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Abstract. Magnetohydrodynamics (MHD) models describe a wide range of plasma physics applications,

from thermonuclear fusion in tokamak reactors to astrophysical models. These models are characterized by a
nonlinear system of partial differential equations in which the flow of the fluid strongly couples to the evolution

of electromagnetic fields. As a result, the discrete linearized systems that arise in the numerical solution of
these equations are generally difficult to solve, and require effective preconditioners to be developed. This

paper investigates monolithic multigrid preconditioners for a one-fluid, viscoresistive MHD model in two

dimensions that utilizes a second Lagrange multiplier added to Faraday’s law to enforce the divergence-free
constraint on the magnetic field. We consider the extension of a well-known relaxation scheme from the fluid

dynamics literature, Vanka relaxation, to this formulation. To isolate the relaxation scheme from the rest

of the multigrid method, we utilize structured grids, geometric interpolation operators, Galerkin coarse grid
operators, and inf-sup stable elements for both constraints in the system. Numerical results are shown for

the Hartmann flow problem, a standard test problem in MHD.

1. Introduction

Magnetohydrodynamics (MHD) are models of plasma physics that are used to describe the flow of elec-
trically conductive fluids in the presence of electromagnetic fields. In this paper, we consider the single-fluid
model in which the behavior of the ions and that of the electrons is averaged together. The resulting equations
are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s Equations of electromag-
netism, which form a strongly coupled system of nonlinear partial differential equations (PDEs). There are
a wide variety of physical assumptions at play in the model, regarding coupling to the electric field, the cur-
rent density, and Ohm’s law, among other things, that lead to different formulations of the MHD equations.
This paper focuses on time-independent solutions of a viscoresistive, incompressible model of MHD, and,
in particular, on preconditioning the linear systems that arise from the linearization and discretization of
the resulting equations. Previous work [2] utilized a vector-potential formulation to enforce the solenoidal
constraint, and to generally simplify the problem. Here, we use a formulation that maintains the primitive
variables, including the magnetic field, B, and enforces the solenoidal constraint weakly by using a Lagrange
multiplier that is added to Faraday’s law [15, 29, 31]. Note that the Lagrange multiplier approach is only
one such technique for including the solenoidal condition; others include exact-penalty methods [25] and
vector-potential formulations [2, 12,32].

As the equations of MHD are nonlinear, we employ Newton’s method to linearize the system. In order
to solve the linearized systems numerically, we use a mixed finite-element method that results in linear
problems of saddle-point type. Saddle-point problems arise in various contexts, ranging from economics to
fluid dynamics; an extensive general overview can be found in [8]. Numerous solution and preconditioning
strategies have been proposed, and often the solver or preconditioner is very closely tied to the problem being
solved. Block-factorization approaches manipulate the constituent blocks of the Jacobian operator in order
to resolve the coupling in the system using workhorse algorithms such as algebraic multigrid (AMG) [27]
on simpler problems [13, 33, 35]. These techniques have been extensively studied and, by utilizing this
paradigm, the known parallel and mesh resolution scalability properties can be exploited to create scalable
preconditioners for more complex problems, such as MHD [12]. Additionally, physics-based preconditioners
have been used to factor the matrix into blocks that are amenable to multigrid-type methods [19,24].
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In this paper, we consider monolithic multigrid preconditioners for linearizations of this MHD formulation,
which are less common in the field of MHD than the above block preconditioners due to the often greater
complexity of implementation. Monolithic multigrid for coupled systems is, in fact, one of the earliest ideas
in the multigrid literature [9,10]. Monolithic schemes for incompressible fluid flow problems are well-studied,
with treatments of the Stokes equations in [14, 23, 30] and of the Navier-Stokes equations in [17, 18, 20, 34].
In the MHD literature, a monolithic nonlinear multigrid method is shown in the context of finite differences
in [1]. A fully-coupled AMG approach for a vector-potential formulation of resistive MHD is shown in
[32]. ¡ADD FOSLS + REF – nested iteration one¿ However, this approach relies upon an equal-order
discretization in which unknowns for each variable are collocated at mesh nodes; thus, it cannot be used for
the mixed discretization shown here. Similarly, fully-coupled AMG methods have been used in the context of
FOSLS discretizations of MHD [4]. Finally, in [2], two families of relaxation methods for the vector-potential
formulation are described and used within a monolithic geometric multigrid preconditioner. In this paper,
the Vanka-type relaxation method is extended to the Lagrange multiplier formulation described below.

