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The Planar Sandwich and Other 1D Planar Heat Flow Test
Problems in ExactPack

Robert L Singleton Jr
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

(Dated: 23 January 2017)

Abstract

This report documents the implementation of several related 1D heat flow problems in the verifi-
cation package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well
as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar
sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow
is presented, whose main results have been implemented in the class Rod1D. All planar sandwich
classes are derived from the parent class Rod1D.
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I. 1D PLANAR HEAT FLOW IN EXACTPACK

A. TUse of ExactPack Solvers

This report documents the implementation of a number of planar 1D heat flow problems
in the verification package ExactPack [1]. The first problem that we consider is the planar
sandwich of Ref. [2], and some generalizations thereof, under the class names

- PlanarSandwich
- PlanarSandwichHot

- PlanarSandwichHalf
- Rod1D .

We will describe each of these classes in this section, and will provide instructions on how to
use them in a python script (for plotting or data analysis, for example). We also provide a
pedagogical treatment of 1D heat flow and a detailed derivation of the cases treated herein.
We have implemented the general 1D heat flow problem as the class Rod1D, and the planar
sandwich classes inherit from this base class. These classes can be imported and accessed in

a python script as follows,

from exactpack.solvers.heat import PlanarSandwich
from exactpack.solvers.heat import PlanarSandwichHot
from exactpack.solvers.heat import PlanarSandwichHalf
from exactpack.solvers.heat import Rodl1D

To instantiate and use these classes for plotting or analysis, one must create a corresponding

solver object; for example, an instance of the planar sandwich is created by

solver = PlanarSandwich(T1=1, T2=0, L=2)

This creates an ExactPack solver object called “solver”, with boundary conditions 77 = 1
and T, = 0, and length L = 2. All other variables take their default values. The solver
object does not know anything about the spatial grid of the solution, and we must pass an
array of x-values along the length of the rod, as well as a time variable ¢ at which to evaluate

the solution; for example,

X
t

numpy.linspace(0, 2, 1000)
0.2

soln = solver(x, t)
soln.plot(’temperature’)

This creates an ExactPack solution object called “soln”. Solution objects in ExactPack come
equipped with a plotting method, as illustrated in the last line above, in addition to various
analysis methods not shown here. Now that we have reviewed the mechanics of importing

and using the various planar classes, let us turn to the physics of 1D heat flow.
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B. The General 1D Heat Conducting Rod

The planar sandwich is a special case of the simplest form of heat conduction problem,
namely, 1D heat flow in a rod of length L and constant heat conduction k. The heat flow

equation, along with the boundary conditions and an initial condition, take the form [3],

‘ ol (x,t)  0°T(x,t)
BC: a1 T(0,t) + 510, T(0,t) = m t>0 (1.2)
IC : T(x,0) = Ty(x) O<z<L. (1.4)

We use an arbitrary but consistent set of temperature units throughout. Equation (1.1)
is the diffusion equation (DE) describing the temperature response to the heat flow, the
second two equations (1.2) and (1.3) specify the boundary conditions (BC), each of which
which are taken to be a linear combination of Neumann and Dirichlet boundary conditions.
The final equation (1.4) is the initial condition (IC), specifying the temperature profile
of the rod at ¢ = 0. When the right-hand sides of the BC’s vanish, 74 = v = 0, the
problems is called homogeneous, otherwise the problem is called nonhomogeneous. The
special property of homogeneous problems is that the sum of any two homogeneous solutions
is another homogeneous solution. This is not true of nonhomogeneous problems, since the
nonhomogeneous BC will not be satisfied by the sum of two nonhomogeneous solutions.
Finding a solution to the nonhomogeneous problem (1.1)—(1.4) involves two steps. The
first is to find a general solution to the homogeneous problem, which Wdenote by T (z,t) in
the text; and the second step is to find a specific solution to the nonhomogeneous problem.
We accomplish the latter by finding a static nonhomogeneous solution, which is denoted by

L' There are

T(z), as this is easier than finding a fully dynamic nonhomogeneous solution.
times when finding a static nonhomogeneous solution is not possible, but in our context,
these cases are rare, and will not be treated here. The sum of the general homogeneous and

the specific nonhomogeneous solutions,

T(x,t) = T(x,t) + T(z) | (1.5)

will in fact be a solution to the full nonhomogeneous problem. The homogeneous solution

T'(z,t) will be represented as a Fourier series, and its coefficients will be chosen so that the

1 This involves solving the linear equation 8?7 /dz% = 0 in 1D, and Laplace’s equation V2T = 0 in 2D.
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initial condition (1.4) is satisfied by T'(z,t), i.e. we choose the Fourier coefficients of 7" such
that

T(z,0) = To(z) — T(x) . (1.6)

The boundary conditions (1.2) and (1.3) are specified by the coefficients o, ;, and ~; for
1 = 1,2. Combinations of these parameters produce temperatures and fluxes 7; and F;, and
it is often more convenient to specify the boundary conditions in terms of these quantities.
For example, if 8; = 0 in (1.2), then the BC becomes «;T(0,t) = 71, which we can rewrite
in the form 7'(0,¢) = T} with T = v1/ay. This leads to four special cases for the boundary
condition, the first being

BC1

TO ) =T : 140 =0 m#£0 le% (1.7)
1

T(L,t)ZTg : CYQ#O ﬁ2:0 ’)/27&0 T2:% . (18)
2

By setting a; = ap = 0, with §; # 0, we arrive at the heat flux boundary condition,

BC2

O,TO0)=F : a1=0 B #£0 7 %0 Flz% (1.9)
1

O,T(Lt)=Fy, : an=0 Pa#0 7 #0 FQZ%. (1.10)
2

As we shall see, we must further constrain the heat flux so that F} = F5. This is because
in a static configuration, the heat flowing into the system must equal the heat flowing out
of the system. Finally, we can set a temperature boundary condition at one end of the rod,

and a flux boundary condition at the other. This can be performed in two ways,

BC3
TO) =T :a1#0 Bi=0 v #£0 le% (1.11)
1
O,T(L)=Fy : ay=0 B0 720 TF%, (1.12)
2
or
BC4
O,TO0.)=F :oa1=0 B#A0 7 #£0  F= % (1.13)
1
T(Lt)=T, : as#0 Bo=0 ~9#0 TQZ%. (1.14)
2
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Note that BC3 and BC4 are physically equivalent, and represent a rod that has been flipped
from left to right about its center. In the following sections, we shall compute the solution
for each of boundary conditions BC1 --- BC4, as well as the case of general BC’s.

While the heat flow problem is well defined and solvable for arbitrary (continuous) profiles
To(x), a particularly convenient choice of an initial condition is the linear function
Ty — T,

To(z) = Téin(x;TL,TR) =T.+ I T,

(1.15)

where T; is the initial temperature at the far left of the rod, z = 0", and T}y is the initial
temperature at the far right of the rod, z = L~. We have used the notation z = 0% and
x = L~ because the initial condition only holds on the open interval 0 < x < L, and,
strictly speaking, To(x) is not defined at = 0 and L, as this would “step on” the boundary
conditions at these end-points (the system would be over constrained at x = 0,L). This
leads to the interesting possibility that the initial condition can be incommensurate with the
boundary conditions, in that 77 need not agree with T, nor Ty with 7.

