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Background: One of the main challenges for bioethanol production from lignocellulosic 24 

material such as sugarcane bagasse is the recalcitrance of the biomass to physical, chemical and 25 

biological attacks. Different pretreatment strategies have been employed to enhance sugar yield 26 

from sugarcane bagasse, which in turn enhanced ethanol production. This study evaluated the 27 

efficiency of an ionic liquid (IL) 1-butyl-3-methyl imidazolium acetate ([C4mim][OAc]) 28 

pretreatment at 110°C for 30 min, and compared it with high temperature autohydrolysis 29 

pretreatment in terms of delignification, cellulose crystallinity and digestibility. 30 

Results: It was found that sugarcane bagasse exhibited a substantial decrease in lignin content, 31 

reduced cellulose crystallinity, and enhanced glucan and xylan digestibility, when subjected to 32 

[C4mim][OAc] pretreatment. Glucan and xylan digestibility of [C4mim][OAc] pretreated bagasse 33 

was determined as 97.4% and 98.6%, respectively after 72 h of enzymatic hydrolysis. In case of 34 

autohydrolysis, the maximum of glucan and xylan digestibility was determined after 72 h as 62.1 35 

and 5.7%, respectively from the bagasse pretreated at 205°C for 6 min. X-ray diffraction analysis 36 

also showed a significant reduction in crystallinity of [C4mim][OAc] pretreated bagasse samples.  37 

[C4mim][OAc] pretreated and autohydrolyzed bagasse (205°C for 6 min) exhibited maximum 38 

ethanol production of 78.8 and 70.9 mg/g substrate, respectively after 24 h of fermentation by a 39 

newly isolated S. cerevisiae strain (MZ-4). However, the fermentation of bagasse autohydrolyzed 40 

at 190°C for 10 min and 110°C for 30 min yielded maximum ethanol of 66.0 and 28.4 mg/g 41 

substrate, respectively by using S. cerevisiae Lalvin EC-118. 42 

Conclusion: [C4mim][OAc] pretreatment was shown to be comparatively a more promising 43 

alternative to high severity autohydrolysis. [C4mim][OAc] pretreatment weakened the 44 

interactions with in lignin structure and also reduced the cellulose crystallinity, which in turn 45 

enhanced its digestibility. In case of autohydrolysis, the increase in severity enhanced the 46 
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crystallinity of biomass; however, the conditions with high severity exhibited positive effect on 47 

glucan digestibility and subsequent ethanol yield, which might be attributed to removal of major 48 

hemicelluloses from biomass during autohydrolysis. In comparison, [C4mim][OAc] pretreatment 49 

was more efficient than autohydrolysis even in milder conditions with less processing time. 50 

Key Words: ionic liquid, sugarcane bagasse, hydrolyzability, autohydrolysis, bioethanol 51 

 52 

Background 53 

Lignocellulosic biomass is a suitable resource for renewable energy in terms of sustainability and 54 

ease of fermentation of enzymatically released sugars that can be converted into bioethanol to 55 

substitute for gasoline [1]. This resource is mainly composed of cellulose (30–45%), 56 

hemicelluloses (20–30%), and lignin (5–20%) [2]. Cellulose chains are held together by van der 57 

Waals interactions and hydrogen bonding which makes it a highly crystalline material [3]. The 58 

xylan layer is the most prominent hemicelluloses in grasses and hardwoods and forms covalent 59 

linkages to lignin in the cell wall. Xylan also has non-covalent interactions with cellulose, which 60 

are believed to play a role in preventing enzymatic degradation [3, 4]. Lignin is a complex and 61 

branched aromatic polymer that is associated with hemicellulose and contributes to the 62 

recalcitrance of biomass [3, 5]. There are several stages involved in conversion of recalcitrant 63 

lignocellulosics into ethanol including physicochemical pretreatment, enzymatic hydrolysis, 64 

fermentation, ethanol separation and effluent treatment. Pretreatment is an important step in the 65 

overall process and is believed to break down some of the carbohydrate-lignin complexes [3, 6]. 66 