2. Background

Following the the formulation of the MHD equations in [29,31], we introduce a Lagrange multiplier, r, to
enforce the solenoidal constraint, ∇ ·B = 0. This Lagrange multiplier appears as a nonphysical term, ∇r, in
Faraday’s law. The set of steady-state MHD equations in a domain Ω ⊂ R2 that we consider in this paper is
then written

−∇ ·
[

2

Re
ε(u)

]
+ (u · ∇)u +∇p− (∇×B)×B = f ,(1)

1

Rem
∇×∇×B−∇× (u×B)−∇r = g,(2)

∇ · u = 0,(3)

∇ ·B = 0.(4)

Here, u is the fluid velocity, p is the hydrodynamic pressure, and B is the magnetic field, and f and g are
appropriate source data. The strain-rate tensor is ε(u) = 1

2

(
∇u +∇uT

)
. The nondimensional parameters

are Re, the hydrodynamic Reynolds number, and Rem, the magnetic Reynolds number. The system is closed
with some appropriate set of boundary conditions.

In two dimensions, we define the curl operator, ∇×, applied to a vector, v = (v1, v2)T , to be ∇ × v =
∂v2

∂x −
∂v1

∂y , and applied to a scalar, s, to be ∇ × s = ( ∂s
∂y ,−

∂s
∂x )T . Likewise, the cross product of two

vectors is u × B = (u1, u2)T × (b1, b2)T = u1b2 − u2b1, and the cross product of a scalar with a vector is
s × v = (−sv2, sv1)T . Note that these relationships arise naturally from the embedding of two-dimensional
vector fields in three dimensions.

The system (1)–(4) is nonlinear, and thus we employ Newton’s method as a nonlinear solver. Accordingly,
we must compute the linearizations:

J(xn)δx = −R(xn),

where xn = (un,Bn, pn, rn)T is the current approximation to the solution, δx = xn+1−xn = (δu, δB, δp, δr)T

is the Newton step in the update xn+1 = xn + δxn, J(xn) is the Jacobian operator around xn, and R(xn) is
the nonlinear residual with respect to xn. In this paper, we consider linearizing the system first, and then
discretizing the resulting linearized system via the finite-element method. To define the variational form, we
construct the (continuous) solution spaces for the Newton updates:

V = H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂ΩD},

C = H0(curl,Ω) = {c ∈ L2(Ω) : ∇× c ∈ L2(Ω), n× c = 0 on ∂Ω},

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

p dx = 0},

S = H1
0 (Ω) = {s ∈ H1(Ω) : s = 0 on ∂Ω}.

We denote by ‖ · ‖0 the usual norm on L2(Ω) or the vector version L2(Ω). Similarly, we denote by ‖ · ‖1 the
usual norm in H1(Ω) or H1(Ω). Finally, for a vector c ∈ H(curl,Ω), we define ‖c‖2curl = ‖c‖20 + ‖∇ × c‖20 to
be the norm in H(curl,Ω).
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We start Newton’s method with an initial guess x0 = (u0,B0, p0, r0)T that satisfies the given boundary
conditions and, at each linearization, we look for updates to the solution (δu, δB, δp, δr) ∈ V ×C×Q× S.
The sequence of linear variational problems arising from Newton’s method takes the form:

Weak Form (Linearized, continuous). Given xn = (un,Bn, p, r), find (δu, δB, δp, δr) ∈ V×C×Q×S such
that ∫

Ω

2

Re
ε(δu) : ε(v)− δp∇ · v + [(un · ∇)δu + (δu · ∇)un] · v dx(5)

