̄mc + 2Lf )) ∗ 8/Stream +BpMf

(12)

3.1.4 Adding to the Cell-centric Compact Data Structures

Adding to the mixed material data arrays is made simpler by having extra array length of
10–20%. We first test to see if the material exists in the cell and then if it doesn’t, we move
the existing material data to the end of the mixed material array and add the new material as
shown in Algorithm 11. When threading, either with OpenMP or OpenCL/Cuda, we have
to use an atomic operation to extend the array so that another thread does not get the same
storage.
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Algorithm 9 Cell-centric algorithm to update material state using the compact storage scheme

1: for all cells, C, in the mesh, up to Nc do
2: ix← imaterial[C]) # Nc loads (imaterial)
3: if ix <= 0 then
4: for ix← −ix, until nextfrac[ix] < 0 do
5: # ML loads (nextfrac)
6: nm ← n(matids[ix]) # ML loads (matids)
7: p[ix]← (nm ∗ ρ[ix] ∗ t[ix])/Vf [ix] # 3ML loads (ρ, t, Vf )
8: # ML store (p)
9: # 3ML flops (∗, ∗, /)

10: end for
11: else
12: p[C]← # PfNc stores (p)
13: n(imaterial[C]) ∗ ρ[C] ∗ t[C]/V [C] # 4PfNc loads (n, ρ, t, V )
14: # 3PfNc flops (∗, ∗, /)
15: end if
16: end for

The operation of adding a new material to a cell is also shown in Figure 7. Material 4
has just moved into cell 4 in the problem from Figure 1. The new material has been added
to the end of the array and the nextfrac entry is set to point to it.

When removing a material, we simply remove the link to the data and zero it out. Thus
it will never be accessed.

At the end of each cycle or few cycles, we reorder the arrays by walking through them,
copying the data in order to the new array as shown in Algorithm 12. This reordering causes
the data access patterns to be in sequence and cache friendly as well as reclaiming holes in
the mixed-material arrays.

3.2 Material-centric Compact Storage
The material-centric compact storage, as the name indicates, is organized around subsets of
mesh cells corresponding to each material. Each mesh subset carries two lists:

1. subset2mesh - A list of mesh cell IDs in the subset (represents a map from the subset
to the mesh)

2. mesh2subset - A list that maps mesh cell IDs to their local index in the subset (reverse
map from the mesh to the subset).

If we don’t use a smart array that knows its own size to represent the subset2mesh array,
we must also have a an array ncellsmat to represent the number of cells in a subset. However,
this is a negligible cost since it is only as many integers as there are materials.

The concept of subsets is illustrated in Figure 8 for the multi-material example of Fig-
ure 1. Referring to material 4 in the figure, it can be seen that the subset2mesh for material
subset 4 contains cells 3, 6 and 7 of the mesh and the reverse map, mesh2subset, indicates
that mesh cells 3, 6 and 7 correspond to the entries 0, 1 and 2 in the subset.
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Algorithm 10 Cell-centric algorithm to compute average material density over a neighborhood
using compact storage

1: for all cells, C, in the mesh, up to Nc do
2: Initialize ρ̄ to 0 # NcNm stores from Alg. 4
3: x̄c ← x̄[C] # 3Nc loads (x̄[C]). Assume 3D
4: {cnbrs} ← nbrs[C] # NcN̄n integer loads
5: # Integer loads, multiply by 0.5
6: Initialize dsqr w.r.t. neighbors # 3NcN̄n loads (x̄) from Alg. 4
7: # Partial reuse, multiply by Cp = 4

8: # 9NcN̄n flops (-,*,+)
9:

10: ix← imaterial[C] # Nc loads (imaterial)
11: # Integer loads, multiply by 0.5
12:
13: if ix <= 0 then # Multiple materials in cell, C
14: # BpMf branch penalty
15: for ix← −ix, until nextfrac[ix] < 0 do
16: # ML loads (nextfrac)
17: # Integer loads, multiply by 0.5
18: m← matids[ix] # ML loads matids
19: # Integer loads, multiply by 0.5
20: ρsum ← 0.0
21: Nn ← 0 # Local var. Nn, not global var. N̄n

22: for all neighbors, j up to N̄n do
23: Cj ← cnbrs[j]
24: jx← imaterial[Cj] # MLN̄n loads imaterial
25: # Integer loads, multiply by 0.5
26: # Partial reuse, multiply by Cp = 4

27:
28: if jx <= 0 then # Multiple materials in cell, Ci

29: for jx← −jx, until nextfrac[jx] < 0 and not found do
30: # MLN̄nN̄mc loads (nextfrac)
31: # Integer loads, multiply by 0.5
32: # Partial reuse, multiply by Cp = 4

33: if matids[jx] == m then # MLN̄nN̄mc loads (matids)
34: # Integer loads, multiply by 0.5
35: # Partial reuse, multiply by Cp = 4

36: ρsum ← ρsum + ρ[jx]/dsqr[j]
37: # MLN̄nLf loads (ρ)
38: # Partial reuse, multiply by Cp = 4