Enzymatic hydrolysis of pretreated biomass is one of the most promising means of releasing 67 

simple sugars from biomass [7]. Typically, enzymatic hydrolysis of unpretreated biomass is 68 

reported to produce less than 20% sugar yield of theoretical value [8]. Different pretreatment 69 
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methods have been developed to reduce recalcitrance of lignocellulosic biomass but there are 70 

many drawbacks associated with these procedures. For example, biological pretreatments (i.e. 71 

lignin degrading fungi) often require long residence times [9, 10], mechanical methods such as 72 

grinding and milling techniques are not appropriate due to their high capital costs and intensive 73 

energy requirements [11]. Furthermore, various physicochemical techniques (e.g. autohydrolysis, 74 

supercritical fluids, steam explosion, dilute acid, and alkali) require high temperature and 75 

pressure along with specialized equipment [3, 7, 12]. Another drawback associated with these 76 

pretreatments is the release of inhibitors, which negatively affect enzymatic hydrolysis and 77 

subsequent fermentation process [7, 13]. These problems highlight the need for a more rapid, 78 

environment friendly, cost effective and efficient method for lignocellulosic biomass 79 

pretreatment and conversion. 80 

Despite being energy intensive, autohydrolysis is recommended as environmentally benign and 81 

clean process [14] which doesn’t require any catalyst or corrosive compounds [13]. Biomass and 82 

water are heated from 130 to 230ºC for different time periods (from few sec to several h) to carry 83 

out this pretreatment [7]. At high temperature (~200˚C) water has an acidic pH and acquires 84 

catalytic properties, which eliminates the requirement of catalyst to disrupt biomass [15]. Auto-85 

ionization of water and ionization of acidic species (uronic acid and formic acid) at high 86 

temperature generate hydronium ions that catalyze the series of reactions and cause reduction in 87 

degree of polymerization (DP) of hemicelluloses and cellulose by hydrolysis of selective 88 

glycosidic bonds [7, 16]. During autohydrolysis, acetyl groups are released from substituted 89 

xylan chains (along with other organic acids) which act as catalysts to assist in acid-catalyzed 90 

hydrolysis of hemicellulose fraction of lignocellulosic biomass [7, 17-19]. The main 91 

compositional changes observed after autohydrolysis are lignin transformations and 92 
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depolymerization of hemicelluloses and cellulose into oligomers and monomers [7]. These 93 

compositional changes induce other structural changes including increasing the reducing ends of 94 

plant polysaccharides for efficient exoglucanase activity and thereby increased cellulose 95 

digestibility [7, 13, 18].  96 

Ionic liquid pretreatment (IL) is another method of reducing the recalcitrance of biomass that has 97 

recently drawn a great deal of attention because of the unique physical and chemical properties 98 

of certain ILs that are a very stable class of organic salts with potential application as “green 99 

solvents” [8]. The main advantages of using ILs are related to their non-explosive, non-toxic, 100 

environment-friendly, low volatility, good recyclability and general stability under severe 101 

reaction conditions [1, 8, 20]. IL pretreatment is considered as an effective pretreatment method 102 

as it weakens van der Waals interactions between cell wall components [1, 21]. In grasses, the 103 

ester linkages that are formed between lignin and arabinoxylan are disrupted during IL 104 

pretreatment [1]. It is expected that IL pretreatment imparts compositional changes and interacts 105 

with the original biomass by hydrogen, ionic and Π-Π interaction in order to dissolve its 106 

components [22]. Anionic moieties of ILs act as hydrogen ion acceptor and interact with 107 

hydroxyl groups present within hydrogen bonding network of cellulose; however, cations 108 

interact with lignin through Π-Π interaction [3, 23]. IL pretreatment causes dissolution of 109 

biomass that can be rapidly precipitated with an anti-solvent and this prevents the reconstruction 110 

of the crystalline phase of cellulose resulting in the formation of porous and amorphous structure 111 

thus greatly enhanced its digestion [8, 21, 24].  112 

For biomass pretreatment, three of the most cited ILs are imidazolium i.e. [C4mim][Cl] (1-butyl-113 

3-methylimidazolium chloride), [C2mim][Cl] (1- ethyl-3-methylimidazolium chloride) and 114 

[C2mim][OAc] (1-ethyl-3-methylimidazolium acetate). All these alkylimidazolium salts have 115 
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been reported as most effective agents for lignocellulosics dissolution [22]. It has been reported 116 

that the acetate ion in ILs are less viscous and can function as a weak base to remove lignin and 117 

de-acetylate biomass [22, 25]. Studies on these three alkylimidazolium salts reveal that shorter 118 

alkyl chain of [C2mim]
+
 imparts greater extent of saccharification with faster dissolution. 119 

However, higher dissolution extent of [C2mim]
+
 does not benefit the overall process of 120 

pretreatment since losses in [C4mim]
+
-treated biomass were much less as compared to [C2mim]

+
 121 

pretreatment process. In terms of hemicellulose saccharification yield, [C4mim]
+
 ILs perform 122 

better as hemicellulose is preserved in its polymeric form and recovered form after pretreatment 123 

