ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-16-23889

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

A Comparative Study of Multi-material Data Structures for
Computational Physics Applications

Garimella, Rao Veerabhadra
Robey, Robert W.

Report

2017-01-31 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

A Comparative Study of Multi-material Data
Structures for Computational Physics Applications

Garimella, R. (rao@lanl.gov), T-5, Los Alamos National Laboratory
Robey, R. (robey@lanl.gov), XCP-2, Los Alamos National Laboratory

Abstract

The data structures used to represent the multi-material state of a computational physics
application can have a drastic impact on the performance of the application. We look at
efficient data structures for sparse applications where there may be many materials, but only
one or few in most computational cells. We develop simple performance models for use in
selecting possible data structures and programming patterns. We verify the analytic models
of performance through a small test program of the representative cases.

1 Introduction

A state manager in a multiphysics simulation helps physics kernels efficiently represent and
query field or state variables pertinent to the simulation. The state variables are typically
tied to a specific type of mesh entity (like cells, faces or nodes) or even discrete particles.

It is now relatively well established that the most efficient way to represent such data
is in linear arrays so that the data is in contiguous memory and can be accessed efficiently
without excessive cache misses. This is quite simple when each mesh entity has a single
value of a variable type (density or temperature) associated with it. However, it is much
more challenging in some multiphysics simulations where a mesh entity may have multiple
materials or phases, each with its own value of a state variable such as density and only a
few materials are present on most entities.

This is illustrated in Figure [I| where the different shaded regions represent material re-
gions from which the mesh cells get material volume fractions. Note that not all materials
are in all cells. Cells 0, 2 and 8 are pure cells (single material) with materials 1, 2 and 3
respectively. Cell 7 is the most complex with all four materials.

Assume that the physical state of materials is given by density pc ,,, temperature tc ,,
pressure pc.,, and volume, V¢ ,,,, where the subscript C' refers to the mesh cell index and
m refers to the material index. The state of a cell is described by these physical variables
for as many materials as are present in the cell as well as the fractional volume V of each
material. The fractional volume will be defined in cm? so that loops will have to divide by
the volume of a cell, V, or simply V' where the meaning is clear, to get the average density.
Thus, pure cell 8 would have state variables (ps 3, ts 3, Pg 3, Vs 5) but mixed cell 3 would
have state variables (p3 1, t31, P31, Vs 15 03,45 134, P3.4,Vf; ,). By the same token, mixed
cell 7 would have these four variables for all four materials. Managing this complexity for
large meshes where there are a lot of materials in the problem but each cell has only a small

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

Mat 3
Cell 5

Mat 1 Mat 2
Cell0 Cell Cell 2

Figure 1: 3x3 mesh showing the presence of 4 materials in the mesh

subset of the materials (often just 1) and writing efficient computational kernels using these
data structures is challenging.

To analyze storage schemes and how they may be used by computational scientists, we
will consider three representative computational scenarios:

1. Compute, pgye[C], the weighted average density of materials in cells of a mesh (weighted
by fractional volumes of the materials). This computation is a proxy for homogeniza-
tion or material closure models in a cell.

2. Evaluate, p[C][m], the pressure in each material contained in each cell using the ideal
gas law p(p,t) = nrt/v. This computation is a proxy for more complex equation of
state evaluations.

3. Evaluate, p[C][m], the weighted average density of each material over the node-
connected neighbors of each cell, C'. The weighting is inversely proportional to the
square of the distance between the centroid of the cell and its neighbor. This compu-
tation explores more complex computations that access values over a neighborhood
and is a proxy for a material-wise gradient calculation in each cell.

Performance Analysis

Even a cursory analysis of the first two of these computations shows that at best these will
be one 8 byte memory load or store (referred to collectively as memops) per floating point
operations (ﬂops[b. The first case will load the density plus the fractional volume (two loads)
for each material in a cell and do one multiply and a reduction add. Also, there is a load of
the cell volume and a divide by this volume but this is a small effect when there are lots of
materials. This is a 1:1 memops to flops ratio. The second case must load material density,
temperature, fractional volume and store pressure in each cell. The material constant has to
be loaded for each material. This is just over four memops. There are two multiplications
and a division in the ideal gas equation giving three flops. So the second case results in a
1.3:1 memops to flops ratio.

"Note that flops is the plural of flop but we will write FLOPS when we want to discuss floating point operations
per second

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 2

This roughly 1:1 memops to flops ratio is pretty common in explicit finite difference
loops. As a result these codes are almost always memory bandwidth limited. So to analyze
the cost of each loop operation, we mainly count the loads and stores. In addition, we note
whether memory accesses are contiguous or not.

To check the rough analysis given above, we test the average density loop for one million
pure (single material) cells. We run this on a 2.7 Ghz MacBook Pro with 6 MB L3 Cache
for a measured stream scale benchmark[2] of 13, 375 MB/sec. For two loads of eight bytes,
one million element arrays, the memory size is 16 MB. The calculated performance should
be 16 MB/ (13375 MB/sec) = 1.2 msec. The measured performance is 1.15 msec. For a
second check, the pressure calculation loop with 4 memops has a 2.4 msec calculated time
and a 2.66 msec measured performance.

The floating point cost for the average density loop is 2 flops per cell for a million cells
or 2 Mflops. The theoretical peak performance for a single-threaded process without vec-
torization is 2.7 GHz times 2 flops for a multiply-add or 5.4 Gflops/sec. We then calculate
2 Mflops/1.2 msec = 1.67 Gflops/sec or about 1/3 the floating point capability.

In addition to counting loads and stores, we will take into account some other costs
associated with cache management and branch prediction. In accounting for cache misses,
we have to account for the spatial and temporal locality (or lack thereof) of the accessed
data. If the data has excellent spatial and temporal locality, we can expect the performance
to match the stream performance. At the other extreme, if we have no locality, we may have
to evict the entire cache for every load and it is as if we are loading 8 times the amount of
data (assuming that the cache line is 64 bytes and each 'memop’ in our calculation loads
an 8 byte double). Thus, when there is a potential for cache misses, we must multiply the
loads/stores by a cache miss cost, Cp,1 <= C, <= 8. To keep it simple, we will use
C) = 8, if there is no spatial or temporal locality and C), = 4 if there is one or the other.

In algorithms that have branching, we add a branch prediction cost, B, for the cases
where the ’if” statement code is executed and a cache miss cost, P., for a late prefetch
operation. The hardware prefetch only occurs if the frequency of the branch is high and
the instruction stream needs to be reset when the branch is true. From Agner [1]], page
44, “If the wrong branch is fed into the pipeline then the error is not detected until 10-20
clock cycles later and the work it has done by fetching, decoding and perhaps speculatively
executing instructions during this time has been wasted”. For this processor architecture, a
16 cycle branch cost and a 112 cycle cache cost gives good match to measured performance.
The processor frequency, v, is 2.7 GHz for this architecture. We further tune the branch
and cache miss penalties by multiplying by the branch miss frequency, By, to account for
the higher miss rate of the branch prediction when the data lacks spatial locality. For the
random data problem, we set the branch miss frequency to 1.0 and for the geometric shape
initialization, we set it to 0.7. This accounts for the data already being in memory when
traversing a nearly contiguous row of data for lower and upper regions of the rectangular
shape. The selection of 0.7 is empirically determined to give a best fit to the performance
data. Thus we can compute the branch penalty B, = N,Bf(B. + P.)/v, where N is
number of times we encounter the branch.

Finally, if an algorithm executes small loops of unknown length (say 2-5), we assign a
loop cost, L., taken to be about 20 cycles per exit. Then the penalty is L, = L./v.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

Figure 2: Material shapes used to generate fractional volumes for performance tests of various
data structures. Note that corners of the condominant rectangles have been tweaked to force a
larger number of mixed cells.

Test Cases

The test case used for the performance measurements is a 50 material (V,;,), 1 million
cell problem (/N.) with 4 state variables (/V,). This problem size is large enough to avoid
being stored in L3 cache between iterations thereby forcing main memory accesses. This
will more closely reflect real code performance. For systems with large caches, it may
be necessary to increase the number of cells in the test. The stream benchmark recently
increased their array size from 2 million to 10 million due to cache sizes getting larger. We
also use a C memory allocator for two dimensional arrays that allocates a single contiguous
block of memory.

We consider two test problems with different distributions of materials - the first is com-
posed of 95% pure cells and 5% mixed cells initialized from geometric shapes as shown
in Figure |Zl Of the mixed cells, about 99.9% are 2 material cells (4.9% of the total),
0.06% (0.0032% of the total) are 3 material cells and 0.04% (0.0019% of the total) are
4 material cells. The number of variable values stored for mixed material cells, M7, is
2(0.049N.) + 3(0.000032N.) + 4(0.000019N,) ~ 0.098 N... The total number of variable
values including mixed cell and pure cell values is (0.95 4+ 0.098) N, = 1.048N...

The second test case is composed of 80% pure cells (Fy) and 20% mixed cells (M)
initialized randomly. Of the mixed cells about 62.5% of the (12.5% of the total) have 2
materials, 25% (or 5% of the total) have 3 materials and 12.5% (or 2.5% of the total) have
4 materials. Therefore, the number of variable values stored for 2 material cells will be
2(0.125N,), 3 material cells will be 3(0.05V;) and 4 material cells will be 4(0.025N,)
or a total of 0.5N.orN./2 variable values for mixed material cells which we will refer to
as M. The total number of variable values including mixed cell and pure cell values is
(0.80 + 0.5)N. = 1.3N,.

The two are end cases of a realistic simulation - materials are neatly distributed in ge-

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 4

ometric patterns in the domain only in the initial stages and become more deformed and
fragmented as the simulation proceeds but they never quite reach a completely random dis-
tribution (Note that even with considerable tweaking of the geometric shapes, we could not
generate more than 5% mixed cells of which 99.99% were 2 material cells). Therefore, one
might expect the actual performance to be somewhere in between the two cases.