39: # 2MLN̄nLf flops (/,+)
40: Nn ← Nn + 1 # MLN̄nLf flops (+)
41: end if
42: end for
43: else # Single material in cell Cj (see next page)
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44: if matids[jx] == m then # Assume loads of matids are roughly
45: # accounted for in other branch
46: ρsum ← ρsum + ρ[jx]/dsqr[j]
47: Nn ← Nn + 1 # Loads, flops accounted for in other branch
48: end if
49: end if
50: end for
51: ρ̄[C][m]← ρsum/Nn # ML stores, ML flops (/)
52: end for
53: else # Pure cell C
54: m← matids[ix] # PfNc loads matids
55: # Integer loads, multiply by 0.5
56: ρsum ← 0.0
57: Nn ← 0 # Local var. Nn, not global var. N̄n

58: for all neighbors, j up to N̄n do
59: Cj ← cnbrs[j]
60: jx← imaterial[Cj] # PfNcN̄n loads imaterial
61: # Integer loads, multiply by 0.5
62: # Partial reuse, multiply by Cp = 4

63: if jx <= 0 then
64: for jx← −jx, until nextfrac[jx] < 0 and not found do
65: # PfNcN̄nN̄mc loads (nextfrac)
66: # Integer loads, multiply by 0.5
67: # Partial reuse, multiply by Cp = 4

68: if matids[jx] == m then # PfNcN̄nN̄mc loads (matids)
69: # Integer loads, multiply by 0.5
70: # Partial reuse, multiply by Cp = 4

71: ρsum ← ρsum + ρ[jx]/dsqr[j]
72: # PfNcN̄nLf loads (ρ)
73: # Partial reuse, multiply by Cp = 4

74: # 2PfNcN̄nLf flops (/,+)
75: Nn ← Nn + 1 # PfNcN̄nLf flops (+)
76: end if
77: end for
78: else
79: if matids[jx] == m then
80: ρsum ← ρsum + ρ[jx]/dsqr[j]
81: Nn ← Nn + 1 # Loads, flops accounted for in other branch
82: end if
83: end if
84: end for
85: ρ̄[C][m]← ρsum/Nn # PfNc stores (ρ̄), PfNc flops (/)
86: end if
87: end for
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Algorithm 11 Add material to cell, check for existence and expand mixed material if not

ρnew[C][matid] # add material to cell
match← true
for all material IDs, m, in the cell, up to nmats[C] do

if matidnew == matid[C][m] then
r[C][m]← r[C][m] + ρnew[C][matid] break

end if
match← false

end for
if match == false then
matinsert← atomic compxchange(oldvalue,maxmat+ nmats[C] + 1)
for all material IDs, m, in the cell, up to nmats[C] do
r[maxmat+m]← r[C][m]

end for
r[maxmat+m+ 1]← ρnew[C][matid]

end if

The representation of material-based variables in this scheme is the equivalent of a
ragged right array where an array of pointers points into the values for the cells of the
individual materials. The values for each material mirror the subset2mesh array for the ma-
terial and therefore, store only as much information as needed. Thus, for material 4, only 3
values each of f4, ρ4, p4 and t4 corresponding to mesh cells 3, 6 and 7 are stored (the figure
only shows fm and ρm for each material m). It is possible to condense this ragged right
array into one integer and one double array but introducing new cells into a subset would
then require expensive memory movement.

In addition to these data structures, we define two integer arrays to allow us to access
the IDs of materials in any given cell. The first array called nmats contains the number
of materials in each cell. Since we expect the maximum number of materials in any cell,
Nmax

mc , to be at most 4 this could even be a character array. The second array contains the
IDs of materials in each cell and is of length (NcN

max
mc ) with a dummy value like -1 for

empty slots. For example, for cell 1, nmats is 2 and the matids entries are 1, 2, -1, -1 as
shown in 8. One could make this a compact array which stores only the materials that are
in a cell but once again introduction of new materials to a cell requires expensive memory
motion.

Finally, we store one array of double values for the volume of cells, V .

Storage costs

Assuming that the probability of any material being present in any cell is equal, the average
number of cells containing a material, N̄mc can be computed as the ratio of the total number
of non-zero variable values FfNcNm to the number of materials Nm, or in other words,
N̄mc = FfNc. For the first test problem, this works out to be 26000 and for the second
problem, 20900.

Proceeding with the accounting of storage, we have:

1. Nc integers for the mesh2subset list for each material or a total of NcNm integers
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Figure 7: Adding a material to the mixed material data structure

Algorithm 12 Reordering mixed material arrays

matindex← 0
for all cells, C, in the mesh, up to Nc do

if nmats[C] > 1 then
matid[C]← −matindex # Setting offset into mixed data array

end if
for all material IDs, m, in the cell, up to nmats[C] do
ρnew[matindex]← r[C][m]
matindex+ 1

end for
end for

2. N̄mc integers for the subset2mesh list for each material or a total of N̄mcNm =
FfNcNm integers

3. Nc integers for the nmats array

4. Nmax
mc Nc integers for the matids array

or a total of (Nm + FfNm + 1 + Nmax
mc )Nc integers or 4(Nm + FfNm + 1 + Nmax

mc )Nc

bytes.