Taking the boundary condition BC1 for definiteness, let us examine the resulting solution
T(xz,t) when Ty # Ty, or Ty # Ty. If we consider such a solution T'(x,t) on the open
a-interval (0, L), then T'(x,t) converges to the initial profile To(x) as t goes to zero, that is
to say, T'(x,t) — To(x) as t — 0 for all x € (0, L); however, this point-wise convergence is
nonuniform. See Ref. [4] for an introductory but solid treatment of real analysis and uniform
convergence, and Appendix B for a short summary of uniform convergence. Alternatively,
we may consider the solution 7'(z,t) on the closed interval [0, L] by appending the boundary
conditions at = 0, L. Then the limit of T'(x,t) as ¢ — 0 is a the function taking the
valuess T' =Ty at =0, T =Ty at * = L, and T = Tp(x) at € (0,L). If Ty # T, or
Ty # Ty, the limit function lim, o T'(z,t) is discontinuous at = = 0, L, even though every
function T'(z,t) in the sequence is continuous in . We have therefore found a sequence of
continuous functions T'(z, t) (continuous in z and indexed by ¢) whose limit is a discontinuous
function, and this is exactly what one would expect of a nonuniformly converging sequence
of functions. Not surprisingly, if we set the boundary condition to agree with the initial
condition, T7 = T;, and Ty = Ty, then the limit function is continuous; however, the initial

condition Tp(x) becomes a static nonhomogeneous solution to the heat equations.

C. Some Heat Flow Problems in ExactPack

The first test problem of Ref. [2] is a heat flow problem in 2D rectangular coordinates
called the Planar Sandwich, illustrated in Fig. 1. The problem consists of three material

layers aligned along the y-direction in a sandwich-like configuration. The outer two layers
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k=0 K k=0

x=- x=—a T:T] x=a x=b x

FIG. 1: The Planar Sandwich. The inner material in blue (the meat) located within —a <z < a
is heat conducting with k > 0. The outer materials (the bread), located within —b < x < —a and
a < x < b, are not heat conducting and have Kk = 0. The boundary temperature is uniform in
x along the lower and upper boundaries, with temperatures 7'(x,0) = T} and T'(z, L) = T5. The
temperature flux along the far left and right boundaries vanishes, 0,7(+b,y) = 0. Finally, the
initial temperature is taken to be Ty(z,y) = 0 inside the entire region (—b,b) x (0, L).

do not conduct heat (k = 0), while the inner layer is heat conducting with x > 0, forming a
sandwich of conducting and non-conducting materials. The temperature boundary condition
on the lower y = 0 boundary is taken to be T'(x,y=0) = T}, while the temperature on the
upper boundary is T'(z,y=L) = T». The temperature flux in the z-direction on the far left
and right ends of the sandwich vanishes, 0,7(+b,y) = 0. Finally, the initial temperature
inside the sandwich is taken to vanish, Ty(z,y) = 0. Symmetry arguments reduce the
problem to 1D heat flow in the y-direction, and in this subsection we shall orient the 1D rod
of the previous section along the y-direction rather than the x-direction (in the remaining
sections, however, we shall revert to the convention of heat flow along x). This brief change
in convention allows us to keep with the original notation defined in Ref. [2]. The heat flow

equation in the central region, |z| < a, reduces to 1D flow along the y-direction,

oT T

We now represent the temperature profile as a function of y, so that 7" = T'(y,t), and the
boundary conditions of the rod become T'(0,t) = T} and T'(L,t) = T5, as in BC1. The initial

condition becomes Ty(y) = 0. The exact analytic solution was presented in Ref. [2], and
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FIG. 2: The Planar Sandwich in ExactPack: PlanarSandwich(T1=1, T2=0, L=2, Nsum=1000).
The temperature profile is plotted at times ¢t = 1,0.2,0.1,0.01, and 0.001. The BC’s are T'(0) = 1,
T(L)=0, and The IC is Ty = 0. The diffusion constant is x = 1, the length of the rod is L = 2, and
we have summed over 1000 terms in the series

takes the form

T, — T, = _ .
T(y,t) = Th + MTI)‘U + ;Bn sin(kyy) e~ Fat (1.17)
2T5(—1)" = 2T
o= 7 and B, = 22D L (1.18)
L nm

for |z| < a; and T = 0 for |z| > a. Figure 2 illustrates a plot of the planar sandwich
solution for the initial conditions 77 = 1 and T = 0, at several representative times
t=1,0.2,0.1,0.01, and 0.001. The instance of the planar sandwich class used to plot
the figure was created by the python call

solver = PlanarSandwich(T1=1, T2=0, L=2, Nsum=1000)

This class instance sets the boundary conditions to 77 = 1 and 7, = 0, the length of the
rod to L = 2, and it sums over the first 1000 terms of the series. By default it also sets the
IC to Ty = 0. For each of the five representative values of ¢, we must create five solution

objects, i.e.

t0
t1

0.001
0.01

soln0 = solver(y, t0)

solnl = solver(y, t1)

where y is an array of grid values ranging from y = 0 to y = L = 2. The solutions can then be
plotted in the standard ExactPack manner, soln0.plot(), solnl.plot(), etc. The script
that produces the plot in Fig. 2 is given in Appendix A.
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FIG. 3: The Planar Sandwich: PlanarSandwich(T1=0, T2=0, TL=3, TR=4, L=2, Nsum=1000).
Temperature profiles for the homogeneous planar sandwich at times ¢ = 1,0.2,0.1,0.01, and 0.001,
with k =1, L =2, T, =3, Ty = 4 (and T} = T> = 0). The boundary conditions 77 = 0 and
T3 = 0 render the solution homogenous, while the initial condition Ty(y), specified by T}, and Ty,
specifies the linear function (1.19) as the initial condition. As ¢ — 0, the solution T'(y, t) convergens
nonuniformly on the open y-interval (0, L) to Tp(y).

In the following sections, we shall analyze heat flow in a 1D rod in some detail, and we
will see that by modifying the boundary conditions, as well as the initial condition, we can
form a number of variants of the planar sandwich. In our first variant, we take T} = 0 and
T = 0 (the homogeneous version of BC1), but we choose a nontrivial initial condition for
To(y). An arbitrary continuous function would suffice, but for simplicity we employ a linear
initial condition for Ty(y). Since, in this section, the heat flow is along the y-direction, the

linear initial condition (1.15) must be translated into

. Tx — T,
Toly) = T§"(y) =T+ = (1.19)
As shown in the next section, the solution takes the form
T(y,t) = Z B, sin(kpy) e "t (1.20)
n=1
2T, — Tp(—1)"
k, — ”% with B, = 2o~ T(=D) (1.21)

nm

This is illustrated in Fig. 3 for the initial condition specified by T;, = 3 and Ty = 4. For this

case, the class PlanarSandwich is instantiated by
solver = PlanarSandwich(T1=0, T2=0, TL=3, TR=4, L=2, Nsum=1000)

The similarity between the coefficients B,, in (1.21) and (1.18) is somewhat accidental, and

arises from the choice of the linear initial condition (1.19), which, coincidentally, is the
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same form as the nonhomogeneous solution 7'(z) used to construct the original variant of
the planar sandwich (1.18). It is this that accounts for the similarity. This example also
illustrates how to override the default parameters in an ExactPack class, in this case, by
setting 77 = 0 and T = 0. The default initial condition is Ty(y) = 0, and this is why we
did not need to specify the values of T, and Ty in Fig. 2, and why we had to override these
values in Fig. 3.