[22]. Due to these reasons, [C4mim][OAc] (1- butyl-3-methyl imidazolium acetate) pretreatment 124 

was selected for this study. Previously, [C4mim][OAc] pretreatment of sugarcane bagasse was 125 

reported by Silveria et al. (2015), who studied the effect of [C4mim][OAc] pretreatment in 126 

combination with ethanol and supercritical CO2 (at 110, 145 and 180ºC for 2 h) [26]; while, Aver 127 

et al. (2013) used only [C4mim][OAc] for the pretreatment of sugarcane bagasse at 120ºC for 24 128 

h [27]. However, none of those studies discussed the effect of [C4mim][OAc] pretreatment on 129 

crystallinity of sugarcane bagasse and the efficiency of fermenting microbes for the production 130 

of bioethanol from [C4mim][OAc] pretreated bagasse. In comparison to previous studies, this 131 

study evaluated [C4mim][OAc] pretreatment of sugarcane bagasse at less severe conditions (i.e. 132 

110ºC for 30 min); and compared with high temperature autohydrolysis to investigate the 133 

changes it imparts to structure and composition of sugarcane bagasse and its potential to produce 134 

bioethanol. High temperature conditions for autohydrolysis were adopted from literature which 135 

investigated optimal pretreatment conditions for maximum cellulose conversions [7, 28]. 136 

Moreover, the efficiency of various commercially available yeasts was compared with a newly 137 

isolated strain to determine a better fermenting strain for enhanced bioethanol production.  138 
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 139 

Results and discussion 140 

This study investigated structural and chemical characteristics of autohydrolyzed and 141 

[C4mim][OAc] pretreated sugarcane bagasse and the impact of these pretreatment strategies on 142 

enzymatic digestibility and production of bioethanol. 143 

 144 

Effect of pretreatment on biomass composition 145 

The effect of different pretreatment strategies on composition of sugarcane bagasse is shown in 146 

Table 1. The chemical composition of untreated sugarcane bagasse was determined as 39.8% 147 

glucan, 16.8% xylan and 31.9% lignin. From Table 1, it can be inferred that the xylan content 148 

was reduced from 16.8% (in untreated bagasse) to 6.8% and 3.4% in samples autohydrolyzed at 149 

190ºC and 205ºC, respectively. The maximum xylan dissolution was observed when 150 

autohydrolysis was carried out under high severity conditions i.e. 205ºC for 6 min; however, a 151 

very slight variation in xylan content was observed in samples autohydrolyzed at 110ºC for 30 152 

min. The xylan content was reduced from 16.8% to 11.1% after [C4mim][OAc] pretreatment 153 

(110°C for 30 min), depicting that the IL exhibited less effect on hydrolysis of hemicellulose, as 154 

compared to high severity autohydrolysis pretreatment. The lignin content was determined as 155 

31.9% in untreated bagasse which was increased to 41.8% and 39.4% in samples autohydrolyzed 156 

at 190ºC and 205ºC, respectively. The significant increase in lignin content after high severity 157 

autohydrolysis could be attributed to the removal of significant amount of hemicellulose while 158 

retaining most of the lignin. Li et al. (2007) suggested that the increased lignin content might be 159 

due to the repolymerization of polysaccharides degradation products (such as furfural) and/or 160 

polymerization with lignin, which forms a lignin like material termed as pseudo-lignin [29]. The 161 
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pseudo-lignin can also be generated from carbohydrate without significant contribution from 162 

lignin, especially under high severity pretreatment conditions [30]. During our current studies, 163 

the content of lignin was increased from 31.9% to 35.3% after [C4mim][OAc] pretreatment. This 164 

increase in lignin content was lesser as compared to the high severity autohydrolysis 165 

pretreatment, which might be attributed to lesser dissolution of hemicelluloses by [C4mim][OAc] 166 

as compared to autohydrolysis. However, the bagasse autohydrolyzed under same severity 167 

conditions didn’t exhibit promising difference in lignin contents as compared to untreated 168 

bagasse. Another interesting effect is the increase of acid soluble lignin content that showed that 169 

[C4mim][OAc] weakened the interactions within lignin structure. It has also been previously 170 

reported that the IL cation interacts with lignin through Π-Π interaction to help in lignin 171 

dissolution; however, complete dissolution of lignin was difficult due to complex lignin-172 

carbohydrate structure and hydrophobicity [8]. [C4mim][OAc] exhibited better effect on lignin 173 

dissolution as compared to autohydrolysis but both pretreatment methods had limited effect on 174 

cellulose removal. The increase in cellulose content after high severity autohydrolysis was 175 

attributed to the significant removal of hemicelluloses. The effect of both pretreatments on 176 

lignocellulosics conversion was further investigated by FTIR and XRD analysis.  177 

