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Abstract: Several homemade or improvised explosive mix-
tures that either contained volatile components or pro-
duced volatile products were examined using standard
small-scale safety and thermal (SSST) testing that employed
differential scanning calorimetry (DSC) techniques (constant
heating rate and standard sample holders). KCIO; and
KCIO, mixtures with dodecane exhibited different enthalpy
behavior when using a vented sample holder in contrast to
a sealed sample holder. The standard configuration pro-
duced profiles that exhibited only endothermic transitions.
The sealed system produced profiles that exhibited addi-
tional exothermic transitions absent in the standard config-
uration produced profiles. When H,O./fuel mixtures were
examined, the volatilization of the peroxide (endothermic)
dominated the profiles. When a sealed sample holder was
used, the energetic releases of the mixture could be clearly
observed. For AN and AN mixtures, the high temperature
decomposition appears as an intense endothermic event.

Keywords: Small-scale safety testing - Thermal screening - Differential

test - Proficiency test

Using a nominally sealed sample holder also did not ade-
quately contain the system. Only when a high-pressure
rated sample holder was used the high temperature de-
composition of the AN could be detected as an exothermic
release. The testing was conducted during a proficiency (or
round-robin type) test that included three U.S. Department
of Energy and two U.S. Department of Defense laboratories.
In the course of this proficiency test, certain HMEs exhibit-
ed thermal behavior that was not adequately accounted
for by standard techniques. Further examination of this
atypical behavior highlighted issues that may have not
been recognized previously because some of these materi-
als are not routinely tested. More importantly, if not recog-
nized, the SSST testing results could lead to inaccurate
safety assessments. This study provides examples, where
standard techniques can be applied, and results can be ob-
tained, but these results may be misleading in establishing
thermal properties.

scanning calorimetry - Homemade explosives - HME + Round-robin

1 Introduction

Testing energetic mixtures with volatile components or
products can be problematic for a variety of reasons, such
as evaporation of components during handling. This is par-
ticularly a problem for small-scale safety and thermal (SSST)
testing, when very small amounts of material will necessari-
ly be sampled and tested. Temporal changes could occur
during the testing time scale that can skew results yielding
inaccurate assessment of the sensitivity. The inaccurate as-
sessment can lead to developing safe handling and storage
procedures that do not adequately represent the material
in the bulk.

Improvised or homemade explosives (HME) can have vol-
atility in three areas, in the fuel, such as liquid hydrocar-
bons; the oxidizer, such as hydrogen peroxide; and in the
products, such as the release of CO,, H,0, and H,. These
types of volatility causes testing problems, and if not ade-
quately addressed, can lead minimally to inaccurate results
to potentially damaging exothermic releases. Reported
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Figure 1. DSC profiles of KClO,/dodecane and KClOs;/dodecane with TA Instruments vented sample holder and TA Instruments sealed

sample holder (10 Kmin~' heating rate).

herein are three examples of these issues and potential
practical resolutions.

Recently, SSST testing data have been published by the
Integrated Data Collection Analysis (IDCA) program on a va-
riety of HMEs and selected military type explosives [1-3].
These data focused on the impact, friction, and spark sensi-
tivity [1], the statistical aspects of SSST testing [4], compari-
son of two friction-testing methods [5], and selected ther-
mal testing issues [6].

The IDCA program examined 19 different energetic ma-
terials by SSST testing, by five different laboratories — three
U.S. Department of Energy and two U.S. Department of
Defense - in a proficiency, or round-robin test.

The test performers were Lawrence Livermore Na-
tional Laboratory (LLNL), Los Alamos National Laboratory
(LANL), Indian Head Division, Naval Surface Warfare Cen-
ter, (IHD), Sandia National Laboratories (SNL), and Tyndall
Air Force Division of the Air Force Research Laboratory
(AFRL).

2 Experimental Section

The IDCA proficiency test methods have been discussed in
detail previously [1,4]. In addition, the thermal testing
methods and equipment are discussed in detail elsewhere
[6]. Most examinations were conducted using the standard
TA Instruments vented sample holders with a pinhole size
of 75 um. Samples were run in triplicate. Heating rates
were 10 Kmin~'. Also used in selected experiments were
sealed sample holders - TA Instruments hermetically
sealed, and the SWISSI high-pressure rated sample holder.
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The description and use of these sample holders has been
detailed elsewhere [4,7].

