

LA-UR-17-20254

Approved for public release; distribution is unlimited.

Title: Radiological Worker II Training, Course 20301 (Live), Course 12909
(Test)

Author(s): Harris, Jimmy D.

Intended for: Training

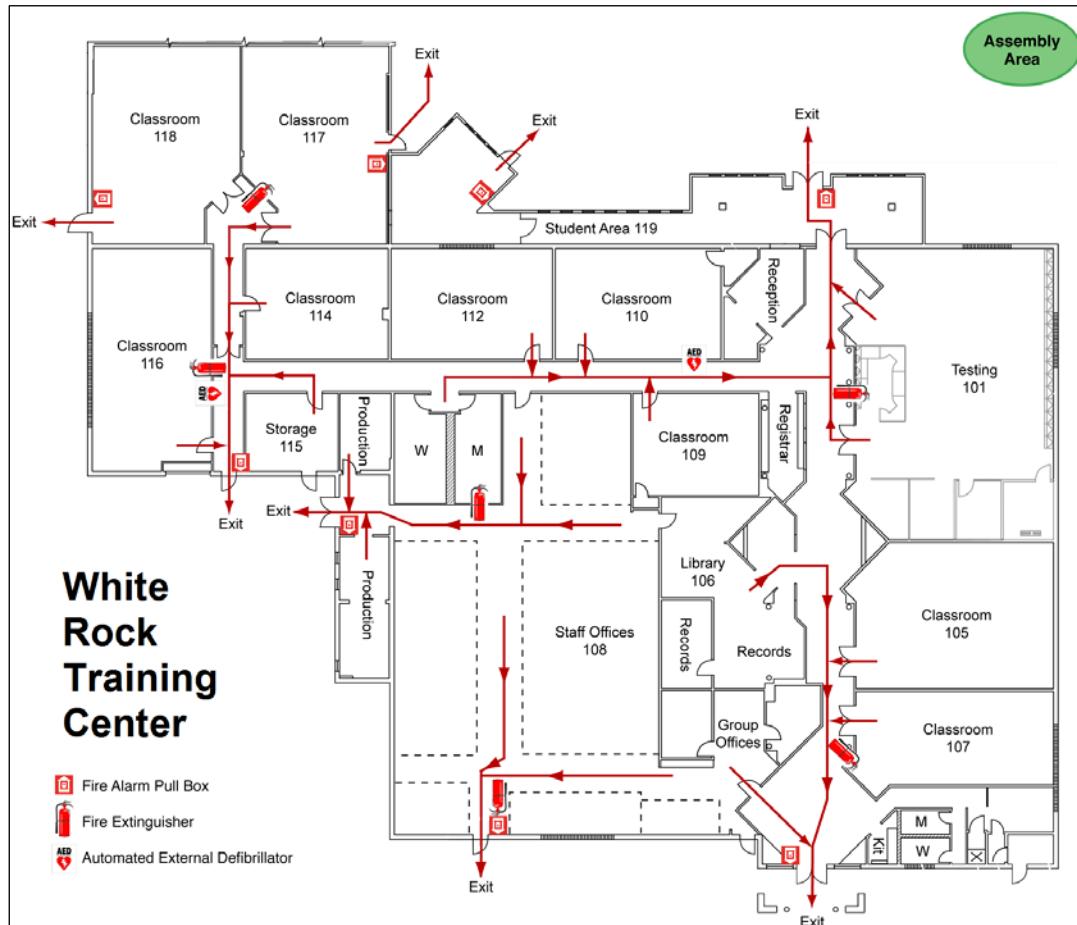
Issued: 2017-01-13

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Radiological Worker II Training

Course 20301 (Live)
Course 12909 (Test)



January 2017

EST. 1943
Operated by Los Alamos National Security, LLC for the NNSA

This training course was prepared by Los Alamos National Security, LLC (LANS) under Contract DE-AC52-06NA25396 with the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA). All rights in the material are reserved by DOE and LANS pursuant to the contract. This training course is presented with the understanding that the information and materials provided were developed based on specific circumstances present at the Los Alamos National Laboratory at the time of publication. Those circumstances may or may not be similar to conditions present at other locations represented by participants in this course. The course materials and information will need to be adapted accordingly. NEITHER THE DOE/NNSA, NOR LANS, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED AND WILL NOT BE LIABLE FOR DIRECT OR INDIRECT DAMAGES RESULTING FROM USE OF THIS MATERIAL.

*Institutional Training Services Group Leader: Cindy Dutro
 Subject Matter Expert: Ken Courville and Kurt Hillmer*

Course Manager: Jimmy Harris

Portfolio Facilitator: Sandy Simpson

Instructional Designer: Heather Hughes

Editor/Composer: Heather Hughes, Lisa Rothrock

Course Number: 20301

January 2017

LA-UR-17-

Controlled Document Number: RWII_20301_SM,R4.0

Contents

Introduction.....	1
Radiological Safety Policy	1
Course Overview.....	1
Course Objectives.....	2
Program Owner.....	2
Target Audience.....	2
Course Limitations	2
Lessons Learned: The Chernobyl Accident.....	3
Acronyms.....	4
Unit 1: Radiological Fundamentals.....	5
Learning Objectives	5
Introduction	5
Atomic Structure.....	5
Radiation.....	6
Process of Ionization.....	7
Types of Ionizing Radiation	8
8	
Alpha Particles (α).....	9
Beta Particles (β).....	10
Gamma Rays (γ) and X-Rays.....	11
Neutrons (n)	12
12	
Units of Measure.....	13
Unit 2: Biological Effects.....	15
Learning Objectives	15
Sources of Radiation.....	15
Biological Effects.....	17
Effects of Radiation on Cells	17
Types of Effects	18
Factors Affecting Biological Damage.....	18
Pregnant Worker Radiation Exposure	21
Radiation Dose Limits	22
Specific Dose Limits and Control Levels	22
Radiation Dose Limits	23
Your Responsibilities.....	24
Risks in Perspective.....	24
Comparison of Risks—Lost Life Expectancy	24
Comparison of Occupational Doses	25
Unit 3: Personnel Monitoring Programs.....	27
Learning Objectives	27