To store the Nmv material-based scalar fields, we need:

1. N̄mc doubles for each field for each material or a total of FfNcNmNmv doubles.

2. NmNmv pointers for pointing into the field arrays (but this can be ignored for large
meshes as it does not depend on Nc)
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Figure 8: The material-centric compact data representation of material specific fields ρ and Vf
for the example shown in Figure 1.
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Finally, to store Ncv cell-based scalar fields (such as volumes of cells), we need NcvNc

doubles. This gives us a total of (FfNmNmv + Ncv)Nc doubles or 8(FfNmv + Ncv)Nc

bytes.
Thus, the total storage for the material-centric compact representation, can be written

as:

Storagecm = [4(Nm + FfNm + 1 +Nmax
mc ) + 8(FfNmNmv +Ncv)]Nc (13)

One can see that the first part of the expression is the cost of storing the subset repre-
sentation and the second the fields. Therefore, the relative cost of storing the subset rep-
resentation decreases with the number of fields one needs to represent. For the first test
problem, the cost of storing the subsets dominates (80%) as we are storing only 4 material-
based fields. However, in a representative problem with say 100 material based fields and
10 cell-based fields this drops to 16% of the cost.

Several optimizations are possible to reduce some of the fixed costs for storing subsets.
If we chose not to store a fixed number of entries for each cell in the matids it would make
the length of the matids array Nc/2 (see estimation of ML array in the cell-centric compact
storage discussion). This optimization will drop the storage by about 15 MB for the first
test problem. However, it makes it much more expensive to introduce materials into cells
because all the elements in the array after the cell’s entries will have to be moved. An easier
optimization is to use character arrays (1 byte per entry) for nmats and matids arrays which
will support a maximum material ID of 127 and also save 15 MB in storage.

3.2.1 First Computational Loop – Average Cell Density

With the material-centric compact data structure, the average cell density calculation shown
in Algorithm 13 is similar to the one for the material-centric full matrix storage Algorithm 5
except that we loop over subset cell indices c, not mesh cell indices C, in the main loop.
Consequently, we have to translate the subset cell index c to mesh cell index C for accessing
the correct cell-based average density.

The cell-centric algorithm for doing the same operation is shown below in Algorithm 14.
Note that in this algorithm we have to translate the mesh cell index, C, to a local index, c,
in the particular subset using the reverse map, mesh2subset.

It is useful to point out how close the algorithms using the compact material-centric data
structure are to the full matrix algorithm. In fact, in a feature-rich language like C++, the
algorithms can be made to look just like the full matrix algorithms with the conversion from
mesh index to subset index or vice versa being done under the hood.

Performance analysis

Since there are no conditional statements in the above two algorithms for computing average
density, the compact storage scheme will result in as many accesses of material specific
variables as there are values ( ¯NmcNm = FfNcNm) whether we loop over materials and
cells in each material or cells and materials in each cell.

Considering the material-dominant algorithm for computing average densities, we see
that it performs (2FfNm + 1)Nc flops. We also see that it has Nc +FfNcNm integer loads,
Nc pointer loads, 3FfNcNm + 2Nc double loads and FfNcNm + 2Nc double stores (Cost
of integer load/store will be half of that of a double). The cache penalty in this algorithm
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Algorithm 13 Material-dominant algorithm to compute average density of cells using material-
centric compact storage

for all cells, C, in the mesh, up to Nc do
ρave[C]← 0.0 # Nc stores

end for
for all material IDs, m, in the problem, up to Nm do
ncmat← ncellsmat[m] # Nc loads
subset← subset2mesh[m] # Nc pointer loads
for all cells, c, in the material upto ncmat do
C ← subset[c] # FfNcNm loads
ρave[C]← ρave[C] + ρ[m][c] ∗ Vf [m][c]

# 3FfNcNm loads (ρave, ρ, Vf )
# FfNcNm stores (ρave)
# 2FfNcNm flops (+, ∗)
# Likely cache miss for ρave
# Multiply by Cp = 8

end for
end for
for all cells, C, in the mesh, up to Nc do
ρave[C]← ρave[C]/V [C] # 2Nc loads (ρave, V )

# Nc stores (ρave)
# Nc flops (/)

end for

Algorithm 14 Cell-dominant algorithm to compute average density of cells using the material-
centric compact storage scheme

for all cells, C, in the mesh, up to Nc do
ave← 0.0
for all material indices, i, in the cell, up to nmats(C) do
m← matids(i) # FfNcNm integer loads (matids)

# Integer loads, multiply by 0.5
c← mesh2subset(m,C) # FfNcNm integer loads (mesh2subset)

# Likely cache miss, multiply by Cp = 8

# Integer loads, multiply by 0.5
ave← ave+ ρ[m][c] ∗ Vf [m][c] # 2FfNcNm loads (ρ, Vf )

# Likely cache miss, multiply by Cp = 8

# 2FfNcNm flops (∗,+)
end for
ρave[C]← ave/V [C] # Nc loads (V )

# Nc stores (ρave)
# Nc flops

end for
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comes from accessing a mesh cell-based variable (ρave) in a loop that is stepping through
cells of a material subset. Therefore, performance equations for the material-dominant loop
for average density calculations using this storage scheme are:

memops = (3.5FfNm + 5.5)Nc + 8FfNmNc

flops = (2FfNm + 1)Nc

PM = [(3.5FfNm + 5.5)Nc + 8FfNmNc] ∗ 8/Stream

The memory access pattern in the material-dominant algorithm with this storage scheme
is quite favorable because only 4 arrays, subset2mesh, ρ, Vf and ρave are needed for the
inner loop and except ρave, all the others are referenced by subset cell ID, c which is stored
contiguously.

