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Accommodating Uncertainty in Prior Distributions

Rick Picard and Scott Vander Wiel

Los Alamos National Laboratory

Abstract
A fundamental premise of Bayesian methodology is that a priori information is accurately
summarized by a single, precisely defined prior distribution. In many cases, especially in-
volving informative priors, this premise is false, and the (mis)application of Bayes methods
produces posterior quantities whose apparent precisions are highly misleading. We examine
the implications of uncertainty in prior distributions, and present graphical methods for

dealing with them.

KEY WORDS: Bayesian sensitivity analysis, Imprecise probabilities, Informative priors



1. INTRODUCTION

The step-by-step strawman caricature of a complacent Bayesian analysis reduces to

1) Formulate a likelihood function suitable for the data.

2) Elicit (if in the role of a data analyst) or divine (if in the role of making a personal

decision) a prior distribution for the parameters in the likelihood function.

3) Estimate via MCMC sampling or, less likely, obtain analytically, the corresponding

posterior distribution.

4) Quote the posterior quantities of interest.

5) Declare victory and move on to the next analysis.

Admittedly, the above strawman is a gross oversimplification. Presentations of Bayes meth-
ods, such as a recent The American Statistician treatise, often contain the usual admon-

ishments against complacency, e.g.,

With great powers comes great responsibility, and Bayesians ... have the cor-
responding duty to check their predictions and abandon or extend their models

as necessary. (Gelman and Robert 2013, p. 3)

Accordingly, a literature has arisen concerning related diagnostic methods.
Too frequently, applications of Bayesian methods pay little or no specific attention to
uncertainty in the prior. And almost always, there are many prior distributions consis-

tent with subjective beliefs, each prior corresponding to a different posterior. As such,



Bayesian methods still encounter resistance in some quarters. As stated more positively,
and prophetically (Berger 1994, p. 23), “the major objection of non-Bayesians to Bayesian
analysis is uncertainty in the prior, so eliminating this concern can make Bayesian methods
considerably more appealing.”

Interestingly, uncertainties in subjective beliefs not only affect analyses with informative
priors, but also those with noninformative ones. Expressing the absence of knowledge in
the form of a single prior remains an unsolved and vexing problem; see, e.g., Walley (1991,
p. 228-229) for an amusing vignette on the choice of which noninformative prior to use in
estimating an event probability. Even after a seemingly noninformative prior is chosen,
complacency can still lead to poor results unless diagnostic checks ensure that the prior is
truly as innocuous as casually assumed (Seaman, Seaman and Stamey 2012).

To deal with uncertainties in subjective beliefs, the field of imprecise probabilities, or
IPs, has arisen. IPs characterize subjective beliefs more fully than is done via a single,
“precise” prior distribution. Related efforts have resulted in many success stories (see, e.g.,
the engineering literature review of Beer et al. 2013 and its 268 references).

In the next section, we briefly review the history of IP methodology and its close cousin,
Bayesian sensitivity analysis. The third section contains a worked example to illustrate
basic concepts, as well as diagnostic plots and procedures useful for IPs that are greatly

under-emphasized in the literature.



2. BACKGROUND

Criticisms of precisely determined priors go back to the 1800s. In place of an exact
calculation, Boole discussed the “widest limits” for the probability of a compound event
based on “various distinct hypotheses” placed on constituent quantities to the calculation,
which in turn depended on the inherent “uncertainty in the hypotheses themselves” (Boole
1854, p. 398). Similarly, a reliance on precise probabilistic assumptions in analyses of the
era led to Venn’s colorful view that “it is quite true that considerable violence has to be
done to some of these examples, by introducing exceedingly arbitrary suppositions into
them, before they can be forced to assume a suitable form” (Venn 1888, p. 124).

The origins of IP methodology are often attributed to the economist John Maynard
Keynes, who argued that, “in actual reasoning,” precise subjective probabilities “occur
comparatively seldom” (Keynes 1921, p. 182). He then went on to consider upper and lower
probabilities in examples. Work of a similar nature by other authors followed, culminating
in the classic IP textbook by Walley (1991).