As another variant on the planar sandwich, we can choose vanishing heat flux on the
upper and lower boundaries (as in BC2). This will be called the Hot Planar Sandwich, in
analogy with the Hot Cylindrical Sandwich of Ref. [2], and its solution takes the form

A > 2
T(y,t) = 70 + 3 Ay, cos(kyy) e Ent (1.22)
n=1

nim

k, = — 1.23
7 (1.23)
T, + T I—(=1)"

Ay = % and forn #0, A, = 2<TL - TO# (1.24)

This new variant of the planar sandwich can be instantiated by
solver = PlanarSandwichHot (F=0, TL=3, TR=3, L=2, Nsum=1000)
The heat flux F' on the boundaries has been set to zero, and a constant initial condition

To = 3 has been specified (by setting 7}, = T, = 3). The solution is illustrated in Fig. 4. On

PlanarSandwichHot: F=0

t=1.000
t=10.200
t=0.100

4
t=0.010
— t=0.001

temperature

) 0.5 1.0 15 2.0
position

FIG. 4: The Hot Planar Sandwich in ExactPack: PlanarSandwichHot(F=0, TL=3, TR=3, L=2,
Nsum=1000). Since the heat flux on the boundaries vanishes, heat cannot escape from the material,
and the temperature must remain constant in time. The temperature profile has been plotted for
the times ¢t = 1,0.2,0.1,0.01, and 0.001, and is indeed constant.

physical grounds, heat cannot escape from the material, and the temperature must remain

constant. In contrast, when the heat flux is nonzero, heat is free to flow from the sandwich

10
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to the environment, and the temperature need not remain constant. For a flux F' = 1, the

change in the temperature profiles with time is illustrated in Fig. 5.

PlanarSandwichHot: F=1

4.0
—  t=1.000
— t=0.200
— =0.100
3.5 t=0.010
— ¢=0.001
o
5
©
330
£
3
2.5
280 0.5 1.0 1.5 2.0

position

FIG. 5: The Hot Planar Sandwich in ExactPack: PlanarSandwichHot(F=1, TL=3, TR=3, L=2,
Nsum=1000). The profiles are plotted for times ¢t = 1,0.2,0.1,0.01, and 0.001. The heat flux at
the boundaries is /' = 1, and we see that the temperature profile changes as heat flows out of the
rod.

Another variant on the planar sandwich is to choose vanishing heat flux on the upper
boundary, 9,7(L) = 0, and zero temperature on the lower boundary, 7°(0) = 0. This is an
example of boundary condition BC3, and the solution is called the Half Planar Sandwich.

As we show in the next section, the solution takes the form

T(y.t) = Y _ By sin(kyy) e """ (1.25)
n=0
on + 1 AT, 8(Ty — T,
poo DT B = n ST (1.26)
L 2n+1)m  (2n+1)2x?

Taking the initial condition Ty = 3 (T, = Tx = 3) gives Fig. 6, which is instantiated by
solver = PlanarSandwichHalf (T=0, F=0, TL=3, TR=3, L=2, Nsum=1000)

If we had chosen 0,7'(0) = 0 and T(L) = 0, as in BC4, then the figure would have been
reflected about the central point y = 1, but otherwise physically identical.

11
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FIG. 6: The Half Planar Sandwich in ExactPack: PlanarSandwichHalf(T=0, F=0, TL=3, TR=3,
L=2, Nsum=1000). The profiles are plotted for times ¢ = 1,0.2,0.1,0.01, and 0.001. Note that the
profiles clearly satisfy the temperature on the left vanishes, and the derivative of the temperature
on the right vanishes.

II. THE STATIC NONHOMOGENEOUS PROBLEM

As previously discussed, the full nonhomogeneous problem is divided into two parts:
(i) finding a general homogeneous solution 7'(z, t), and (ii) finding a specific nonhomogeneous
static solution T'(x). Because of its simplicity, we first turn to solving the corresponding
nonhomogeneous equations. We start with the static or equilibrium heat equation for 7'(x)

with nonhomogeneous BC’s,

0T (x)
DE: = L 2.1
522 0 0<z< (2.1)
BC : aT(0) + B T'(0) = 7

aT(L) + BT'(L) = 2 .

The solution to (2.1) is trivial, and may be written in the form,

T(x)=a+bx, (2.4)

or alternatively,

_ Ty —T,
T(x) = Ty + 2L !

(2.5)

The coefficients a and b, or 77 and T5, are determined by the nonhomogeneous boundary
conditions (2.2) and (2.3). Note that, coincidentally, that the static nonhomogeneous solution

T(x) takes the same form as the linearized initial condition of (1.15), namely,

T(x) = To™(a; Ty, Ts) . (2.6)

12
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While this is a fortuitous coincidence of 1D heat flow, and does not hold for 2D heat flow,
(2.6) will be used in the following sections to simplify the algebra in calculating expansion
coefficients for the homogenous and nonhomogeneous solutions. We turn now to finding the
appropriate values of T} and 715 for the case of general boundary conditions, and then for

the four special cases,

BCL: (1.7)~(1.8)

BC2: (1.9)~(1.10)
BC3: (1.11)~(1.12)
BC4: (1.13)-(1.14)

A. General Boundary Conditions

As exhibited in (2.4)—(2.5), the nonhomogeneous solution 7(x) can be expressed in the
form

- -1

T(x)=a+bx=T + 7% (2.7)

where T(0) = a = Ty and T(L) = a + bL = Ty. The BC’s (2.2) and (2.3), and the solution

(2.4), reduce to a linear equation in terms of a and b,

o a
1 b _ ™M _ (2.8)
ay P2+ asl b V2
Upon solving this equation we find
_ —B172 + Bay1 + Laom (2.9)
a1l — a8y + Lagjas .
Q172 — Qo
b = , 2.10
a1l — aff + Lajay ( )
or in terms of temperature parameters, 71 = a and T, = a + bL, we can write
— L
T, — P21 — Biya + Laom (2.11)
a1 — a1 + Lajay
— L
T, = P21 — Piy2 + Lagye (2.12)

a1y — asf + Lajas

Note that the determinant of the linear equations vanishes for BC2, and we must handle

this case separately.

13
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B. Special Cases of the Static Problem

1. BC1

The first special boundary condition is (1.7) and (1.8),

T) =T (2.13)
T(L) = Ty, (2.14)
with the solution taking the form (2.5),
_ Ty =T
T(x) = Ty + = - L (2.15)

The temperature coefficients T} and 75 are given by the temperatures of the upper and lower
boundaries in (2.13) and (2.14). Equivalently, the coefficients in (2.4) are just a = T} and
b= (T, —Ty)/L.

