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Abstract 17 

A large body of experimental work has established that athermal colloid/polymer mixtures 18 

undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a 19 

second disordered phase with increasing polymer concentration. These transitions are 20 

driven by polymer-mediated interparticle attraction, which is a function of both the 21 

polymer density and size. It has been posited that the disordered state at high polymer 22 

density is a consequence of strong interparticle attractions that kinetically inhibit the 23 

formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase 24 

interferes with crystallization. Here we use molecular dynamics simulations and density 25 

functional theory on polymers and nanoparticles of comparable size and show that the 26 

crystal-disordered phase coexistence at high polymer density for sufficiently long chains 27 

corresponds to an equilibrium thermodynamic phase transition. While the crystal is, 28 

indeed, stabilized at intermediate polymer density by polymer-induced intercolloid 29 

attractions, it is destabilized at higher densities because long chains lose significant 30 

configurational entropy when they are forced to occupy all of the crystal voids. Our results 31 

are in quantitative agreement with existing experimental data and show that, at least in the 32 

nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a 33 

modest range of thermodynamic stability. 34 
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Introduction  1 

Over five decades of experimental, theoretical and simulation work
1-13

 have led to the knowledge 2 

that polymer-induced depletion attractions between colloids in solution can cause them to 3 

crystallize even at low polymer concentrations. For large colloids, both face centered cubic 4 

(FCC) and hexagonally closed packed (HCP) structures tend to form, since the free energy 5 

difference between these two polymorphs is very small.
14

 In the nanoparticle limit, when the 6 

colloids and chains become comparable in size, we
13

 recently showed that colloids preferentially 7 

crystallize into the HCP structure in the presence of a dilute concentration of long enough 8 

polymers, in preference to the FCC morphology. This preference is driven by the difference in 9 

the free energy cost of confining individual polymer chains within the voids of the two different 10 

colloidal crystal morphologies. Specifically, polymers prefer to occupy the octahedral voids 11 

(OV) which are ~6 times larger in volume than the tetrahedral voids (TV). The HCP structure 12 

features connected OVs, while in the FCC OVs are completely surrounded by TVs. Therefore, 13 

because a sufficiently long polymer chain must spread across multiple connected voids, it has 14 

significantly lower free energy in a HCP crystal than in the FCC analog. Further increasing the 15 

polymer density 𝜙𝑝, however, experimentally leads to disordered structures, and the formation of 16 

apparently kinetically arrested states (diffusion limited or reaction limited aggregations) that has 17 

generally been attributed to the increasing pairwise attractions between colloids.
7
  18 

In this work we show that, at least in the nanoparticle limit (~10nm), there is an equilibrium 19 

phase transition between the crystal and a disordered phase at high polymer densities – just as the 20 

relative stability of the crystal polymorphs at low polymer concentrations is controlled by the 21 

nature of the chains partitioned into the crystal phase, this transition is also driven by the 22 

unfavorable entropic cost associated with confining a long polymer chain into the TVs of a 23 

periodic colloidal crystal, which become necessary at higher polymer concentrations.
15

 We thus 24 

conclude that the colloidal crystal phase in the nanoparticle limit only has a limited range of 25 

thermodynamic stability.
9
 26 

Results 27 

Bulk Phase Behavior: To illustrate the surprising thermodynamic stability of the high-polymer-28 

density disordered phase, colloid-polymer mixtures are simulated using the molecular dynamics 29 
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method for several different polymer volume fractions at a fixed colloid loading (see Methods). 1 

At each state point, we performed two simulations – one where the colloids begin in a 2 

hexagonally closed packed (HCP) structure that is stable at moderate polymer fraction 𝜙𝑝 and 3 

another in which they are in a disordered structure, specifically the one that is stable at high 𝜙𝑝 4 

(Fig. 1). These simulations verify that the states resulting from the simulations are not kinetically 5 

trapped, and the structural transitions that we report are reversible. Fig. 2 shows the radial 6 

distribution function of colloids, 𝑔(𝑟), and the time evolution of the global bond order parameter 7 