2 Full storage

The simplest approach is to assume that every material lives in every cell and just set the
variables for the absent materials to be 0.0. This simplifies the storage of materials as well
as the access of material states in a cell at the cost of overusing storage space for data. We
will refer to this storage scheme as a as full matrix representation. It could also be called a
sparse matrix but that can easily be confused with the compressed sparse form which we
will introduce later.

There are two possible full matrix representations for the data based on which variable
constitutes the outer loop of the proper storage access as the centric variable. This can be
either cells or materials.

2.1 Cell-centric Full Matrix Representation

7 10.05] 0.1 [0.1 |0.75

6 01| - [07]02

c 5| - |055]045] -

€

I 4 |04 055005 -

I

s 3]08| -~ | - |02
2 | - |1o]| -~ | -
1 [o6|04]| — | -
o [1of| - |-|-

1 2 3 4
Materials

Figure 3: The Cell-centric full matrix data structure with materials stored contiguously for each
cell.

The cell-centric data structure is shown in Figure 3} The diagram uses the C program-
ming language notation of p[C][m] with the convention of row data varying fastest so that
materials 1 and 2 are closer in memory than cells 1 and 2.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 5

Storage requirements

As before, assume that there are N, cells in the mesh, N,,, materials in the problem, N,
material-wise variables and N, cell-wise variables. Then the storage requirements of the
full matrix data structure, Storage ty,, are:

Storage fm = (NmyNeNpm + NpoNe + NepNe) * 8

= [Npo(Np + 1) + Ney) % Ne % 8 M

The first term is for the material-wise variable arrays such as p, ¢, p, and V. The second
term is for the row pointers since we are using C. The last term is the storage for the cell-wise
variables.

2.1.1 First Computational Loop — Average Cell Density

Then the first computational loop, written using cell-dominant logic, is shown in Algo-
rithm/[I1

Algorithm 1 Cell-centric algorithm to compute average density of cells using full matrix storage

1: for all cells, C, in the mesh, up to N, do

2 ave < 0.0 # Not a main memory access, zero cost
3 for all material IDs, m, in the problem, up to V,,, do

4: ave <— ave + p[C][m] * V¢[C][m]

5: # 2N.N,, loads (p,V¥)
6: # 2N.N,, flops (+, *)
7
8
9

end for
Pave|C)] < ave/V[C]| # N, loads (V)
: # N, stores (Pave)
10: # N, flops (/)

11: end for

Performance analysis

We can also calculate the loads and stores for this computational loop. We will access the p
and Vy arrays N.Np, times each. There will be one load (V') and one store (pqve) per cell
for an additional 2N, memops. Note that we do not account for the cost of local variables,
such as ave, which are assumed to be in cache. Counting the flops, the first loop needs a
multiply and an add for every material in every cell (2N, N, flops) and then a division by
V' for each cell which is exactly one flop per word loaded. The number of arrays accessed
is 4, namely, p, V}, pave and V. The array data is accessed in contiguous order since the
inner loop matches the second (row) index of the array. We summarize the performance as
follows:

memops = 2N.(Ny, + 1), flops = N.(2N,, + 1)

2
PM = 2N.(N,, + 1) * 8/Stream @

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 6

2.1.2 First Computational Loop - Average Cell Density - Conditional Variant

We can get some small improvement in the data loads and stores by testing the fractional
volume for each cell and only add to the average where it is greater than zero as shown in
Figure[2] This modification is shown in algorithm 2]

Algorithm 2 Modified Cell-dominant algorithm to compute average density of cells using full

matrix storage

1: for all cells, C, in the mesh, up to N, do

2 ave < 0.0

3 for all material IDs, m, in the problem, up to N,,, do

4 if V;[C][m] > 0.0 then # N.N,, loads (V})

5: # B,N.N,, branch penalty
6: ave < ave + p[C][m] * f[C][m]

7 # 'y N.Ny, loads (p)

8 # 2F N N,, flops (+, *)
9 end if
10: end for
11: paye|C] < ave/VIC] # N, stores (pgpe)
12: # N, loads (V)
13: # N, flops (/)
14: end for

Performance Analysis

For the modified algorithm performance analysis we need to define a sparsity of Sy cor-
responding to the frequency that the ‘if” statement is false. The sparsity fraction Sy is the
number of zero entries where V;(C,m) = 0.0 (for the data shown in Figure/[I]this is 17/36).
We define the complementary term, filled fraction, F, as 1 — Sy. We can also express F'y
as the average number of non-zero materials per cell or N, 44, /Nim,. For our test problems,
since there are 1 million cells and 50 materials, the total number of variable entries is 50
million. However, in the first test problem only 1.048 N, = 1048000 of those entries are
non-zero (see description of the test problem in the introduction). This gives us a filled
fraction, F'y = 0.0209 and a sparsity fraction, Sy = 0.979 for this problem. For the second
problem with the random initialization, the number of non-zero variable values stored is
1.3N, giving us a filled fraction of Fy = 0.026 and a sparsity fraction of Sy = 0.974. By
testing for non-zero fractional materials the equations become:

memops = Ne(Ny, + Fr Ny +2), flops = Ne(2F¢ Ny, + 1)

3
PM = Ne(Np + Fy Ny, 4 2) x 8/Stream + B, Fy NN, 3)

Note that the performance model as stated above is not based only on memops. This is
because accounting only for memops greatly underestimates the actual performance (as seen
in the tables in the summary section). To get a more accurate model, we added a penalty for
branch predicition and cache miss due to late prefetch as discussed earlier.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

Testing with an example code shows, despite reducing the memory loads by a factor
of two, the ‘if” statement in this algorithm slows down the code a factor of three from the
memory bandwidth capability. The reason for this is the branch misprediction cost and the
resulting delay in memory fetching. The branch penalty is actually what we want even
though the performance is slower than the earlier code because the alternative is that we
unnecessarily saturate the memory bus. When there are multiple cores accessing data, this
will cause a limit to performance as well as increasing the energy usage of the algorithm.

2.1.3 Second Computational Loop — Pressure for each cell and each material

The second computational loop is shown in Algorithm [3] In this case we use an ‘if” test to
avoid dividing by zero. This also avoids accessing all the array data where V(C,m) = 0.0
other than the fractional volume array itself.

Algorithm 3 Cell-centric algorithm to update material state using the full storage scheme

1
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

: for all cells, C, in the mesh, up to N, do
for all material IDs, m, in the problem, up to N,,, do
if V;[C][m] > 0.0 then # N.N,, loads (Vy)
B,N.N,, branch penalty
Ny — n(m) # FyN.N,, loads (n)
plCl[m] <= (nn, * p[C][m] * ¢[C][m]) /V;[C][m]
I’y N Ny, stores (p)
#2FtN.Np, loads (p, 1)
3Fy NN, flops (x,*, /)
else
p[C][m] < 0.0 # Sy N.N,, stores (p)
end if
end for
end for

Performance Analysis

The main loop will have N.N,, accesses for V; and 2F'yN.N,, for p and ¢. In addition,
we will have Fy N.N,, accesses for the n array. Finally, there will also be N.Np, stores
for the p array split across the two branches. The loop takes advantage of the sparsity for
3FfNp, N, flops.

memops = NeNpy (2 4 3Fy), flops = 3Ff NNy,

4
PM = NcNp,(2 + 3Fy) x 8/Stream + B, FyN.Np, @)

In the second loop, the number of arrays accessed is 5 (n, p, t, Vy and p). The ‘if” state-
ment causes some difficulties, but otherwise the array data is mostly accessed in contiguous
order since the inner loop, matches the second (row) index of the array. The exception is n

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

which has to be brought in multiple times (N_.N,;,) using the cell-centric logic whereas it
should only need to be brought in NV, times using a material-dominant logic. If the material
data table represented by n is very large, this would be extremely wasteful and there would
be a strong reason to use a material-dominant loop ordering to avoid the cost of the data
loads.

2.1.4 Third Computational Loop — Average density of each material over
neighborhood of each cell

A third computational loop that computes the average density of each material in the neigh-
borhood of each cell is shown in Algorithm[d] We denote this average density by p to distin-
guish it from the average density of a materials in a cell, pyye. Note that the neighborhood
of a cell can be defined in any way we want (face-connected neighbors, node-connected
neighbors or something else). Also, in the algorithm, it is assumed that the problem is 3D.
For simplicity we assume that the number of neighbors of a cell is constant (IV,,) and the
neighbors of a cell are computed a priori, making their retrieval a constant cost operation.
The algorithm introduces a cost term, L ¢, which indicates roughly what fraction of cells
around a candidate cell contain a particular material if the candidate cell itself contains that
material. Given that material generally stays together even under considerable stretching
and formation of filamentary structures we hazard to guess that L is approximately 0.8.
As before, we account for the conflicting costs from lack of spatial locality but presence of
some temporal locality using the cache miss penalty term (), whose values we take to be 4.

Performance Analysis

In computing the performance model, note that the cost of storing pis F'y NN, +S§ NNy, =
NeN,, since Fy + Sy = 1.0. Also, note, we do not add in a branch penalty for the inner ’if”
statement in the algorithm because L is high (as opposed to F/).

We can then write the following performance model:

memops = No(3 4+ 2N,, +12.5N,,) + 4FchNmNn(l + Ly)),
flops = ON.N,, + 3F; Ly NN, Ny,
PM = (Ne(3+ 2Ny, + 12.5N,,) + 4Ff NNy Ny (1 + L)) * 8/Stream +
BpFyN.Ny,

&)

2.2 Material-centric Full Matrix Representation

Now we look at the material-centric data structure as shown in Figure 4] The cells 1 and 2
are closer in memory than materials 1 and 2 which are a IV, stride apart in memory. The C
notation for this data access is p[m|[C] and the outer loop should be over materials.