2. BC2

Let us now find the nonhomogeneous equilibrium solution for the boundary conditions

(1.9) and (1.10),

9, T(0) = Fy (2.16)
0, T(L) = Fy, (2.17)

where F| and F, are the heat fluxes at x+ = 0 and x = L, respectively, and are related to
the boundary condition parameters in (2.2) and (2.3) by F} = v1/01 and Fy, = v, /fs. As
before, the general solution is T'(x) = a + bz, and we see that T'(x) = b is independent of
x. In other words, the heat flux at either end of the rod must be identical, F; = b = F5. In
fact, this result follows from energy conservation, since, in equilibrium, the heat flowing into
the rod must be equal the heat flowing out of the rod. Therefore, more correctly, we should

have started with the boundary conditions

0, T(0) = F (2.18)
0, T(L) = F, (2.19)
with
_n_n
F_ﬂ1 5 (2.20)

14
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As we saw in the previous section on general initial conditions, this case is singled out for
special treatment. The value of the constant term a is not uniquely determined in this case;

however, we are free to set it to zero, giving

T(x)=Fx . (2.21)

There is nothing wrong with setting a = 0, since we only need to find one nonhomogeneous
solution, and (2.21) fits the bill. We can write this solution in the form (2.5), with

T, =0 (2.22)
T, = FL . (2.23)
3. BC3

The next set of boundary conditions are (1.11) and (1.12),

T(0) =N (2.24)
0,T(L) = Fy, (2.25)
and we can express the solution (2.5) in terms of the temperature 77, and the effective
temperature
L
Ty = Ty + Byl = 12 4 227 (2.26)
Qi B2
4. BCY

The boundary conditions are (1.13) and (1.14),

0, T(0) = F, (2.27)
(L) = Ty, (2.28)
and the solution (2.5) can be written in terms of 75 and the effective temperature
Y2 ML
W =T1T,—-FL=———. 2.29
' ? ' 0% P ( )
We have now found the static homogeneous solution in the form
_ T — 1T,
T(x) =T, + % , (2.30)

where the temperatures in (2.30) are given by
BC1: 17 and 715

BC2: T1 =0 and TQ =FL

BC3: T1 and T2 = T1 + FQl

BC4: Ty =15 — FiL and T5

and by (2.11) and (2.12) for general BC’s.
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III. THE HOMOGENEOUS PROBLEM

Now that we have found the appropriate nonhomogeneous solutions T'(z), we turn to
the more complicated task of finding the general homogeneous solutions T(x,t). These
solutions involve a Fourier sum over a discrete number of normal modes, the coefficients
being determined by the initial conditions. These solutions depend upon The homogeneous

equations of motion, for which 73 = 0 and 72 = 0 in the equations (1.1)—(1.4), take the form

‘ OT (z,1) B T (x,t)
BC : oy T(0,t) + $10,T(0,t) = 0 t>0 (3.2)

ayT(L,t) + 20, T(L,t) = 0

IC : T(x,0) = Ty(z) O<z<L. (3.3)
As we have discussed in Section I B, in all of our examples we shall employ the linear initial
condition

T — T,

To(z) = Téin($§TLa Tw) =T. + I

T . (3.4)

The solution technique is by separation of variables, for which we assume the trial solution

to be the product of independent functions of x and ¢,

T(x,t)=X(z)U(t) . (3.5)

Substituting this Ansatz into the heat equation gives

i X (z)

T x@) = w5 (3.6)
LU _X"2) _ — p
LT~ X() 6=—F, (87)

where we have chosen the constant to have a negative value —k2, and we have expressed
derivatives of U(t) and X (z) by primes. As usual in the separation of variables technique,
when two functions of different variables are equated, they must be equal to a constant,

independent of the variables. The equation for U(t) has the solution,

Up(t) = Uge ¥t (3.8)

16
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where we have introduced a k-subscript to indicate that the solution depends upon the value

of k. The equations for X reduce to
X"(z) +k*X(z) = 0 0<z<L (3.9)

a1 X(0) + B,X'(0) = 0 (3.10)
X (L) + B X'(L) = 0,

where, now, the condition X (z) = Ty(x) is the obvious statement that X (z) is simply the

initial condition of the original problem. The general solution to (3.9) is
Xi(z) = Ay cos kx + Bgsinkx | (3.11)

and when the BC’s are applied, the modes X, will be orthogonal,

/0 d(L’Xk($)Xk/(ZL") = Nk 5kzk’ . (3.12)

Since the solutions are square integrable, and since the DE is liner and the BC’s are homo-
geneous, we have scaled Xj to give an arbitrary normalization constant Ny, which can be
chosen for convenience.

The general time dependent solution is a sum over all modes,
T . —k k2t
T(x,t) = Zka Xp(z)e , (3.13)

where we have absorbed the coefficient Uy into the coefficients D,. The D;’s themselves are

chosen so that the initial condition is satisfied,

T(x,0) = ZkaXk(x) = Ty(x) (3.14)
= Dy = Ni/deTo(:v) Xe(z) . (3.15)

For tractability, we take the IC to be linear, as given in (1.15), where T is the temperature
at x = 07, and Ty is the temperature at x = L~. When 7T} = Ty, the IC is a constant. The
linear initial condition (1.15) contains two temperature parameters, Ty(z) = To"(x; Ty, Tr),
and therefore the corresponding Fourier coefficients are functions of these parameters,
: 1 [t :
DT, Tx) = w /0 do Ty™ (z; Ty, Tr) Xe(z) (3.16)

When solving for the full nonhomogeneous solution (NH), rather than using (3.15) to find

Dy, we need to choose the coefficients such that

Dy = Nik /0 o [To(2) = T(2)] Xa(w) (3.17)
_ Nik/OLda; [Téi“(x;TL,TR)—Téi“(x;Tl,Tg) Xul) | (3.18)

17
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where we have written the nonhomogeneous solution 7'(z) can be written
T(‘r) = T(l)ln(‘r7 Tl; T2> 9 (319)

as discussed in Section II. Therefore, the nonhomogeneous coefficients can be expressed in

terms of the homogeneous coefficients by

DYN(T,, Tr, Ty, Ty) = DT, — Ty, Tn — Ts) (3.20)
1 g lin
= — | deTy™(x, T, — 11, Ty — T5) Xi(z) . (3.21)

We will employ this equation in the final section.
It is instructive to prove the orthogonality relation (3.12) directly from the differential

equation. To see this, multiply (3.9) by X/, and then write the result in the two alternate

forms,
Xy [X,;’+k2xk} ~ 0 (3.22)
X, [X,;’, +k’2Xk,} - (3.23)

Upon subtracting these equations, and then integrating over space, we find

L L
(kQ — le)/ dz Xk Xk/ = / dx [XkX,g/ — Xk/X,/CI:| (324)
0 0
L d d
- /0 dz [% (XkX,;,> - XjXf - = (Xk/X,;> + X,;,X,;}

Loy
— - [ / / .
— /0 dr - (Xka, X, Xk> (3.25)

L
— (XkX,;, —Xk/X,;H ~0, (3.26)
0

where each contribution from z = 0 and x = L vanishes separately because of their respective

boundary conditions. We therefore arrive at
(K* — K'?) /OLd:c X X =0. (3.27)
Provided k # k', we can divide (3.27) by k% — k' to obtain
/Ode Xi(x) Xp(z) = 0 when k #k . (3.28)

However, when k = k’; (3.27) gives no constraint on the corresponding normalization integral;
however, since the BC’s are homogeneous, we are free to normalize X over [0, L] such that

[ dz X} = Ny, for any convenient choice of Nj,.