𝑄6, at three different 𝜙𝑝 and a colloid volume fraction 𝜙𝑐 ~ 0.1 for polymer chain length 𝑀 =8 

10 . At 𝜙𝑝 = 0.81,  the final radial distribution functions exhibit crystal-like behavior 9 

characterized by multiple sharp peaks persisting to large radial distances (Fig. 2c). Closer 10 

examination shows that each 𝑔(𝑟) has well defined characteristics of the HCP (e.g. a split peak 11 

at ~2c) rather than the face centered cubic structure, as expected by our previous work.
13

 Both 12 

the initially amorphous and initially crystalline states converge to the same 𝑔(𝑟), as do the global 13 

bond order parameter (a measure of crystallinity, Fig. 2f). At 𝜙𝑝 = 0.91, the 𝑔(𝑟) in Fig. 2a has 14 

an unusually large contact peak but there is an absence of any long-range order. After visually 15 

inspecting the snapshots from simulations (Fig. 1b), this 𝑔(𝑟) corresponds to the aggregation of 16 

colloids into a disordered “open” structure. There are many pairwise colloid contacts, but an 17 

absence of any higher-order closed packed structures. (We cannot decide if these structures are 18 

quasi-crystalline due to system size limitations.) The reduced crystallinity in this case is clearly 19 

shown by the 𝑄6 (Fig. 2d), and the results are again independent of the initial configuration. 20 

Simulations at 𝜙𝑝 = 0.86 produced two temporally persistent structures, depending on the initial 21 

states (“hysteresis”). Both the crystal-like structure and the “open” structure persist over long 22 

simulations (Fig. 2b) as do the corresponding 𝑄6 values. We conclude that the disordered and 23 

crystalline states are at equilibrium at high and low polymer concentrations, respectively, and 24 

imply that there is a first-order phase transition occurring between an ordered HCP crystal and a 25 

disordered structure in the vicinity of 𝜙𝑝 = 0.86. 26 

The “boundaries” between the disordered structure and the HCP crystal derived in this manner 27 

are shown in Fig. 3. (Note that we report results for two different polymer-colloid size ratios 28 

𝑞 = 2𝑅𝑔 𝜎𝑐⁄ = 0.6 and 0.8, where 𝑅𝑔  is the chain radius of gyration.) In the 𝜙𝑐 − 𝜙𝑝  phase 29 

diagram we note that boundaries from our simulations agree well with the “gelation” boundaries 30 
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widely reported for polymer-colloid mixtures over this modest 𝑞  range. Limited dynamics 1 

studies (not shown) illustrate that the disordered state is not an “arrested” structure; in the 2 

framework of our simulations this implies that the crystal-disordered boundary does not 3 

correspond to a non-ergodicity transition. This conclusion is well supported by the reversibility 4 

studies that are the focus of Fig. 2. Instead, as we shall show below, the transition from the HCP 5 

to the disordered structure is an equilibrium phase transition; at higher polymer loadings the HCP 6 

is shown to be thermodynamically less stable than the disordered state. One thing worth 7 

mentioning is that the 𝜙𝑐 − 𝑃 phase boundary, where 𝑃 is the pressure of the system (see method 8 

section), indicates that transition occurs at 𝑃 ≈ 2~2.5𝜀/𝜎3  independent of colloid volume 9 

fraction. This allows the proposed potential of mean force simulations (discussed in the next) to 10 

be conducted at conditions that are comparable to the bulk simulations. 11 

Void Occupation: To understand the molecular basis of these results we conduct simulations (see 12 

Methods) to study the polymer occupation of the OV and TV of rigid HCP colloidal crystals 13 

with increasing polymer density. Results for FCC crystals are qualitatively similar and are not 14 

shown here. We reiterate that an OV has a volume that is ~6 times larger than a TV.
13

 Figure 4 15 

shows the radial distribution function of chain monomer segments around the centers of OVs and 16 