Despite their intuitive appeal, early IP methods had little impact. Before the widespread
advent of MCMC, pre-1990s computational tools did not exist for Bayesians to solve many
real problems, which combined with other factors to limit the practicality of Bayes methods
at the time (e.g., Efron 1986). Pursuit of IP methods, some of which required consideration
of multiple priors, was hopeless in nontrivial applications.

Impact was further limited because many approaches put forth in the name of IP were



summarily dismissed by statisticians. One example involves Dempster-Shafer belief func-
tions, which can lead to plainly incorrect solutions, as for the classic, fully specified Monty
Hall problem and other situations (e.g., Walley 1991, p. 279-281). See also the discussants
of Shafer (1982) for reactions to the non-Bayesian aspects of belief functions. Most other IP
methods, e.g., fuzzy set theory, are similar — despite their better characterization of sub-
jective beliefs and successes in certain applications, their probability calculus for combining
prior information with data can fail badly in special cases.

Another response to uncertainty in priors is Bayesian sensitivity analysis (BSA), some-
times called robust Bayesian analysis (e.g., Berger 1990, 1994). Formalized BSA falls under
the IP umbrella, complete with coherence properties (Walley 1991, Secs. 7-8), and is exam-
ined shortly. Informal BSA, which has the analyst “try a few models and priors” (Berger
1994, p. 44), is more commonly implemented.

The first goal of formalized BSA is to characterize subjective beliefs more fully than is
done via a single prior distribution. This methodology involves defining the set P of prior
distributions and models that are consistent with available information. In economics
(e.g., Weatherson 2002), the set P is called the representor. Numerous approaches to
constructing P exist (Berger 1994, p. 25-27). Once P has been constructed, the plausible
range of posterior quantities is then determined.

In the example to follow, the quantity of interest is the probability of a set A. The

maximum value of Prpesterior(A) over P is called the upper probability of A and is de-



noted Pr(A). The minimum of Prpesterior(A) over P is the lower probability of A and is
denoted Pr(A). By computing Pr(A) and Pr(A), conclusions are reached that better reflect

subjective beliefs. The imprecision of the event A is defined as the difference

A(A) = Pr(A) — Pr(A)

Operational differences between the IP and BSA viewpoints (e.g., Walley 1991, p. 107-
108) are minor in most applications. Philosophically, the simplified BSA view postulates
that a single “correct” prior exists, having an exact distributional form and parameter
values expressible to several significant digits of accuracy, but — because of imperfections
in soul searching and /or elicitation — the correct prior is unknown. The IP view is that there
is no such thing as a single correct prior, but instead that there is a “correct” representor set
P providing a black-and-white distinction between prior distributions that are “consistent

with” subjective beliefs and those which aren’t. Neither viewpoint is without its critics.

3. EXAMPLE: DETONATOR IMPACT DATA
3.1 The Data Set and Prior Information
The data set consists of 25 detonator impact tests conducted at Los Alamos National
Laboratory. From various heights, a 2.5 kg anvil was dropped on detonators of a specific
type. Based on review of the video and the decibel level from the audio, a “go” or “no-go”

response was determined for each drop test. Data are given in Table 1.



Height (cm) | # Tested | # Go | # No-Go
45.0 1 0 1
50.5 3 1 2
57.0 3 2 1
64.0 6 2 4
71.5 7 ) 2
80.5 4 3 1
90.0 1 1 0

Table 1: Detonator Impact Testing Data.

The probability of a “go” response increases monotonically from zero (at height h = 0)
to one (when the height is sufficiently great). Of interest is the probability of a “go”
response as a function of drop height. Several models have been used for such data, and
we initially focus on the standard probit model. This model states that the probability of

a “go” response at drop height h is

PI‘( ugon) ) < lOg h — lOg h50 ) : (1)

g

where hso is defined as the drop height whose chance of a “go” is 50%, o is a scale factor,

and ®(-) is the cumulative distribution function for a standard normal distribution.
Performance requirements for detonators are contained in Department of Energy Order

0-452.1 (see www.directives.doe.gov), one of whose goals is to prevent accidents during

weapons assembly and disassembly. Among the requirements (O-452.1, p. 7) is that



“... the probability of a premature nuclear explosive detonation must not exceed
one in a million (1E-06) per credible nuclear weapon accident or exposure to

abnormal environments.”