−
∫

Ω

[(∇×Bn)× δB + (∇× δB)×Bn] · v dx

=

∫
Ω

f · v − 1

Re
ε(un) : ε(v) + pn∇ · v − (un · ∇)un · v + [(∇×Bn)×Bn] · v dx

+

∫
∂ΩN

pNn · v dS∫
Ω

[
1

Rem
(∇× δB)− (un × δB)− (δu×Bn)

]
· (∇× c)−∇δr · c dx(6)

=

∫
Ω

g · c−
[

1

Rem
(∇×Bn)− (un ×Bn)

]
· (∇× c) +∇rn · c dx∫

Ω

q∇ · δu dx = −
∫

Ω

q∇ · un dx(7) ∫
Ω

∇s · δB dx = −
∫

Ω

∇s ·Bn dx(8)

for all (v, c, q, s) ∈ V ×C×Q× S.

The boundary terms in (6) vanish because we strongly enforce that c ∈ C = H0(curl,Ω), so that n×c = 0.
Likewise, the boundary integral in (8) has been eliminated by enforcing s ∈ S = H1

0 (Ω).
We now discretize (5)–(8) using a mixed finite-element method. We approximate the solution of this system

using finite-element functions (δuh, δBh, δph, δrh) ∈ Vh ×Ch ×Qh × Sh, where Vh ×Qh is a standard inf-
sup stable pair for the incompressible Navier-Stokes problem, Ch is the first family of Nédélec elements [22],
and Sh is an H1-conforming space [29, 31]. For this paper, we consider a discretization of Ω into triangular
elements, and thus we choose P2 − P1 (Taylor-Hood) elements for Vh × Qh. We choose the lowest-order
Nédélec space for Qh and P1 for Sh. The well-posedness of both the continuous and discrete formulations is
shown in [29,31].

After the finite-element discretization, we must solve a linear system of the following block form for each
Newton step:

Ax =


F Z BT 0
Y D 0 CT

B 0 0 0
0 C 0 0



xu
xB
xp
xr

 =


fu
fB
fp
fr

 = b.(9)

Here, xu, xB, xp, xr are the discretized Newton corrections for u, B, p, and r, respectively, and fu, fB, fp,
and fr are the corresponding blocks of the nonlinear residual.

3. Monolithic Multigrid Method

To solve System (9), we will use preconditioned GMRES, as the problem is not symmetric. As (9) is a
saddle-point problem, we must use a specialized preconditioner, and we specifically consider the development
of an effective monolithic multigrid preconditioner. The choice of relaxation or smoothing operator is known
to be critically important to the performance of any multigrid method. In this paper, we fix geometric
interpolation operators for each of the finite-element spaces described above and extend the well-known
Vanka relaxation scheme to (9).

The components of the method that we fix are as follows. First, we geometrically coarsen elements by
a factor of two in each direction. Specifically, to form the coarse grid, we exploit the structured nature of
the grid to agglomerate four triangular fine-grid elements into one triangular coarse-grid element. Second,
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the interpolation operators are chosen to be block-structured operators in which the diagonal blocks are the
standard finite-element interpolation operators corresponding to the test space for each variable. That is,

P =


Pu

PB

Pp

Pr

 ,
where Pu is the vector-quadratic (P2) interpolation operator; PB is the lowest-order first-family Nédélec
interpolation operator; and Pp and Pr are both the linear (P1) interpolation operator. Next, Galerkin
coarse-grid operators are used. That is Ac = PTAP . Finally, we use V (1, 1)-cycles, with one pre- and one
post-relaxation step.

In this paper, we emphasize Vanka-type relaxation methods [34]. In [2], these methods are used in the
context of a finite-element discretization of a vector-potential formulation of the MHD system. This work
extends the methods further to the case of the finite-element discretization the Lagrange-multiplier B-field
formulation (1)–(4). A key difference here is the presence of two Lagrange multipliers, as well as use of the
full B field, which is now discretized using curl-conforming vector elements.