In the cell-dominant algorithm for computing average densities using this storage scheme,
the number of flops will be (2FfNm + 1)Nc. Accounting for memory ops, we will have
2FfNcNm integer loads (matids, mesh2subset) and (2FfNm + 1)Nc double loads (ρ,
Vf ). There will be 1 double store (ρave) in the outer loop for a total of Nc stores. Cache
penalties are factored because we access material arrays mesh2subset, ρ and Vf arrays
while looping through mesh cells.

memops = 2Nc + 20.5FfNcNm

flops = (2FfNm + 1)Nc

PM = [2Nc + 20.5FfNmNc] ∗ 8/Stream

The memory accesses needed for the cell-dominant average density algorithm varies in
each iteration of the inner loop, depending on nmats(C). If the cell is a single material
cell, then one has to access 6 arrays, ρave, nmats, matids, mesh2subset, ρ and Vf (as
mentioned before, this can be cut to 5 by bundling nmats and matids). With each extra
material, however, this increases by 3 more arrays (mesh2subset, ρ and Vf for the extra
material). Thus this data structure and this loop combination are less advantageous to use
than the others in multi-material cells. However, it should be noted that a majority of the
cells in a large mesh will be pure cells and therefore, this disadvantage is minor and its
effect rapidly diminishes with increasing mesh resolution.

3.2.2 Second Computational Loop – Pressure for each cell and each material

The second computational loop (which is naturally material-dominant) can be written like
this:

Performance analysis

In the computational loop to update material properties using this loop, we have 3 double
loads (r, t, Vf ) and 1 integer load (subset2mesh) in the inner loop which is 3.5FfNcNm

8 byte memops. There is 1 double load in the outer loop (n) which contributes a paltry Nm

8 byte memops. There is also 1 double store in the inner loop of the variable p for total of
FfNcNm stores. So the total number of 8 byte memops is 4.5FfNcNm +Nm. The number
of flops is 4 per inner loop giving a total of 4FfNcNm. Thus the number of loads to flops is
nearly 1:1 which is very good.
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Algorithm 15 Material-dominant algorithm to update material state using the material-centric
compact storage scheme

for all material IDs, m, in the problem, up to Nm do
nm ← n(m) # Nm loads
for all cells, c, in the material do
C ← subset2mesh[c] # FfNcNm integer loads (subset2mesh)

# Integer loads, multiply by 0.5
p[m][c]← (nm ∗ ρ[m][c] ∗ t[m][c])/Vf [c]

# 3FfNcNm loads (ρ, t, Vf , V )
# FfNcNm stores (p)
# 4FfNcNm flops (∗, /)

end for
end for

Therefore, the performance equations for these algorithms using the material-centric
compact storage are:

memops = (4.5FfNc + 1)Nm

flops = 4FfNcNm

PM = (4.5FfNc + 1)Nm ∗ 8/Stream

Each loop in the material update algorithm requires access to 6 arrays n, subset2mesh,
V , r, t, Vf and p. Except for V which is indexed by mesh cell ID C, all arrays are accessed
in a contiguous fashion making this an efficient access pattern.

3.2.3 Third Computational Loop - Average density of each material over neigh-
borhood of each cell

The third computational loop computing the average density of each material in the neigh-
borhood of each cell is shown in Algorithm 16.

Performance Analysis

We can then write the following performance model as before:

memops = Nc(3 + 12.5N̄n) +NcNm + FfNcNm(5.5 + 4N̄n(1 + 2Lf )),

f lops = 11FfLfNcNmN̄n + FfNcNm

PM = (Nc(3 + 12.5N̄n) +NcNm + FfNcNm(5.5 + 4N̄n(1 + 2Lf ))) ∗ 8/Stream
(14)

The same process using a material-dominant logic is shown below in Algorithm 17).
The only difference between this algorithm and the cell-centric one (Algorithm 16) is that
the outer loop is on materials.
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Algorithm 16 Cell-dominant algorithm to compute average density of each material over a
neighborhood of each cell

1: for all cells, C, in the mesh, up to Nc do
2: Initialize ρ̄ to 0 # NcNm stores from Alg. 4
3: x̄c ← x̄[C] # 3Nc loads (x̄[C]). Assume 3D
4: {cnbrs} ← nbrs[C] # NcN̄n integer loads
5: # Integer loads, multiply by 0.5
6: Initialize dsqr w.r.t. neighbors # 3NcN̄n loads (x̄) from Alg. 4
7: # Partial reuse, multiply by Cp = 4