 178 

Effect of pretreatment on biomass structure 179 

Fourier transform infrared spectroscopy (FTIR) analysis 180 

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR–FTIR) was 181 

conducted and different absorption bands were used to monitor the chemical changes of lignin 182 

and carbohydrates (Figure 1). Table 2 showed the assignment of various bands of interest to their 183 

chemical groups. The bands assigned to acetyl group at 1730 showed reduction of absorbance in 184 
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the bagasse pretreated with [C4mim][OAc] and autohydrolyzed at 205°C for 6 min, confirming 185 

the removal of hemicelluloses components; similarly, the reduction in peak at 1161 cm
-1

 was 186 

also observed after [C4mim][OAc] pretreatment. The band position at 1424 cm
-1

 is mainly due to 187 

CH2 scissor motion in cellulose. The increase in band intensity at 1424 cm
-1

 and other cellulose 188 

associated band can be attributed to increase in cellulose content due to removal of lignin and 189 

hemicelluloses which confirmed the compositional analysis data (Table 1). Significant peaks at 190 

1319 and 1370 cm
-1 

were observed in all pretreated samples that might be attributed to increased 191 

cellulose content after pretreatments. Reduction in absorption band at 3336 cm
-1 

after high 192 

severity autohydrolysis (i.e. 205°C of 6 min and 190°C for 10 min) represented lower cellulose 193 

hydrogen bonding in pretreated samples. The spectra obtained from [C4mim][OAc] pretreated 194 

bagasse showed diminished peaks at 1103 cm
-1

 indicating the reduction of cellulose crystallinity 195 

after [C4mim][OAc] pretreatment. 196 

 197 

Figure 1 FTIR spectra of untreated, autohydrolysis and [C4mim][OAc] pretreated bagasse: 198 

(a) from 1800 to 600 cm
-1

; (b) from 4000 to 1800 cm
-1

 region 199 

 200 

Measurement of cellulose crystallinity 201 

The X-Ray diffraction patterns analysis of pretreated and untreated bagasse was performed to 202 

examine the cellulose crystallinity index. Two diffraction peaks were noticed at 22º (2θ) and 19º 203 

(2θ) which corresponds to I002 (crystalline region) and Iam (amorphous region), respectively 204 

(Figure 2). Crystallinity index (CrI) of untreated bagasse was determined as 0.61, whereas CrI of 205 

the samples autohydrolyzed at 110°C, 190°C and 205°C was 0.62, 0.65 and 0.68, respectively 206 

(Table 3). The slight increase in CrI can be attributed to removal of amorphous region i.e. 207 
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hemicelluloses, lignin or amorphous cellulose and rearrangement of remaining components [38, 208 

39]. Diffraction pattern of [C4mim][OAc] pretreated sample showed the disappearance of 209 

secondary peak (I101) at 2θ value of 15º, and the crystallinity peak (I002) was also found to be 210 

weaken that represented the profile of nearly amorphous cellulose [40]. The CrI of 211 

[C4mim][OAc] treated sample was determined as 0.25 (Table 3) demonstrating a reduction in 212 

cellulose crystallinity. Previous studies have shown that the crystallinity index of bagasse was 213 

reduced from 0.56 to 0.24 after [C2mim][OAc] pretreatment [8]. It was suggested that anion and 214 

cation in the IL were responsible for the disruption of cellulose structure. The cation interacted 215 

with lignin though Π-Π interaction and hydrogen bonding whereas anionic acetate acted as 216 

hydrogen bond acceptor that attacked the free hydroxyl group of cellulose and deprotonated it, 217 

thus reducing cellulose crystallinity [3, 23]. Hydrogen bonding in cellulose structure was 218 

presumably disrupted and replaced by hydrogen bonding between cellulose hydroxyl and anions 219 

of ionic liquid, thus causing disruption and dissolution of cellulose structure and reduction of its 220 

crystallinity [3]. 221 

 222 

Figure 2 XRD spectra of untreated, autohydrolyzed and [C4mim][OAc] pretreated bagasse 223 

 224 

Enzymatic hydrolysis 225 

The carbohydrate digestibility is considered as an important factor to select the most efficient 226 

method of pretreatment. Autohydrolysis was compared with [C4mim][OAc] pretreatment to 227 

obtain kinetics of enzymatic hydrolysis and cellulose digestibility (Figure 3). In case of 228 