The materials, sample preparation procedures, and
mixing procedures have been described in detail previously
[1,4,8,9]. Briefly, the solid materials were usually dried for
16 h at 60°C and stored in a desiccator. The liquids were
used as received. Mixing was performed at a 1 to 5 g scale,
and mixtures were studied within 1 h of mixing, unless oth-
erwise stated. All materials were from the same manufac-
turing lot and were distributed among the participants to
eliminate batch-to-batch variations of starting materials.

3 Results
3.1 HME Mixtures with Volatile Fuels

In the proficiency test, the participants analyzed selected
mixtures of a solid oxidizer and a liquid fuel. These types of
mixtures were chosen to address the handling issues asso-
ciated with testing materials that can change over time. In
these particular cases, the change is not due to reactions
occurring when the materials are mixed but physical evap-
oration of the volatile component. Figure 1 compares the
effects of different DSC sample holders on two mixtures,
KClO,/dodecane and KClO,/dodecane.

Examining the profiles on the left side of the figure
shows prominent endothermic features for both the KCIO,
and KClO; mixtures. This corresponds to a phase transition
and a melting of the oxidizer, respectively [10-13]. These
endothermic features are representative of profiles ob-
tained by all IDCA participants (Note: for some participants,
but not all, a broad endothermic feature at low tempera-
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ture due to the volatilization of dodecane). Closer inspec-
tion of these profiles reveals the low temperature endo-
therms are present in all the KCIO,/dodecane and KCIO,/
dodecane mixture DSC profiles for all participants.

The profiles on the right side of the figure are with a her-
metically sealed TA sample holder (though not the high
pressure rated sample holder) and show a much more
complicated thermal behavior. A series of very broad exo-
thermic features are observed in the 200°C to 300°C tem-
perature range. The origin of these exothermic features has
not been resolved, but is probably due to the hermetically
sealed sample holder preventing total evaporation of the
dodecane and therefore providing some contact with the
oxidizer at higher temperatures. Dodecane has a boiling
point of 218°C [14] so much of it is vaporized in the above
temperature range, but if the system is closed, some vapor
is still available for reaction. This same argument could be
extended to the KClO,/dodecane mixture. Further examina-
tions of KClO,/hydrocarbon fuel mixtures by DSC equipped
with a high-pressure sample holder [15] show the promi-
nent exothermic features around the 350°C temperature
range, suggesting the hermitically sealed TA sample holder
ruptured probably by gas evolution.

3.2 HME Mixtures with Volatile Products

Ammonium nitrate (AN) and AN/gunpowder (GP) mixtures
were examined in the proficiency test. The most notable
part of the testing was that the results for the AN were in-
consistent compared to other materials in the proficiency
test. Although all aspects of the testing of AN — impact,
friction, ESD and thermal — had issues, the DSC results were
particularly difficult to interpret. The testing results were
further examined to determine the cause of ambiguity in
results among the testing participants.

The participants all had varied results for the thermal de-
composition of AN. Table 1 shows the endothermic transi-
tions (T'-T") were in reasonable agreement for T, and en-
thalpy values for all the participants. The temperature of

Table 1. DSC temperature and enthalpy of transitions observed for
AN at 10 Kmin™ heating rate.

Transition*> TI°C] Enthalpy [Jg™']
AN 1 (T" minimum) 53.6+2.2 —1945
Range 46.6 to 57.5 —3to —-25

AN 2 (T2 minimum)® 927423 —14413
Range 86.6 to 96.2 —57 to -3

AN 3 (T minimum) 1283+1.0 —534+6

Range 127.0to 131.1  —60 to —38
AN 4 (T* minimum) 169.5+0.6 —7149

Range 167.9 to 170.7 —82to —32
AN 5 (T° minimum or maximum) 297.6+17.4 —550+ 1066
Range 263.4 to 3259 —1703 to 1528

a) Temperature or enthalpy of event. b) min is endothermic, max is
exothermic. ¢) Range of Tor AH. d) T observed in limited cases as
a function of drying.
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transition for T° also is within reasonable agreement. How-
ever, whether the transition is a minimum or maximum,
which affects the sign of the enthalpy, is the issue. The var-
jation in the T° enthalpy is from highly endothermic to
highly exothermic. The cause of this has been documented
previously and is due to whether the sample holder cap-
tures the gases formed during the decomposition of the
AN [16-20].