Contents

Introduction	27
External Dosimetry.....	28
Internal Dosimetry	31
Pregnant Worker Radiation Exposure	32
Radiation Doses Received Outside LANL	33
Radiation Doses from Medical Procedures.....	33
Unit 4: ALARA	35
Learning Objectives	35
Introduction	35
ALARA Program.....	35
ALARA Program Responsibilities	36
External Radiation Dose Reduction.....	37
Internal Radiation Dose Reduction	39
Working with Radioactive Material	40
Lessons Learned: Personal, Offsite Contamination Discovered	42
Radioactive Waste Minimization.....	43
Radiological Controlled Areas	44
Unit 5: Radioactive Contamination Control	47
Learning Objectives	47
Introduction	47
Radioactive Contamination	47
Sources of Possible Contamination.....	48
Indicators of Radioactive Contamination	49
Control of Radioactive Contamination	50
Contamination Control Methods	50
Minimum PPE for Entry into Areas	53
Minimum PPE for Selected Activities.....	54
Decontamination	54
Detection and Measurement of Contamination.....	55
Personnel Contamination Monitoring (PCM) Equipment.....	56
Unit 6: Radiological Emergencies.....	59
Learning Objectives	59
Introduction	59
Emergency Alarms and Responses	59
Disregard for Radiological Alarms	61
Radiological Emergency Situations	61
Rescue and Recovery Operations.....	62
Unit 7: Radiological Postings and Controls.....	65
Learning Objectives	65
Introduction	65
Radiological Postings	65
Criteria for Radiological Postings	67
Your Responsibilities.....	77

Contents

Radiological Work Permits	78
Your Responsibilities Regarding Radiological Work Permits	79
Appendix	81
Web Resources.....	81
Glossary	83
Index	94

Notes. . .

Introduction

Radiological Safety Policy

Radiological Control Safety

The Department of Energy (DOE), in conjunction with each DOE facility, is firmly committed to having a radiological control program of the highest quality. This program, as outlined in the Code of Federal Regulations (CFR) 10 CFR 835, *Occupational Radiation Protection*, and the Los Alamos National Laboratory (LANL) *Radiation Protection Program* (RPP), requires that managers and supervisors at all levels be involved in the planning, scheduling, and overseeing of radiological work. This regulation forbids compromising radiological safety to achieve production or research objectives.

Training Requirements

Radiological worker training is required if you

- operate radiation-producing devices,
- work with radioactive material,
- are likely to receive routinely occupational exposure above 100 mrem per year, and/or
- are permitted unescorted access into radiological areas.

At some facilities, radiological worker training is also required for unescorted access to a controlled area or a radiological buffer area (RBA), depending on the radiological hazards in the area.

This study guide covers Radiological Worker II DOE Core Training. After successful completion of this training,

you are permitted unescorted access to all radiological areas, subject to site-specific training and authorization.

You are required to refresh this training every 2 years, either by repeating the initial course or by completing a radiation safety self-study course. In both cases, you must pass an examination to receive the refresher credit.

At LANL, “radiological worker training” refers to Radiological Worker II Training, Course 20301. LANL does not offer Radiological Worker I training, testing, or evaluation.

Course Overview

Training, Examination, and Practical Evaluation

This study guide for *Radiological Worker II Training* is used both in the classroom and for self-study.

The Radiological Worker II Exam (Test 12909) consists of 50 questions and includes material from all units in this study guide. A score of 80% or better is required to pass the examination. In addition, the examination must be refreshed every 24 months (2 years).

You must also pass the Radiological Worker II Practical Evaluation (12910), which is a hands-on, real-time demonstration of awareness and understanding of radiological safety concepts and practices for working around known sources of ionizing radiation. A score of 80% or better is required to pass the practical exercise evaluation. For LANL operations, this

Introduction

evaluation is required only once; however, line management may require refreshing the practical evaluation as needed for specific work activities at LANL or other DOE sites, such as the Nevada National Security Site (NNSS). These are the minimum requirements to obtain and maintain qualification for Radiological Worker at LANL. Requirements at other DOE sites can vary.

Course Objectives

Understanding Hazards, Practices, and Responsibilities

Radiological worker training is the basic building block for any additional radiological training you may receive. Upon completing radiological worker training, you will have the basic knowledge needed to work safely, using proper radiological practices, in areas where radiological hazards exist. You will also have a better understanding of the hazards and responsibilities associated with radiological work to help prevent the carelessness that can occur when working continually with or around radioactive material.

This course does not qualify you for any specific radiological work. You may be required to take additional training at individual facilities to address facility- and job-specific hazards and procedures.

Program Owner

This course was developed under the direction and technical oversight of Steve Costigan, Radiation Protection Programs (RP-PROG), the functional program owner for this training.

Target Audience

This course, *Radiological Worker II Training* (Course 20301), is designed for authorized workers who might use radiation-producing devices or radioactive material, are likely to receive occupational radiation exposure above 100 mrem in a year, or are permitted unescorted access into radiological areas. This course is also highly recommended for workers with no prior experience with radiological hazards. Such training is required by 10 CFR 835.901 and LANL Procedure (P) 121, *Radiation Protection*.

Course Limitations

This course provides workers with Radiological Worker II DOE Core Training with additional material that applies at LANL. It is the responsibility of the responsible line managers (RLMs) to identify radiological hazards at their workplace(s) or tasks that would require specific training and to arrange for and document the appropriate training. Furthermore, it is in the best interest of workers to simply ask their supervisors or radiation protection professionals if there are any such hazards at their workplace(s) and follow through with recommended measures.