3.1. Vanka Relaxation. We define the sets of degrees of freedom (DOFs) to be Su = {u1, . . . , unu
}, SB =

{b1, . . . , bnB
}, Sp = {p1, . . . , pnp

}, and Sr = {r1, . . . , rnr
}, where nu, nB , np, and nr are the numbers of

u, B, p, and r DOFs, respectively, in the system. Note that for this discretization, we have np = nr. Let
S = Su ∪ SB ∪ Sp ∪ Sr be the set of all DOFs in the system. The N Vanka blocks, S` ⊂ S, ` = 1, . . . , N ,
are chosen such that each block contains some elements of each of Su, SB, Sp, and Sr. Moreover, the Vanka
scheme is an overlapping block-Gauss-Seidel method, and, thus, DOFs are allowed to appear in multiple
blocks so long as ∪`S` = S (i.e., each DOF appears in at least one block).

In fluid dynamics applications, the standard approach to decomposing S into the subsets, S`, is to “seed”
the choice of the Vanka blocks by the incompressibility constraint, or (equivalently) by the pressure degrees
of freedom. In this case, however, we have two such constraints, the incompressibility constraint and the
solenoidal constraint. In the finite-element discretization, we have chosen the respective finite-element test
spaces, Qh and Sh, to both be represented by P1 basis functions, which provides a convenient way to form
the fully-coupled Vanka blocks. In particular, we pair each DOF in the incompressibility constraint with
the corresponding DOF in the solenoidal constraint and we use these pairs to seed the Vanka blocks, which
results in np = nr blocks.

Algebraically, this means that we consider row ` in each of the matrices B and C in (9) simultaneously,
and we define S` to be the degrees of freedom corresponding to nonzero entries in either of those rows, as
well as the seed DOFs, p` ∈ Sp and r` ∈ Sr. Notice that the incompressibility constraint couples a pressure
DOF to velocity DOFs and the solenoidal constraint couples a Lagrange-multiplier DOF to magnetics DOFs,
resulting in Vanka blocks S` that include DOFs from all variables in the system. It is important to contrast
this to the method shown in [2], in which the solenoidal constraint was eliminated by using the vector-
potential formulation. In that case, there was no algebraic method of this type that yielded blocks with
contributions from all variables, and geometric information was required to incorporate the vector potential
DOFs. However, the use of the Lagrange multiplier, r, to incorporate the solenoidal constraint in this chapter
means that the algebraic construction is possible.

Geometrically, this can be seen as isolating collocated pressure/Lagrange-multiplier DOFs (located at
nodes in the mesh since we use a P1 discretization) and including all of the velocity and magnetics DOFs
in the stencil surrounding them, as well as those seed DOFs. Thus, the incompressibility and solenoidal
constraints are both enforced on the DOFs in the Vanka block at each step of the Vanka iteration.

The collection {S`} defines the Vanka blocks upon which the remainder of the method is constructed. For
each Vanka block S`, the global solution is updated according to

x← x+ V`
(
ωM−1

``

)
V T
` (b−Ax) ,(10)

and the updates are computed in a Gauss-Seidel fashion. Here, V T
` is a restriction operator that takes

global vectors to local vectors containing only the entries corresponding to DOFs in block `, and V` is a
prolongation operator that takes the entries in a local vector and inserts them appropriately into a global
vector [28]. Additionally, we utilize an underrelaxation parameter, ω, to ensure effective relaxation. Finally,
M`` = V T

` MV` is the Vanka submatrix of dimension |S`| × |S`| that is used to compute the update. The
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matrix M is chosen to be some suitable preconditioner for the system matrix A; different choices of M
differentiate the Vanka methods that we use here.

Remark 1. For the numerical experiments in this chapter, we consider ω in Equation (10) to be a scalar. It
is possible, however, to consider a diagonal matrix scaling. As we show in Section 4, scaling each component
independently was not necessary to achieve good performance in the case of the test problems that we
consider.

Remark 2. Note that the definition of M`` = V T
` MV` follows a linear algebra definition of block Gauss-

Seidel. However, one could also imagine lumping techniques that exploit other information, such as finite-
element data, to lump off-diagonal entries onto a desired nonzero pattern in the submatrices. These ap-
proaches are not considered here.