Several accident scenarios are relevant to detonator impact testing, e.g., a worker inadver-
tently dropping a wrench on a detonator.

Performance requirements thus involve two types of extrapolation, one of which ex-
trapolates the physical insult in the experiment (the drop of a 2.5 kg anvil on a detonator
from a certain height) to a physical insult of interest (e.g., the drop of a wrench from a
different height). For what follows, we assume that an anvil drop from 5 cm is equivalent
to dropping a much lighter tool from a height of interest.

The second form of extrapolation is statistical, extrapolating results from the drop
heights 45-90 cm in Table 1 to drop heights such as 5 cm. This extrapolation is necessary
because a very large number of drop tests would have to be conducted at low drop heights
in order to directly estimate Pr( “go” ) with accuracy. Because the time and money
involved in such an effort would be prohibitive, properties for low-probability drop heights
are extrapolated using the predictive model.

Formalizing this approach, the probit model (1) is inverted to give drop height as a

function of the probability of a “go” response,
hPr(go) = h50 X erp { o q)—l (PI’( ugon )) } : (2>

For Pr( “go” ) = 107%, the normal quantile ®~(107%) = —4.75, and the 107° drop height

7



h_¢ = hso X exp|—4.750] is a known function of the model parameters hsy and o.
The performance requirement is that 5 cm is a safe drop height, where “safe” means

that Pr( “go” ) < 107% for an anvil drop of 5 cm. Let the set

A5:{h50,a|h_6>5cm}

denote the safe region of parameter space. The goal is to assess the probability Pr(As) that
the detonator type meets the performance requirement.

The scientist who was to conduct the experiment provided a prior estimate for the
50-50 drop height hsy based on work with detonators similar to the type examined here.
That prior estimate was 70 cm, to within a relative uncertainty factor of 1.2. Equivalently,
the plus-or-minus one standard deviation interval in log scale has a standard deviation of
log(1.2): hso € (70/1.2, 70 x 1.2) < log hsy € log 70 + [log 1.2] .

Prior information for the scale factor ¢ in (1) was elicited through drop heights besides
hso. Subject matter experts are more comfortable contemplating physical quantities like
drop heights rather than abstract parameters like ¢ in a statistical model; see also Oakley
and O’Hagan (2007) in this regard. Further, a single elicitation on the same physical
quantities can be used in conjunction with other models besides the probit (more on this
to come). Input on the 10% drop height hip was obtained via the hso/hio ratio, which,
upon solving hjp = hsy X exp|[—1.28 ¢ | for o, is directly related to o. The prior estimate

for the hsg/hio ratio was 2, to within a relative uncertainty factor of 1.5.



3.2 Complacent Bayesian Analysis

The compacent Bayesian paradigm force-fits the scientist’s subjective beliefs into a
single prior distribution. Even though the force-fitting does not fully capture uncertainty
in those beliefs, the complacent analysis demands this force-fitting, and imposes a prior on

(hso, hso/h1o). Lognormal priors for the drop height hso > 0 are typically used, in this case
log hsy ~ N(log 70,[log1.2]*) ,

where the values 70 and 1.2 are the scientist’s best guesses.

The prior for ¢ is derived from beliefs regarding the hso/hqg ratio. Here, hso/hig > 1, or
hio/hso € (0,1). For quantities within (0,1), the most common prior is the beta distribution.
By varying its parameters, the beta density function can take on a wide variety of shapes
as warranted by the situation. In IP applications (e.g., Walley 1996; Walley, Gurrin, and
Burton 1996), the imprecise beta distribution is commonly used.

The beta distribution has two parameters, denoted o and 5. The ratio a//3 determines
the mean of the distribution through the relation a/f = mean/(1 — mean). Absolute
magnitudes of o and [ determine the standard deviation.