Lessons Learned: The Chernobyl Accident

On April 26, 1986, a nuclear reactor exploded at Chernobyl Nuclear Power Plant in the former Soviet Union. As a result of the radioactive emissions from this accident, 6 firemen and 22 other workers at the site died of acute radiation sickness. Additionally, the long-term health of millions of people who live near the site has received much publicity. It is likely that some people have died or will die prematurely as a result of radioactive material that was spread for thousands of miles.

Investigations have revealed that the accident resulted from several major violations of procedures, compounded by serious flaws in the design of the nuclear reactor. Worker training was also inadequate. Workers had no way to measure the radioactivity, no way to assess the situation, and inadequate knowledge of how to protect themselves.

Protective equipment was not used. During the first few hours, the workers and firemen had no respirators; in hindsight, even a handkerchief tied over their faces would have helped. Their clothing was permeable to water and to radioactive material, and they had handled extremely radioactive material with their bare hands. As a result, contamination producing hundreds or even thousands of rem (a unit for measuring the biological effects of radiation on the human body) per hour got onto their skin and remained there for many hours. Eventually these workers were taken to the hospital, and the doctors and nurses who treated them received doses up to about 20 rem from the contamination that was still on their skin. The DOE limit is 5 rem per year.

Most workers at Chernobyl had no dosimeters and no other instruments to measure the dose rates. The radiological control technician (RCT) had only one instrument, which was continuously giving a reading beyond its scale. He concluded it was broken and ignored the readings. There were no other instruments to measure radiation levels, so workers labored for hours in places where the dose rates were between 100 and 1000 rem per hour. The doses received by the 28 people who died were later estimated to be from 600 to 1800 rem. **Many of these lives could have been saved if they had received the training provided in this course.**

Experts agree that a similar accident cannot happen in the United States (US) because of our stricter engineering standards. However, politicians, scientists, and workers in the former Soviet Union also believed that the Chernobyl accident could not happen. Therefore, no preparations were made. Clearly, appropriate training could have reduced the injuries and fatalities at Chernobyl and will mitigate the hazards in any future incident involving radioactivity at LANL.

Introduction

Acronyms

ALARA	as low as reasonably achievable	RP-SVS	Radiation Protection Services-Internal Dosimetry
ARM	area radiation monitor	RPPM	radiation protection program manager
CAM	continuous air monitor	RSS	radioactive sealed source
CFR	Code of Federal Regulations	RWP	radiological work permit
Ci	curie	SME	subject matter expert
cpm	counts per minute	SNM	special nuclear material
CT	computerized tomography	SWIMS	stop, warn, isolate, minimize, secure
DAC	derived air concentration	TA	technical area
DOE	Department of Energy	TLD	thermoluminescent dosimeter
dpm	disintegrations per minute	TNORM	Technologically Enhanced Naturally Occurring Radioactive Material
DSESH	Deployed Services Environmental, Safety, & Health	TSM	technical staff member
DU	depleted uranium	US	United States
EO	enabling objective	w.g.	water gauge
EPD	electronic personal dosimeter		
FRPR	facility radiation protection requirements		
GERT	General Employee Radiological Training		
HEPA	high-efficiency particulate air		
IHS-IP	Industrial Hygiene and Safety--Institutional Programs		
LANL	Los Alamos National Laboratory		
LANS	Los Alamos National Security, LLC		
LLE	lost life expectancy		
MeV	million electron volts		
mR	milliroentgen		
NNSS	Nevada National Security Site		
OH	Occupational Health		
OS-PT	Operations Support-Packaging & Transportation		
PCM	personnel contamination monitor		
PPE	personal protective equipment		
R	roentgen		
rad	radiation absorbed dose		
RAP	Radiological Assistance Program		
RBA	radiological buffer area		
RCA	radiological controlled area		
RCT	radiological control technician		
rem	roentgen equivalent man		
RGD	radiation generating devices		
RLM	responsible line manager		
RP	radiation protection		
RPP	Radiation Protection Program		
RP-PROG	Radiation Protection Programs		
RSS/RGD	Radioactive Sealed Sources & Radiation Generating Devices		

Unit 1: Radiological Fundamentals

Learning Objectives

Major Objective

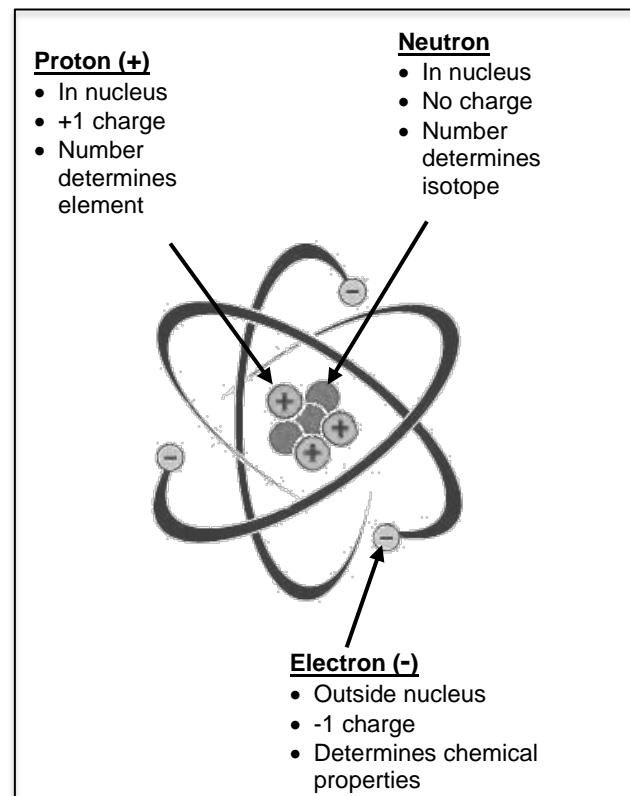
Upon completing this unit, you will be able to identify the fundamentals of radiation, radioactive material, and radioactive contamination.