As the final step to defining the Vanka-type relaxation methods used here, we delineate several methods
by the choice of M in (10). In particular, and similarly to [2], we define the “Full” Vanka, “Diagonal” Vanka,
and “Economy” Vanka methods. To facilitate the exposition, we define, relative to (9):

F̂ =

[
F Z
Y D

]
, B̂ =

[
B 0
0 C

]
,

xû =

[
xu
xB

]
, xp̂ =

[
xp
xr

]
,

fû =

[
fu
fB

]
, fp̂ =

[
fp
fr

]
.

(11)

Now, we can rewrite (9) as

Ax =

[
F̂ B̂T

B̂ 0

] [
xû
xp̂

]
=

[
fû
fp̂

]
.(12)

We begin by defining the “Full” Vanka method, in which we choose M = M full = A:

M full =

[
F̂ B̂T

B̂ 0

]
.

This choice results in submatrices, M full
`` = V T

` M
fullV`, that are essentially dense matrices with a maximal

size of 52 × 52. While these are certainly not excessively large, we must solve one such system per Vanka
block, and this is quite costly, especially as the number of such blocks grows large. In order to reduce the
computational effort per block, the other two Vanka methods replace the dense submatrix with a structured,
sparser submatrix that can be inverted more quickly.

The first sparse Vanka method is the “Diagonal” Vanka method, described for the Navier-Stokes equations
in [18,20]. This method uses

M = Mdiag =

[
diag(F̂ ) B̂T

B̂ 0

]
,

where

diag(F̂ ) =

[
diag(F ) 0

0 diag(D)

]
,

The Vanka submatrices, Mdiag
`` , arising from this choice are indeed much more sparse than the Full Vanka

submatrices above. As noted in [2], the diagonal approach leads to decoupling of the fluid physics from the
magnetic physics. Note that we can expand and permute Mdiag, with permutation matrix Q, to be

QT

[
diag(F̂ ) B̂T

B̂ 0

]
Q =


diag(F ) BT 0 0
B 0 0 0

0 0 diag(D) CT

0 0 C 0

 ,(13)

which is a fully-decoupled block-diagonal system in which one block corresponds to the fluid variables, u and
p, and the other to the magnetics variables, B and r. That is, all coupling between the fluid velocity field and
the magnetic field, represented by the matrices Y and Z, has been eliminated. We expect that ignoring this
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coupling altogether will lead to diminishing performance in physical regimes in which the coupling between
these variables is increased.

The other sparse Vanka method is a modification of the “Economy” Vanka method introduced in [2] for the
vector-potential formulation such that it is more compatible with the B-field formulation described above.
We now consider a preconditioner for F̂ defined by

F̂ econ =

[
blkDiag(F ) Z̃

Ỹ D

]
,

where blkDiag(F ) is the block-diagonal matrix in which each row has only the two entries corresponding to the

collocated x- and y-components of velocity, Z̃ has one entry in each row corresponding to a velocity DOF on
an edge that corresponds to the magnetics DOF on that same edge and zero entries in the rows corresponding
to nodal velocity DOFs, Ỹ has two entries in each row corresponding to the x- and y-component of velocity
DOFs on the edge shared by the magnetics DOF to which the row corresponds, and D is not modified at all.
This approach maintains the structure of the Arnold-Falk-Winther relaxation scheme [5,6] for the magnetics
block of the system. This gives

M = M econ =

[
F̂ econ B̂T

B̂ 0

]
.

Since this approach maintains some entries in Y and Z, the velocity-magnetics coupling is still present,
though obviously weaker than in the case of Full Vanka, which results in higher average iteration counts for
the test problems shown below.