[C4mim][OAc] pretreated bagasse 79.8% cellulose was converted after 3 h of enzymatic 229 

hydrolysis, whereas in samples autohydrolyzed at 110ºC, 190ºC and 205ºC, the digestibility 230 
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percentages were noted as only15.6%, 20.8% and 27.3%, respectively. The reaction was 231 

completed at 72 h with 97.4%, 19.3%, 46.9% and 62.1% cellulose converted, respectively. Qiu et 232 

al. (2012) and Li et al. (2010) reported that enzymatic hydrolysis of [C2mim][OAc] pretreated 233 

bagasse exhibited cellulose digestibility up to 87% and 96%, respectively [1, 8]. The previous 234 

studies on [C4mim][OAc] pretreated bagasse (at 120ºC for 24 h) showed 78% of cellulose 235 

digestibility [27]; however, the current study showed the enhanced cellulose digestibility when 236 

[C4mim][OAc] pretreated bagasse (at 110ºC for 30 min) was subjected to enzymatic hydrolysis. 237 

In case of autohydrolysis, the limited enzymatic hydrolysis can be attributed to unmodified 238 

crystalline cellulosic structure. The increase in amorphous cellulose content as a result of 239 

[C4mim][OAc] pretreatment provided an enhanced surface area leading to better enzyme 240 

accessibility and increased digestibility as compared to autohydrolyzed samples.  241 

Hemicellulose digestibility of [C4mim][OAc] pretreated sample was reported as 65.1% after 3 h 242 

while for samples autohydrolyzed at 110ºC, 190ºC and 205ºC, hemicellulose conversion 243 

percentages were noted as only 4.2%, 2.7% and 3.0%, respectively (Figure 4). The hydrolytic 244 

process completed at 72 h and hemicellulose digestion was determined as 98.6% for the 245 

[C4mim][OAc] pretreated bagasse while 8.3%, 4.6% and 5.7% hemicelluloses were converted 246 

for samples autohydrolyzed at 110ºC, 190ºC and 205ºC, respectively. Higher hemicelluloses 247 

digestibility from [C4mim][OAc] pretreated bagasse might be attributed to minimal loss of initial 248 

xylan and delignification. Silva et al. (2011) reported only 75% xylan digestion when treated 249 

with [C2mim][OAc] [20], which was quite lower as compared to [C4mim][OAc] treated bagasse. 250 

Previous studies on [C4mim][OAc] pretreated sugarcane bagasse showed 99.5% xylan 251 

digestibility [27]. In autohydrolyzed bagasse, hemicelluloses were not accessible to enzymes 252 
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because most of the hemicelluloses were already removed and the remaining fraction was 253 

covalently linked to lignin [22]. 254 

Enzymatic hydrolysis results clearly showed that sugars were released faster to a greater extend 255 

when [C4mim][OAc] pretreatment of sugarcane bagasse was used rather than the autohydrolysis 256 

pretreatment. It was also observed that total processing time to reach 60% cellulose digestibility 257 

was about 48 h with autohydrolysis but it was reached up to 79.8% within 3 h with 258 

[C4mim][OAc] pretreatment. In comparison to autohydrolysis, [C4mim][OAc] required lower 259 

energy consumption, less processing time and lead to higher glucose yield. The advantages 260 

associated with [C4mim][OAc] offer motivation to explore and develop this pretreatment 261 

technique because it prevents dissolution of hemicellulose during pretreatment and also enhances 262 

the enzymatic digestibility of cellulose and hemicelluloses. 263 

 264 

Figure 3 Comparison of cellulose digestibility percentage between untreated, 265 

autohydrolyzed and [C4mim][OAc] pretreated bagasse 266 

 267 

Figure 4 Comparison of xylan digestibility percentage between untreated, autohydrolyzed 268 

and [C4mim][OAc] pretreated bagasse 269 

 270 

Fermentation 271 

Ethanol production from fermentation of pretreated/enzymatically deconstructed samples of 272 

sugarcane bagasse showed that different microbial strains have different abilities to produce 273 

ethanol from the available sugars (Figure 5). Ethanol production obtained from bagasse 274 

autohydrolyzed at 110ºC for 30 min was 28.42 mg/g-substrate when it was fermented with S. 275 
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Cerevisiae (Lalvin EC-118). The same strain showed maximum ethanol production (66.02 mg/g-276 

substrate) from fermentation of enzymatically hydrolyzed bagasse pretreated at 190ºC for 10 min 277 

whereas bagasse pretreated at 205ºC showed maximum ethanol production (70.9 mg/g-substrate) 278 

when S. cerevisiae (MZ-4) was used as fermenting organism. The differences in ethanol yield by 279 

different strains can be attributed to their difference in tolerance against side products released 280 

during different pretreatment conditions [41]. S. cerevisiae strains usually don’t have the ability 281 

to ferment xylose but are more efficient in glucose fermentation [42]. Pichia stipites is 282 

considered as more efficient to ferment xylose into ethanol but its lower production with all 283 

pretreated samples can be attributed to its less efficient glucose utilization as compared to S. 284 

