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Solution Dynamics at Clay Interfaces

® Solution structure and transport in clay nanopores is key to:

- Fossil energy extraction from unconventional
geological reservoirs.

— CO, sequestration in the subsurface.
— Nuclear waste storage in geological formations.
- Reactive transport and flow in soils and sediments.

* Understand structural factors controlling aqueous
transport at clay mineral-solution interfaces. How is
water and ion mobility affected by:

— Clay structure (layer charge and location).

— Solution composition, ion hydration, surface
complexes formed.

* Follows from recent work by BES collaborators Kirkpatrick and Bowers:
— Variable temperature 23Na and ?H NMR of Na-hectorite pastes (Bowers et al, JPCC 2011).
— Molecular dynamics simulation of Na-hectorite interlayers (Morrow et al, JPCC 2013).
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Simulation Methods

* MD simulations of clay nanopores (external basal surfaces) similar to paste samples used in
NMR experiments.

Na-hectorite Na-montmorillonite m Montmorillonite

Trioctahedral Dioctahedral

Li/Mg substitution Mg/Al substitution
—-0.5 e per O,((OH), -0.5 e per O,,(OH),

4V 4

4

BN 4 l'

OH perpendicular OH parallel to basal
to basal plane plane

Al** vacancy Mg?*

* Clayff parameters, flexible SPC water.

* Large system sizes and run times to thoroughly sample all possible adsorption sites and

surface complexes:
— NPT to equilibrate pore width, NVT for analysis, 298 K

— 80 x 70 x 90 A3, 50k atoms, 6 nm pore width
— 10 x 10 ns per clay
— 200 ns simulation time (10 CPU years) completed in 1 week
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1D Structure
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* 1D density profiles averaged over
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Diffusion and Residence Time Analysis
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National distance from mineral surface (Rotenberg et al, J. Phys. Condens. Matter 2010).
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Sodium Density Profiles (Hectorite)

2D profiles: surface adsorption sites (Na*)
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Inner-Sphere and Outer-Sphere Surface Complexes
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Structure of Adsorbed Water

First Aqueous Layer

anhydrous Na*
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Structure of Adsorbed Water
Second Aqueous Layer

hectorite montmorillonite
Substantially less ordering in the second layer.
Traces of the hexagonal structure (L1) still visible.



Water and lon Diffusion at Clay Surfaces
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Conclusions

* MD simulations of clay nanopores used clay minerals with equivalent layer charge in the
octahedral sheet but with different octahedral composition.

* Qualitative agreement with NMR studies of hectorite pastes. Sporadic appearance of
anhydrous Na+ at the hectorite surface (easily missed with smaller system sizes or
shorter run times).

* Effects due to clay structural features (octahedral vacancy sites, orientation of layer
hydroxyl groups) have limited influence on interfacial structure (< 2.5 A).

®* There is a remarkable difference in the 2D structure of adsorbed water, likely due to the
presence of vacancies in the octahedral sheet of montmorillonite.

* Analysis of the diffusion behavior in each aqueous layer shows clear differences in Na*
and H,O behavior in the first layer, but nearly identical behavior beyond that.

* Both nanopores show bulk-like structural and diffusion properties within 10 A of the
surface. :
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