TVs inside a HCP structure (held fixed) at 𝜙𝑐 = 0.1 and 𝑀 = 10 with varying 𝜙𝑝. It is seen that 17 

OVs are occupied by polymers at all 𝜙𝑝 investigated, which forms the basis for the increased 18 

relative thermodynamic stability of this polymorph over the FCC at low to modest polymer 19 

concentrations, as previously reported.
13

 However, while the TVs are mostly vacant at (and 20 

presumably up to) 𝜙𝑝~0.81, a sudden increase in occupancy, indicated by an increase in the 21 

magnitude of 𝑔𝑇𝑉(𝑟~0), is observed at 𝜙𝑝~0.86. The occupancy stays relatively unchanged 22 

with further increases in 𝑃. This result unambiguously shows that at low pressure (polymer 23 

density), where the HCP crystal is stable, polymer chains avoid the TVs because they have much 24 

smaller volume than OVs. However, with increasing pressure (polymer density) the polymers are 25 

forced to overcome the entropic penalty associated with confinement into the smaller TVs.  As 26 

we show next, this is responsible for the destabilization of the crystal phase.  27 

Free Energies: It is inherently difficult to calculate the free energy of high-density systems. So, 28 

rather than use methods such as umbrella sampling, Widom test particle insertion, or the Gibbs 29 

ensemble
16-19

 which have been applied with difficulty to the simpler case of hard sphere mixtures 30 
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with size disparity, we have devised a hybrid approach that uses inputs from the molecular 1 

dynamics simulations (such as the radial distribution function, and potentials of mean force,
20,21

 2 

Methods) in conjunction with the density functional theory
22

 to evaluate the free energy of both 3 

the crystal and the disordered phase.
23,24

 Validation of the phase boundaries calculated using this 4 

approach against the bulk simulations then provides a validating test of its accuracy. (Recent 5 

work by Dijkstra
30

 appears to allow for a facile means of exactly enumerating phase equilibria.) 6 

This approach requires knowledge of the polymer-mediated 𝑔(𝑟) between the colloids, and also 7 

two-body and higher order potentials of mean force (POMF) that are representative of the crystal 8 

and the disordered phases. The pairwise POMFs, 𝜓pair , are shown in Fig. 5a at different 9 

pressures; data over much broader ranges of pressure show the same trends. The depth of the 10 

first minimum of 𝜓pair  generally decreases with increasing 𝑃 , as expected. However, the 11 

conventional reasoning that colloids become kinetically arrested at high 𝑃 (𝜙𝑝) due to much 12 

stronger effective attractions is not supported by our results. Thus, 𝜓pair, which only changes 13 

marginally with polymer loading, provides little justification for any possible changes in the 14 

phase behavior of colloid-polymer mixtures with increasing polymer densities.  15 

To quantify higher-order effects we measure the free energy cost of bringing a test colloid 16 

particle from an infinite distance to being “in contact” with an existing colloid layered structure 17 

(see Methods). Since the contact is between a colloid and a structured surface, there are 18 

numerous ways for the “contact” to occur. We focus on the POMF of two types of “contacts” 19 

(Fig. 5b): (a) 𝜓̅hcp when the test colloid forms a tetrahedral void (TV) by coming into a three-20 

fold hollow created by three surface sites; and (b) 𝜓̅tri of the “tri-contact” where the test colloid 21 

forms a equilateral triangular with two neighboring colloids on the surface. This latter choice is 22 

motivated by the examination of the bulk disordered structures (Fig. 1b), which show the 23 

formation of such triangles, but not closed packed structures, is the norm for the high density 24 

disordered structure. For most of the relevant polymer densities we found that 𝜓̅tri agrees well 25 

with 3 × 𝜓pair , i.e., the pair-wise additive assumption is followed; however, the 𝜓̅hcp  shows 26 

much complicated behavior . 27 

The resulting relative free energy (per colloid) of the disordered and crystalline colloidal phases 28 

