skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low Temperature Geothermal Play Fairway Analysis For The Appalachian Basin: Phase 1 Revised Report November 18, 2016

Technical Report ·
DOI:https://doi.org/10.2172/1341349· OSTI ID:1341349

Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1) thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh Pennsylvania, for which the available geological data are insufficient to fully analyze the geological risks but yet the population is high. First, to assess the spatial variation in the depth to which one would need to drill to obtain geothermal temperatures that are useful to a future project, the project used bottom-hole temperature data from Appalachian Basin oil and gas exploration. These bottom hole temperature data are abundant but of low quality. Second, the project examined the potential for sufficient water flow rates through rocks to harvest heat from a geothermal well field, considering only natural reservoirs. This analysis provides a very incomplete picture of spatial variability of natural reservoirs because the oil and gas reservoir data lack key properties and are spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. Third, in light of the fact that earthquake activity has been induced in several states by subsurface work related to the oil and gas industry, this project examined the potential for similar activity in the Appalachian Basin. Acknowledging that data for such a task are insufficient, we utilized what was available: records of seismic activity, regional estimates of the orientations of stress in the rocks, and locations and orientations of zones of lateral change in rock properties at depths down to several kilometers below Earth’s surface. With these data, we created a first approximation of spatially variable risks for induced earthquakes. Because no data existed with which to test the reliability of these methods, the results have a high degree of uncertainty. Fourth, we examined the spatial variability of the above-the-ground factors that contribute to the economical viability of projects to tap low-temperature geothermal resources for direct-use. We worked principally with population density as a regionally known variable that would impact the cost of district heating. The resulting maps omit the costs of producing the hot water from the ground, because the below-ground costs are directly coupled to the thermal resource risk factor and natural reservoir risk factor – later analyses of those costs will be needed. The result of the district heating analysis is highly skewed: few census locations yielded a low estimated surface cost. The team also identified more than 165 prospects for high value direct-use geothermal energy opportunities such as industrial sites, university campuses, and federal facilities, among others. At the closure of this regional analysis, the most significant technical uncertainties are 1) reservoir distribution and capacities; 2) validity of thermal resource maps, and 3) the holistic estimation of Levelized Cost of Heat for favorable geological situations.

Research Organization:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Geothermal Technologies Office
DOE Contract Number:
EE0006726
OSTI ID:
1341349
Report Number(s):
DE-EE0006726
Country of Publication:
United States
Language:
English