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 define radiation, radioactivity, and radioactive half-life;
- EO2 define radioactive material and radioactive contamination;
- EO3 define ionization;
- EO4 distinguish between ionizing radiation and nonionizing radiation;
- EO5 state the basic types of ionizing radiation;
- EO6 identify the range, shielding, and biological hazards for each of the types of ionizing radiation;
- EO7 identify the units used to measure radiation, radioactivity, radioactive contamination; and
- EO8 convert rem to millirem and millirem to rem.

Introduction


To work safely in and around areas controlled for radiological purposes, you must know the fundamental concepts

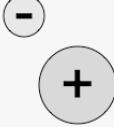
and vocabulary associated with ionizing radiation and radiological protection theory.

Atomic Structure

The Atom

The basic unit of matter is the atom. The atom is made up of three particles: **protons**, **neutrons**, and **electrons**. Protons and neutrons are found in the **nucleus**, the central portion of the atom. Electrons surround the nucleus.

Refer to chart on next page.


Unit 1: Radiological Fundamentals

Basic Particles of the Atom		
Particle	Charge	Other Properties
proton	+1	<ul style="list-style-type: none">located in the nucleusthe number of protons determines the element
neutron	No charge (neutral)	<ul style="list-style-type: none">located in the nucleusthe number of neutrons determines the isotope
electron	-1	<ul style="list-style-type: none">located around the nucleusthe number of electrons determine the chemical properties

Isotopes

Atoms of the same element that have different numbers of neutrons are called **isotopes**. Atoms of the same element have the same number of protons, but they can have a different number of neutrons. The number of protons determines the element. If the number of protons changes, the element changes. For example, hydrogen has several isotopes: hydrogen, with one proton; deuterium, with one proton and one neutron; and tritium, with one proton and two neutrons.

The number of neutrons determines the isotope of the element. Isotopes have the same chemical properties but can have quite different nuclear properties. Nuclear properties are largely separate from chemical properties. The following diagram illustrates the fact that these three isotopes have different nuclear properties, but they all have the same chemistry as hydrogen.

STABLE	STABLE	UNSTABLE
Hydrogen $^1_1 \text{H}$	Deuterium $^2_1 \text{H}$	Tritium $^3_1 \text{H}$
1 proton 1 electron 0 neutrons	1 proton 1 electron 1 neutron	1 proton 1 electron 2 neutrons

RADIOACTIVE

Unit 1: Radiological Fundamentals

Radioactivity

Radioactivity is the spontaneous decay, sometimes termed disintegration, of unstable, or radioactive, atoms that emit radiation as they attempt to become stable.

Radioactive Half-Life

Radioactive half-life is the time it takes for one-half of the unstable, or radioactive, atoms present to decay.

Radioactive Material

Radioactive material is any material containing unstable radioactive atoms that spontaneously emit (give off) ionizing radiation.

Radioactive Contamination

Radioactive contamination is radioactive material in an unwanted place or location, such as outside the glove box or hood in which it is being handled or stored, in homes or offices where it should never be, on or in your body, or inadvertently released into the environment.

If radiation is like a speeding bullet, contamination is like bullets being fired in an unsafe direction. Contamination is not a hazard if properly controlled. The best policies are not allowing it to occur and being prepared to contain it if it does occur.

Process of Ionization

Ions

The term **ion** is used to define an atom that has an electrical charge. Normally, atoms have an equal number of **protons** (+ charge) and **electrons** (- charge), so the total charge is zero.

To understand how radiation affects matter, you must first understand the process of ionization.

Ionization

Ionization is the process of removing electrons from atoms to make charged ions. These orbital electrons are bound to the nucleus.

If enough energy is supplied to break this bond and remove electrons from the atom, the remaining atom has a positive charge. These ions allow radiation to be detected in an ionization chamber. Too many ions in human tissue can cause temporary or long-term damage.

Ionizing Radiation

The term **ionizing radiation** is used to define radiation that has enough energy to cause ionization. Examples of ionizing radiation are alpha particles, beta particles, gamma rays (and x-rays), and neutrons.

Nonionizing Radiation

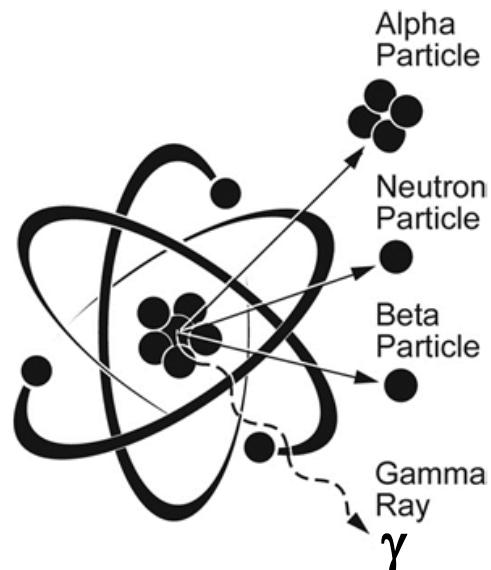
The term **nonionizing radiation** is used to define radiation that does not have enough energy to cause ionization. Examples of nonionizing radiation include radio waves, radar, microwaves, and visible light.

External Radiation Hazards

Ionizing radiation can be an **external** radiation hazard when it comes from outside the body. In this respect, ionizing radiation is like the heat from fire because you can shield yourself from it.