18
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A. Special Cases of the Homogeneous Problem

We now find the homogeneous solutions for four special boundary conditions, BC1-BC4.

1. BC1

The first case holds the temperature fixed to zero at both ends of the rod,

T(0,t) =0 (3.29)
T(L,t) = 0. (3.30)
The general solution Xy(z) = Ay coskx + By sinkx reduces to Xi(z) = By sinkz under
(3.29), while (3.30) restricts the wave numbers to satisfy sinkL = 0, i.e. k = k,, = nn/L for
n=1,2,3,---. Note that n = 0 does not contribute, since this gives the trivial vanishing

solution. It is convenient to express the modes by X,,(z) = sin k,x, separating the coefficient

B,, = By, from the mode X, itself. The homogeneous solution then takes the form

T(x,t) = Y By X,(x)e "kt (3.31)
n=1

Xp(x) = sink,x (3.32)

k,l:”% n=1,23 . (3.33)

The tilde over the temperature is meant to explicitly remind us that this is the general
homogeneous solution. The orthogonality condition on the modes X, can be checked by a

simple integration,

L/deX@@ﬂXﬁﬂw _ gamn. (3.34)

For an initial condition 7'(x,0) = Ty(z), we can calculate the corresponding coefficients in

the Fourier sum,
9 L
B, = E/ dx To(x) sin k,x . (3.35)
0

For the linear initial condition (1.15), a simple calculation gives

il _é;l)n +2(T, — Ty) (:;T)n (3.36)

BTL - 2TL

_ 20 21" (3.37)

nm
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5 Rod1D: BC1 homogeneous

t=1.000
t=0.200
t=0.100

temperature

80 0.5 1.0 15 2.0
position

FIG. 7: This is the same as Fig. 3, the homogeneous planar sandwich, except we use the base class

Rod1D(alphal=1, betal=0, alpha2=1, beta2=0, TL=3, TR=4).

The first two terms in line (3.36) are the constant and linear contributions of Ty(x), respec-
tively, and a typical solution is illustrated in Fig. 7. The ExactPack object used to create

Fig. 7 is the class Rod1D, which takes the following boundary and initial condition arguments
Rod1D(alphal=1, betal=0, alpha2=1, beta2=0, TL=3, TR=4)

This Figure is identical to Fig. 3, and is meant to illustrate the parent class Rod1D from

which PlanarSandwich inherits.

2. BC2

The second special boundary condition that we consider sets the heat flux at both ends

of the rod to zero,

9, T(0,t) = 0 (3.38)
0.T(L,t) = 0. (3.39)

This is the hot planar sandwich of the introduction. The general solution Xy (z)= Ay cos kx+
By sin kz reduces to Xy (x) = Ay cos kx under (3.38) , while (3.39) restricts the wave numbers
to ksinkL = 0, so that k = k, = nn/L for n = 0,1,2---. In this case, the n = 0 mode is

permitted (and essential). As before we separate the Fourier coefficients A,, = Ay, from the
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mode functions themselves, X, = X} , and we write

2 AO - —k k2t

T(z,t) = 74—;14”)(”@)6 n (3.40)

Xn(x) = coskpx (3.41)
kn:% n=012-- . (3.42)

A conventional factor of 1/2 has been used in the n = 0 term because of the difference in

normalization between n = 0 and n # 0,

/ ’ dx X3(z) = L (3.43)
/L dr X2 (x) = g n#0, (3.44)

since Xo(z) = 1 and X,, = cos k,z. Given the initial condition 7'(z,0) = Ty(z), the Fourier
modes become

L
A, = 7 / dx Ty(z) cos knx . (3.45)
0

This holds for all values of n, including n = 0, because we have inserted the factor of 1/2
in the Ap-term of (3.40). For simplicity, we will take the linear initial condition (1.15) for
To(z), in which case, (3.45) gives the coefficients
A 1
70 =3 (TL + TR) (3.46)
1—(—1)"
n2m

For pedagogical purposes, let us be pedantic and work through the algebra for the A,

(3.47)

coefficients, doing the n = 0 case first:

Ap 1 [t 1 [F T, — T,
= = = T = — T, 4
5 L/o o() L/O{LJr T (3.48)
Tx — T; 1
:TL+[ R2 L}:§[TR+TL]. (3.49)
Next, taking n # 0, we find:
2 L
A, = Z/ dx Ty (z) cos kpx (3.50)
0
Q/Ld o+ h k (3.51)
= — x x| cosk,x :
L J, - L
2 [* 2 [*
=T —/ dx cosk,r + (TR — TL>—/ dr x cosk,x . (3.52)
L J, L? J,
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Rod1D: BC2 homogeneous

t=15.000

4.0+

temperature

0.0 0.5 1.0 15 2.0
position

FIG. 8: BC2 with k =1, L =2, T}, = 3, Ty = 4. Rod1D(alphal=0, betal=1, alpha2=0, beta2=1,
TL=3, TR=4).

The first term integrates to zero since

2 [ 2 =L
z/o dx cos ky,r = 7 sin k,x .= 0, (3.53)
and the second term gives
2 [k 2 [cosk,r axsink,x]"*
iy drx cosk,x = T2 [ 2 + o L:o (3.54)
2 L2 (=) —1
= ﬁ 22 |:COS knL - 1i| =2 W (355)
which leads to (3.47).
3. BC3
The next specialized boundary condition is
T(0,t) = 0 (3.56)
0,T(L,t) = 0. (3.57)

The general solution Xy (z)= Ay cos kx+ By, sin kx under (3.56) reduces to Xy (x) = By sin kz,
while (3.57) restricts the wave numbers to kcoskL = 0, so that k = k,, = (2n + 1)7/2L for
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n=0,1,2---. The general homogeneous solution is therefore

T(x,t) = ZB” X, () e kit
n=0

Xn(z) = sink,x
(2n+ 1)m

fy = 20 =0,1,2,-

2L

The initial condition T'(z,0) = Ty(z) gives the Fourier modes

2

L
B, = — / dx Ty(z) sin kx|
L Jo

and, as before, upon taking the linear function (1.15), we find

AT, 1

Bn = CE - 1) {(Zn +1)r (2n+1)x2

4Ty 8(Tw — T1.)

2n+1)m  (2n+1)272 "

Before plotting this example, let us examine the next boundary condition.