Experimentally, capturing the evolved gases in DSC is not
a standard procedure. Figure 2 shows the DSC profiles
using different types of sample holders. The top profile is
from using the standard vented sample holder. T° profile

Vented Sample Holder
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Figure 2. DSC profiles of AN with different sample holders;
10 Kmin™" heating rate.
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shows a highly endothermic release. The middle profile is
from using the hermetically sealed sample holder. In this
case, T is a complex overlap of exothermic and endother-
mic behavior. The bottom profile is from using the high-
pressure rated sample holder. T* profile shows a highly exo-
thermic release, consistent with an energetic decomposi-
tion. This batch of AN was also examined by thermo gravi-
metric analysis coupled with mass spectrometry detection.
The results verify gas evolution due to the decomposition
of AN only occurred during the T° event, and had the com-
position of NH, H,0, NO, N,O, NO,, consistent with the lit-
erature mechanism of decomposition

3.3 HME Mixtures with Volatile Oxidizers

In the proficiency test, some of the materials studied were
H,O,/fuel mixtures [1]. These mixtures were chosen be-
cause of the high unpredictability of the physical form.
Once the two components were mixed, the oxidizer began
reacting with the reductant. In some cases, such as H,0,/
cumin, the changes were fairly evident shortly after mixing.
The H,0, would start to bleach the material and form
a gooey mixture, with the evolution of tiny gas bubbles.
Obtaining representative samples was also difficult in these
cases. In other cases, such as with H,O./nitromethane mix-
tures, the mixture visibly looked stable with no apparent
immediate reaction. Regardless of the material, the perox-
ide mixtures were handled with care (peroxide is extremely
reactive towards most organic materials, including skin),
and analyzed within 1 h of mixing. In all cases, except in
aging studies, the mixtures were destroyed as soon as pos-
sible as there is evidence in the literature [21] that runaway
reactions can occur over time.

Figure 3 shows the DSC behavior of an H,0./glycerol
mixture. This mixture is homogeneous as the H,O, and
glycerol are miscible, so obtaining a representative sample
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Figure 3. DSC profiles of H,0,/glycerol mixtures with vented
sample holder; 10 Kmin™' heating rate.
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Figure 4. DSC profiles of H,0,/glycerol mixtures with hermetically
sealed sample holder; 10 Kmin~" heating rate.

was not an issue. However, the volatility of the mixture is
an issue. The mixture was examined using the standard
vented sample holder. Clearly, volatilization of the H,0O, and
water dominate the lower temperature region with T.;,=
99.7°C. The boiling point of H,0, is 150°C, but it has
a high vapor pressure [22,23]. There is enough peroxide re-
maining to eventually show an exothermic event with
a Thax=139.1°C. A second broad endothermic event is also
seen with T,,;,,=206.8°C.

Figure 4 shows the low temperature range when using
the hermetically sealed sample holder. The endothermic
event at low temperature is not present because the H,0,
cannot escape from the sealed holder. The T,,,=127°C
and the enthalpy is much higher than in the vented cell -
4546 vs. 296 Jg~'. The high temperature broad enthalpy
event is also now exothermic instead of endothermic.

4 Discussion

DSC has been shown to be an excellent method for deter-
mining the thermal behavior of a single compound [24].
For potentially energetic materials, constant heating rate
DSC is an inexpensive and fast method for screening, par-
ticularly when determining safe handling and storage prop-
erties. Most of the applications to energetic materials have
been for military- and mining-type explosives and propel-
lants. Recent work on HMEs in the proficiency test has
shown the need to further scrutinize the testing conditions
when dealing with non-standard materials.

Thermal volatility of components or reaction products
plagues the accurate thermal assessment of many HMEs.
The KClO,/dodecane and KClO,/dodecane mixtures, as
shown in Figure 1, exhibit very important properties in this
regard. Measuring the thermal properties in an open
sample holder yields profiles, which are endothermic, and
show only physical transitions of these materials. If thermal
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behaviars of these materials were to be assessed with this
data, the mixtures would be deemed non-energetic. How-
ever, examining the same mixtures using the sealed sample
holder shows exothermic releases at relatively low tempera-
tures. Even these are not accurately portrayed because
some of the vaolatile component is probably in the gas
phase and is not completely in contact with the oxidizer, sa
the actual value of enthalpy is low. This change in apparent
behavior (actually due to a change in experimental condi-
tions) fram harmless endothermic enthalpy to exathermic
enthalpy is very important from a safety standpoint.