The prior estimate hsy / hig &= 2 corresponds to a beta distribution with mean value

E[hio/ hso] = 1/2 and o = 5. An uncertainty factor 1.5 implies the interval

1 1.5
2x157 2

hao/ho € (2/15, 2 x 1.5) < hyo/hsy € ( ) — (1/3,3/4) .

Without resorting to more sophisticated elicitation (Yu, Shih, and Moore 2008), the half
width of this interval, (3/4 - 1/3) / 2 & 0.21, is equated to one standard deviation for the

9



beta prior. Adding the constraint o ~ [ gives a ~ =~ 2.4, or
hlo/h50 ~ Be (24, 24) .

Independently coupling the beta prior for hyg/hsy with the lognormal prior for hsg
produces the “nominal” prior distribution. Combining this prior with the model (1) and
data in Table 1, an MCMC sample { (hso, 0); } is simulated from the posterior. For the j-th
member of the sample, its 107 drop height is (h_g); = (hso); X exp| —4.750;], and the set
{(h_6);} is used to assess Prpesterior(As). A lengthy MCMC simulation (10° samples) gives
the point estimate f’\rposterior(Ag,) = 0.452161.

The use of six decimal places emphasizes that Prpegterior(45) could indeed be determined
to arbitrary accuracy by running the MCMC simulation until eternity, thereby providing
a misleadingly illusory sense of precision. This illusion is, unfortunately, a logical conse-
quence of requiring a precisely defined prior distribution that leads to a precise posterior
distribution, and then to precise quantities such as P/’\rposterior(Ag)).

Pretentious accuracy aside, the probability 0.452161 provides only modest of confidence
that this particular type of detonator meets the performance requirement. Were additional
data obtained, the degree of confidence would improve (assuming, of course, that the

additional data were consistent with safe operation).

3.3 IP Analysis of the Detonator Data

As has been noted, “a philosophy of Bayesian statistics as subjective, inductive inference

10



can encourage a complacency” (Gelman and Shalizi 2013, p. 32). Complacent analyses as
per the previous section should be resisted, and assumptions underlying such analyses
should be closely examined.

In terms of “adding imprecision” to the unduly precise complacent prior, it might be
tempting to construct a hierarchical model. Here, the four elicited quantities — the scien-
tist’s best guesses “70,” “1.2,” “2,” and “1.5” — are assigned precise probability distribu-
tions based on additional elicitation. The resulting hierarchical prior is more diffuse than
the complacent prior, but it is still precisely defined, and complacent MCMC simulation
from the posterior still yields pretentiously precise ﬁ"posterior(A5).

Avoiding this situation is certainly possible, through it requires a creative use of hi-
erarchical results. A single member of the MCMC sample from the hierarchical posterior
could be extracted and its hyperprior values used to simulate corresponding prior parame-
ter values. Then a secondary MCMC simulation as in the previous section could be run to
obtain ﬁrposterior(A@ conditional on those prior parameters. Repeating this process a large
number of times characterizes the distribution of Pryesterior(A5) induced by the posterior on
hyperprior parameters, not unlike the method alluded to in Oakley and O’Hagan (2007).

A more practical, and less computationally intensive IP approach constructs the set P
formally identifying priors consistent with subjective beliefs. This construction is intrinsi-
cally subjective, arbitrary, and as noted above, there are several approaches to carrying it

out.
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One intuitive approach is based on interval estimates. For example, the nominal prior’s

plus-or-minus one standard deviation interval is such that

Prynguf, (loghso < logT70 — logl.2) = ®(—1) = 0.158655 = p, and

Pringug, (loghsy < logT70 + logl.2) = ®(4+1) = 0.841345 = e

where the nominal median my = 70 and uncertainty factor uf, = 1.2. The precise
normality-based values 0.158655 and 0.841345 are approximations, of course. Suppose
that any probability values p~ € [0.05,0.25] and p* € [0.75,0.95] are deemed consistent

with p; = 0.158655 and pj = 0.841345. Then any pair of values (m,uf) such that

Pry,uf (log hsy < log70 — log1.2) € [0.05,0.25] and

Pry,uf (log hsy < log70 + log1.2) € [0.75,0.95]

defines a lognormal prior for hsg consistent with subjective beliefs. That is, the uncertainty
in the prior is captured in the interval estimates p~ € [0.05,0.25] and p*™ € [0.75,0.95],
which map to a 2-D region constraining the joint behavior of (m,uf). See Figure 1.