8: # 9NcN̄n flops (-,*,+)
9: for all material IDs, k, in the cell, up to nmats(C) do

10: m← matids(k) # FfNcNm loads (matids)
11: # Integer loads, multiply by 0.5
12: c← mesh2subset(m,C) # FfNcNm loads (mesh2subset)
13: # Integer loads, multiply by 0.5
14: # Likely cache miss, multiply by Cp = 8

15: ρsum ← 0
16: Nn ← 0 # Local var. Nn, not global var. N̄n

17: for neighbor cell index i← 0, N̄n − 1 do
18: Ci ← cnbrs[i]
19: ci ← mesh2subset(m,Ci) # FfNcNmN̄n loads (mesh2subset)
20: # Likely cache miss, multiply by Cp = 8

21: # Integer load, multiply by 0.5
22: if ci >= 0 then
23: ρsum ← ρsum + ρ[ci][m]/dsqr[i]
24: # FfNcNmLfN̄n loads (ρ)
25: # Likely cache miss, multiply by Cp = 8

26: # 2FfNcNmLfN̄n flops (/,+)
27: Nn ← Nn + 1 # FfNcNmLfN̄n flops (+)
28: end if
29: end for
30: ρ̄[C][m]← ρsum/Nn # FfNcNm stores (ρ̄)
31: # FfNcNm flops (/)
32: end for
33: end for
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Algorithm 17 Material-dominant algorithm to compute average density of each material over a
neighborhood of each cell using a material-centric compact representation

1: for all material IDs, m, in the problem, up to Nm do
2: for all cells, C, in the mesh, up to Nc do
3: ρ̄[C][m]← 0.0 # NcNm stores
4: end for
5: for all cells, c, in the material do
6: C = subset2mesh(m, c) # FfNcNm loads (subset2mesh)
7: # Integer loads, multiply by 0.5
8: xc ← x̄[C] # 3FfNcNm loads (x̄)
9: # Assume problem is 3D

10: # Likely cache miss, multiply by Cp = 8

11: ρsum ← 0.0
12: for neighbor cell index i = 0, N̄n − 1 do
13: Ci = nbrs[C][i] # FfNcNmN̄n integer loads (nbrs)
14: # Likely cache miss, multiply by Cp = 8

15: # Integer loads, multiply by 0.5
16: ci = mesh2subset(m,Ci) # FfNcNmN̄n integer loads (mesh2subset)
17: # Partial reuse, multiply by Cp = 4

18: # Integer loads, multiply by 0.5
19: if ci >= 0 then
20: dsqr = 0.0
21: for j = 0, 2 do
22: dsqr = dsqr + (xc[j]− x̄[Ci][j])

2

23: # 3FfNcNmLfN̄n loads (x̄)
24: # Partial reuse, multiply by Cp = 4

25: # 9FfNcNmLfN̄n flops (-,*,+)
26: end for
27: ρsum = ρsum + ρ[m][ci]/dsqr # FfNcNmLfN̄n loads (ρ)
28: # 2FfNcNmLfN̄n flops (/,+)
29: end if
30: end for
31: ρ̄[C][m] = ρsum/Nn # FfNcNm stores (ρ̄)
32: # FfNcNm flops (/)
33: end for
34: end for
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Performance Analysis

The performance model for this case is similar to that of the cell-centric case except that the
loads of x̄[C] and nbrs[C] have moved further inside the loops multiplying their costs by
Nm. Thus the performance model from the cell-centric case can be modified to appear as
shown below:

memops = NcNm + FfNcNm(25.5 + N̄n(6 + 13Lf ))),

f lops = 11FfLfNcNmN̄n + FfNcNm

PM = (NcNm + FfNcNm(25.5 + N̄n(6 + 13Lf ))) ∗ 8/Stream

(15)

3.2.4 Adding to the Material-Centric Compact Data Structures

Modification of the material-centric compact data structures to accommodate a new material
appearing in a cell is quite trivial. The new cell is simply appended to the subset2mesh
array in the particular material subset and the corresponding field values appended to the
appropriate field arrays. At the same time the material ID is added to the matids array at
a location corresponding to the cell and the nmats array value is incremented. One could
reorganize these arrays from time to time so that values of cells that are spatially close are
also close in the array and result in fewer cache misses.

The algorithms become only a little more complicated when a material disappears from a
cell. Then the entry in the subset2mesh array must be nullified (set to -1) and the algorithms
modified to check for this. This doesn’t significantly impact the actual performance since
the branch prediction will detect that the code inside the ’if’ statement will be executed more
often than not. Alternatively, we can allocate an extra element in each cell-based variable
array and set the subset2mesh array value to Nc + 1. Then, we will write into a dummy
location without the penalty of an ’if’ statement when processing a cell which has been
’removed’ from a material subset. Periodically, but infrequently, the holes in the subset can
be squeezed out restoring efficiency to the process.

4 Conversions

4.1 Converting from Cell-Centric to Material-Centric
We can convert from cell-centric to material-centric compact data structures for some arrays
so that the data access pattern is more contiguous. This process is made easier if the number
of cells for each material tracked. This can be done at the same time that the material adding
operation is being done. An atomic operation will also be needed for this since multiple
threads could add at the same time. By keeping track of ncells[m], we can then allocate the
arrays without worrying about getting them too large or small. If the number of cells is not
tracked, a prepass through the data to get the sizes is probably best.