AN is another example that shows the importance of un-
derstanding the nature of the material before trying to
assess thermal properties. The use of the vented, standard
sample holder indicates that the AN is non-energetic. The
use of a sealed but not pressure rated sample holder leads
to essentially the same conclusion — AN is non-energetic.
However, the use of the pressure rated sealed sample
halder shows AN is an energetic material. This is incredibly
important because the gases escaping change whether
one measures an exothermic release or an endothermic re-
lease for the major event for AN. This also extends to be
seen in mixtures, such as AN/GP where the mixture decom-
position occurs in the same temperature range as for the
exothermic release of the AN [25].

As a third, and very important example, H,0,/fuel mix-
tures were also tested with and without a sealed sample
halder. Clearly, Figure 3 demonstrates the dominance of
the evaporation of the H,0, in the DSC profiles. Figure 4
shows with the hermetically sealed sample halder, the H,0O,
valatility is contained in the holder and is available far reac-
tion with the fuel. Without this containment, much less
H.0O, is available for reaction, so the enthalpy is recorded to
be much lower.

Hydrogen peraxide can energetically decompase without
being mixed with any fuel, so measuring thermal properties
can be tricky. It is used as a propellant at high tempera-
tures (Hi Test Peroxide), so it can be stable to work with,
but it can also decompose at lower temperatures (usually
catalyzed by metals), so it still can be unpredictable. For
the developments herein, some of the measurements with
the vented and hermetically sealed sample halders lead to
ruptured containers, probably linked to sample size. The
high pressure rated sample holders would likely be the
best selection for testing (they are gold plated), but care
should be taken to minimize sample size and keep metal
impurities under control.

5 Conclusions

From this study, volatility issues of HME mixtures were
identified to cause measurement issues when employing
DSC to establish thermal behavior. In all cases, a sealed
sample holder is a solution to the problem. In mixtures,
where the fuel is volatile, the escape of component tends
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to reduce the magnitude of the energetic release during
the heating. The examples given were with a fairly non-val-
atile fuel. In mixtures, where the oxidizer is volatile, essen-
tially the same behavior is observed, where contact of the
two materials is reduced, because of evaporation, before
and during the temperature range in which energetic re-
lease occurs. In some other cases, the oxidizer decomposes
is such a way that the volatile gases, if not contained, can
exhibit an overall cooling effect, causing the release to
appear endocthermic, when it is really exothermic.

Sample holder type is extremely important in obtaining
the correct thermal profile of many of these mixtures also.
In all cases, a high-pressure sample holder with very small
headspace has advantages. The high-pressure rating will
keep the holder from rupturing and the small headspace
will assist in cantact of the two materials.

The essential point of this study is to show how using
standard small-scale thermal testing configurations, cam-
manly used in safety evaluation of energetic materials, can
be misleading for HMEs. This could ultimately lead to a dan-
gerously inaccurate evaluation of the physical properties.
The recourse is to have an intimate knowledge of the ma-
terials from a chemical and physical assessment. In addi-
tion, realize that standard testing methods may not ade-
quately describe the thermal behavior and that additional
tests, perhaps on a larger scale may need to be used to un-
derstand the thermal behavior.
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Note added in proof. One reviewer observed that with the
vapor pressure of the dodecane even at higher temperatures,
there should be enough in contact with the KC materials for
the DSC to show a strong exothermic release of enthalpy and
not the endothermic features seen in Figure 1. This prompted
further examination of KClIOs/hydrocarbon fuel mixtures using
a high-pressure sample holder (rated 500 bar at 600°C). The
results showed strong exothermic releases starting around
340°C, and no evidence of the endothermic features see in
Figure 1. This indicates that the TA Instrument hermetically
sealed sample holder ruptured at the onset of release of the
product gases, something that has been seen in other sam-
ples (such as AN and even RDX [4]).
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