A plausible region for the hso/hyo ratio follows similarly. The nominal beta prior for

the hig/hso ratio has parameters oy = o = 2.4, which implies

Pro, g, (hio/hso < 0.50 —0.21) = 0.1815945 = p;  and

PrOé()ﬁo (hlo/h50 < 050+021) = 0.8184055 = pa_

12
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Figure 1: Plausible Region for (m,uf).

Using the same interval estimates as for hsg, and finding beta parameters (o, [3) such that
Praﬂ (hlo/h50 < 0.50 — 021) S [005, 025} and

Pro g (hio/hso < 0.5040.21) € [0.75,0.95]

leads to a four-vertex region similar to that in Figure 1.

One property of P-based formulations is that a prior deemed consistent with subjective
beliefs can be virtually indistinguishable from a prior deemed inconsistent with those beliefs,
e.g., as when two priors straddle the boundary of P in Figure 1. Such a precise boundary
between plausible/implausible priors is clearly unrealistic, although IP advocates counter
that, while imperfect, it is a huge improvement on the Bayesian purist’s single-point set P.
The fiction of a precise boundary for P is essential to an IP analysis because it is needed for

the maximization/minimization required to obtain Pr(As) and Pr(As). Explicitly dealing
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with ambiguity in the choice of P is integral to the art of applying IP methods.

As such, the most important aspect of an IP analysis is to devote careful thought
to defining the set P of priors/models consistent with a priori information — much more
thought than is typically devoted to informal BSA. If P is too small, such as from a subject
matter expert being overconfident, IP bounds will be too narrow. If P is too large, as from
a conservative prior-by-committee approach, IP bounds will be too wide. In examining
potential representor sets, plots such as Figure 1, which map interval-estimate constraints
into the elicitation frame of reference, are useful.

Similarly useful in assessing P are other diagnostic plots. The idea of using diagnostic
plots as part of checking assumptions underlying a Bayesian analysis is by no means new
(e.g., Box 1980). Further, Bayesian diagnostic plots can address more subtle issues, e.g.,
in the assessment of the maximum of several observed means, determining when posterior
inference is (or is not) subject to selection bias (Senn 2008).

IP counterparts of Bayesian diagnostic plots do not appear to be much used. Simulating
prior-predicted functionals of interest for extreme priors (e.g., priors at the vertices of
Figure 1) to see if they properly span subjective beliefs provides another check on P. For
the detonator data, two important functionals are the 10~¢ drop height h_g and the curve-
fit approximation (1). These functionals are shown in Figure 2, which plots the lower
portion of the probit curve.

Displayed are 80 such curves, consisting of 5 samples from each of the 16 priors formed

14
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Figure 2: P-Based Spectrum of Prior-Predicted 107% Drop Heights.

from the combinations of the four hsg and four hsg/hio vertices in P. Intersections of the
curves with the dotted 107¢ intercept define the corresponding drop heights, and confirm
that the scientist’s prior intuition on small (107%) tail probabilities is limited.

In isolated cases, prior-predicted data may be inconsistent with subsequently observed
data. This is not the case for the detonator example, but in general, observed data should
lie within the envelope of simulated prior-predicted data over extreme priors in P. For i.i.d.
samples, overlay plots of observed data versus prior-predicted data are obviously useful.
When observed data do not fall within the P-based envelope, an analyst has a dilemma of
producing IP intervals with poor frequentist properties or re-analyzing with a new set P
that is incoherently obtained only after having observed the data. The dilemma here is an

old one for Bayesians; see, e.g., Dawid (1982) and discussants for lively reactions to it.
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Table 2 summarizes posterior probabilities ﬁrposterior(AQ for the 16 combinations of the
hso and hso/hig vertices in P (100K MCMC samples per case). Recall that the complacent
analysis gave ].S\I'posterior(Ag)) = 0.452161. Maximum and minimum ﬂposterior(Ag,) over the
16 priors in Table 2 are Pr(As) = 0.65 and Pr(A45) = 0.30. The non-probabilistic IP bounds
[0.30, 0.65] span a factor-of-2 range and provide a much more realistic interpretation of the

data than the precise value 0.452161 alone.