4.2 Converting from Material-Centric to Cell-Centric
The conversion of the material-centric compact structure to the cell-centric compact struc-
ture requires knowing the size of the mixed material arrays. This size is calculated as shown
in Algorithm 19
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Algorithm 18 Converting from Cell-Centric to Material-Centric Compact Structure

for all material IDs, m, in the mesh, up to Nm do
alloc(ρnew[m](ncells[m] ∗ sizeof(double)))
nextcell[m]← 0

end for
for all cells, C, in the mesh, up to Nc do

for all material IDs, m, in the cell, from mstart and for nmats[C] do
mm← matid[m]
ρnew[mm][nextcell[C]]← r[m]
nextcell[m]← nextcell[m] + 1

end for
end for

Algorithm 19 Counting Mix Cells for Converting from Material-Centric to Cell-Centric Com-
pact Structure

ix← 0
for all cells, ic, in the mesh, up to Nc do

if nmatscell[ic] > 1 then
mxsize← mxsize+ nmatscell[ic]

end if
end for

Now all the mix cell arrays can be allocated and the rest of the conversion process can
go forward as shown in Algorithm 20. The material-centric arrays are on the right-hand side
and the cell-based arrays are distinguished by variables starting with a capital C and are on
the left-hand side of the statements.

The actual performance of the conversion is about 60 msec for Algorithms 19 and 20.
The material data is accessed in an irregular pattern that will have cache misses, but the
cell-centric data is written out in contiguous order which should give good performance.
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Algorithm 20 Converting from Material-Centric to Cell-Centric Compact Structure

ix← 0
for all cells, ic, in the mesh, up to Nc do
nmats← nmatscell[ic]
if nmats == 1 then
m← matids[4 ∗ ic]
c← mesh2subset[m][ic]
Cimaterial[ic]← m

else
for all materials, im, in each cell, up to nmats do
m← matids[4 ∗ ic+ im]
c← mesh2subset[m][ic]
Cimaterialfrac[ix]← m
Cnextfrac[ix]← ix+ 1
Cfrac2cell[ix]← ic
CV olfrac[ix]← V olfrac[m][c]
CDensityfrac[ix]← Densityfrac[m][c]
CTemperaturefrac[ix]← Temperaturefrac[m][c]
CPressurefrac[ix]← Pressurefrac[m][c]
ix← ix+ 1

end for
Cnextfrac[ix− 1]← −1

end if
end for

5 Results and Discussion
We have written a test code which evaluates the performance of the data structures for the
two computational loops as applied to the two test problems presented in the discussion.
The results of the tests are discussed here.

First we present the growth of the storage with the number of material variables for the
various storage schemes. The compact storage schemes reduce the memory usage over the
full storage scheme by over 95% as shown in Table 1. This table also shows how the data
storage costs increase with numbers of field variables where there is not much difference
between the two compact schemes at higher numbers of material variables. This alone is
enough to adopt the compact schemes, but with a bandwidth-limited algorithm, we would
also expect better performance. This is discussed next.

Tables 2 and 3 show the performance of the various data structures for average cell
density and material pressure loops with fractional volumes initialized from material shapes.
Tables 4 and 5 show the performance data for randomized fractional volume evaluation.

From the above data it is clear that the compact data structures present a real advantage
in memory footprint, memory accesses and predicted computational time over the full data
structures.

Between the compact data structures, the cell-dominant compact storage affords a lower
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Scheme ↓ Storage MB→
4 mat. vars 10 mat. vars 100 mat. vars

Single Material 32 80 800
Full Matrix 1663 4160 41600

Compact, Cell 62 134 1214
Compact, Material 268 332 1297

Table 1: Data Storage increase in MB for increasing numbers of material variables (data for cell
variables is not counted here)

Memops Flops Memops Estimated Actual Error
Description Alg. M MB M to Flops msecs msecs %

Single Material 2 16 2 1:1 1.20 1.03 16.3
Full, Cell 1 102 816 100 1:1 61.0 53.4 14.3

Full, Cell, with if 2 53.0 424.4 3.1 17.1:1 66.5 67.9 -2.0
Full, Mat. 4 153 1224 101 1.5:1 91.5 79.9 14.6

Full, Mat., with if 5 55.1 440.8 3.1 17.8:1 42.9 35.8 19.9
Compact, Cell 7 2.9 17.2 1.2 2.4:1 1.43 1.08 32.3

Compact, Cell, with nmats 8 2.6 16.0 1.2 2.2:1 1.34 1.24 8.5
Compact, Cell, with rho ave 9 4.5 30.0 1.2 3.8:1 2.39 1.91 25.2
Compact, Cell, divide by V 10† 5.3 36.4 2 2.7:1 2.87 2.51 14.2

Compact, Mat, Mat-dominant 14† 10.7 81.5 3.1 3.46:1 6.09 5.98 1.84
Compact, Mat, Cell-dominant 15† 13.3 81.3 3.1 4.29:1 6.08 6.04 0.6

Table 2: Performance models for average cell density calculation with fractional volumes ini-
tialized from geometric shapes (†closest in assumptions).