2.2.1 First Computational Loop — Average Cell Density

If we switch to material-centric data structure and loop logic (iterate over materials first),
the algorithm will be as shown in Algorithm 3]

We can see right away from the additional complexity of the loop structures that the first
computational case has become inefficient due to the multiple loads/stores of pgye[C]. The
number of memops will include NV, stores for initialization of pgye, plus loads of 3N.N,,

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

Algorithm 4 Cell-dominant algorithm to compute average density of each material over a neigh-
borhood of each cell (Assume problem is 3D)

1: for all cells, C, in the mesh, up to N, do

20 X, X[C] # 3N, loads (z[C))
30 {cpprs} < nbrs|C] # N_N,, integer loads
4: # Integer loads, multiply by 0.5
5. for all neighbors, i, up to N,, do
6: Cz < Cnbrs [Z]
7 dsqr[i] <= 0.0
8: for j < 0,2do
9: dsqr[i] < dsgr[i] + (zc[5] — 2[Ci][4])?)
10: # 3N.N,, loads (X)
11: # Partial reuse, multiply by C), = 4
12: #9N_N, flops (-,*,+)
13: end for
14: end for
15: for all material IDs, m, in the problem, up to N,, do
16: if V¢[C][m] > 0.0 then # N.N,, loads (V)
17: # B,N.N,, branch penalty
18: Psum 0
19: N, <0 # local variable IV,,, not global variable IV,
20: for all neighbors, i up to INV,, do
21: C; <+ Cnprs|i]
22: if V¢ [C;][m] > 0.0 then # FyN_N,, N, loads (V)
23: # Partial reuse, multiply by C,, = 4
24 Psum < Psum T p{cz] [m]/dsqr [Z] B
25: # FyN.Np, LN, loads (p)
26: # Partial reuse, multiply by C), = 4
27: #2F;N.N,,L;N, flops (/,+)
28: N, + N, +1 # FyN.N,,L;N,, flops (+)
29: end if
30: end for
31: p[C][m] < psum/Nn # FyN.N,, stores (p)
32: # [y N Ny, flops (/)
33: else
34: p[C][m] < 0.0 # SyN.N,, stores
35: end if
36: end for
37: end for

for p, and V; and N.Np, stores of pgye in the main loop. Note that we count the load and
store of pgye as a single memop instead of two. Then in the final loop there are N, loads
for V and pgqe plus N, stores of pg.. We get contiguous access of variables at the cost of

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 10

4 | = | = |~ lo2] - |- [02]075] -

0.05(0.45(0.7 | 0.1 1.0

2 - |04 (10| - |055]{055(- |01} -

1 10 {06 | -- |08[04 | - |01 005 -

m»—-m»—-»—so,—»mz
w
1
1
1
1
1
1
1
1

0 1 2 3 4 5 6 7 8
Cells

Figure 4: The Material-centric full data structure has cells stored contiguously for each material.

Algorithm S Material-dominant algorithm to compute average density of cells using full storage

1: for all cells, C, in the mesh, up to N, do

20 Pave[C] < 0.0 # N, stores (Paue)

3: end for

4: for all material IDs, m, in the problem, up to N,, do

5. for all cells, C, in the mesh, up to N, do

6: Pave|C] <= pave|C] + p[m][C] x Vi [m][C]

7. # NcNm stores (pave)
8: # 2NN, loads (p, V¥)
9: # 2N N,, flops (+, *)
10: end for
11: end for
12: for all cells, C, in the mesh, up to N, do
130 PavelC] < pave|Cl/V[C] # 2N, loads/stores (pgpe, V')
14: # N. flops (/)
15: end for

loading them multiple times. The resulting performance equations are:

memops = 3N.(Np, + 1), flops = 2N.N,, + N,

6
PM = 3N/(Ny, + 1) * 8/Stream ©

We could get some better performance by “blocking” loops. In this case, we could block
the cell loop for a cache line size of about 8 doubles and with memory aligned properly.
Most codes, however, do not write loops this way as it is more tedious.

Another optimization would be to only do the operation for Vx > 0.0, as before. The
algorithm for the modified loop and its performance analysis is included in the appendix
(See Algorithm [21)). Although the memops to flops ratios degrade for this problem it does
not affect the performance of the algorithm appreciably. The performance statistics for the
two large problems are presented in tables in the summary section.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 11

2.2.2 Second Computational Loop — Pressure for each cell and each material

A reordering of loops and data accesses also can be made for the second computational loop

as shown in Algorithm 6]

Algorithm 6 Material-dominant algorithm to update material state using the full storage scheme

1: for all material IDs, m, in the problem, up to N,,, do

2: Ny, < n(m) # N,, loads (n,,)

3: for all cells, C, in the mesh, up to N, do

4: if V;[m|[C] > 0.0 then # N.N,, loads (V})

5: # B,N.N,, branch penalty
6:

7: plm][C] = nu * plm][C] * t[m][C]/Vi[m][C]

8: #2FtN.Np, loads (p, 1)

9: # I’y N.N,, stores (p)
10: # 3Fy NN, flops (x,*, /)
11: else
12: p[m][C] < 0.0 # Sy N.N,, stores (p)
13: end if
14: end for
15: end for

Performance Analysis

The multiple material table data loads represented by n will be far more ideal and the second
loop becomes more efficient. The material loop loads the material constant NV, times. Then
there are NN, loads of V; for the ‘if” test and F'y N.IN,;, stores of p and 2F'y N.N,;,, loads
in the main loop with 3F'y NNy, flops. Finally, there are S N.IV,, stores of zero into p. We
account for the ’if” statement as before with a penalty due to branching.

memops = Ny, (1 + 2FfN. +2N,), flops = 3FyN.Np, o
PM = Ny, (14 2F¢N. + 2N,.) * 8/Stream + B, F'f N.N,,
2.2.3 Third Computational Loop — Average density of each material over
neighborhood of each cell

The third computational loop computing the average density of each material in the neigh-
borhood of each cell is shown in Algorithm[/| The only difference between this algorithm
and the cell-centric one (Algorithm) is that the outer loop is on materials.

Performance Analysis

The performance model for this case is similar to that of the cell-centric case except that the
loads of z[C] and nbrs[C] have moved further inside the loops multiplying their costs by
N,,,. Thus the performance model can be stated as shown below:

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

12

Algorithm 7 Material-dominant algorithm to compute average density of each material over a
neighborhood of each cell (Assume problem is 3D)

1: for all material IDs, m, in the problem, up to /V,,, do

e e e e e e
YRR LY O

WO N NN NN NN
S XY X I N AE LD

31:
32:
33:

RN AERD

e}
2

for all cells, C, in the mesh, up to N, do

if V;[m|[C] > 0.0 then # N.N,, loads (V})
B,N.N,, branch penalty
z. <+ z[C] # 3FyN.N,, loads (z[C])
Psum < 0
N, < 0.0 # Local var. N,,, not global var. N,
for neighbor cell index i «+ 0, N,, — 1 do
C; + nbrs[C]]i] # FyN.N,, N, integer loads (nbrs)
Integer loads, multiply by 0.5
if V¢[m][C;] > 0.0 then # FyN.N,, N, loads (V)
Partial reuse, multiply by C), = 4
dsqr < 0.0
for 7 < 0,2do

dsqr 4= dsgr + (zc[j] — Z[Ci][4])° .

#3F¢N.N,,,L;N, loads (z[C;])
Partial reuse, multiply by C,, = 4
9FchNmLan flops (-,*,+)

end for

Psum = Psum T P[m] [Ci]/dsqr B
'y N. Ny, Ly N, loads (p)
Partial reuse, multiply by C,, = 4
#2F;N.N,,L;N, flops (/,+)

N, + N, +1 # FchNmLan flops (+)
end if
end for
plm][C] <= psum/Nn # FyN.N,, stores (p)
'y N.N,, flops (/)

else
p[m][C] < 0.0 # S¢N.N,, stores (p)

end if

end for
end for

memops = NeNp (2 + Fp(3 + Ny (4.5 + 16Ly))),
flops = FyN Ny, + 12FfoNCNmNn
PM = (NeNpy (2 + Fp(3+ N, (4.5+ 16Ly))) * 8/Stream +
B,Ff NNy,

®)

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 13

3 Compact storage

Compact storage representations store the variable data for a material in a cell only if the
material is present in the cell (i.e., its volume fraction is non-zero). We also refer to this as a
compressed sparse representation since that is the terminology used in the matrix commu-
nity for their compact storage, such as compressed sparse row (CSR) and similar terms.

3.1 Cell-centric Compact Storage

Here we present a compact storage scheme for multimaterial data that is based on that cur-
rently used in the Roxane cod The general strategy is to use a linked-list of materials.
As shown in Figure [5] the empty data cells are first squeezed out so that only those with
information are retained. Then the pure cells are removed since we already have that infor-
mation in the cell state arrays. The remaining data could then be accessed in ragged right
form such as p[C][m]. But for short lists, this adds an 8 byte pointer for each list for each
variable, which is too high an overhead. So we concatenate the list data and use a special
linked list that is in array form where the pointer to the start of the list for each cell is an
index into an array. The next set of fractional material immediately follows it. This gives
better cache behavior than the typical linked-list as the data is accessed in contiguous order.
The offset into all the mixed-material lists is the same for all the state variables, so we only
need a single offset value for all of them and the addressing is now a single-dimensioned
array accessor in the form p[mstart].

The resulting data structure with the abs(imaterial) and nmats pointing into the mixed-
material lists is shown in Figure[6] The length of each material list can be found either from
the nmats array or looping over the nextfrac array until it hits a -1, indicating the end of the
list. The advantage of the nextfrac array is that each entry points to the next item in the list,
allowing added materials to be placed at the end of the entire mixed material list instead of
copying all the existing materials in the cell to be moved there.