(]' / E [hlo/h50] ,Uf) (m7 Uf)
(64.9, 1.17) | (70, 1.12) | (70, 1.31) | (75.5, 1.17)
(1.72, 1.33) 63 65 59 62
(2, 1.28) 49 53 46 50
(2, 1.63) 43 .45 .38 .40
(2.39, 1.48) 33 36 30 32

Table 2. Probit Posterior Probabilities ].S\I'posterior(A{))

Sample sizes for Table 2, 100K post burn-in samples per case, are large enough that
Pr(As) and Pr(As) are significantly different. A good diagnostic check when sample sizes
and imprecisions are smaller is to assess how much of Pr(A4;)—Pr(As3) is reasonably ascribed
MCMC error alone versus how much is attributable to intrinsic uncertainty in the prior.
Complications (in a general sense) to this assessment are that Pr(A) and Pr(A) are not
binomial proportions because of the correlated MCMC sampling, and Pr(A) and Pr(A) can

be subject to selection bias.
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Despite work on characterizing maxima/minima of certain posterior quantities over
certain types of sets P (e.g., Sivaganesan and Berger 1989, Wasserman and Kadane 1992,
Abraham and Daures 2000), theoretical results are limited. Moreover, any formal opti-
mization should be taken with a grain of salt because the precise boundary of P shouldn’t

be viewed literally. In obtaining results, relevant computational tricks include:

1) Additional MCMC runs carried out on a space filling design over P can help quantify

extreme posterior quantities that do not occur on the boundary of P.

2) Posterior quantities for priors local to vertices and space filling design points can be
estimated using importance sampling, re-weighting results for priors near the loca-

tions, as opposed to running additional importance samples from scratch.

3) For extrapolated quantities like rare event probabilities, specialized importance sam-
pling techniques are much more effective than MCMC sampling from a posterior

(Picard and Williams 2013).

Prior-posterior comparisons are also useful. The detonator example is typical in that
the data aid in reducing uncertainty. Posterior-predicted 1076 drop heights are shown in
Figure 3. The plot is analogous to Figure 2, overlaying 80 curves (5 posterior samples from
each of the 16 priors in Table 2). A prior-to-posterior shrinkage is apparent, more for large
drop heights (23 of the 80 prior-predicted 107% drop heights exceed 10 cm, but only 4 of

the 80 posterior-predicted drop heights do) than for smaller ones.
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Figure 3: P-Based Spectrum of Posterior-Predicted 107% Drop Heights.

Prior-to-posterior shrinkage is not guaranteed. The term dilation (Wasserman and
Seidenfeld 1994) refers to situations where posterior imprecision exceeds prior imprecision.
Imprecision can increase, for example, when unexpected data arise that leave an expert
feeling less certain after seeing the data than he thought he was beforehand (e.g., Walley
1991, p. 225), or when Pr(A) is a full-system reliability and P contains multiple priors
on subsystem performance reflecting disagreement among experts, one or more of whom
is miscalibrated. When imprecisions increase, it is important to understand the reason(s)
why and determine whether further action is needed.

Not yet mentioned is uncertainty in the model. There is no first-principles, detonator-

physics-based justification for the probit function (1), and alternatives should be considered.
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Other sigmoidal forms, such as logistic regression and the Arrenhius model for chemical
kinetics, are also used in conjunction with monotonically increasing phenomena in (0,1).
For present purposes, it suffices to consider the two-parameter Weibull model (Meeker

and Escobar 1998, Eq. 4.7), which postulates that the probability of a “go” at height h is

Pr(“go”) = 1 — exp {—exp [logh—u} } , (3)

ow

where (p, ow) are model parameters. Similar to the probit model, prior information on the
50-50 drop height hso and the hso/hig ratio can be translated directly into a representor
set P for Weibull model parameters.