Memops Flops Memops Estimated Actual Error
Description Alg. M MB M to Flops msecs msecs %

Single Material 4 32 3 1.3:1 2.39 2.62 -8.8
Full, Cell 3 103.1 825.2 3.1 32.8:1 96.5 97.6 -1.1

Full, Material 6 102.1 816.8 3.1 32.4:1 71.0 63.7 11.5
Compact, Cell 11 8.0 56.0 3.9 2.1:1 4.34 2.90 49.5
Compact, Mat 16 4.2 33.6 3.1 1.33:1 2.51 2.80 -10.2

Table 3: Performance models for material pressure calculation with fractional volumes initial-
ized from geometric shapes.
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Memops Flops Memops Estimated Actual Error
Description Alg. M MB M to Flops msecs msecs %

Single Material 2 16 2 1:1 1.20 1.00 19.7
Full, Cell 1 102 816 100 1:1 61.0 53.4 14.2

Full, Cell, with if 2 53.3 426.4 3.6 14.8:1 93.5 96.4 -3.0
Full, Mat. 4 153 1224 101 1.5:1 91.5 79.1 15.7

Full, Mat., with if 5 55.6 444.8 3.6 15.4:1 94.9 84.0 13.0
Compact, Cell 7 2.9 17.2 1.2 2.4:1 2.77 3.27 -15.5

Compact, Cell, with nmats 8 2.6 16.0 1.2 2.2:1 2.68 3.29 -18.5
Compact, Cell, with rho ave 9 4.5 30.0 1.2 3.75:1 3.72 3.56 4.5
Compact, Cell, divide by V 10† 5.3 36.4 2 2.65:1 4.20 3.65 15.1

Compact, Mat, Mat-dominant 14† 19.6 151.6 3.6 5.44:1 11.33 11.29 0.4
Compact, Mat, Cell-dominant 15† 45.9 274.8 3.6 12.75:1 20.54 23.08 -11.0

Table 4: Performance Models for Average Cell Density Calculation with random initialization
of volume fractions (†closest in assumptions).

Memops Flops Memops Estimated Actual Error
Description Alg. M MB M to Flops msecs msecs %

Single Material 4 32 3 1.3:1 2.4 2.57 -6.8
Full, Cell 3 103.9 831.2 3.9 26.6:1 123.8 135.6 -8.7

Full, Material 6 102.6 820.8 3.9 26.3:1 123.0 116.2 5.8
Compact, Cell 11 8.0 61.0 3.9 2.1:1 5.7 4.59 23.4
Compact, Mat 16 6.03 48.2 5.4 1.12:1 3.11 3.59 -13.4

Table 5: Performance Models for Material Pressure Calculation with random initialization of
volume fractions.
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storage cost and faster compute times particularly for updating existing state variable vectors
(See Algorithm 8 in Table 4) in cell-dominant loops. On the other hand, the material-centric
compact storage scheme does very well for a material-dominant loop and this advantage
would increase if the simulation had very disparate material models that were much more
compute and memory intensive than an ideal gas law.

Between the two test cases, the cell-dominant data structures were not greatly affected
by the random nature of the material distribution but the material-centric data structures
were. The reason for the poorer performance of the material-centric data structures in the
randomized case is that contiguous cells of a material are quite unlikely to be contiguous
in the mesh for this type of distribution. As expected this storage scheme performed better
when the material distribution was closer to reality.

The analysis of the compact data structures perfectly illustrates the tension between pro-
grammability and efficiency of data access and ease of coding in complex codes. In princi-
ple, both data structures offer similar memops to flops ratios. However, while the compact
material-centric data structure offers a much more intuitive and simple programming model
for the application developer, the compact cell-dominant data structure offers superior cache
performance and therefore, better execution times.

So we can see that there is no perfect data structure and that the choice of which should
be the centric variable (cells or materials) is dependent on the most common data access
demands of a code. A cell-based Eulerian code may need outer loops by cells and a
Lagrangian-based method may benefit some from a material-based outer loop, though many
loops in that approach are cell-dominant. But in any code, there will be cases where data
will likely have to be accessed in a less than ideal manner. The goal is to minimize where
this occurs. Alternately, one could either switch between the two schemes as needed or even
maintain both data structures in the code and seamlessly access one or the other by the use
of modern programming mechanisms. The cost of such a transformation will be the focus
of our ongoing work.
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A Appendix

Algorithm 21 Material-centric algorithm to compute average density of cells using full storage

1: for all cells, C, in the mesh, up to Nc do
2: ρave[C]← 0.0 # Nc stores (ρave)
3: end for
4: for all material IDs, m, in the problem, up to Nm do
5: for all cells, C, in the mesh, up to Nc do
6: if Vf [m][C] > 0.0 then # NcNm loads (Vf )
7: # 16 cycle branch +112 cache miss
8: ρave[C]← # FfNcNm stores (ρave)
9: ρave[C] + ρ[m][C] ∗ Vf [m][C] # FfNcNm loads (ρ)