Computationally, we note that the costs of Full Vanka are highest. The submatrices are dense, and thus
require the most storage and the most computational effort to factor. Diagonal Vanka, on the other hand,
requires storage equal to three vectors, the diagonal of F̂`` as well as B``, C`` (and possibly BT

`` and CT
`` if

boundary conditions are not symmetrically eliminated). Thus, the storage is very sparse and the factorization
of each submatrix is much simpler than in the Full Vanka case. The Economy Vanka method is a middle
ground. It requires substantially less storage than the Full Vanka method, as the submatrices here are quite
sparse (only the D`` block is dense). The submatrix factorization does require that the dense D`` block be
factored, but the size of this block is small enough that the cost is not substantial when compared to the
factorization of the Full Vanka submatrices.

4. Numerical Results

In order to test the monolithic multigrid method described above, we consider the Hartmann channel flow
problem, which has a known analytical solution. This allows us to verify that we find the correct solution and
that the finite-element method is converging as expected. We use Newton’s method to solve the nonlinear
problem, and we use monolithic multigrid-preconditioned GMRES to solve each linearization. Within the
multigrid method, the coarsest grid corresponds to an 8 × 8 grid of quadrilaterals, each divided into two
triangular elements. Table 1 shows the number of elements, unknowns, and nonzero Jacobian entries for each
grid size considered below. Additionally, we use only geometric interpolation operators and Galerkin coarse
grid operators in V (1, 1)-cycles. The choice of relaxation operator varies among Full Vanka, Diagonal Vanka,
and Economy Vanka.

Remark 3. Note that when grid sizes are quoted as “N × N”, N is the number of quadrilaterals in the
mesh, each of which is divided into two triangles, giving a mesh of 2N2 triangular elements.

The discretization for each Newton step is done using the FEniCS library [21]. All of the linear solver
components have been implemented using the Trilinos package [16]. The multigrid hierarchy and components
are all managed by the MueLu library [26], the Braess-Sarazin relaxation methods are in Teko [11], and the
Vanka methods are in Ifpack2 [16]. The Krylov solver is managed by the Belos package [7]. The results
shown below have been run in serial on a machine with two Intel Xeon E5-2637 v3 CPUs at 3.50GHz with
256GB DDR3 RAM at 2133MHz.

4.1. Hartmann Problem. We consider the Hartmann problem on Ω = [− 1
2 ,

1
2 ]2. This problem models the

flow of a fluid through a duct with a transverse applied magnetic field, BD = (0, 1)T . The flow is driven in

the x-direction by an externally applied pressure gradient ∂p
∂x = −G. Furthermore, we assume a channel with

insulating top and bottom walls, and there are no external forces applied (f = g = 0). In this problem, a
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Table 1. The number of elements in the mesh and the number of unknowns and nonzero
entries in the linear systems for the relevant mesh sizes considered below. The “Levels”
column indicates the number of levels in a multigrid hierarchy in which the corresponding
mesh is the fine grid.

Grid Size Levels Elements Unknowns NNZ

8× 8 1 128 948 35,936
16× 16 2 512 3,556 140,336
32× 32 3 2,048 13,764 554,576
64× 64 4 8,192 54,148 2,204,816

128× 128 5 32,768 214,788 8,792,336
256× 256 6 131,072 855,556 35,115,536
512× 512 7 524,288 3,415,044 140,354,576

1024× 1024 8 2,097,152 13,645,828 561,203,216

key nondimensional parameter is the Hartmann number, Ha =
√
ReRem. The boundary conditions for this

problem are:

u = 0 on y = ± 1
2

u = (u(y), 0)T on x = ± 1
2

n×B = n×BD on ∂Ω

r = 0 on ∂Ω,

where u(y) is the x-component of the analytical solution described below.
The analytical solution to this problem is u∗ = (u(y), 0)T , B∗ = (b(y), 1)T , p∗ = p(x, y) and r∗ = 0, where

u(y) =
GRe

2Ha tanh(Ha/2)

(
1− cosh(yHa)

cosh(Ha/2)

)
b(y) =

G

2

(
sinh(yHa)

sinh(Ha/2)
− 2y

)
p(x, y) = −Gx− 1

2
b(y)2.

In this study, we vary the Reynolds and magnetic Reynolds numbers across a range of values. The pressure
gradient, G, is chosen such that the maximum magnitude of the velocity field is 1.