cerevisiae [43]. Moreover, it was also suggested in previous studies that all symporters (i.e. the 285 

proteins which are involved in transport of molecules across plasma membrane) in P. stipites are 286 

competitively inhibited by glucose molecules which makes it difficult to utilize both sugars 287 

simultaneously and hinders the conversion of xylose into ethanol [44].   288 

The highest ethanol yield (78.8 mg/g-substrate) was obtained when sugarcane bagasse was 289 

pretreated with [C4mim][OAc] at 110ºC for 30 min and fermented with a newly isolated S. 290 

cerevisiae (MZ-4) strain. This strain can be considered more promising for [C4mim][OAc] 291 

pretreated bagasse and played important role in production of maximum ethanol. However, it is 292 

important to optimize [C4mim][OAc] pretreatment and fermentation conditions to further 293 

enhance ethanol yield. 294 

 295 

Figure 5 Production of bioethanol from untreated, autohydrolyzed and [C4mim][OAC] 296 

pretreated bagasse by using different yeast strains 297 

 298 
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Conclusion 299 

A parallel comparison of [C4mim][OAc] pretreatment and autohydrolysis of sugarcane bagasse 300 

showed that this IL is a promising alternative pretreatment technique based on low temperature 301 

requirement, high sugar yield, high enzymatic digestibility and less total processing time. In 302 

contrast to autohydrolysis, [C4mim][OAc] pretreated bagasse has more amorphous cellulosic 303 

structure, thus enhanced digestibility during enzymatic hydrolysis. During fermentation, glucose 304 

derived from [C4mim][OAc] pretreated bagasse yielded more ethanol when fermented with a 305 

newly isolated S. cerevisiae (MZ-4) strain, as compared to bagasse pretreated with 306 

autohydrolysis. Thusly it can be concluded that [C4mim][OAc] is a promising pretreatment 307 

method for enhanced ethanol production from sugarcane bagasse. 308 

 309 

Methodology 310 

Biomass 311 

Sugarcane bagasse was supplied by Green Energy Inc. Vonore, TN USA. Bagasse (5-8 cm size) 312 

was air-dried for two-three days. The dried bagasse was milled with Thomas Model 4 Wiley® 313 

Mill fitted to get final particle size of less than 0.45 mm. Extractives in sugarcane bagasse were 314 

removed using dichloromethane in soxhlet extraction apparatus for 24 h (4-5 cycles per hour) 315 

according to TAPPI method T204 cm-07, then biomass was removed from extraction thimble, 316 

and solvent was evaporated near to dryness while in the chemical fume hood.  317 

 318 

Pretreatment 319 

Ionic liquid (1-butyl, 3-methylimidazolium acetate) was added in sugarcane bagasse to set liquid 320 

to solid ratio of 20:1 (5% w/w bagasse solution) and heated (at ~4-5ºC/min).  up to 110ºC ±5 for 321 
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30 min in 4560 mini-Parr pressure reactor (Parr Instrument Company, Moline, IL, United States) 322 

with an agitation set at 100 rpm. After the reaction, 1000 ml deionized water was added to it at 323 

room temperature and stirred vigorously to enable regeneration then the biomass was recovered 324 

by filtration through VWR Grade 417 filter paper. Recovered biomass was water washed 325 

repeatedly, filtered then air-dried before further experiments [38]. To compare the effectiveness 326 

of ionic liquid pretreatment to autohydrolysis, sugarcane bagasse was also treated with hot water 327 

at the same conditions (110ºC for 30 min) and also to higher temperature i.e. 190ºC ±5 for 10 328 

min and 205ºC ±5 for 6 min. The liquid to solid ratio and equipment used for autohydrolysis 329 

were same as previously used for IL pretreatment. The impeller was adjusted at speed of 100 330 

rpm and the reactor was heated to specific temperature (at ~4-5ºC/min). After completion of 331 

pretreatment time the reactor was dipped into an ice bath (~5 min) for rapid cooling to terminate 332 

the reaction. The wet substrate was recovered from the reactor and washed with approximately 333 

40 ml distilled water during filtration [38]. A part of the biomass was separated for structural and 334 

compositional analysis while rest was used for enzymatic hydrolysis. Untreated biomass was 335 

used as control sample. All experiments were carried out in duplicates. 336 

 337 

Severity factor 338 

In order to compare the efficacy of various pretreatment techniques, the severity factor of all the 339 

pretreatments were determined by using the equation: 340 

SF = log (t ×exp((T − Tref)/14.75)) 341 

In the above equation, t is the treatment time in min, T is the treatment temperature, Tref is the 342 

reference temperature (i.e., 100°C) and 14.75 is an empirically determined constant [45, 46]. 343 