10: # 2FfNcNm flops (+, ∗)
11: end if
12: end for
13: end for
14: for all cells, C, in the mesh, up to Nc do
15: ρave[C]← ρave[C]/V [C] # 2Nc loads/stores (ρave, V )
16: # Nc flops (/)
17: end for

The number of loads will be Nc for initialization of ρave plus NmNc for the fractional
volume test. In the main loop there are FfNcNm loads of ρ and FfNcNm stores of ρave.
There will be 2FfNcNm flops in the main loop. The final loop has 2Nc loads and stores
and an additional Nc flops. The performance equations become:

memops = Nc +NcNm + 2FfNcNm + 2Nc = Nc(Nm + 2FfNm + 3),

f lops = 2FfNcNm +Nc

PM = Nc(Nm + 2FfNm + 3) ∗ 8/Stream +BpFfNcNm

(16)

This will be 55.6 M memops or 444.8 MB. The flops will be 3.6 Mflops. The mem-
ops to flop ratio will be 15.4. Our estimated performance is 94.9 msecs. The measured
performance is 89.4 msecs.

The algorithm would be the following:

memops = Nc +MfNc + 2ML + 2MfNc = Nc(1 + 3Mf ) + 2ML,

membytes = Nc ∗ 4 +MfNc ∗ 4 + 2ML ∗ 8 + 2MfNc ∗ 8 = (4 + 4 ∗Mf + 2Mf ∗ 8)Nc + 16ML,

f lops = 2ML +MfNc

PM = membytes/Stream + LpMfNc

(17)

The memops are 2.6 M memops and 16.0 MB. The flops are 1.2 M flops for a 2.2
memops to flops ratio. The expected performance is 2.68 msecs and the actual is 3.13
msecs.
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Algorithm 22 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0
3: ix← imaterial[C] # Nc loads (imaterial)
4: if ix <= 0 then
5: for ix← −ix, for nmats[C] do # MfNc loads (nmats)
6: # Mf 16 cycle branch miss
7: ave← ave+ ρ[ix] ∗ Vf [ix] # 2ML loads (ρ, Vf )
8: # ML flops (+, ∗)
9: end for

10: ρ[C]← ave/V [C] # MfNc stores ρave
11: # MfNc loads (V )
12: # MfNc flops (/)
13: end if
14: end for

Algorithm 23 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0
3: ix← imaterial[C] # Nc loads (imaterial)
4: if ix <= 0 then
5: for ix← −ix, until nextfrac[ix] < 0 do #
ML loads (nextfrac)

6: ave← ave+ ρ[ix] ∗ Vf [ix] # 2ML loads (ρ, Vf )
7: # ML flops (+, ∗)
8: end for
9: ρave[C]← ave/V [C] # MfNc stores ρave

10: # MfNc loads (V )
11: # MfNc flops (/)
12: else
13: ρave[C] = ρ[C] # PfNc stores (ρave)
14: # PfNc loads (ρ)
15: end if
16: end for
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We look at performance if a new ρave array needed to be calculated.

memops = Nc +ML + 2ML + 2MfNc + 2PfNc = 3Nc + 3ML,

membytes = Nc ∗ 4 +ML ∗ 4 + 2ML ∗ 8 + 2MfNc ∗ 8 + 2PfNc ∗ 8 = 20Nc + 20ML,

f lops = 2ML +MfNc

PM = membytes/Stream + LpMfNc

(18)

The memops are 4.5 M memops and 30 MB. The flops are 1.2 M flops for a 3.75
memops to flops ratio. The expected performance is 3.72 msecs and the actual is 3.49
msecs.

We look at another where the pure cells are divided by volume just to see what the
performance numbers come out to:

Algorithm 24 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to Nc do
2: ave← 0.0
3: ix← imaterial[C] # Nc loads (imaterial)
4: if ix <= 0 then
5: for ix← −ix, until nextfrac[ix] < 0 do #
ML loads (nextfrac)

6: ave← ave+ ρ[ix] ∗ Vf [ix] # 2ML loads (ρ, Vf )
7: # ML flops (+, ∗)
8: end for
9: ρave[C]← ave/V [C] # MfNc stores ρave

10: # MfNc loads (V )
11: # MfNc flops (/)
12: else
13: ρave[C] = ρ[C]/V # PfNc stores (ρave)
14: # 2PfNc loads (ρ, V )
15: # PfNc flops (/)
16: end if
17: end for

memops = Nc +ML + 2ML + 2MfNc + 3PfNc = (3 + Pf )Nc + 3ML,

membytes = Nc ∗ 4 +ML ∗ 4 + 2ML ∗ 8 + 2MfNc ∗ 8 + 3PfNc ∗ 8 = (20 + Pf ∗ 8)Nc + 20ML,

f lops = 2ML +Nc

PM = membytes/Stream + LpMfNc

(19)

The memops are 5.3 M memops and 36.4 MB. The flops are 2 M flops for a 2.65
memops to flops ratio. The expected performance is 4.20 msecs and the actual is 3.78
msecs.
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