4.1.1. Parameter Study. The Vanka relaxation scheme requires that the damping parameter, ω, be chosen. In
order to gain intuition on the appropriate parameter choice, we consider the test problem for Re = Rem = 1.
In these experiments, the linear systems were required to be solved to a relative tolerance of 10−5 at each
Newton step and Newton’s method was run until an absolute tolerance of 10−8 had been achieved on the
norm of the nonlinear residual. We vary the parameter ω from 0.1 to 1.0 in steps of 0.1.

The results for the Full Vanka-based method are shown in the left plot of Figure 1. We see that the
optimal parameter is ω = 0.7 and that this is independent of the grid size. Here, we observe a sharp upper
limit on acceptable ω values that appears to decrease with each grid refinement. As a result of this sharp
upper limit, we choose to make a choice of ω = 0.6 out of a feeling of caution when running later experiments
with Full Vanka. These results are consistent with the parameter studies shown in [2], from which similar
conclusions are drawn (cf. the top row of Figure 2 in that paper).

The results for the Diagonal Vanka-based preconditioner are shown in the right plot of Figure 1. The
optimal parameter, regardless of grid size, is shown to be ω = 0.5. While the parameter choice is the same
for each grid size, the average number of iterations required increase as the mesh is refined. Thus, the
Diagonal Vanka-based method does not lead to grid-independent performance of the preconditioner.

4.1.2. Robustness to physical parameters and mesh refinement. Here, we consider varying the physical pa-
rameters of the problem, namely Re and Rem. We first consider the Full Vanka-based preconditioner, the
results for which are summarized in the top row of Table 2. We see in these tables that the performance of
the algorithm is very robust to this range of parameter values when Rem < 64, requiring between 3.5 and 4.5
iterations of GMRES on average to solve each linear system. We do note that for Rem = 64 the performance
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Figure 1. The average number of preconditioned GMRES iterations required to reduce the
linear residual norm below a relative tolerance of 10−5 for the Hartmann flow test problem
with Re = Rem = 1 as the underrelaxation parameter, ω, varies from 0.1 to 1.0 in steps of
0.1. Results for the Full Vanka relaxation scheme are shown on the left, and results for the
Diagonal Vanka scheme appear on the right. Data points not shown indicate that a linear
solve failed to converge within 50 iterations and the simulation terminated.

of both Newton’s method and the linear solver suffers. In this case, the initial linearization is solved quickly
(6-8 linear iterations), with later linearizations requiring substantially more iterations. For the case in which
Re = 16 and Rem = 64 on the 128×128 grid, GMRES fails to solve the second linearized system. Finally, we
note that the performance of the linear solver is largely unaffected by mesh refinement. In fact, we generally
see a slight improvement for Re < 64.

Next we discuss results for the Diagonal Vanka-based preconditioner, shown in the middle row of Table 2.
We see that the average iteration counts do not scale well with mesh refinement, nearly doubling across the
shown grid sizes. As with Full Vanka, this method struggles as Rem grows large, requiring about twice as
many linear iterations as the other parameter values.

Due to the lack of grid-independence shown by the Diagonal Vanka-based preconditioner, we now con-
sider the Economy Vanka-based preconditioner, which has been designed to offer more robustness to mesh
refinement as well as lower average iteration counts than the Diagonal Vanka-based method. The results are
shown in the bottom row of Table 2. Here, we have used ω = 0.5 for these experiments, to be consistent with
the parameter choice for the Diagonal Vanka-based method. Whereas the average iteration count for the
Diagonal Vanka-based preconditioner nearly doubled on the 1024× 1024, we see a much more mild increase
with the Economy Vanka-based method, of about only two iterations in the worst case. We also observe
good robustness to the physical parameters when Rem < 64, with average iteration counts varying by about
two across the entire range of parameters for both grid sizes shown. In this case, however, the method fails
when Rem = 64 and Re ≥ 16 on the coarser grid and Re ≥ 4 on the finer grid. The exact cause of this is
being investigated and the discovery thereof is included in the future work on this project.