4. BCy4

The last special case is the boundary condition

9.T(0,t) = 0
T(L,t) = 0.

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
(3.65)

The general solution Xy (x) = Ay coskx + Bysinkz reduces to Xy(x) = Ay coskzr under
(3.56), while (3.65) restricts the wave numbers to coskL = 0, i.e. k =k, = (2n+ 1)7/2L

forn =0,1,2---, which gives rise to the homogeneous solution
T(x,t) = ZA" X, (x) e~ "kat
n=0
Xn(x) = coskyz
2n+ 1)m
hy = T =0,1,2,
2L "
Similar to (3.61), the mode coefficient is
9 L
A, = — / dx Ty(x) cos kpx |
L J

23
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4.0 qulD: BC3 and l§C4 homogenequs _
3.5+ e
230} e
225)
5 2.0+ — t=1.0
a l.5}¢ — t=0.1
“EJ(l)g — t=0.01
e . [/ J— —
00 | t=0.001
0.0 0.5 1.0 1.5 2.0
4.0 —— s
3.5¢ R
3.0+
2.5
2.0 — t=10
1.5 — t=o0.1
(1)2 — t=0.01
ool t 0.001‘ | |
0.0 0.5 1.0 1.5 2.0

position

FIG. 9: BC3 and BC4 for k =1, L = 2, T, = Ty = 3. By symmetry principles, the two profiles
are mirror images of one another. BC3 is instantiated by Rod1D(alphal=1, betal=0, alpha2=0,
beta2=1, TL=3, TR=4), and BC4 by Rod1D(alphal=0, betal=1, alpha2=1, beta2=0, TL=4,
TR=3). Note that T}, and Ty are interchanged between BC3 and BC4.

and, upon taking the linear initial condition (1.15), we find

T L (1
A = AT e =S T) o s

The cases BC3 and BC4 are plotted in Fig. 9.

(3.70)

B. General Boundary Conditions

We now turn to the general form of the boundary conditions, which, expressed in terms
of X, take the form

s Xp(L) + BoXi(L) = 0 . (3.72)

The solution and its derivative are

Xi(z) = Acoskx + Bsinkx (3.73)
X, (x) = —Aksinkx + Bkcoskx . (3.74)

Substituting this into (3.71) and (3.72) gives

@ [A coskL + Bsin kL} + B [ — AksinkL + BkcoskL] = 0. (3.76)
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Upon diving by cos kL # 0, can write (3.76) as

(Oég B — ﬁg Ak) tan kL + CYQA + ﬁg Bk =0 s (377)
or
62 Bk—FOQA
tankl = ———— . .
an 5, Ak s B (3.78)

From (3.75) we have Bk = —a 1 A/f (if 51 # 0), and substituting into (3.78) gives
—(fe/B1) +az Bk
ng‘+a2 (al/ﬁlk) 61]{5

_ —a1P2 k + ik
B1B2 k% + o g

Setting u = kL and 3; = f3;/L, we can write (3.80) in the form

tanpy = (02by = nfl) . (3.81)

oo + 1 B2 12
The solution is illustrated in Fig. 10. Equation (3.81) will give solutions y, forn =0,1,2, -

AR

FIG. 10: The roots p, for ay =1, 3 =1/2, ag = 1, and 33 = 1. For L = 2 this gives 3; = 1 and
B2 = 2.

tankL =

(3.79)

(3.80)

2

1L

I

-2t

and with wave numbers

Hn
k, = H 3.82
7 (3.82)

Note that pg = 0, and therefore ky = 0. The solution now takes the form

X, (x) = A, cosky,x + B, sink, (3.83)
A, = _bik B, | (3.84)
a

where oy # 0. The case of oy = 0 will be handled separately. Setting B,, = 1 for convenient,

the solution (3.83) can be expressed as

Ky
Xp(x) = sink,x — ﬁ; cos knx . (3.85)
1
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And the general solution is

X(z) = ) B.X(2) (3.86)
n=1
as the n = 0 term does not contribute. Note that
L
/ de X, (2)Xn(x) =0 forn#m (3.87)
0
and
L 1
/ dz X2(z) = —— | — 200 Bik, + 2(B7k% + of )k L + (3.88)
0 4k, of

201 Bk, cos 2k, L + (Bik2 — o) sin anL] :

In summary,

L
/ A X (2) Xon(2) = N S (3.89)
0
N, = o [ — 201 Bik, + 2(B2K2 + o)k, L + 201 1k, cos 2k, L + (B2k2 — o) sin 2k, L| .
nQ]
(3.90)
Since ko = 0, we have Xy(z) = 0, so we are free to restrict n = 1,2,3,---, and the general
solution is
X(z) =Y Dy Xy(z) . (3.91)
n=1
Since X (z) = To(z), we find
1 L
D, = L / do Ty () X () (3.92)
Nn 0

It is convenient for numerical work to express this in terms of A,, and B,, coeflicients:

00 kn
X(z) = ZD" [— 5;1 cos k,x + sin knx} (3.93)
n=1
= Z [An cos k,x + B, sin knx] with (3.94)
n=1
a1
B, =D, .
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The temperature T(x,t) is therefore,

T(x,t) = Z [A co8 knx + By sin kx| e "k (3.95)
Bu =+ / da Ty (2) X (2) (3.96)
A, = Dk p (3.97)

aq

For T¢(xz) = T\ we have

B _ T, [1—cosknL Bisink, L

= 3.98
= (3.98)

kn (03]
For T(x) = (Ty — T1) x/L we have

T, — T
Bt =
" N L a1k2

[51 — (arknL + Buiky) cosknL + (a1 — Bik2L) sink, L] , (3.99)

T

FIG. 11: The roots p, for a1 =0, ags =1, and By = 1. For L =2 we have 3y = 2.

with B, = B+ BY.

Let us now consider the case of ay = 0, so that (3.81) becomes
tanp = % with a= g/ B (3.100)
v

We can find an approximate solution for large values of u: since the RHS is very small for p >
1, we must solve tan u = 0, and therefore ,u%o) = nm. The exact solution can be expressed as
pn = na+h, where h is small and unknown. Then LHS = tan(nw+h) = tan(h) = h+O(h?).
Similarly, RHS = a/(nm + h) = (a/n7)(1 + h/mr)_1 = (a/nm)(1 — h/nm) + O([h/n]?) =

a/nm — ah + O([h/n)?), thus

— (3.101)
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and the first order solution becomes

(1) — b o me 3.102
i, mr—i—l_i_amr—l— (1/n°) . (3.102)

This can be used as an initial guess when using an iteration method to find the p,. The

solution is

T(x,t) = Y Ay X,(x)e "t (3.103)
n=1
Xn(x) = cosk,L (3.104)
L
/ dx X, (2) X, () = Ny Opm (3.105)
0
1
No = o [2knL+sin2knL] , (3.106)
and
1 L
A, = —/ dzT(x,0)X,(x) (3.107)
N, J,
T, Ty —T
= sink,L+ =2 —1+cosk;nL+kaninknL] . (3.108)
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IV. THE FULL NONHOMOGENEOUS PROBLEM