Internal Radiation Hazards

Contamination is an **internal** hazard because it can be harmful if it gets inside the body. In this sense, contamination is somewhat like smoke.


Types of Ionizing Radiation

Four Basic Types of Radiation

The four basic types of radiation of concern to nuclear workers are

- alpha particles,
- beta particles,
- gamma rays and x-rays, and
- neutrons.

X-rays are very similar to gamma rays. However, although gamma rays start in the nucleus, x-rays are created in the electron cloud around the nucleus. They can also be generated by manmade devices. Both produce the same biological effects.

Type of Radiation	Characteristic	Hazard	Shielding	Some Sources at LANL	Some Locations at LANL ^a
alpha particle α	<ul style="list-style-type: none"> • +2 charge large mass • 7200 times larger than electron • very short range: about 1–2 inches in the air 	internal	Paper, outer layer of skin	americium, plutonium, uranium	TA ^b -3 TA-16 TA-55
beta particle β	<ul style="list-style-type: none"> • -1 or +1 charge small mass • same as electron short range: 10 feet in air per MeV of energy 	external: skin and eyes internal	plastic, glass, aluminum	phosphorus-32 tritium accelerators instrument calibration sources	TA-3 TA-16 TA-43 TA-53
gamma and x-ray γ	<ul style="list-style-type: none"> • no charge • no mass • long range: several hundred ft in the air 	external: whole body internal	lead, concrete, steel	x-ray machines cobalt-60 accelerators	TA-3 TA-8 TA-53
neutron particle n	<ul style="list-style-type: none"> • no charge • same mass as proton • long range: several hundred ft in the air 	external: whole body internal	water plastic concrete with high hydrogen content	americium plutonium uranium accelerators	TA-53 TA-55

^a LANL locations may house one or more of the sources listed.

^b TA = technical area.

Alpha Particles (α)

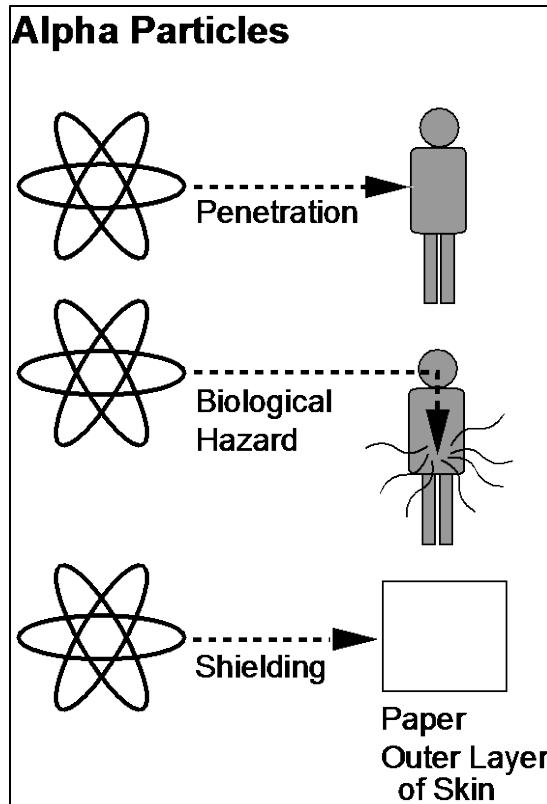
Physical Characteristics

The **alpha particle** has a large mass and consists of two protons, two neutrons, and no electrons (positive charge of +2). It is a highly charged particle that is emitted from the nucleus of an atom. The positive charge causes the alpha particle (+) to strip electrons (−) from nearby atoms as it passes through the material, thus ionizing these atoms.

Range

The alpha particle deposits a lot of energy in a short distance. This large energy deposit limits the penetrating ability of the alpha particle to a very short distance. This range in air is about 1 to 2 inches

Shielding


Alpha particles are shielded by less than 1 mm of material, such as a sheet of paper or the outer layer of dead skin cells. Few solid materials will allow alpha particles through. Carefully manufactured mylar (a form of polyester resin used to make heat-resistant plastic films and sheets) is one such material. Because they can penetrate so few solid materials, alpha particles are not an external hazard.

Biological Hazard

If ingested or inhaled, an alpha emitter deposits all of its energy in a short distance. It is considered an internal hazard because the energy it deposits can cause many ionization events within living tissue.

Sources

Alpha radiation is emitted during the decay of certain heavy radioactive atoms such as americium, plutonium, and uranium.

Beta Particles (β)

Physical Characteristics

The **beta particle** has a small mass and is negatively charged. It is emitted from the nucleus of an atom and has an electrical charge of -1 or $+1$. Beta radiation causes ionization by displacing electrons from their orbits. The beta particle is physically identical to the electron. Ionization occurs because of the repulsive force between the beta particle ($-$) and the electron ($-$), both of which have a negative charge.

Range

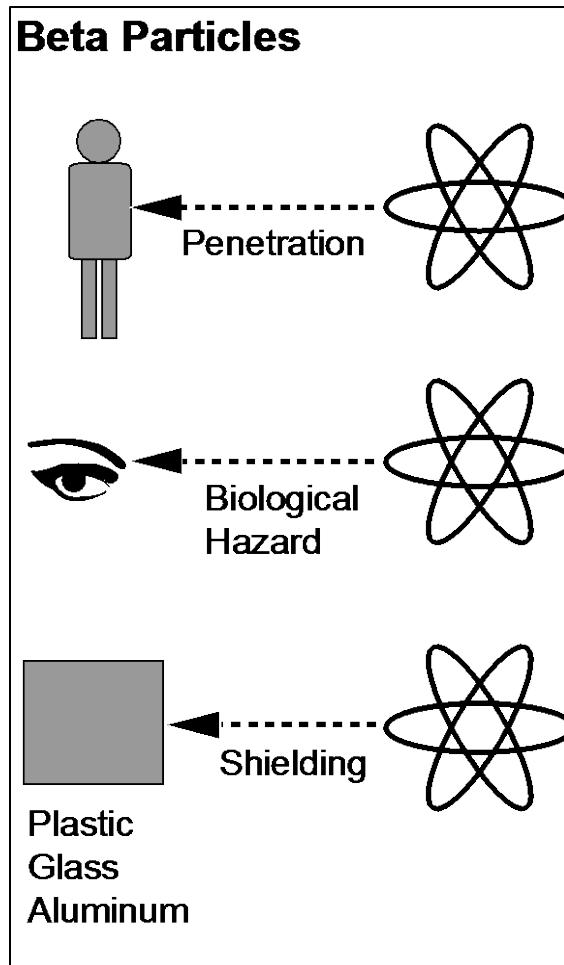
Because of its negative charge, the beta particle has a limited penetrating ability. The range in air is about 10 feet per million electron volts (MeV) of energy.