Storage costs

To compute the storage costs for this representation we use the length of the mixed material
arrays My, in the first test problem (approximately 0.5, as derived in the introduction).
The storage costs for this compact representation is M, for four doubles and three integers,
plus N, for four double and two integers. For the million cell mesh with 50 materials and
a mixed material length, 500, 000, the storage would be 62.0 MB for a reduction of ~96%
from the full matrix representation. The memory savings approaches that of the sparsity of
the data as would be expected. The net impact of this storage reduction is the ability to run
larger problems on a node and because these applications are bandwidth limited, we expect
to see a corresponding decrease in runtime.

Assuming, as before, that we have to represent N,,,,, material based variables and N,
cell based variables we can state the storage estimate for the cell-centric representation as

Storagecc = 4(3ML + 2NC) + 8(ML + NC)va + 8NeNew (9)
2Roxane is a LANL cell-based AMR Eulerian hydrocode

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

8 | - | - |10] - 1.0
7 10.05] 0.1 | 0.1 |0.75 0.05] 0.1 | 0.1 |0.75 0.05| 0.1] 0.1 [0.75
6 01| - |07]02 0.1 (0702 0.1]07]02
c 5 | - |oss|oas| - 0.55(0.45 0.55 | 0.45
? 4 |04]055[005| - 04 |0.550.05 0.4 | 0.55|0.05
s 3 /08|~ | - |02 0.8 | 0.2 0.8 | 0.2
2 | - |to| ~ | - 1.0 \
1 |06]|04] ~ | - 0.6 | 0.4 06| 04|08 02|04 |055[0.05
0o (10| - |~ | - 1.0
1 2 3 4
Materials
06| 04| 08|02/ 04[055/005[055[045| 0.1] 0.7] 0.2 [0.05] 0.1] 0.1 0.75 FDr:‘;:fy“al

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mixed Data Storage Arrays

Figure 5: The cell-centric compact data structure has a linked-list for each cell that has multiple
materials.

3.1.1 First Computational Loop — Average Cell Density

For the C/C++ data structure, we use the p[abs(imaterial)] offset into the linear linked-list
data structure. Then we loop over the fractional materials, summing the fractional densities
times the fractional volumes, until we hit a -1 value as shown in Algorithm @

Note the loop over cells with an inner loop over materials that only loops for as many
materials as there are in each cell. This shows just how much of an advantage the compact
storage representation can achieve. First, if there are no fractional materials in a cell, we
do nothing because the stored density is already the average density. If there are fractional
materials, we average them by their weighted volume in the celﬂ

Performance analysis

The number of loads is N, for the integer array imaterial plus M}, loads of nextfrac and
2M7p, of p and V. After the material loop, there are My N, stores of p and My N, loads of
V. In the material loop, there are 20, flops plus M N, flops after the loop. This gives us
the following performance equations:

3See Appendix for algorithm and performance analysis when the average density is not a stored variable but
must be created on the fly

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 15

State Arrays
V’ p’ t’ p

-1 2 -1 2 3 2 3 4 -1 Number of Materials, nmats

Material/Linked List Index
imaterial

e [

1 -1 3 -1 5 6 -1 8 -1 10 | 11 | -1 [13 [14 | 15 | -1 | nextfrac

1 1 3 3 4 4 4 5 5 6 6 6 7 7 7 7 frac2cell

1 2 1 4 1 2 3 2 3 1 3 4 1 2 3 4 | Material

State Arrays

06]04]08] 0204 ([055(0.05[0.55]0.45] 0.1]0.710.21]0.05]0.1 0.1 0.75 Vi pot, p
M b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mixed Data Storage Arrays

Figure 6: The mixed material arrays for the cell-centric compact data structure.

memops = No(1+2My) + 3Mp,, membytes = (4 + 2M * 8) N, + 20M,,

10
flops =2Mp + M¢N., PM = membytes/Stream + L, M¢N, (10)

For this analysis we have to separate out 4 byte integer and 8 byte memory loads. Note
that, the material loop has an unknown but small length thereby incurring a complex loop
cost, L., of 20 cycles per exit.

If the fractional material data are ordered in the same access pattern as the cell data, the
loads are pretty much contiguous. A careful reader will note that one of the advantages of
this data structure is that the cell average densities never have to be calculated since as a
pure cell, they are already stored in the p cell array. Also, we could use the nmats array to
determine how many iterations for the inner material loop. The modified algorithm and per-
formance analysis is shown in the appendix as Algorithm[22]and the estimated performance
and actual performance are included in the tables in the summary section.

3.1.2 Second Computational Loop — Pressure for each cell and each material

The loop to calculate pressure for each cell and each material for the cell-centric compact
storage is shown in Algorithm 9]

Most of the data is loaded in a contiguous order except for the material property n. This
will be loaded multiple times more for each material than necessary.

memops = (1 + 5Pf)N. + 6My, membytes = (4 + 5P x 8)N. + 40M,

11
flops = 3Mp +3PfNc, PM = membytes/Stream + L, M N, ab

If the material property is something like an ideal gas law, this would not be too bad.
But for a table-based EOS with a couple of hundred data values, it would perform poorly.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 16

Algorithm 8 Cell-dominant algorithm to compute average density of cells using compact stor-

age

1: for all cells, C, in the mesh, up to N, do

2 ave < 0.0

3: iz < tmaterial[C] # N_ loads (imaterial)
4 if 1z <= 0 then

5 for ix < —ix, until iz < 0 do

6: # M 16 cycle branch miss
7 ave < ave + pliz] * Vy[iz] # 2M, loads (p, Vy)

8 # M, flops (+, %)

9: ix « next fraclix] # M, loads (next frac)
10: end for

11: p[C] + ave/V[C] # My N, stores (paype)
12: # M; N, loads (V)

13: # MyN, flops (/)

14: end if

15: end for

3.1.3 Third Computational Loop - Average density of each material over neigh-
borhood of each cell

Performance Analysis

The complex logic of the algorithm to compute average material density over a neighbor-
hood using the cell centric algorithm makes it challenging to account for its memops and
flops. Still, we can reduce the complexity by combining terms from the two branches using
the recognition that £y N.N,;, = PyN. + M, - in other words, the number of non-zero
entries for any variable is the number of of mixed cell entries in the mesh (M}) plus the
number of pure cell entries (P N.). Then we can write the performance model as:

memops = Nc(3.5 + 12.5N,,) + 0.5M[, + NNy, (1 + 1.5Ff)+
2Ff NNy Ny (14 2Npe + 2L)
flops = 9NN, 4+ 3Fy NNy Ny Ly + FyNe Ny, (12)
PM = (N¢(3.5+12.5N,,) + 0.5M, + NeNp (1 4+ 1.5F)+
2Ff NNy Ny (1 4 2Ny + 2L) * 8/Stream + B, M

3.1.4 Adding to the Cell-centric Compact Data Structures

Adding to the mixed material data arrays is made simpler by having extra array length of
10-20%. We first test to see if the material exists in the cell and then if it doesn’t, we move
the existing material data to the end of the mixed material array and add the new material as
shown in Algorithm [TT, When threading, either with OpenMP or OpenCL/Cuda, we have
to use an atomic operation to extend the array so that another thread does not get the same
storage.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

17

Algorithm 9 Cell-centric algorithm to update material state using the compact storage scheme

1: for all cells, C, in the mesh, up to N, do

2: iz < tmaterial[C]) # N, loads (imaterial)
3: if iz <=0 then

4: for ix < —ix, until next fracliz] < 0 do

5: # M loads (next frac)
6: N <— n(matids[iz)) # M, loads (matids)

7: plix] <= (nm * pliz] * t[ix])/Vi]iz] #3M loads (p,t, V)
8: # M, store (p)

9: # 3M, flops (x, *, /)
10: end for
11: else
12: plC] «+ # Py N, stores (p)
13: n(imaterial[C]) * p[C]| * t[C]/V[C] # 4PN, loads (n,p,t,V)
14: # 3PN, flops (%, *, /)
15: endif
16: end for

The operation of adding a new material to a cell is also shown in Figure [/ Material 4
has just moved into cell 4 in the problem from Figure [I] The new material has been added
to the end of the array and the nextfrac entry is set to point to it.

When removing a material, we simply remove the link to the data and zero it out. Thus
it will never be accessed.

At the end of each cycle or few cycles, we reorder the arrays by walking through them,
copying the data in order to the new array as shown in Algorithm[I2] This reordering causes
the data access patterns to be in sequence and cache friendly as well as reclaiming holes in
the mixed-material arrays.

3.2 Material-centric Compact Storage

The material-centric compact storage, as the name indicates, is organized around subsets of
mesh cells corresponding to each material. Each mesh subset carries two lists:

1. subset2mesh - A list of mesh cell IDs in the subset (represents a map from the subset
to the mesh)

2. mesh2subset - A list that maps mesh cell IDs to their local index in the subset (reverse
map from the mesh to the subset).

If we don’t use a smart array that knows its own size to represent the subset2mesh array,
we must also have a an array ncellsmat to represent the number of cells in a subset. However,
this is a negligible cost since it is only as many integers as there are materials.

The concept of subsets is illustrated in Figure [§] for the multi-material example of Fig-
ure [I] Referring to material 4 in the figure, it can be seen that the subset2mesh for material
subset 4 contains cells 3, 6 and 7 of the mesh and the reverse map, mesh2subset, indicates
that mesh cells 3, 6 and 7 correspond to the entries 0, 1 and 2 in the subset.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

18

Algorithm 10 Cell-centric algorithm to compute average material density over a neighborhood

using compact storage

1: for all cells, C, in the mesh, up to N, do
Initialize p to 0
X. < x[C]
{Cnbrs } < nbrs[C]

2
3
4
5
6: Initialize d,, w.r.t. neighbors
7
8
9

10: iz « imaterial[C]

N.N,, stores from Alg.]