5. Conclusions and Future Work

We have presented the extension of a monolithic multigrid preconditioning techniques to this Lagrange-
multiplier formulation. We have shown that using a monolithic multigrid preconditioner with Full or Economy
Vanka relaxation leads to an effective preconditioner for the Lagrange-multiplier formulation of the resistive
MHD model described here. In particular, we have shown results for a Hartmann flow test problem in two
dimensions that demonstrates that this method leads to convergence of the linear systems in a small number
of iterations and is robust to both changes in physical parameters as well as mesh refinement.

In [2], we discussed the extension of a Braess-Sarazin-type relaxation scheme to the vector-potential for-
mulation. There is on-going work to extend this method to this Lagrange-multiplier formulation. Moreover
we are testing both Vanka-type and Braess-Sarazin-type relaxation methods in a distributed parallel com-
puting environment. Once this is complete, we will consider time-dependent problems in both two and three
dimensions, such as the Kelvin-Helmholtz and the Island Coalescence problems [3, 12, 19, 32]. We will then
be able to compare the techniques presented here to the state-of-the-art block-factorization preconditioners
that are widely used [12,19,24,25].
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Table 2. The average number of preconditioned GMRES iterations required to reduce the
linear residual norm below a relative threshold of 10−4 for the Hartmann flow test problem
for different values of Re and Rem. The top row shows Full Vanka relaxation with ω = 0.6;
the middle row shows Diagonal Vanka with ω = 0.5; and the bottom row shows Economy
Vanka with ω = 0.5. The number in parentheses indicates the number of Newton steps taken
to reduce the norm of the nonlinear residual below an absolute tolerance of 10−8. Results
for the 128 × 128 problem are shown on the left and for the 1024 × 1024 problem on the
right. A value of “x(x)” indicates that Newton’s method broke down.

128× 128 — Full Vanka

Re
Rem 1 4 16 64

1 4.2(4) 4.0(4) 4.0(4) 9.4(5)

4 4.0(4) 3.8(4) 4.2(5) 13.0(6)

16 3.8(4) 3.5(4) 4.2(5) x(x)

64 3.8(4) 4.4(5) 4.6(5) 13.0(7)

1024× 1024 — Full Vanka

Re
Rem 1 4 16 64

1 4.0(4) 3.8(4) 3.5(4) 9.2(5)

4 4.0(4) 3.8(4) 3.8(5) 13.7(6)

16 4.0(4) 3.5(4) 3.6(5) 15.0(7)

64 6.5(4) 6.4(5) 5.0(5) 18.4(7)

128× 128 — Diagonal Vanka

Re
Rem 1 4 16 64

1 16.8(4) 17.5(4) 17.8(4) 30.6(5)

4 17.2(4) 17.8(4) 18.0(5) 31.7(6)

16 17.2(4) 17.2(4) 17.6(5) 29.1(7)

64 18.0(4) 17.4(5) 17.8(5) x(x)

1024× 1024 — Diagonal Vanka

Re
Rem 1 4 16 64

1 28.5(4) 31.2(4) 33.5(4) 66.8(5)

4 29.5(4) 32.5(4) 34.4(5) 60.3(6)

16 30.5(4) 32.2(4) 34.2(5) 70.9(7)

64 32.5(4) 31.2(5) 34.4(5) x(x)

128× 128 — Economy Vanka

Re
Rem 1 4 16 64

1 8.8(4) 8.2(4) 7.8(4) 15.2(5)

4 8.2(4) 7.8(4) 8.2(5) 29.0(6)

16 7.5(4) 7.2(4) 7.8(5) x(x)

64 9.0(5) 8.0(5) 7.8(5) x(x)

1024× 1024 — Economy Vanka

Re
Rem 1 4 16 64

1 9.2(4) 9.5(4) 10.2(5) 20.6(5)

4 9.8(5) 8.5(4) 9.2(5) x(x)

16 9.8(5) 9.6(5) 8.8(5) x(x)

64 10.0(5) 10.7(6) 10.0(6) x(x)
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