Suppose now that T(m, t) is a general solution to the homogeneous problem as described
in the previous section. Also suppose that T'(z) is a specific solution to the nonhomogeneous

problem as described in the previous section, then

T(z,t) = T(x,t)+T(z) (4.1)
is the solution to the nonhomogeneous problem (1.1)—(1.4). The general homogeneous solu-

tion, and the specific nonhomogeneous solution take the form

T(x,t) = Y Dy Xo(x)e ™t (4.2)

T, — Ty

T(z) = T T, To) = Ty + =

T, (4.3)

where the coefficients are chosen to satisfy the initial condition,

D, = /O ’ T(x) — T()| Xoo) (4.4)

with T'(z) given by (4.3), and Ty(x) given by

TR - TL

To(z) = T(l)in(x§TLaTR) =T.+ L

x . (4.5)

Since Ty(x) and T'(z) are of the same functional form, we can write

Tb _Ta

To(w) = T(2) = Ty"(@;Ta, Ty) = To+ —5— (4.6)
T, =T,—-T, (4.7)
T, = To—Tp, (4.8)

where we have expressed the parametric dependence upon temperature explicitly in 7Th®.

Therefore,
. L .
D, = DT, - T\, Ty — Ty) = / T (2T, — Th, T — 1) X () (4.9)
0

This is why the the planar sandwich and the homogeneous planar sandwich have such similar

coefficients,
Bglanar sand __ Dgn (Tla Tg) (4 10)
B};om planar sand __ —DSH (TL’ TR) ) (411)
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A. Special Cases of the Nonhomogeneous Problem

We turn now to the full set of nonhomogeneous problems for the special cases considered

in the previous section.

1. BC1

The complete solution for the nonhomogeneous BC’s

7(0,t) = Ty (4.12)
T(L,t) = Ty (4.13)
1s
(I -Tr | : Rkt
T(z,t) =T + —T + nz::l B, sink,xe . (4.14)

Recall that these BC’s corresponds to 81 = 53 = 0 with and v, /a; = T and 2 /s = T3 in
Egs. (1.7) and (1.8 ). In terms of the BC’s, we can write this as

_ Ty—T
ﬂ@:ﬂ+2L1

. (4.15)

The nonhomogeneous coefficients are found by

B, = /OL [To(x) —T(x)|sink,z . (4.16)

Since we have taken the Tp(z) to be a linear equation, as is T'(x), we can use the previous
results for a linear initial conditions by substituting 7}, — 7T, =T, =T, and Ty — T}, = Ty —T5

into (3.37), as explained in the previous section. In other words,

— T, —T,
%@—ﬂ@:ﬂ+bL (4.17)
T, =1T,-T (4.18)
T, =Ty — Ty, (4.19)
and the coefficients of the nonhomogeneous solution become
1—(=1)" 1"
B, = 2Ta#+2(Ta—Tb) (=1 (4.20)
nm nm
_ 2T, — 2T, (—1)" (4.21)
nw ' '
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1.0 Rod1D: BC1 nonhomogeneous
— t=1.000
— t=0.200
0.8 — t=0.100
' — t=0.010
— t=0.001
o
5 0.6
©
[
£
3 0.4
0.2 \
0. ~ I
8.0 0.5 1.0 1.5 2.0
position

FIG.12: BClfork =1, L=2,T1=1,T2=0(a; = 1,51 =0,71 =1, and oy = 1,81 = 0,7 = 0),
with 71, = 0, Ty = 0. Solver instantiation: Rod1D(alphal=1, betal=0, alpha2=1, gammal=1,
beta2=0, gamma2=0, TL=0, TR=0).

A typical example of the solution is illustrated in Fig 7. In this Figure, we take the initial
conditions as zero temperature, with the x = 0 BC to be 77 = 1, and the x = L BC to be
Ty, = 0, and we see that a heat wave moves from the left end of the rod to the right, until the
the entire rod is at temperature T'(x). This is just the heat conduction physics of the planar

sandwich. For Fig. 12, the Class Rod1D takes the boundary and initial condition arguments
Rod1D(alphal=1, betal=0, gammal=1, alpha2=1,beta2=0, gamma2=0, TL=0, TR=0).

Note that T3 = v1/a3 = 1 and Ty = y9/ay = 0.

2. BC2

For the boundary conditions
0,T(0,t) = F (4.22)
0, T(L,t) = F, (4.23)
the full nonhomogeneous solution is thus

A = >
T(z,t) = Fx + 70 + ; A, cos ke "kt (4.24)
Using the initial condition T'(z,t = 0) = Ty(x), we find

7—1—;14” coskpx = To(x) — Fx =T, + 7 T . (4.25)
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1.5 Rod1D: BC2 nonhomogeneous
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t=0.500
t=0.100
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temperature
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\

~13.0 0.5 1.0 15 2.0
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FIG. 13: BC2 with k = 1, L = 2, F = 1 (with T}, = 0, Ty = 0). ExactPack instantiation:
Rod1D(alphal=0, betal=1, gammal=F, alpha2=0, beta2=1, gamma2=F, TL=0, TR=0).

We can use the previous results (4.27) and (4.28) provided we make the substitution 7, —
T,=T, and Ty — T, =Ty — FL,

T, =T, Ty=Ty—FL (4.26)

A 1

2= §(Ta + T,,) (4.27)
_ 1—(=1)"

A, = 2 (Ta - T,,) — (4.28)

The instantiation of Rod1D used for Fig. 13 is
Rod1D(alphal=1, betal=0, alpha2=1, gammal=1, beta2=0, gamma2=0, TL=0, TR=0).
Since 17 = v1/aq, and Ty = 2/ an, we could simplify the interface to

PlanarSandwich(TL=T1, TR=T2, Nsum=1000).

3. BC3

For the boundary conditions

T(0,t) = Ty (4.29)

8,T(L,t) = F,, (4.30)
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the full nonhomogeneous solution is thus

T, —T -
T(x,t) = T1 + 2 ! a:+ZBn sink:nxe_“kit
n=0
L
T2 = T1+F2L: l 72—
aq B2
(2n+ 1)m
kn:— = 71727""
5T n=~0

The Fourier coeflicients
2 [t _
B, = 7 / dx [To(a:) - T(x)} sin k,,x
0

take the form

AT, 1 2
B, = —* 4+ 4(T, - T, -
@nt O (T~ T.) [(272 F 1) (2n+1)2x2
AT, 8(Ty, — To,)

2n+1)r  (2n+1)2x2

J. BCY

For the boundary conditions

@;T(O,t) - F1
T(L,t) - T2 5
the full nonhomogeneous solution is
_ T, —T =
T(x) = Ty + & I:L’—i-ZAn cosknxe_"k%t
n=0
L
T, = Ty— FL=2_12
&%) o
(2n+ 1)m
k, = ——— —0.1.2. -+ .
n 2L n 07 ) Y

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

As before, we take the linear initial condition (1.15), and then (3.15) gives the coefficients

B (=" 1—(=1)"
A = AT 5 —8(Tb—Ta) (

33
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Rod1D: BC3 and BC4 nonhomogeneous

— t=1.0
— t=0.1
— t=0.01
— t=0.001

temperature
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935 0.5 1.0 15
position

FIG. 14: BC3 and BC4 for k = 1, L = 2,17y = 1,75 = 0, T, = Ty = 0. The two profiles
should be mirror images of each other, by symmetry principle. This appears to be the case, for
for Npax = 300. Note that the profile are indeed asymmetric. BC3: Rod1D(alphal=1, betal=0,
alpha2=0, beta2=1, TL=3, TR=4). BC4: Rod1D(alphal=0, betal=1, alpha2=1, beta2=0, TL=4,

TR=3).