3N, loads (z][C]). Assume 3D

N_N,, integer loads

Integer loads, multiply by 0.5

3NN, loads (X) from Alg. [4]

Partial reuse, multiply by C), = 4
9NN, flops (-,*,+)

N, loads (tmaterial)

11: # Integer loads, multiply by 0.5

12:

13: if iz <=0 then # Multiple materials in cell, C

14: # B, M, branch penalty

15: for iz <— —ix, until next fracfiz] < 0 do

16: # M7, loads (next frac)

17: # Integer loads, multiply by 0.5

18: m < matids|iz] # M, loads matids

19: # Integer loads, multiply by 0.5

20: Psum < 0.0

21: N, <0 # Local var. N, not global var. N,
22: for all neighbors, j up to IV,, do

23: Cj < Cnprsl]

24: Jjx < imaterial[C}] # M N, loads imaterial

25: # Integer loads, multiply by 0.5

26: # Partial reuse, multiply by C), = 4
27:

28: if jx <=0 then # Multiple materials in cell, C;

29: for jz < —jx, until next frac[jz] < 0 and not found do

30: # M N, N,,. loads (next frac)

31: # Integer loads, multiply by 0.5

32: # Partial reuse, multiply by C), = 4
33: if matids[jz] == m then # M N, N,,. loads (matids)

34: # Integer loads, multiply by 0.5

35: # Partial reuse, multiply by C,, = 4
36: Psum A Psum + p[jx}/dsqr []] _

37: # M N, L; loads (p)

38: # Partial reuse, multiply by C), = 4
39: #2M; N, L; flops (/,+)

40: N, + N, +1 # M N, L; flops (+)

41: end if

42: end for

43: else # Single material in cell C; (see next page)

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 19

44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

if matids[jz] == m then

Psum — Psum + p[]l’]/dsqr[]]
N, N, +1
end if
end if
end for
pICl[m] < psum/Nn
end for
else
m < matids|ix]

Poum 0.0
N, <0
for all neighbors, j up to N,, do
Cj < Cnbrsli]
jx < imaterial[C}]

if jx <= 0 then

Assume loads of matids are roughly
accounted for in other branch

Loads, flops accounted for in other branch

M, stores, My, flops (/)

Pure cell C
Py N, loads matids

Integer loads, multiply by 0.5
Local var. N,,, not global var. N,
PchNn loads imaterial

Integer loads, multiply by 0.5
Partial reuse, multiply by C), = 4

for jx < —jx, until next frac[jz] < 0 and not found do

if matids|jx] == m then

N,+ N, +1
end if
end for
else
if matids[jz] == m then
Psum = Psum T p[jx]/dqu]
N, N, +1
end if
end if
end for
PIC]m] < psum/Nn
end if

87: end for

PfNCNnNmC loads (next frac)

Integer loads, multiply by 0.5

Partial reuse, multiply by C), = 4
P N.N,, N, loads (matids)

Integer loads, multiply by 0.5

Partial reuse, multiply by C), = 4

PchNan loads (p)
Partial reuse, multiply by C,, = 4

#2Pr NN, Ly flops (/,+)
PyN.N, L; flops (+)

Loads, flops accounted for in other branch

Py N, stores (p), Py N, flops (/)

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 20

Algorithm 11 Add material to cell, check for existence and expand mixed material if not

Prew|C][matid] # add material to cell
match < true
for all material IDs, m, in the cell, up to nmats|C| do
if matid,,.,, == matid[C]|m| then
r[C)[m] <= r[C][m] + prew[C][matid] break
end if
match < false
end for
if match == false then
matinsert < atomic_compzchange(oldvalue, maxmat + nmats[C] + 1)
for all material IDs, m, in the cell, up to nmats[C] do
rimaxmat + m| < r[C][m]
end for
rimaxmat +m + 1] <= ppew|C|[matid]
end if

The representation of material-based variables in this scheme is the equivalent of a
ragged right array where an array of pointers points into the values for the cells of the
individual materials. The values for each material mirror the subset2mesh array for the ma-
terial and therefore, store only as much information as needed. Thus, for material 4, only 3
values each of f4, p4, p4 and t4 corresponding to mesh cells 3, 6 and 7 are stored (the figure
only shows f,,, and p,, for each material m). It is possible to condense this ragged right
array into one integer and one double array but introducing new cells into a subset would
then require expensive memory movement.

In addition to these data structures, we define two integer arrays to allow us to access
the IDs of materials in any given cell. The first array called nmats contains the number
of materials in each cell. Since we expect the maximum number of materials in any cell,
N to be at most 4 this could even be a character array. The second array contains the
IDs of materials in each cell and is of length (N.V]'%*) with a dummy value like -1 for
empty slots. For example, for cell 1, nmats is 2 and the matids entries are 1, 2, -1, -1 as
shown in[8] One could make this a compact array which stores only the materials that are
in a cell but once again introduction of new materials to a cell requires expensive memory
motion.

Finally, we store one array of double values for the volume of cells, V.

Storage costs

Assuming that the probability of any material being present in any cell is equal, the average
number of cells containing a material, N,,. can be computed as the ratio of the total number
of non-zero variable values F'yN.IN,, to the number of materials N,,, or in other words,
Nme = FyN,. For the first test problem, this works out to be 26000 and for the second
problem, 20900.

Proceeding with the accounting of storage, we have:

1. N, integers for the mesh2subset list for each material or a total of N.IN,,, integers

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

1.0 1.0 1.0 Density, r,,, per cell

-1 2 -1 2 3 2 3 4 -1 Number of Materials

1 0 2 -2 4 719 [-12 3 Material/Linked List Index

Material vl 2o fal |23 l23]t1]3|a4|1t|2]3]4]s
Nextfrac 1l a3l s|e|w6e|s|-1]wo]u]|-1|B{wa]is]|-1]-1
Fractional "1 -t 4 08| 02| 0.4 |0.55]0.05|055[045| 0.1 0.7] 02]005] 01| 0.1 [0.75 | 0.05
Density

0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16
Mixed Data Storage Arrays

Figure 7: Adding a material to the mixed material data structure

Algorithm 12 Reordering mixed material arrays

matindex < 0
for all cells, C, in the mesh, up to N, do
if nmats[C] > 1 then
matid|C| < —matindex # Setting offset into mixed data array
end if
for all material IDs, m, in the cell, up to nmats|C] do
Prew|matindex| < r[C][m]
matindex + 1
end for
end for

2. N,,. integers for the subset2mesh list for each material or a total of N,,.N,, =
F¢N.Np, integers

3. N, integers for the nmats array

4. N9 N, integers for the matids array

or a total of (N, + F¢Np, + 1 4+ N3)N, integers or 4(N,,, + F¢Np, +1 4+ NN,
bytes.

To store the V,,,, material-based scalar fields, we need:

1. N,,. doubles for each field for each material or a total of F¢NeNpy Ny doubles.

2. Ny, N pointers for pointing into the field arrays (but this can be ignored for large
meshes as it does not depend on N,)

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 22

nmats’1|2|1|2|3|2|3|4|1‘

matigs [1 [-1[-1[-1| 1|2]a]a]2|a]a]a]1]a] 1] 1] 1|2|3|1|2|3\

~afafafa[s af1 2[5 4 5 a]a]4]

- meshzsubset|o |1 |-1 |2 |3 |-1 |4 |5 |-1 |

]

3 NN N S/

a subsethesh’ 0 | 1 | 3 | 4 | 6 | 7 ‘

~ mesh25ubset| -1| 0 | 1 | -1 | 2 | 3 | -1| 4 | 1 |

2 NN

7 subsethesh’ 1 | > | 4 | 5 | 7 ‘

% mesh2subset | 1 [1 | 1| 1o |1 |2]3]a]|

: ———

3 subsethesh’ 4 | 5 | 6 | 7 | 8 ‘

; mesh25ubset| -1 | -1 | -1 | 0 | -1 | -1 | 1 | 2 | -1 |

(7]

Q2

a subset2mesh n
Vil 1.0 06| 08] 0.4 0.1 0.05] p1 [10.0]10.0]10.0]10.0]100]1200]
Vi, | 04| 10]055] 055 01| p2 | 0.01] 0.01] 0.01] 0.01] 0.01]

Vy p
Vig 0.05| o.45| 0.7 | 0.1 | 1.0‘ p3 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 ‘
V[0 s

e RERE

Figure 8: The material-centric compact data representation of material specific fields p and V5
for the example shown in Figure|]

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 23

Finally, to store N, cell-based scalar fields (such as volumes of cells), we need N, N,
doubles. This gives us a total of (¢ Ny Ny + New)Ne doubles or 8(F ¢ Npy + New)Ne
bytes.

Thus, the total storage for the material-centric compact representation, can be written
as:

Storagecm = [4(Np, + FNp, + 14+ Nj7E) + 8(Fr Ny Ny + New)|Ne (13)

One can see that the first part of the expression is the cost of storing the subset repre-
sentation and the second the fields. Therefore, the relative cost of storing the subset rep-
resentation decreases with the number of fields one needs to represent. For the first test
problem, the cost of storing the subsets dominates (80%) as we are storing only 4 material-
based fields. However, in a representative problem with say 100 material based fields and
10 cell-based fields this drops to 16% of the cost.

Several optimizations are possible to reduce some of the fixed costs for storing subsets.
If we chose not to store a fixed number of entries for each cell in the matids it would make
the length of the matids array N./2 (see estimation of M, array in the cell-centric compact
storage discussion). This optimization will drop the storage by about 15 MB for the first
test problem. However, it makes it much more expensive to introduce materials into cells
because all the elements in the array after the cell’s entries will have to be moved. An easier
optimization is to use character arrays (1 byte per entry) for nmats and matids arrays which
will support a maximum material ID of 127 and also save 15 MB in storage.

3.2.1 First Computational Loop — Average Cell Density

With the material-centric compact data structure, the average cell density calculation shown
in Algorithm[I3]is similar to the one for the material-centric full matrix storage Algorithm 3]
except that we loop over subset cell indices ¢, not mesh cell indices C, in the main loop.
Consequently, we have to translate the subset cell index ¢ to mesh cell index C' for accessing
the correct cell-based average density.