 344 
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Chemical composition of Sugarcane Bagasse 345 

All treated and untreated samples were analyzed for lignin, glucan, xylan, arabinan, and mannan 346 

content following Laboratory Analytical Procedure (LAP) TP-510-42618 as documented by 347 

National Renewable Energy Laboratory (NREL) [47].  348 

 349 

FTIR Analysis 350 

To investigate and estimate chemical changes in the sugarcane bagasse samples after each 351 

pretreatment, a Perkin Elmer Spectrum 100 FTIR spectrometer equipped with an Attenuated 352 

Total Reflectance (ATR) sampling accessory (Perkin-Elmer Inc., Wellesley, MA, United States) 353 

was used. Samples (20mg) were pressed uniformly against the crystal surface via a spring-anvil, 354 

and spectra were obtained after 32 scans accumulation from 4,000 to 600 cm
−1

 at 4 cm
−1

 355 

resolution [33]. 356 

  357 

X-ray diffraction (XRD) analysis 358 

Crystallinity index (CrI) of autohydrolyzed and IL treated sugarcane bagasse material was 359 

analyzed by X-ray diffractometer (PANalytical 3040/60 X'pert PRO, Netherlands) with CuKα 360 

radiation source (k = 0.1505nm). Patterns were collected from 5º to 40º (2θ) with scan step of 361 

0.01º, while the operating voltage and current were 40kV and 30mA, respectively. The 362 

crystallinity index (CrI) was defined using the equation:  363 

CrI= (I002 -Iam)/I002 364 

Where I002 is the maximum intensity of crystalline peak at 2θ (22º), whereas Iam is the scattered 365 

intensity due to the amorphous portion evaluated as the minimum intensity between the main 366 

(I002) and secondary peaks (I101) [8]. 367 
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 368 

Enzymatic hydrolysis 369 

Enzymatic saccharification was done by adding mixture of cellulases (Celluclast
®
1.5L; Sigma 370 

Aldrich; 23 FPU/ml) and β-glucosidase from almond (CAS No: 9001223; Sigma Aldrich). The 371 

activity of cellulases was determined as filter paper assay unit (FPU) by LAP TP-510-42628 372 

documented by NREL method [48]. All pretreated and untreated bagasse samples were subjected 373 

to enzymatic hydrolysis by adding 1g substrate in 100 ml (1% w/v) of 50 mM sodium citrated 374 

buffer (pH 4.8) [8]. The dosage of 20 FPU of cellulases and 40 IU of β-glucosidase was chosen 375 

because further increase in loading did not increase sugar release. Saccharification was carried in 376 

rotary incubator with a shaking speed of 150 rpm at 50˚C for 72 h [8]. Enzymatic hydrolysis was 377 

carried out in duplicates. Aliquots (500 µl) were collected at 3, 6, 12, 24, 48, and 72 h. Each 378 

aliquot was sealed and incubated for 5 min at boiling water to denature the cellulases [38]. The 379 

aliquots were filtered through 0.20 µm Nylon syringe filter (Millipore, Billerica, MA) before 380 

high performance liquid chromatography (HPLC) analysis. The enzymatic digestibility of 381 

cellulose and xylan was calculated as the ratio of glucose in the enzymatic hydrolysis per 100 g 382 

of potential glucose in substrate and the ratio of xylose in the enzymatic hydrolysis per 100 g of 383 

potential xylose in substrate, respectively [3]. 384 

 385 

HPLC analysis 386 

An HPLC system (Perkin Elmer Flexar HPLC, Perkin Elmer, Shelton, CT) with Bio-Rad 387 

Aminex HPX-87P column and refractive index detector was used to determine and quantify the 388 

sugars obtained from the compositional analysis of bagasse, and from enzyme hydrolysis of 389 

these materials. The temperature for the column was set at 85ºC and H2O was used as the mobile 390 
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phase with a flow rate of 0.25 ml/min. The Chromera® Chromatography Data Systems (CDS) 391 

software was used for the analysis and interpretation. 392 

 393 

Fermentation 394 

Three strains S. cerevisiae and one strain of P. stipites (ATCC 58785) were used to determine an 395 

efficient strain for enhanced ethanol production in case of each pretreatment study. A self-396 

isolated strain of S. cerevisiae (Gene bank accession number: KP970869) labeled as MZ-4 and 397 

two commercial strains of S. cerevisiae i.e. Lalvin EC-118 and Uvaferm-43 on basis of 398 

previously reported studies on wine production from fresh grape juice were selected [49-51]. All 399 

strains were cultured on YPD (Yeast extract, Peptone, Dextrose) media [52]. When the culture 400 