B. General Boundary Conditions

For general boundary conditions, the full nonhomogeneous solution is

I - Th
L

T(x,t) = T1 +

X,(z) = A,cosk,x + B,sink,z |

with coeflicients

Blkn

A, = — B,
a1
T _ Bav1 — Bz + Lagm
| =
a1y — azf + Lajas
T — P21 — Piya + Laays
h =

a1y — aofy + Lajag

The Fourier coefficients are

D, = Nin /0 i [To(x) —T(m)]Xn(x).

The zeroth order contributions is TO(O) () — TO(z) = T,, and we find

kn (03]

T, [1—cosl€nL By sink,, L

34

T+ Z D, X, (z) e "kt
n=1

|

(4.43)

(4.44)

(4.45)
(4.46)

(4.47)

(4.48)

(4.49)
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The first order contribution is T\" (z) — T©(2) = (T}, — T,) z/ L we have

T,—T, 1
DU — %lfakz%@,4MML+QMN%5@+@M—m@anmq.@5@
n 1 n

The normalization factor is

1
N@:ETT[—%MM%+%ﬁ@+ﬂﬂ%L+&h&Maﬁ%ﬂA%ﬁﬁ—abmﬂmq
nQ]
(4.51)
Setting u = kL and 3; = 3;/L, we can write (3.80) in the form
tan p = (21 — a1 fs) (4.52)

g + BB P2

Equation (4.52) will give solutions pu, forn =0,1,2,--- (with gy = 0), and the wave numbers

become

[—— (4.53)
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Appendix A: Sample ExactPack Script

The following script produces Fig. 2.

import numpy as np
import matplotlib.pylab as plt

from exactpack.solvers.heat import PlanarSandwich

L

X

t0
t1
t2
t3
t4

2.0
n

inspace(0.0, L, 1000)

p-1
1.0
0.2
0.1
0.0
0.0

1
01

solver = PlanarSandwich(T1=1, T2=0, L=L, Nsum=1000)

soln0 = solver(x, t0)
solnl = solver(x, t1)
soln?2 = solver(x, t2)
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soln3 = solver(x, t3)

solnd = solver(x, t4)

solnO.plot (’temperature’, label=r’$t=1.000%’)
solnl.plot(’temperature’, label=r’$t=0.200$")
soln2.plot(’temperature’, label=r’$t=0.100$")
soln3.plot (’temperature’, label=r’$t=0.010$")
soln4.plot (’temperature’, label=r’$t=0.001%’)

plt.title(’Planar Sandwich’)
plt.ylim(0,1)

plt.x1im(0,L)
plt.legend(loc=0)
plt.grid(True)

plt.show()

Appendix B: Uniformly Convergent Sequences of Functions

Many of the mathematical operations we take for granted in a typical analytic calculation
of a physical process, such as the simple interchange of a limit and an integral, depend
deeply upon issues surrounding the uniform convergence of sequences of functions. By way
of introduction, let us consider a solution 7'(z,t) to the heat flow equations (1.1)-(1.4). Let
us further consider a sequence of times ty, ¢, t3, - - -, from which we can construct a sequence
of temperature profiles T,,(x) = T'(z,t,). In other words, T,(z) is a sequence of functions
of z, indexed by the integers n, or equivalently by the times ¢,,. Suppose now that the time
sequence t, converges to the limit ¢y, so that lim, _,, t, = to. Then, for our purposes, we
may speak interchangeably of the limits lim,, ., T,,(x) and lim;_,,, T'(x,t), and in this way,
we can think of T'(x,t) as a sequence of functions of x indexed by ¢. To make this more
precise, and to refresh our memories, it is constructive to review the formal definition of a
limit. The sequence {t,} converges to the the limit ¢y as n — oo, denoted

lim ¢, =t , (B1)

n—oo

provided that for every € > 0 there exists N > 0 such that
|tn(z) —to] <€ (B2)

whenever n > N. That is to say, t, can be made arbitrarily close to t, by choosing n
arbitrarily large.

The notion of a limit can extended to a sequence of functions. The domain of the functions
T, (z), which we refer to as E, can be either the open interval (0, L), or the closed interval

[0, L], if we are also interested in the boundary points = 0, L. For definiteness, we take the
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The PlanarSandwich and Nonuniform Convergence

— £, =1.000
—  £,=0.200
—  £3=0.100
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\\\\\ ToO
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FIG. 15: Temperature profiles for the homogeneous planar sandwich at times t; = 1, t5 = 0.2,
t3 = 0.1, t4 = 0.01, and t5 = 0.001. The diffusion constant is x = 1 and length of the rod is L = 2,
with a constant initial condition Tp(z) = 3. The plot uses the instance PlanarSandwich(T1=0,
T2=0, TL=3, TR=3, L=2, Nsum=1000). Since the boundary conditions are incommensurate with
the initial condition, the solution T'(y,t) convergens non-uniformly on the open z-interval (0, L) to
To(x) = 3, which is plotted by the dashed line.

case BC1, for which 7'(0,t,) = T1 and T(L,t,) = T. There are two distinct (but related)
sense in which the limit
lim 7,,(z) = T(x) (B3)
n—oo
exists. The obvious way to interpret this limit is to choose a value of x = xy, and to
take the limit of the normal sequence of numbers T3 (xg), Ta(xo), T3(xo), - - - . If, in the limit
n — 00, the sequence converges to a number T'(z) for some function T'(z), we say that the
sequence T, () converges point-wise to T'(z) at x = xy. This is made formal by the following

definition.

Definition: The sequence of functions {7,,(z)} converges point-wise on E to a function T'(z)

if for every x € E and for every € > 0 there is an integer N such that
T (x) = T(x)| <€ (B4)
for all n > N.

The integer N might depend upon the point x. If, however, we can choose the same N for all
x € E, then we say that the limit is uniformly convergent. This is made precise in following

definition.

Definition: The sequence of functions {7},(x)} converges uniformly on E to a function T'(z)

if for every € > 0 there is an integer N such that
T (x) — T(x)| <€ (B5)
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foralln > N and all x € F.

As an example, let us consider the solution illustrated in Fig. 15. This is a homogeneous
solution, for which 7'(0,¢) = T'(0, L) = 0, with a constant initial condition To(x) = 3 (for
0 < x < L). The time sequence is t; = 1, t = 0.2, t3 = 0.1, t, = 0.01, t5 = 0.001,---. We

see that lim, . T}, (z) = To(x) for x € (0, L), but the limit is non-uniform.
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