The cell-centric algorithm for doing the same operation is shown below in Algorithm|[I4]
Note that in this algorithm we have to translate the mesh cell index, C, to a local index, c,
in the particular subset using the reverse map, mesh2subset.

It is useful to point out how close the algorithms using the compact material-centric data
structure are to the full matrix algorithm. In fact, in a feature-rich language like C++, the
algorithms can be made to look just like the full matrix algorithms with the conversion from
mesh index to subset index or vice versa being done under the hood.

Performance analysis

Since there are no conditional statements in the above two algorithms for computing average
density, the compact storage scheme will result in as many accesses of material specific
variables as there are values (N, N,, = FyN:Ny,) whether we loop over materials and
cells in each material or cells and materials in each cell.

Considering the material-dominant algorithm for computing average densities, we see
that it performs (2Fme + 1) N, flops. We also see that it has N, + Fy NNy, integer loads,
N, pointer loads, 3Ft N.IN,;, + 2N, double loads and F'y N.N,, + 2N, double stores (Cost
of integer load/store will be half of that of a double). The cache penalty in this algorithm

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

24

Algorithm 13 Material-dominant algorithm to compute average density of cells using material-
centric compact storage

for all cells, C, in the mesh, up to N, do

Pave|C] < 0.0 # N, stores
end for
for all material IDs, m, in the problem, up to /V,,, do
nemat <— ncellsmat[m] # N. loads
subset « subset2mesh|[m] # N. pointer loads
for all cells, ¢, in the material upto ncmat do
C' < subset|c] # FyN.N,, loads

Pave|C] <= PavelC] + p[m][c] * Vi[m][c]
3Ly NN, loads (pave, p> V)
[y N Ny, stores (pgpe)
2N N,, flops (+, *)
Likely cache miss for pg.
Multiply by C,, = 8

end for
end for
for all cells, C, in the mesh, up to N, do
Pave[C] = Pave[C1/V[C] # 2N, loads (pave, V')
N, stores (pave)
N, flops (/)
end for

Algorithm 14 Cell-dominant algorithm to compute average density of cells using the material-
centric compact storage scheme

for all cells, C, in the mesh, up to N, do

ave < 0.0
for all material indices, 4, in the cell, up to nmats(C') do
m < matids(i) # FyN.N,, integer loads (matids)
Integer loads, multiply by 0.5
¢ <— mesh2subset(m, C) # FyN.N,, integer loads (mesh2subset)

Likely cache miss, multiply by C,, = 8
Integer loads, multiply by 0.5

ave <— ave + p[m|[c] * Vi[m][c] #2F; N.N,, loads (p, V})
Likely cache miss, multiply by C,, = 8
#2FyN.N,, flops (x,+)

end for
Pave|C] < ave/V[C] # N, loads (V)
N, stores (pave)
N, flops
end for

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 25

comes from accessing a mesh cell-based variable (p,.e) in a loop that is stepping through
cells of a material subset. Therefore, performance equations for the material-dominant loop
for average density calculations using this storage scheme are:

memops = (3.5FyNp, + 5.5)N. + 8FyN,, N,
flops = (2F§Np, + 1) N,
PM = [(3.5FtNpy 4 5.5) N + 8F¢ Ny, N| x 8/ Stream

The memory access pattern in the material-dominant algorithm with this storage scheme
is quite favorable because only 4 arrays, subset2mesh, p, Vy and pqye are needed for the
inner loop and except pgye, all the others are referenced by subset cell ID, ¢ which is stored
contiguously.

In the cell-dominant algorithm for computing average densities using this storage scheme,
the number of flops will be (2F¢N,;, + 1)N.. Accounting for memory ops, we will have
2FyN.N,, integer loads (matids, mesh2subset) and (2Fy Ny, + 1) N, double loads (p,
V¢). There will be 1 double store (pqve) in the outer loop for a total of N, stores. Cache
penalties are factored because we access material arrays mesh2subset, p and V; arrays
while looping through mesh cells.

memops = 2N, + 20.5F NNy,
flops = (2FyNp, + 1)N,
PM = 2N, + 20.5Fy Ny, N] * 8/ Stream

The memory accesses needed for the cell-dominant average density algorithm varies in
each iteration of the inner loop, depending on nmats(C'). If the cell is a single material
cell, then one has to access 6 arrays, pque, nmats, matids, mesh2subset, p and V; (as
mentioned before, this can be cut to 5 by bundling nmats and matids). With each extra
material, however, this increases by 3 more arrays (mesh2subset, p and V; for the extra
material). Thus this data structure and this loop combination are less advantageous to use
than the others in multi-material cells. However, it should be noted that a majority of the
cells in a large mesh will be pure cells and therefore, this disadvantage is minor and its
effect rapidly diminishes with increasing mesh resolution.

3.2.2 Second Computational Loop — Pressure for each cell and each material

The second computational loop (which is naturally material-dominant) can be written like
this:

Performance analysis

In the computational loop to update material properties using this loop, we have 3 double
loads (r, ¢, V) and 1 integer load (subset2mesh) in the inner loop which is 3.5Fy NN,
8 byte memops. There is 1 double load in the outer loop (n) which contributes a paltry N,,
8 byte memops. There is also 1 double store in the inner loop of the variable p for total of
FN:Np, stores. So the total number of 8 byte memops is 4.5F ¢ N.NN;y, + Np,. The number
of flops is 4 per inner loop giving a total of 4F's N.N;,. Thus the number of loads to flops is
nearly 1:1 which is very good.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

26

Algorithm 15 Material-dominant algorithm to update material state using the material-centric
compact storage scheme

for all material IDs, m, in the problem, up to /V,,, do

Ny, <— n(m) # N,, loads
for all cells, ¢, in the material do
C' < subset2mesh|c] # FyN.N,, integer loads (subset2mesh)

Integer loads, multiply by 0.5
plm][c] <= (nm * p[m][c] = t[m][c])/Vy[c]
#3FtN.Np, loads (p, t, V¢, V)
I’y N Ny, stores (p)
4FyN.N,, flops (x, /)
end for
end for

Therefore, the performance equations for these algorithms using the material-centric
compact storage are:

memops = (4.5Ff N, +1)Nm
flops = 4FyN.N,,
PM = (4.5FfN. + 1)Np, x 8/ Stream

Each loop in the material update algorithm requires access to 6 arrays n, subset2mesh,
V,r,t, Vi and p. Except for V' which is indexed by mesh cell ID C, all arrays are accessed
in a contiguous fashion making this an efficient access pattern.

3.2.3 Third Computational Loop - Average density of each material over neigh-
borhood of each cell

The third computational loop computing the average density of each material in the neigh-
borhood of each cell is shown in Algorithm[16]

Performance Analysis

We can then write the following performance model as before:

memops = N¢(3 + 12.5N,,) + NNy, + F NNy (5.5 + 4N, (1 + 2Ly)),
flops = 11FfoNcNmNn + FfNCNm
PM = (Nc(3+12.5N,,) + NeNy, + FfNeNp (5.5 + 4N, (1 + 2Ly))) * 8/Stream

(14)

The same process using a material-dominant logic is shown below in Algorithm [I7).
The only difference between this algorithm and the cell-centric one (Algorithm is that
the outer loop is on materials.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 27

Algorithm 16 Cell-dominant algorithm to compute average density of each material over a
neighborhood of each cell

1: for all cells, C, in the mesh, up to N, do

N.N,, stores from Alg.]

3N, loads (z[C]). Assume 3D

N_N,, integer loads

Integer loads, multiply by 0.5

3NN, loads (X) from Alg. [4]

Partial reuse, multiply by C), = 4
#9N.N,, flops (-,*,+)

[y N Ny, loads (matids)

Integer loads, multiply by 0.5

FyN.N,, loads (mesh2subset)

Integer loads, multiply by 0.5

Likely cache miss, multiply by C,, = 8

Local var. N,,, not global var. N,

FyN_N,, N, loads (mesh2subset)
Likely cache miss, multiply by C), = 8
Integer load, multiply by 0.5

F¢N_N,,L; N, loads (p)

Likely cache miss, multiply by C), = 8
#2F;N.N,,L;N, flops (/,+)

FyN.N,,L;N,, flops (+)

I’y N.N,, stores (p)
I’y N.N,, flops (/)

2: Initialize p to O

33 X X[C]

40 A{curs} < nbrs[C]

5:

6: Initialize d,, w.r.t. neighbors

7

8

9: for all material IDs, k, in the cell, up to nmats(C') do
10: m < matids(k)

11:

12: ¢ < mesh2subset(m, C)

13:

14:

15: Psum < 0

16: N, <0

17: for neighbor cell index i < 0, N,, — 1 do
18: Ci < Cprs|i]

19: ¢; — mesh2subset(m, C;)
20:
21:
22: if ¢; >= 0 then
23: Psum < Psum T p[cz] [m]/dsqr [Z]
24
25:
26:
27: N, N,+1
28: end if
29: end for

30: plC][m] <= psum/Nn

31:

32: end for

33: end for

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 28

Algorithm 17 Material-dominant algorithm to compute average density of each material over a
neighborhood of each cell using a material-centric compact representation

1: for all material IDs, m, in the problem, up to N,, do

2: for all cells, C, in the mesh, up to N, do
3: p[C][m] « 0.0
4: end for
5. for all cells, ¢, in the material do
6: C = subset2mesh(m, c)
7
8: z. < Z|C]
9:
10:
11: Psum < 0.0
12: for neighbor cell index i = 0, N,, — 1 do
13: C; = nbrs|C][i]
14:
15:
16: ¢; = mesh2subset(m, C;)
17:
18:
19: if ¢; >= 0 then
20: dsqr = 0.0
21: for) =0,2do
22: dsqr = dsgr + (2c[j] — Z[C3][5])?
23:
24
25:
26: end for
27: Psum = Psum + p[m} [Ci]/dSQT
28:
20: end if
30: end for
31: plC][m] = psum/Nn
32:
33: end for
34: end for