Shielding

Beta particles are best shielded by about $\frac{1}{2}$ inch or less of plastic or aluminum. Using improper shields, such as heavy-metal shields, can produce x-ray hazards from otherwise safer beta sources, so proper shield selection is important with intense beta sources.

Biological Hazard

A beta particle poses an internal hazard. A beta emitter deposits all of its energy within a short distance (although longer than the corresponding distance for an alpha particle). If enough beta-emitting material is ingested or inhaled, this large concentration of energy can become an internal hazard to living tissue.


Externally deposited beta particles can be hazardous to the living layers of skin and to the eyes but not to internal organs.

Sources

Beta radiation is emitted by many radioactive isotopes. Most of them also

produce gamma rays, but some are pure beta emitters. Beta radiation is emitted

- during the decay of certain radioactive atoms, such as tritium and phosphorous-32 (pure beta emitters);
- by activation products from accelerator operations such as cobalt-60 (most of which also produce gamma rays); and
- by sealed sources used for calibration of radiation detection and experimental measurement instruments.

Gamma Rays (γ) and X-Rays

Physical Characteristics

Gamma and **x-ray** radiation are electromagnetic waves or photons and have no electrical charge. Gamma rays are very similar to x-rays. The difference is in the place of origin: gamma rays originate in the nucleus; x-rays are generated by orbital electron effects. In addition, gamma rays are usually more energetic than x-rays. Gamma and x-ray radiation ionizes by direct interactions with orbital electrons.

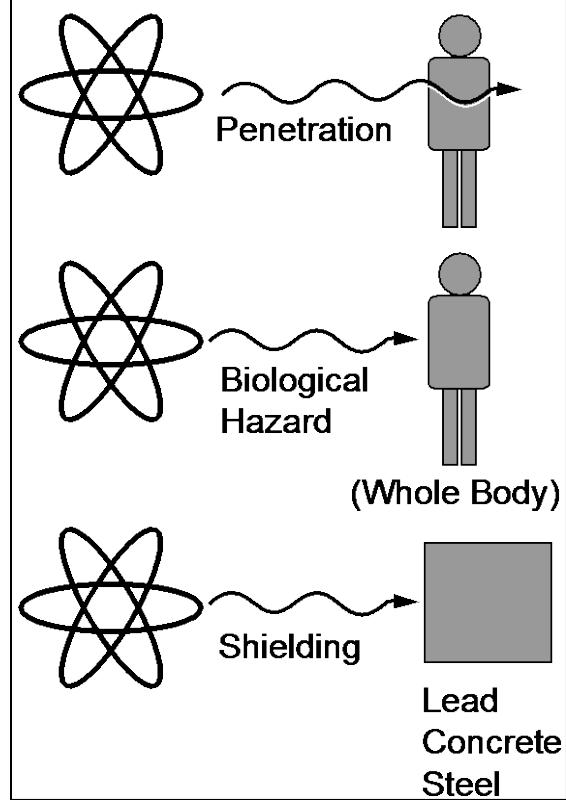
Range

Because gamma rays and x-rays have no charge and no mass, they have a very high penetrating power. The range in air is very long; gamma rays and x-rays will easily travel several hundred feet.

Shielding

Gamma rays and x-rays are best shielded by very dense materials, such as lead, concrete, or steel.

Biological Hazard


Gamma rays and x-rays can reach internal organs and result in radiation exposure to the whole body; therefore, both are external and internal hazards to the entire body.

Sources

Gamma and x-ray radiation is emitted by

- x-ray machines;
- the decay of most radioactive atoms, including cobalt-60, which is used for radiography and instrument calibration; and
- accelerator products from accelerator operations.

Gamma Rays and X-Rays

Neutrons (n)

Physical Characteristics

Neutron radiation consists of neutrons that are ejected from the nucleus. A neutron has no electrical charge and interacts with matter by collisions with the nucleus. These collisions result in secondary charged particles that cause ionization.

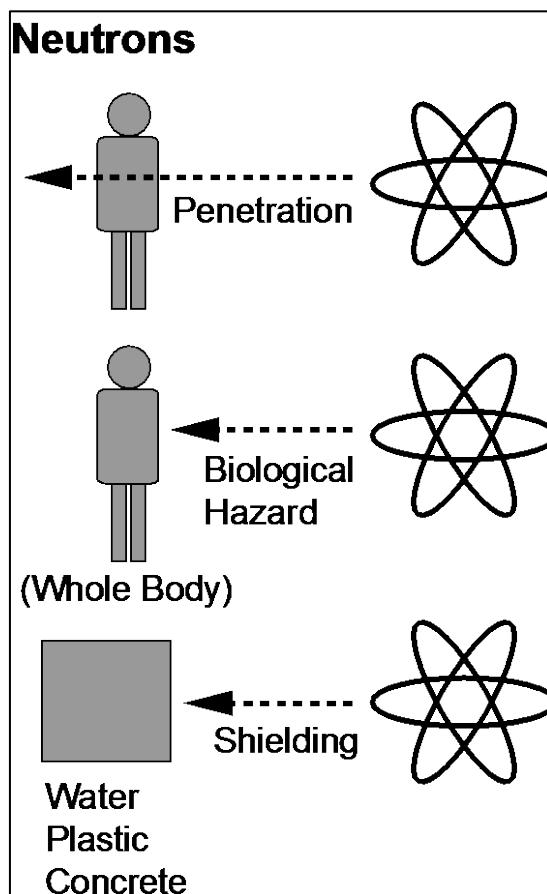
Range

Because neutrons have no charge, they have a relatively high penetrating ability and are difficult to stop. The range in air is very long, and like gamma rays, they can easily travel several hundred feet in the air.

