
A Numerical Round Robin for the
Prediction of the Dynamics of Jointed

Structures

J. Armand(a), R.M Lacayo(b), J. Gross(c), P. Reuss(c), L. Salles(a),

C.W. Schwingshackl(a), M.R.W. Brake(b), R.J. Kuether(b)

(a) VUTC - Imperial College London
(b) Sandia National Laboratories

(c) University of Stuttgart

27th of January 2016

SAND2016-0581C



Benchmark and objectives Non-linear static analysis Non-linear dynamic analysis Brake-Reuss beam analysis Conclusion

Outline

1 Benchmark description and objectives

2 FE model and non-linear static analysis

3 Three non-linear dynamic modelling approaches

4 Brake-Reuss beam non-linear dynamic analysis

5 Conclusion

Jason Armand Numerical Round Robin 27-01-2016 2 / 15



Benchmark and objectives Non-linear static analysis Non-linear dynamic analysis Brake-Reuss beam analysis Conclusion

Objectives of the study

Assess the ability for different numerical approaches to
model accurately a structure with a mechanical joint

Create a well-defined benchmark system that facilitates
meaningful comparison between the different approaches.

Develop a metric to compare the numerical approaches with
each other, and with experimentally-derived data.

Determine the best practices for performing a numerical
analysis on systems with localized nonlinearities.
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Benchmark system

Figure: Brake-Reuss beam geometry
Figure: Brake-Reuss beam

72cm long beam with a lap joint
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Non-linear static analysis: modelling

FE model:
2 beams + 3 monolithic bolt assemblies
Fixed-free boundary condition
Same isotropic material for all parts
Fixed coupling between the washers
and the top/bottom surfaces of the
beam

Each bolt virtually cut into two pieces

to apply a 4kN pretension load

Interface modelling:
matching mesh of 592 nodes per face
Surface-to-surface approach
Pressure-overclosure: ‘hard contact’
Contact enforcement: Lagrange
multipliers

Friction formulation: penalty method,

µ = 0.6
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Non-linear static analysis: results

Figure: Contact pressure (left) and contact opening (right)

Static solution used to set the non-linear dynamic simulations
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Non-linear dynamic modelling approaches
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Comparison on a SDOF system

Equivalent damping ratio:

ζr =
Dr

2πM |Vr|2

Dr: energy dissipated per cycle
Vr: velocity of the mass at
resonance

Match obtained but only in the
macro-slip regime of the Iwan

element
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Brake-Reuss beam NL dynamic analysis

Figure: Tie coincident nodes on the
friction interface with Jenkins/3D contact
elements
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Harmonic balance results

Figure: Stuttgart (top) vs. Imperial non-linear FRFs (bottom)
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Iwan element calibration (1/2)

ζr = Cr |Vr|χ+1

Power-law fit only valid for
low amplitude (micro-slip)

In previous works, χ ≈ −0.3

Large Cr leads to physically
unreasonable value of Kt
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Iwan element calibration (2/2)

Figure: Iwan joint model

Figure: Iwan element parameters
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Brake-Reuss beam results
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Figure: Brake-Reuss beam: 2nd bending mode behaviour
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Conclusions and perspectives

Particular care must be taken to model the bolt pretension to obtain
accurate initial conditions at the contact interface prior to the
non-linear dynamic simulations

A comparison between transient and harmonic simulations was
achieved by using amplitude-dependant variables

A good agreement was obtained between the two harmonic
approaches.

Qualitative good agreement between the three methods in
describing general joint behaviour

Quantitatively, the Iwan model needs more parameters to reproduce
the harmonic balance results

Further work:

Use of non-linear normal modes as an alternative comparison metric

Comparison with experimental results
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