N_.N,, stores

[y N.Np, loads (subset2mesh)

Integer loads, multiply by 0.5

3Ft NNy, loads (7)

Assume problem is 3D

Likely cache miss, multiply by C,, = 8

FyN_N,, N, integer loads (nbrs)

Likely cache miss, multiply by C,, = 8

Integer loads, multiply by 0.5

FfNCNmNn integer loads (mesh2subset)
Partial reuse, multiply by C), = 4

Integer loads, multiply by 0.5

#3F;N.N,, LN, loads (7)
Partial reuse, multiply by C,, = 4
9FchNmLan flops (-,*,+)

llfﬁjc]\fc]\mefNE loads (p)
#2F;N.N,,L;N, flops (/,+)

I’y N.N,, stores (p)
[y N Ny, flops (/)

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 29

Performance Analysis

The performance model for this case is similar to that of the cell-centric case except that the
loads of z[C] and nbrs[C] have moved further inside the loops multiplying their costs by
N,,. Thus the performance model from the cell-centric case can be modified to appear as
shown below:

memops = NeNp, + FrNeNp (25.5 + Ny (6 + 13Ly))),
flops = 11Ft L NNy Ny, + FyNeNyy, (15)
PM = (NeNy, + Ff NNy (25.5 + N, (6 4+ 13Ly))) = 8/Stream

3.2.4 Adding to the Material-Centric Compact Data Structures

Modification of the material-centric compact data structures to accommodate a new material
appearing in a cell is quite trivial. The new cell is simply appended to the subset2mesh
array in the particular material subset and the corresponding field values appended to the
appropriate field arrays. At the same time the material ID is added to the matids array at
a location corresponding to the cell and the nmats array value is incremented. One could
reorganize these arrays from time to time so that values of cells that are spatially close are
also close in the array and result in fewer cache misses.

The algorithms become only a little more complicated when a material disappears from a
cell. Then the entry in the subset2mesh array must be nullified (set to -1) and the algorithms
modified to check for this. This doesn’t significantly impact the actual performance since
the branch prediction will detect that the code inside the ’if” statement will be executed more
often than not. Alternatively, we can allocate an extra element in each cell-based variable
array and set the subset2mesh array value to N, + 1. Then, we will write into a dummy
location without the penalty of an ’if” statement when processing a cell which has been
‘removed’ from a material subset. Periodically, but infrequently, the holes in the subset can
be squeezed out restoring efficiency to the process.

4 Conversions

4.1 Converting from Cell-Centric to Material-Centric

We can convert from cell-centric to material-centric compact data structures for some arrays
so that the data access pattern is more contiguous. This process is made easier if the number
of cells for each material tracked. This can be done at the same time that the material adding
operation is being done. An atomic operation will also be needed for this since multiple
threads could add at the same time. By keeping track of ncells|m|, we can then allocate the
arrays without worrying about getting them too large or small. If the number of cells is not
tracked, a prepass through the data to get the sizes is probably best.

4.2 Converting from Material-Centric to Cell-Centric

The conversion of the material-centric compact structure to the cell-centric compact struc-
ture requires knowing the size of the mixed material arrays. This size is calculated as shown
in Algorithm [19]

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

30

Algorithm 18 Converting from Cell-Centric to Material-Centric Compact Structure

for all material IDs, m, in the mesh, up to N,, do
alloc(ppew[m](ncellsim] x sizeof (double)))
nextcelllm) < 0
end for
for all cells, C, in the mesh, up to N, do
for all material IDs, m, in the cell, from mstart and for nmats|[C| do
mm < matid[m]
Prew|mm]|[nextcell[C]] < r[m]
nextcell[m] + nextcell[m] + 1
end for
end for

Algorithm 19 Counting Mix Cells for Converting from Material-Centric to Cell-Centric Com-
pact Structure

14— 0
for all cells, ic, in the mesh, up to N, do
if nmatscell[ic] > 1 then
masize <— maxsize + nmatscell[ic|
end if
end for

Now all the mix cell arrays can be allocated and the rest of the conversion process can
go forward as shown in Algorithm[20] The material-centric arrays are on the right-hand side
and the cell-based arrays are distinguished by variables starting with a capital C and are on
the left-hand side of the statements.

The actual performance of the conversion is about 60 msec for Algorithms [19] and [20]
The material data is accessed in an irregular pattern that will have cache misses, but the
cell-centric data is written out in contiguous order which should give good performance.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 31

Algorithm 20 Converting from Material-Centric to Cell-Centric Compact Structure

1x+ 0
for all cells, ic, in the mesh, up to N, do

nmats < nmatscell[ic|
if nmats == 1 then
m < matids[4 ic|
¢ < mesh2subset[m][ic|
Cimaterialic] < m
else
for all materials, im, in each cell, up to nmats do
m < matids[4 x ic + im]
¢ < mesh2subset[m][ic|
Cimaterial fracliz] < m
Cnextfracliz] « iz + 1
C frac2celllix] < ic
CVolfracliz] < Vol fracim]|c|
CDensity fracliz] < Density fracim][c]
CTemperature fraclix] < Temperature fracim||c|
C'Pressurefracliz] < Pressurefrac[m||c|
1x 1+ 1
end for
Cnextfracliz — 1] < —1
end if

end for

5 Results and Discussion

We have written a test code which evaluates the performance of the data structures for the
two computational loops as applied to the two test problems presented in the discussion.
The results of the tests are discussed here.

First we present the growth of the storage with the number of material variables for the
various storage schemes. The compact storage schemes reduce the memory usage over the
full storage scheme by over 95% as shown in Table[I] This table also shows how the data
storage costs increase with numbers of field variables where there is not much difference
between the two compact schemes at higher numbers of material variables. This alone is
enough to adopt the compact schemes, but with a bandwidth-limited algorithm, we would
also expect better performance. This is discussed next.

Tables [2] and [3] show the performance of the various data structures for average cell
density and material pressure loops with fractional volumes initialized from material shapes.
Tables 4] and [5| show the performance data for randomized fractional volume evaluation.

From the above data it is clear that the compact data structures present a real advantage
in memory footprint, memory accesses and predicted computational time over the full data
structures.

Between the compact data structures, the cell-dominant compact storage affords a lower

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

32

Scheme | Storage MB —
4 mat. vars | 10 mat. vars | 100 mat. vars
Single Material 32 80 800
Full Matrix 1663 4160 41600
Compact, Cell 62 134 1214
Compact, Material 268 332 1297

Table 1: Data Storage increase in MB for increasing numbers of material variables (data for cell

variables is not counted here)

Memops Flops | Memops | Estimated | Actual | Error

Description Alg. | M ‘ MB M to Flops msecs msecs %
Single Material | 2 [16 [2 | 11 [120 [1.03 | 163 |

Full, Cell 1 102 | 816 100 1:1 61.0 534 | 143

Full, Cell, with if 2 |53.0)|4244 | 3.1 17.1:1 66.5 67.9 | -2.0

Full, Mat. 4 153 | 1224 | 101 1.5:1 91.5 799 | 14.6

Full, Mat., with if 5 |[55.11]440.8 | 3.1 17.8:1 429 358 | 199

Compact, Cell 7 29 | 172 1.2 2.4:1 1.43 1.08 | 323
Compact, Cell, with nmats 8 2.6 16.0 1.2 2.2:1 1.34 1.24 8.5

Compact, Cell, with rho_ave 9 4.5 | 30.0 1.2 3.8:1 2.39 1.91 25.2

Compact, Cell, divide by V 100 | 53 | 36.4 2 2.7:1 2.87 2.51 14.2

Compact, Mat, Mat-dominant | 147 | 10.7 | 81.5 3.1 3.46:1 6.09 598 | 1.84
Compact, Mat, Cell-dominant 157 [13.3] 81.3 3.1 4.29:1 6.08 6.04 0.6

Table 2: Performance models for average cell density calculation with fractional volumes ini-

tialized from geometric shapes ("closest in assumptions).

Memops Flops | Memops | Estimated | Actual | Error
Description Alg. | M \ MB M to Flops msecs msecs Y%
’ Single Material \ \ 4 \ 32 \ 3 \ 1.3:1 \ 2.39 \ 2.62 \ -8.8 ‘
Full, Cell 3 1103.1 | 8252 | 3.1 32.8:1 96.5 976 | -1.1
Full, Material 6 | 102.1 | 816.8 | 3.1 32.4:1 71.0 63.7 | 11.5
] Compact, Cell \ 11 \ 8.0 \ 56.0 \ 3.9 \ 2.1:1 \ 4.34 \ 2.90 \ 49.5 ‘
| Compact,Mat | 16 | 42 | 336 | 3.1 | 1331 [251 | 2.80 [-10.2]

Table 3: Performance models for material pressure calculation with fractional volumes initial-

ized from geometric shapes.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

33

Memops Flops | Memops | Estimated | Actual | Error

Description Alg. | M \ MB M to Flops msecs msecs %
Single Material | 2 [16 [2 | 11 [120 | 100 [197 |

Full, Cell 1 102 | 816 100 1:1 61.0 534 | 142

Full, Cell, with if 2 | 5334264 | 3.6 14.8:1 93.5 %.4 | -3.0

Full, Mat. 4 153 | 1224 | 101 1.5:1 91.5 79.1 15.7

Full, Mat., with if 5 | 5564448 | 3.6 15.4:1 94.9 84.0 | 13.0

Compact, Cell 7 29 | 17.2 1.2 2.4:1 2.77 327 | -155

Compact, Cell, with nmats 8 26 | 16.0 1.2 2.2:1 2.68 329 | -18.5
Compact, Cell, with rho_ave 9 4.5 | 30.0 1.2 3.75:1 3.72 3.56 4.5
Compact, Cell, divide by V 100 | 5.3 | 36.4 2 2.65:1 4.20 3.65 | 15.1
Compact, Mat, Mat-dominant 14" [19.6 | 151.6 3.6 5.44:1 11.33 11.29 0.4

Compact, Mat, Cell-dominant 157 14592748 | 3.6 12.75:1 20.54 23.08 | -11.0

Table 4: Performance Models for Average Cell Density Calculation with random initialization
of volume fractions (fclosest in assumptions).