(Fig. 5c) clearly illustrates a phase transition from a crystal to a disordered phase at a polymer 29 
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concentration of  𝑃 ≈ 1.8𝜀/𝜎3 . For the sample with 𝜙𝑐  = 0.1 and 𝑀 = 10 , our MD bulk 1 

simulations suggest a transition from the crystal to a disordered phase in the vicinity of 𝑃 ≈2 

2.0𝜀/𝜎3( 𝜙𝑝 ≈ 0.86), which is consistent with this estimate. More to the point, Fig. 2 shows 3 

that this free energy evaluation using DFT correctly predicts the transition observed in MD 4 

and/or experiments for the three q values that we have considered. (The results at 𝑞=1 are only 5 

qualitatively correct.) Our results clearly illustrate that the transition observed is an equilibrium 6 

phase transition that is driven by the fact that, at high enough polymer densities, the chains lose 7 

free energy when they are confined into the tetrahedral voids that are characteristic of close-8 

packed colloidal crystals. This free energy loss no longer occurs when the colloids are still in 9 

close contact but do not form a closed packed structure, i.e., the disordered phase (Fig. 1). While 10 

this gel-like structure is very reminiscent of one formed, for example, by irreversible attraction, it 11 

is in fact an equilibrium structure. 12 

Discussion 13 

Several important issues need to be stressed in this context. First, while we have taken 14 

considerable care in simulating 𝑞 values that closely match experiment, the actual sizes of the 15 

colloids and the polymers in the experiment and the simulations are quite different. For example, 16 

the experimental results of Lekkerkerker
7
 use colloids that are ~200-300 nm in diameter. Our 17 

simulations are typically constructed for a colloid that is 6.45 times the size of a chain monomer 18 

– assuming a monomer size of ~1nm then suggests that our colloids are ~50 times smaller than 19 

the experiments. The nearly quantitative agreement of the crystal-disordered solid boundary 20 

predicted by the theory and those found in the experiments imply that 𝑞 might be the single 21 

relevant parameter that defines these physical situations. More experimental work, especially 22 

those using nanoparticles, can go to verifying this conjecture. Regardless, our previous work on 23 

the increased stability of the HCP crystal in the presence of such polymers, independent of 24 

colloid size,
13

 suggest that our results might continue to hold for more experimentally accessible 25 

scales. 26 

Given the importance of chain confinement in TVs as the driving force for the crystal to disorder 27 

transition, we postulate that short enough chains (or small enough 𝑞 ) would yield no such 28 

transition, much in the same way these chains do not impose a polymorphic preference for the 29 
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HCP crystal over the FCC since they do not stretch across multiple voids when confined.
13

 1 

Indeed, simulations for 𝑞  = 0.25 show no such transition, suggesting that this equilibrium 2 

transition will only occur for large enough 𝑞 values. Delineating the precise value of 𝑞 above 3 

which this transition occurs is an open question that needs to be pursued, which we defer for 4 

future work. However, it is important to stress that small 𝑞 values do not fall in the regime where 5 

this crystal-disordered phase transition is predicted to occur – the observation of gelation 6 

phenomena that have been found experimentally thus may indeed be purely a non-ergodicity 7 

transition in this limit. 8 

It has been argued that gelation occurs because the contact value of the effective intercolloid 9 

potential becomes strongly favorable. While this result might be true for small enough 𝑞 values, 10 

in general it is apparent that the contact value of the POMF only changes marginally with 11 

polymer density (Fig. 5a) and is ~ 4kT for all the pressures considered. These numbers are 12 

much more favorable than the 3kT that has been postulated as necessary to form colloidal gels. 13 

Hence we conclude that the formation of the disordered phase is not only related to the two-body 14 

POMF but is primarily driven by higher-order contributions.   15 

At last, by keeping interaction potentials being purely repulsive (see Methods) the systems 16 

investigated in this study resemble athermal systems, for which temperature only plays 17 

insignificant role in determining systems’ phase behavior.  18 

Methods 19 

Simulations: In our simulations polymer chains are represented by the Kremer-Grest bead-spring 20 

model.
23

 All chain monomers are chemically identical and have a mass m and diameter 𝜎. Beads 21 

along the chain are connected by a finitely extensible nonlinear elastic (FENE) potential with 22 