Shielding

Neutrons are best shielded by materials that have a high hydrogen content, such as water, plastic, or concrete. Thick shields are often used, often several feet thick for high-intensity sources.

Biological Hazard


Neutrons are a whole-body, internal, and external hazard because of their high penetrating ability to all tissues.

The exact degree of hazard is strongly affected by the energy of the neutrons.

Sources

Neutron radiation is emitted

- when certain radioactive atoms, such as americium, plutonium, and californium, decay;
- when alpha particles interact with other light, low-Z elements, such as beryllium or lithium;
- by accelerator operations; and
- by criticality experiments.

Units of Measure

Measuring Radiation

Radiation is measured in units of roentgen, rad, or rem.

Roentgen (R)

The **roentgen** is a unit for measuring ionization caused by gamma and x-rays in air. Therefore, it does not relate to the biological effects of radiation on the human body. It is an easily measured *unit of exposure* and was named for Wilhelm Roentgen, who discovered x-rays.

$$1 \text{ roentgen (R)} = 1000 \text{ milliroentgen (mR)}$$

Radiation Absorbed Dose (rad)

The **rad** is a unit for measuring energy absorbed in any material. The *absorbed dose* comes from the energy being deposited by the radiation. This unit is defined for any material and applies to all types of radiation. It is a *measurement of absorbed dose* but does not take into account the potential biological effects that different types of radiation have on the human body.

$$1 \text{ rad} = 1000 \text{ millirad (mrad)}$$

Roentgen Equivalent Man (rem)

The **rem** is a unit for measuring the biological effects of radiation on the human body. It is the most commonly used unit for dose reporting. The rem takes into account the absorbed dose and the biological effects of different

types of radiation. It is a *measurement of biological dose equivalence*, which is related to health risk. This unit applies to both internal and external doses.

Curie

The amount of radioactive material present is measured by the number of atomic decay events in a given period. The **curie** (Ci) was named for Marie Curie, who discovered radium.

Derived Air Concentration (DAC)

DAC is a unit of measure for the amount of radioactive material present per unit volume in air. It can be used by RCTs to track dose (indirectly) as an indicator of potential internal exposure from airborne radioactivity.

Contamination (cpm and dpm)

Contamination is measured in **counts per minute (cpm)** and recorded in **disintegrations per minute (dpm)**. The efficiency of the detector is used to convert between counts and disintegrations. Contamination is reported in dpm divided by a specific area (e.g., dpm/100 cm²). Contamination is radioactive material, usually too small to see, located in an undesirable place such as on the floor, where it can contaminate shoes and thus be spread even more.

The presence of contamination is usually an indication of poor work practices more than an immediate health hazard. Contamination is normally measured by an RCT using an extremely sensitive detector. The units measured (cpm and dpm) are usually very small.

Unit 1: Radiological Fundamentals

Converting rem to mrem and mrem to rem

Most of these units (such as rad, rem, and Ci) are often used and converted with the usual unit prefixes.

1 rem = 1000 millirem (<u>mrem</u>)	
To convert rem to <u>mrem</u> , multiply by 1000.	
0.2 rem (x 1000) =	200 <u>mrem</u>
5 rem (x 1000) =	5000 <u>mrem</u>
100 rem (x 1000) =	100,000 <u>mrem</u>
To convert <u>mrem</u> to rem , divide by 1000.	
360 mrem (÷ 1000) =	0.36 rem
25,000 mrem (÷ 1000) =	25 rem
800,000 mrem (÷ 1000) =	800 rem

Unit 2: Biological Effects

Learning Objectives

Major Objectives

Upon completion of this unit, you will be able to determine the biological risks to the exposed population.

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 describe the major sources of natural background and manmade radiation;
- EO2 state the method by which radiation causes damage to cells;
- EO3 identify the possible effects of radiation on cells;
- EO4 define somatic effect and heritable effect;
- EO5 define acute radiation dose and chronic radiation dose;
- EO6 state examples of chronic radiation dose;
- EO7 state the potential effects associated with pregnant worker radiation doses;
- EO8 identify the DOE radiation dose limits;
- EO9 identify your responsibilities concerning radiation dose limits; and

EO10 compare the biological risks from chronic radiation doses with the risks workers face in other industries and activities, in radiation-related occupations, and in other activities.

Sources of Radiation

A Radioactive Planet

The earth has always been a radioactive planet. Human beings have always lived in the presence of natural background radiation. In fact, the majority of the earth's population will be exposed to more ionizing radiation from natural background radiation than the average LANL worker receives from occupational exposure.

The average annual radiation dose equivalent to a member of the general population from both natural and manmade background sources is about 620 mrem.

In Los Alamos, the background dose averages about 780 mrem per year because of the higher altitude and radon levels. ["Los Alamos National Laboratory Environmental Report," LA-14461-ENV, (September 2012)].

Natural Radiation Sources

Several sources of radiation occur naturally. The radiation emitted from these sources is identical to the radiation emitted from manmade sources.