Memops Flops | Memops | Estimated | Actual | Error
Description Alg. | M \ MB M to Flops msecs msecs %

’ Single Material \ \ 4 \ 32 \ 3 \ 1.3:1 \ 24 \ 2.57 \ -6.8 ‘
Full, Cell 3 11039 |831.2| 39 26.6:1 123.8 135.6 | -8.7
Full, Material 6 | 102.6 | 820.8 | 3.9 26.3:1 123.0 116.2 | 5.8

] Compact, Cell \ 11 \ 8.0 \ 61.0 \ 3.9 \ 2.1:1 \ 5.7 \ 4.59 \ 23.4 ‘

| Compact, Mat | 16 | 6.03 | 482 | 54 | 1.12:1 [311 | 359 [-134]

Table 5: Performance Models for Material Pressure Calculation with random initialization of

volume fractions.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

34

storage cost and faster compute times particularly for updating existing state variable vectors
(See Algorithm 8]in Table[) in cell-dominant loops. On the other hand, the material-centric
compact storage scheme does very well for a material-dominant loop and this advantage
would increase if the simulation had very disparate material models that were much more
compute and memory intensive than an ideal gas law.

Between the two test cases, the cell-dominant data structures were not greatly affected
by the random nature of the material distribution but the material-centric data structures
were. The reason for the poorer performance of the material-centric data structures in the
randomized case is that contiguous cells of a material are quite unlikely to be contiguous
in the mesh for this type of distribution. As expected this storage scheme performed better
when the material distribution was closer to reality.

The analysis of the compact data structures perfectly illustrates the tension between pro-
grammability and efficiency of data access and ease of coding in complex codes. In princi-
ple, both data structures offer similar memops to flops ratios. However, while the compact
material-centric data structure offers a much more intuitive and simple programming model
for the application developer, the compact cell-dominant data structure offers superior cache
performance and therefore, better execution times.

So we can see that there is no perfect data structure and that the choice of which should
be the centric variable (cells or materials) is dependent on the most common data access
demands of a code. A cell-based Eulerian code may need outer loops by cells and a
Lagrangian-based method may benefit some from a material-based outer loop, though many
loops in that approach are cell-dominant. But in any code, there will be cases where data
will likely have to be accessed in a less than ideal manner. The goal is to minimize where
this occurs. Alternately, one could either switch between the two schemes as needed or even
maintain both data structures in the code and seamlessly access one or the other by the use
of modern programming mechanisms. The cost of such a transformation will be the focus
of our ongoing work.

6 Acknowledgments

This work was performed under the auspices of the National Nuclear Security Administra-
tion of the US Department of Energy at Los Alamos National Laboratory under Contract
No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation and Comput-
ing (ASC) program. Report number LA-UR-16-23889.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

35

A Appendix

Algorithm 21 Material-centric algorithm to compute average density of cells using full storage

1: for all cells, C, in the mesh, up to N, do

20 Pave|C] < 0.0 # N, stores (Pave)

3: end for

4: for all material IDs, m, in the problem, up to N,,, do

5. for all cells, C, in the mesh, up to N, do

6: if V¢[m][C] > 0.0 then # N.N,, loads (Vy)

7: # 16 cycle branch +112 cache miss
8: Pave|C] # FyN.N,, stores (paye)

9: Pave|C] + p[m][C] % Vi[m][C] # FyN.N,, loads (p)
10: #2F;N.N,, flops (+, *)
11: end if
12: end for
13: end for
14: for all cells, ', in the mesh, up to N, do
150 pavelC] < pave|Cl/V[C] # 2N, loads/stores (pgpe, V)
16: # N, flops (/)
17: end for

The number of loads will be N, for initialization of pgy. plus N, N, for the fractional
volume test. In the main loop there are 'y NNy, loads of p and Fy NcNm stores of pgye.
There will be 2F¢ N.N,,, flops in the main loop. The final loop has 2N, loads and stores
and an additional N, flops. The performance equations become:

memops = Ne + NeNy, + 2Ff NNy + 2N = No(Nyy + 2F¢ Ny, + 3),
flops = 2FN.-Ny, + N, (16)
PM = N¢(Ny, 4 2F¢ Ny, + 3) x 8/Stream + BpFy N. Ny,
This will be 55.6 M memops or 444.8 MB. The flops will be 3.6 Mflops. The mem-
ops to flop ratio will be 15.4. Our estimated performance is 94.9 msecs. The measured

performance is 89.4 msecs.
The algorithm would be the following:

memops = Ne + MyN. 4+ 2Mp, +2M¢N. = N.(1 +3My) +2Mp,
membytes = Ne x4+ MgNe x4+ 2Mp, « 8 + 2M N %8 = (4 + 4% My + 2My +« 8)N, + 16M,
flops = 2My, + My N,
PM = membytes/Stream + L, M¢ N,
(17
The memops are 2.6 M memops and 16.0 MB. The flops are 1.2 M flops for a 2.2

memops to flops ratio. The expected performance is 2.68 msecs and the actual is 3.13
msecs.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 36

Algorithm 22 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to N, do

2. ave < 0.0

3: dx < imaterial[C] # N. loads (imaterial)
4. if iz <=0 then

5 for iz < —ixz, for nmats[C| do # My N, loads (nmats)
6: # M, 16 cycle branch miss
7 ave — ave + pliz| x Vy[ix] # 2M 1, loads (p, Vy)

8 # My, flops (+, *)

9: end for
10: p[C] + ave/V[C] # MyN, stores poye
11: # M; N, loads (V)
12: # MyN, flops (/)
13: endif
14: end for

Algorithm 23 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to N, do

2 ave < 0.0

3: dx < imaterial[C] # N, loads (imaterial)
4: if iz <=0 then

5 for ix < —ix, until next fracliz] < 0 do #

M7, loads (next frac)

6: ave < ave + pliz] * Vy[iz] # 2M 1, loads (p, Vy)

7: # My, flops (+, *)

8: end for

9: Pave|C] < ave/V[C)| # M N, stores poye
10: # M; N, loads (V)
11: # M N, flops (/)
12: else
13: Pave|C] = p[C] # Py N, stores (pgye)
14: # Py N, loads (p)
15: endif
16: end for

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 37

We look at performance if a new pq,e array needed to be calculated.

memops = N + My, + 2Mp, +2M¢N. + 2Py N. = 3N, + 3M,
membytes = Nex 4+ My x4+ 2Mp * 8 + 2MyN. 8 + 2Py N * 8 = 20N, + 20M,,
flops = 2My, + MyNc
PM = membytes/Stream + L, M¢ N,
(18)

The memops are 4.5 M memops and 30 MB. The flops are 1.2 M flops for a 3.75
memops to flops ratio. The expected performance is 3.72 msecs and the actual is 3.49
msecs.

We look at another where the pure cells are divided by volume just to see what the
performance numbers come out to:

Algorithm 24 Cell-centric algorithm to compute average density of cells using compact storage

1: for all cells, C, in the mesh, up to N, do

2: ave <+ 0.0

3: dx < imaterial[C)] # N. loads (imaterial)
4: if iz <=0 then

5: for ix < —ix, until next fracliz] < 0 do #

M7, loads (next frac)

6: ave < ave + pliz] * Vy[iz] # 2M 1, loads (p, Vy)

7: # My, flops (+, *)

8: end for

9: Pave|C] < ave/V[C)| # M N, stores paye
10: # M; N, loads (V)
11: # M N, flops (/)
12: else
13: Pave|C] = p[C]/V # Py N, stores (paye)
14: # 2PN, loads (p, V)
15: # Py N. flops (/)
16: end if
17: end for

memops = N+ My, + 2Mp, +2M¢N. + 3PfN. = (3 + Pf)N. + 3M,
membytes = No x4+ My, x4 4 2Mp, 8+ 2M N, x 8 + 3Py N, * 8 = (20 + Py x 8)N. + 20M7,
flops = 2Mp, + Nc
PM = membytes/Stream + L, M¢ N,
(19)

The memops are 5.3 M memops and 36.4 MB. The flops are 2 M flops for a 2.65
memops to flops ratio. The expected performance is 4.20 msecs and the actual is 3.78
msecs.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016 38

References
[1] F Agner. Optimizing software in C++ an optimization guide for Windows, Linux and
Mac platforms, 2011.

[2] John D. McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer Archi-
tecture (TCCA) Newsletter, pages 19-25, December 1995.

LA-UR-16-23889, Version 2 — Proceedings of NECDC 2016

39

	Introduction
	Full storage
	Cell-centric Full Matrix Representation
	First Computational Loop – Average Cell Density
	First Computational Loop - Average Cell Density - Conditional Variant
	Second Computational Loop – Pressure for each cell and each material
	Third Computational Loop – Average density of each material over neighborhood of each cell

	Material-centric Full Matrix Representation
	First Computational Loop – Average Cell Density
	Second Computational Loop – Pressure for each cell and each material
	Third Computational Loop – Average density of each material over neighborhood of each cell

	Compact storage
	Cell-centric Compact Storage
	First Computational Loop – Average Cell Density
	Second Computational Loop – Pressure for each cell and each material
	Third Computational Loop - Average density of each material over neighborhood of each cell
	Adding to the Cell-centric Compact Data Structures

	Material-centric Compact Storage
	First Computational Loop – Average Cell Density
	Second Computational Loop – Pressure for each cell and each material
	Third Computational Loop - Average density of each material over neighborhood of each cell
	Adding to the Material-Centric Compact Data Structures

	Conversions
	Converting from Cell-Centric to Material-Centric
	Converting from Material-Centric to Cell-Centric

	Results and Discussion
	Acknowledgments
	Appendix