𝑘 = 30𝜀/𝜎2 and R0 =1.5𝜎.
25

 Nanoparticles (NPs) are represented as uniform spheres of diameter 23 

𝜎𝑁𝑃 and mass 𝑚𝑁𝑃. We focus on “athermal” systems, where all non-bonded pair interactions are 24 

purely repulsive and represented by the “expanded” Lennard-Jones potential: 𝑈𝑖,𝑗(𝑟) =25 

4𝜖 [(
𝜎

𝑟−∆𝑖,𝑗
)

12

− (
𝜎

𝑟−∆𝑖,𝑗
)

6

] , 𝑟 < 𝑟𝑐, where 𝜖 is the well depth of the potential and 𝑖, 𝑗 = monomer 26 

or NP.  The cut-off distance 𝑟𝑐 = ∆𝑖,𝑗 + 21/6𝜎  is chosen for all pair interactions. The shift, 27 
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∆𝑖,𝑗= [
(𝜎𝑖+𝜎𝑗)

2
] − 1.0, where 𝜎𝑖 refers the diameter of particle i, ensures that 𝑈𝑖,𝑗 ((𝜎𝑖 + 𝜎𝑗)/2) =1 

0 and −
𝑑𝑈𝑖,𝑗(𝑟)

𝑑𝑟
 (for 𝑟 > ∆𝑖,𝑗 ) , or “the hardness”, is same for all non-bonded pair potentials. 2 

Following ref. 
13,26,27

 we consider colloids of diameter 𝜎𝐶 = 6.45𝜎 and vary the polymer chain 3 

length 𝑀=10, 20 or 40 in a series of simulations corresponding to a polymer-colloid aspect ratio 4 

𝑞=0.6, 0.8 and 1.0, respectively. (Our previous work suggests that the free energy difference of 5 

confining a polymer chain in a tetrahedral vs. octahedral void settles to a limiting value of ~2kBT 6 

with increasing nanoparticle-monomer aspect ratio. We therefore expect that at other aspect 7 

ratios occupying a TV is still going to destabilize the crystal phase, but for progressively larger 8 

chain lengths, M. If our logic is correct, then the monomer thickness is not relevant – rather it is 9 

the q parameter which is the ratio of the 𝑅𝑔 of the chains to the radius of the NP.) 10 

All simulations are performed using the LAMMPS parallel molecular dynamics package, under 11 

the isothermal-isobaric (NPT) conditions with temperature T=1.0𝜀 𝑘𝐵⁄ and a pressure range of 12 

P=1 to 3𝜀/𝜎3. (Some limited simulations at T=1.2𝜀 𝑘𝐵⁄  gave similar results.) The Nose-Hoover 13 

thermostat and barostat are used to maintain temperature and pressure at prescribed values with 14 

damping constants Γ=1.0 and 5τ
-1

, respectively where τ = σ(m/ε)
1/2

. The time step in all 15 

simulations is set to be 𝛿𝑡=0.01τ.  16 

Periodic boundary conditions are used in all three dimensions in bulk simulations, which only 17 

considered 𝑀=10 and 20 chains. For each chain length, simulations are first run at the two 18 

pressures P=1 and 3 𝜀/𝜎3  using random initial configurations. These were created by first 19 

randomly placing a desired number of colloids in the simulation box, followed by growing 20 

polymer chains as described by Auhl et al.,
28

 with the additional restriction that no monomers 21 

overlap the colloids. Overlapping monomers were pushed off each other using a soft potential
14