Using the nominal prior on (hsg, hso/h1o), posterior means for 1 and ow can be substi-
tuted into the Weibull model (3) to provide a curve-fit approximation to Pr( “go” ) as a
function of drop height. The same can be done for the probit model (1), and overlaying the
two nominal curves in semi-log scale (which highlights the differences at low drop heights
at the cost of obscuring the sigmoidal shapes) gives Figure 4.

There is no practical difference between the nominal probit and Weibull model curve fits
over the 45-90 cm range of the drop tests. When the models are extrapolated, the Weibull
curve extrapolates substantially above the probit curve for low drop heights, which greatly

affects the estimated 10~¢ drop height. A 1M MCMC sample yields the complacent Weibull

W
posterior(

posterior probability Pr As) = 0.035125 (six decimals to re-emphasize the misleading

accuracy in lengthy MCMC samples).
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Figure 4: Overlay of Probit and Weibull Data Fits.

Weibull IP bounds over the 16 priors in Table 2 are [.01, .07], and do not even overlap
with those of the probit model, [.30, .65]. The probit IP bounds [0.30, 0.65] and Weibull
[P bounds [0.01, 0.07] are displayed at drop height h = 5 cm in Figure 5, which plots
PArposterior(Ah) against drop height h, where A, = { hso,0 | h_g > h cm } is the region of
parameter space where the 107% drop height exceeds h.

To the right side of the plot, there is no practical difference, in that both models agree
that there is essentially no chance that the 107° drop height exceeds 30 cm. As is common
with extrapolated quantities, the width of IP bounds increases with the degree of extrapo-
lation for each model, a phenomenon that could easily be overlooked in an examination of
complacently-determined precise quantities.

Extrapolation in tail probability is also important. Consider Figure 6 and the 10% drop
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height hyo, a much less severe extrapolation than the 107% drop height. The models agree
that the 10% drop height exceeds 5 cm. Moreover, comparing IP bounds for both models,
the minimal extrapolation in tail probability yields model-to-model differences for hqy that
are comparatively minor. As illustrated in these plots, whether the width of the IP bounds
and/or the model-to-model differences are large enough to matter depends on the specific
posterior quantity of interest.
4. SUMMARY

Avoiding complacency requires care and is time consuming. Running MCMC simula-
tions for multiple priors/models in P can be computationally intensive. Still more effort
is required to generate and examine diagnostic plots (IP-related and otherwise). Practical
considerations allow only a finite effort to be devoted to an analysis, thus imposing tradeoffs:
the representor set P should be rich but not too rich, and the maximization/minimization
of posterior quantities over P should be reasonably accurate but not amount to overkill.

Relative to this tradeoff spectrum, the complacent Bayes analysis is one endpoint. It
provides a desired result — namely, a probabilistic answer — with a minimum investment
of time, and appeals to Bayesians that “tend to be aggressive and optimistic with their
modeling assumptions” (Efron 2005, p. 1). Unfortunately, the fundamental basis of com-
placency requires that a single prior distribution accurately reflect subjective beliefs, an
assumption recognized for more than 100 years to be false. Costs of the complacent ap-

proach can sometimes be minimal, such as for truly noninformative priors or data sets with
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large sample sizes, coupled with non-extrapolated posterior quantities of interest, but are
serious in applications such as the detonator impact testing data.

IP analyses quantify, in a non-probabilistic way, effects of uncertainty in priors and
models. Though not emphasized in the literature, numerous diagnostic plots are useful in

IP analyses, including those aimed at

1) assessing the adequacy of a candidate set P by relating the boundary of P to quan-

tities directly elicited, such as interval estimates,

2) identifying prior-data mismatches through overlay plots of observed and simulated

prior-predicted data across extreme priors in P,

3) understanding prior-to-posterior shrinkage or dilation effects beyond a simple com-

parison of nominal-prior-versus-nominal-posterior standard deviations, and

4) understanding which posterior quantities are more robust to prior/model uncertainty

than others.

In many Bayesian analyses, the only quoted variation in posterior quantities involves
MCMC sampling error, with no allowance for uncertainty in the prior or model, thus

misleading data analysts and their clients. IP methods aid in quantifying these effects.
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