reached the late stage of exponential growth (∼24 h), it was centrifuged at 2500 rpm for 5 min in 401 

centrifuge (Beckman CS-6R). The supernatant was removed and cells were washed twice with 402 

sterile 0.9% (w/v) NaCl solution in same manner, then the cells were kept in the same sterile 403 

solution [6].  After enzymatic saccharification, all samples were subsequently autoclaved and 404 

allowed to cool before inoculation [53, 54], and all the four strains were inoculated separately 405 

with inoculum size of 5% v/v (containing 300 x 10
6 

living cells/mL) [53]. Yeast cultures were 406 

stained with methylene blue and live cells were counted with help of haemocytometer [55]. The 407 

pH of media was adjusted to 5.0 by drop wise addition of 5N NaOH, and the process of 408 

fermentation was carried out at 30°C [18]. Ethanol content was measured from fermentation 409 

media after every 24 h with help of Megazyme ethanol Kit. 410 

 411 

Abbreviations 412 

IL: Ionic Liquid 413 
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 608 

Tables 609 

Table 1 Chemical composition of untreated, autohydrolyzed and [C4mim][OAc] pretreated 610 

sugarcane bagasse 611 

 Untreated 

bagasse 

Autohydroly

zed at 190ºC 

(for 10 min) 

Autohydroly

zed at 205ºC 

(for 6 min) 

Autohydro

lyzed at 

110ºC (for 

30 min) 

[C4mim][OAc] 

pretreated at 

110ºC (for 30 

min) 

Severity Factor - 3.64 3.86 1.77 1.77 



28 

 

(SF) 

Acid Insoluble 

lignin (%) 

27.5±0.2 37.7±0.3 36.0±0.4 26.8±0.2 27.3±0.1 

Acid Soluble 

lignin (%) 

4.4±0.1 3.1±0.2 3.4±0.1 4.1±0.1 8.0±0.2 

Total Lignin (%) 31.9±0.4 41.8±0.7 39.4±0.7 30.9±0.4 35.3±0.4 

Glucan (%) 39.8±0.7 48.1±0.6 54.0±0.3 40.5±0.0 38.4±1.0 

Xylan (%) 16.8±0.3 6.8±0.4 3.4±0.1 17.2±0.4 11.1±1.0 

Arabinan (%) 0.1±0.0 0.05±0.1 N.Q. 5.5±0.1 6.4±0.0 

Mannan (%) N.Q. N.Q. N.Q. 0.1±0.0 0.1±0.00 

Extractives (%) 2.8±0.2 N.D. N.D. N.D. N.D. 

N.Q. = Not quantified 612 

N.D. = Not determined 613 

 614 

 615 

 616 

 617 

 618 

Table 2 Assignments of FTIR-ATR absorption bands for sugarcane bagasse 619 

Band position (cm
-1

) Assignment Source References 

3175-3490  O-H stretching vibration Cellulose [21, 31-33] 

2850-2970  C-H stretching related to 

biomass methyl/methylene 

group 

Polysaccharide [21, 31-33] 

1730 C = O stretching vibration in 

acetyl groups of 

Hemicellulose [22, 31] 
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hemicelluloses 

1630-1650 O–H bending due to adsorbed 

water 

Water [31, 34] 

1600-1610 

 

Aromatic skeletal vibration Lignin [34, 35] 

1514 Aromatic skeletal vibration Lignin [31, 34, 35] 

1430-1420 CH2 scissoring motion Cellulose [31, 33] 

1382-1370 C–H bending vibration Polysaccharide [22, 31] 

1319 CH2 wagging Cellulose [31, 35, 36] 

1243 C-O stretching Polysaccharide [34, 37] 

1161 C-O-C ring vibrational 

stretching 

Hemicellulose [34, 36] 

1103 
O-H association band in 

cellulose and hemicelluloses 

(associated with crystalline 

cellulose) 

Cellulose [21, 22, 35] 

898  C–H deformation vibration  Cellulose [21, 22] 

 620 

 621 

 622 

 623 

 624 

 625 

Table 3 Crystallinity of untreated, autohydrolyzed and [C4mim][OAc] pretreated bagasse 626 

Samples                                                                                     Crystallinity Index (CrI) 

Untreated bagasse 0.61 

Autohydrolysis (110ºC for 30 min) 0.62 

Autohydrolysis (190ºC for 10 min) 0.65 

Autohydrolysis (205ºC for 6 min) 0.68 
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[C4mim][OAc] pretreated (110ºC for 30 

min) 

0.25 

 627 

 628 

 629 

 630 

Figure 1 631 
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Figure 2 635 
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Figure 3 649 
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Figure 4  666 
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Figure 5 669 
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