 22 

until they are far enough apart for the LJ interaction to be switched on. After  5 × 106𝜏, the 23 

resulting configurations at the two pressures are then used as starting points for simulations at 24 

incrementally lower and higher pressures (1, 1.5, 2.0, 2.5 and 3.0𝜀/𝜎3, respectively). At each 25 

pressure, colloid radial distribution functions and global bond order parameters from both initial 26 

states are calculated and compared to check the reversibility of the simulations. Three colloid 27 

volume fractions 𝜂𝐶 =
𝜋𝜎𝐶

3𝑁𝐶

6𝑉
 are investigated. 𝑁𝐶 = 80, 160 and 240 colloids are mixed, 28 
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respectively, with 56700, 48600, and 42300 monomers in a simulation box whose volume 𝑉 1 

varies in the range 453 − 493𝜎3 , yielding 𝜂𝐶~0.1, ~0.2 and ~0.3.  2 

In the potential of mean force (POMF) simulations, we follow the force integration method in 3 

ref. 
27

 to obtain the POMF. In the two-body POMF measurements, two colloids of diameter 𝜎𝐶 4 

are placed at (𝑥, 0, 0) and (−𝑥, 0, 0) in a simulation box mixed with polymer chains of the 5 

desired length (so that the simulations have 4000 monomers). The volume of the box varies from 6 

5600~8000 𝜎3  depending on the pressure, and the aspect ratio of simulation box is fixed 7 

at 5: 3: 3. The inter-colloid separation  2𝑥 increases from 𝜎𝐶 to a distance where no interactions 8 

between the two colloids are observed (up to simulation uncertainties). The measured forces are 9 

then integrated to obtain the two-body POMF Ψpair. In the surface POMF simulations, forces are 10 

measured between a colloid and a colloidal structure that is made of two layers of 16 11 

hexagonally packed colloids. The two colloidal layers that span the 𝑥 − 𝑦  dimension of the 12 

simulation box are stacked in the same way as the A-B layer structure seen in both the HCP and 13 

FCC crystals (Figure 4(a)). There are 13000 monomers in each simulation, and the pressure is 14 

controlled by varying only the 𝑧  dimension of the simulation box between 40~46. We are 15 

particularly interested in the POMF of forming two types of “contacts” between an “incoming” 16 

colloid and the A-B layer: the “tri-contact” POMF, Ψtri, which measures the free energy cost for 17 

the incoming colloid forming an equilateral triangle with two colloids in the A-layer and the 18 

“HCP-contact”, ΨHCP, which measures the free energy cost for the incoming colloid forming a 19 

tetrahedron with three colloids in the A-layer (Figure 4(a)). Forces exerted on the incoming 20 

colloid are measured at a set of distances along paths that are perpendicular to the surface of A-B 21 

layer.  22 

Finally, to relate to experiments, in bulk simulations the reduced polymer density 𝜙𝑝 ≡23 

4

3
𝜋𝑅𝑔

3𝑁𝑆 𝑀𝑉⁄  is used for discussions in place of simulation pressure, where 𝑁𝑆 is the number of 24 

monomers in simulations, and 𝑅𝑔 is the radius of gyration of polymer chains measured at the 25 

corresponding 𝜙𝑝. 26 

Free Energy Calculations: To compare the relative stability of the colloidal crystal and 27 

disordered phase, free energies of the two phases are calculated. For the crystal phase, the 28 

“Baxter sticky sphere model”
29

 is used with the assumption that colloids move independently 29 
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inside crystal lattice cells, while interacting via the square-well potential with their neighbors. 1 

The free energy per colloid is given by 2 

𝛽𝑓 = −3ln(𝛿/2) − 𝛽
𝑍𝜖𝑠𝑞

2
 

where 𝛽 = 1/𝑘𝐵𝑇, Z is the coordination number of crystal lattice, 𝛿 is the potential width and  3 

𝜖𝑠𝑞 is the depth of the square well. The values of 𝛿 and 𝜖𝑠𝑞 are estimated by analyzing the  ΨHCP 4 

measured at a given pressure, such as Figure 4(b) and (c).  𝜖𝑠𝑞 is taken to be the minimum of 5 

