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Motivation

 Majority of systems are constructed with ROMs

e Large systems take too much time to analyze
 Uncertainty of ROM is difficult to describe

e Even more difficult to propagate

* Typically, error associated in modal frequency
difference
* No direct relation to physical parameters

 Attempt to encompass nonlinear response in a
linear system
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ROM Types

e Fixed-Interface Modes

e (Craig-Bampton

e Truncated fixed-interface modes and interface
displacement DOF

e Free-Interface Modes

e To be used in Craig-Chang
e Truncated free-interface modes and interface force DOF

 |nertia Relief Residual Attachment Modes

e Modes truncated based on frequency
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Maximum Entropy

e Technique developed by Soize

* |ncorporates random matrices with EOM

e Assumes distribution that matches physical
characteristics

e Stiffness is positive semi-definite, etc.

e Uses single parameter to characterize distribution
e Dispersion parameter, 6

e Utilizes Cholesky decomposition
* [K] = [Lg O] [G()][Lk (X)]
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Maximum Entropy Cont.

e QOptimize dispersion parameter to best
characterize the truth data

 Truth data can be experimental or high-fidelity data

e Uses maximum likelihood estimate
* L(6) = ;P (w;|5)
e o isbounded € [0,1)

 To reduce numerical error, empirical likelihood is
used

* EL(6) =supl;(9)
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Analysis Flow
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Example System

2 Substructures

Full System

e 2 repeated nodes, in red E

e Defined as interface “[Subsystem ~ Subsystem
e Planar Frame of D B
e Euler beam elements 2
e Use first 11 elastic i

frequencies as truth data s

e For fixed-interface reduction, 107

used free-free modes e ——

Location [in]

e For free-interface reduction,
used fixed-interface modes




{@16‘\
})College of Engineering
4

\

Nt

UNIVERSITY OF WISCONSIN-MADISON

W

Craig-Bampton Results
Subsystem B
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Craig-Bampton Results
Subsystem D
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Free-Interface Substructure Results
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Craig-Bampton Synthesized Results

Optimal Dispersion Parameter [%]

Number of Kept Modes of System B
P y Number of Kept Modes of System D

Optimal Dispersion Parameter

1.5x 1.69 %
2.0x 1.17 %

Subsystem Frequency Range
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Crailg-Chang Synthesized Results

Optimal Dispersion Parameter [%]

Number of Kept Modes of System B
vmber of fiept Modes of System Number of Kept Modes of System D

Optimal Dispersion Parameter

1.5x 0.00 %
2.0x 0.00 %
13

Subsystem Frequency Range
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Remarks

* |n assembly, Craig-Chang produced less error
than Craig-Bampton

e Assembly modes better represented by free-interface
modes
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Remarks Cont.

 On asubsystem level, fixed-interface modes can
better represent free-interface modes than vise-
versa

e Difficult to determine relationship between
subsystem and assembled system dispersion
parameters

e Technique able to describe uncertainty in the
physical model
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Conclusions

e This method is able to characterize error not
associated with parameter uncertainty

e Substructures using fixed-interface and free-
interface are used and compared

 Different methods of generating likelihood are
investigated

e Sampling methods

 Probability measures
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