 ΨHCP, and 𝛿 is estimated as the distance over which an increase of ~𝑘𝐵𝑇 in  ΨHCP occurs. In our 6 

calculations, 𝛿 varies between 0.1~0.15 depending on pressure. The coordination number of a 7 

HCP lattice 𝑍 = 12.  8 

Density functional theory
22

 is invoked for calculating the free energy of the disordered phase 9 

where colloids are assumed to interact with each other through the two-body POMF  Ψpair . 10 

According to the density functional theory the free energy of a system consists of an ideal part 11 

𝐹𝑖𝑑and an excess part 𝐹𝑒𝑥: 12 

𝐹 = 𝐹𝑖𝑑 + 𝐹𝑒𝑥 

The formula for the ideal free energy is exact, given by: 13 

𝛽𝐹𝑖𝑑 = ∫ 𝑑𝐫 𝜌(𝐫)[ln(𝜌(𝐫)) − 1] + 𝛽 ∫ 𝑑𝐫 Ψ(𝐫)𝜌(𝐫) 

where Ψ(𝐫) is the external potential, and 𝜌(𝐫) is the density of colloids at 𝐫. In a spherical 14 

coordinate system, the system becomes radially symmetric subject to an external potential Ψ(𝑟) 15 

of form:  16 

Ψ(𝑟) = {
 Ψpair(𝑟), for 𝑟 ≥ 𝜎𝑐 

∞,                 for 𝑟 < 𝜎𝑐
 

where 𝜎𝑐 is the colloid diameter. Also, 𝜌(𝐫) becomes 𝜌(𝑟) = 𝜌𝑏𝑔(𝑟) where 𝑔(𝑟) is the colloidal 17 

radial distribution function. Thus, 18 

𝛽𝐹𝑖𝑑 = ∫ 𝑑𝑟(4𝜋𝑟2)𝜌(𝑟)[ln(𝜌(𝑟)) − 1]
∞

𝜎𝑐

+ ∫ 𝑑𝑟(4𝜋𝑟2)𝜌(𝑟)𝛽 Ψpair(𝑟)
∞

𝜎𝑐
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with both 𝑔(𝑟) and  Ψpair(𝑟) to be obtained from simulations. In practice, the integration is 1 

performed to a distance 𝑟max, where 𝜌(𝑟max) = 𝜌𝑏. The per-colloid free energy is thus 2 

𝑓𝑖𝑑 = 𝐹𝑖𝑑 ∫ 4𝜋𝜌(𝑟)𝑟2𝑑𝑟
𝑟max

0
⁄ . 3 

The excess free energy accounts for interactions between colloids. In our calculations, short-4 

range repulsions between colloids (“expanded” Lennard-Jones potential) are approximated by 5 

Hard-Sphere interactions, and the long-range attractions are described by the two-body POMF 6 

 Ψpair. Thus the excess free energy can be decomposed into two contributions: 7 

𝛽𝐹𝑒𝑥 = 𝛽𝐹hs
𝑒𝑥 + 𝛽𝐹dep

𝑒𝑥  

where 𝐹hs
𝑒𝑥 and 𝐹dep

𝑒𝑥  are, respectively, the excess free energy due to hard-sphere repulsions and 8 

depletion attractions. 𝐹dep
𝑒𝑥  can be approximately calculated using the colloid configurations 9 

obtained during simulations. That is  10 

𝛽𝐹dep
𝑒𝑥 =

1

2
〈 ∑  Ψpair(𝑟𝑖𝑗)

𝑁𝐶

𝑖,𝑗=1

〉 

where 𝑁𝐶is the number of colloids in simulation box, and 〈 〉 stands for an average over all 11 

saved configurations. In practice, 5 × 104~105configurations are used in calculations with each 12 

configuration being generated every 1000 during simulations. The per-colloid free energy due 13 

to depletion attraction is thus 𝑓dep
𝑒𝑥 = 𝐹dep

𝑒𝑥 𝑁𝐶⁄ . 14 

The framework of fundamental measure theory (FMT) is followed for calculating 𝛽𝐹hs
𝑒𝑥 =15 

∫ 𝑑𝐫 [Φhs(𝐫)], where Φhs(𝐫) is the excess free energy density at 𝐫. For detailed discussion of the 16 

FMT readers are referred to ref. 
22

. A brief account of implementation of this method in this 17 

study is provided in the Supporting materials. The per-colloid excess free energy due to hard 18 

sphere interactions is finally calculated as 𝑓hs
𝑒𝑥 = 𝐹hs

𝑒𝑥 ∫ 4𝜋𝜌(𝑟)𝑟2𝑑𝑟
𝑟max

0
⁄ , where 𝑟max  is the 19 

radial distance from the origin where bulk colloid density 𝜌𝑏 is recovered. 20 

The total free energy per colloid for the disordered phase is thus 𝛽𝑓 = 𝛽𝑓𝑖𝑑 + 𝛽𝑓hs
𝑒𝑥 + 𝛽𝑓dep

𝑒𝑥 . 21 

 22 
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Figure Legends 1 

Figure 1: Snapshots of a NP phase for q=0.6 showing a crystal and a disordered phase as discussed in the 2 

text. M=20 and ηc0.1. 3 

Figure 2. (a)-(c) colloidal radial distribution function 𝑔(r), and (d)-(f) the global bond order 4 

parameter Q6 , obtained from bulk simulations at three polymer densities 𝜙𝑝 = 0.81 (bottom), 5 

0.86 (middle) and 0.91 (top). The polymer chain length is M=10 and the colloid volume fraction 6 

𝜙𝐶= 0.1. The blue and red points represent results obtained from using two different initial states 7 

for simulations, namely an ordered HCP crystal and a disordered structure, respectively. The 8 

black dashed lines in (c) indicate the 𝑔(r) of a perfect HCP crystal. 9 

Figure 3. The 𝜙𝑐 − 𝜙𝑝 phase diagram showing the regions where the disordered (open symbols) 10 

and the HCP structure (filled symbols) are obtained from bulk simulations. The blue and red 11 

symbols represent simulations with chain length M=10 and 20, corresponding to the colloid-12 

polymer aspect ratio q~0.6 and 0.8, respectively. Boundaries predicted by the density functional 13 

theory are marked by the solid lines for chain length of 10 (blue), 20 (red) and 40 (green). The 14 

“gelation” boundaries adopted from Ref.[7] for corresponding q values are also included for 15 

comparison: open stars are the gel phase while filled stars are crystals. 16 

Figure 4. (a) Schematic illustrations of the A-B layer, and the “HCP- contacts” and “FCC-17 

contacts” defined in text. Radial distributions of polymer segments (color symbols) and colloids 18 

(black circles and dashed vertical lines) about centers of the (b) TV and (c) OV voids inside a 19 

HCP structure. 𝜙𝑝 = 0.73(cyan), 0.81 (magenta), 0.86 (blue), 0.91 (green) and 0.95 (red). 20 

Figure 5. (a) Two-body potential of mean force Ψpair measured from simulations with chain 21 

length 𝑀 =10, and 𝑃 = 0.15𝜀/𝜎3 (red), 0.20  𝜀/𝜎3  (blue), 0.25  𝜀/𝜎3  (black) and 0.30  𝜀/𝜎3 22 

(magenta). (b) “Surface” potential of mean force Ψsurface  with chain length M=10 at 𝑃 =23 

0.15𝜀/𝜎3 . The filled symbols are results directly measured from simulations, and the open 24 

symbols are values calculated from Ψpair using the pair-additive assumption. The Ψtri and ΨHCP 25 

are shown in black and magenta, respectively. (c) Same as (b), but at = 0.25𝜀/𝜎3. (d) The free 26 

energy per colloid as a function of 𝜙𝑝, of the HCP colloidal crystal (filled symbol and solid line), 27 

the “open” colloidal structure (open symbol and solid line), and the hypothetical HCP colloidal 28 

crystal in absence of many-body effects (filled symbol dotted line). 29 
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