The four major sources of naturally occurring radiation are

Unit 2: Biological Effects

- cosmic radiation;
- sources in the earth's crust, known as terrestrial radiation;
- sources in the human body, known as internal sources; and
- radon, which comes from sources in the earth's crust

Cosmic Radiation (the Sun and Outer Space)

Cosmic radiation comes from the sun and outer space and consists of charged particles as well as gamma radiation. At sea level, the average annual cosmic radiation dose equivalent is about 26 mrem. At higher elevations, the amount of atmosphere-shielding cosmic rays decreases; thus, the dose equivalent due to cosmic rays increases. In Los Alamos, the annual dose equivalent is about 65 mrem. The total average annual dose equivalent to the general population from cosmic radiation is about 30 mrem.

Terrestrial Radiation (Earth)

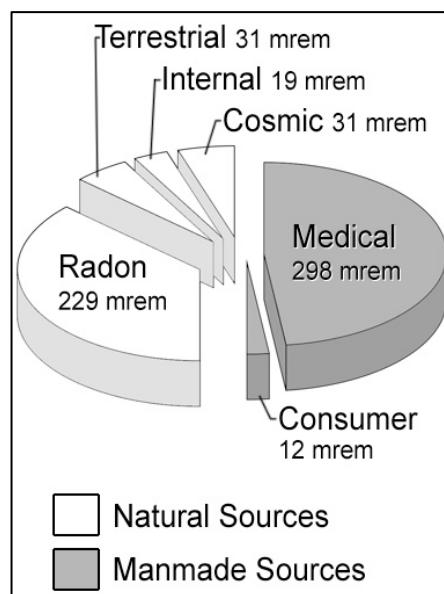
Natural sources of radiation exist in the ground, rocks, and drinking water supplies. The major contributors to the terrestrial sources are the natural radioactive elements radium, uranium, and thorium. Many areas have elevated levels of terrestrial radiation because of increased concentrations of uranium and thorium in the soil. On the Pajarito Plateau, the annual dose equivalent is about 50–100 mrem. The total average annual dose equivalent to the general US population from terrestrial radiation is 31 mrem.

Internal Radiation (Human Body)

Sources of radiation within the body come from food and water, which contain trace amounts of natural radioactive material. Potassium-40 is the most abundant radioactive source in the body.

The total average annual dose equivalent to the general population from internal sources is 19 mrem.

Radon


Radon comes from the radioactive decay of uranium and thorium, which are naturally present in the soil. Because radon is a gas, it can travel through the soil and collect in basements or other areas of a home. Radon emits alpha radiation. When inhaled, radon and its decay products can cause a dose equivalent to the lungs of approximately 2400 mrem per year, which is equal to a whole-body dose equivalent of 230 mrem.

Manmade Radiation Sources

The difference between manmade radiation and naturally occurring radiation is the form of the radiation source.

The four major sources of manmade radiation are

- medical x-rays and computerized tomography (CT) scans,
- nuclear medicine,
- consumer products, and
- industrial radiation uses.

Unit 2: Biological Effects

Medical Radiation

X-rays are used for medical diagnosis. A typical radiation dose equivalent from a single chest x-ray is about 10 mrem. The total average annual dose equivalent to the general population from medical x-rays is 75 mrem.

Nuclear medicines are used in medical procedures for diagnosis and therapy. The total average annual dose equivalent to the general population from these sources is 75 mrem.

CT is also used for medical diagnosis. Many CT procedures involve doses between 1000 and 2000 mrem. The average annual dose equivalent to the general population from CT procedures is 150 mrem.

Consumer Products

Some consumer products, such as cathode ray televisions, older luminous dial watches, and some smoke detectors, are sources of radiation. Most of the dose from consumer products comes from building materials that contain natural uranium or thorium. The average annual dose equivalent from consumer products is 12 mrem.

Other Manmade Sources

There are other manmade sources of radiation exposure, such as industrial uses and occupational exposure. These sources contribute too small of a dose to an average member of the US population to be included in the pie chart.

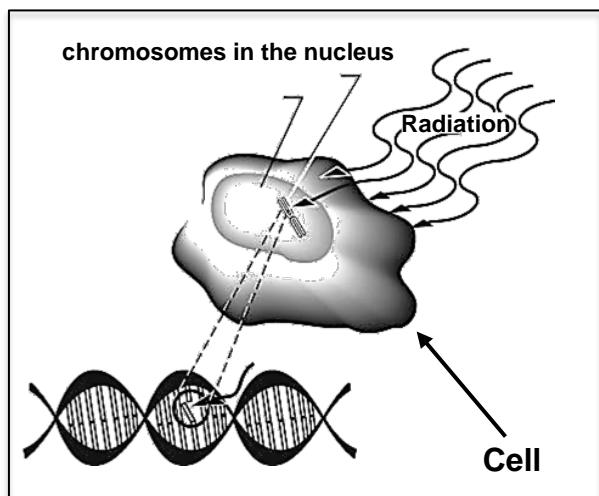
Biological Effects

Information about the biological effects of radiation is available not only from animal studies, but also from studies of human exposures.

Four major groups of people have been exposed to significant levels of radiation:

- some early workers, such as radiologists who received large doses of radiation before the biological effects were recognized or standards were developed to protect workers;
- the more than 80,000 survivors of the atomic bombs dropped at Hiroshima and Nagasaki who received estimated dose equivalents in excess of 30,000 mrem (30 rem);
- individuals who have been involved in radiation accidents, the most notable being the Chernobyl accident; and
- patients who have had therapeutic radiation treatments.

Effects of Radiation on Cells


How Radiation Damages Cells

Radiation causes damage to material by the ionization of atoms in the material. Atoms make up the molecules that make up the cells that make up the tissues of the body. Tissues make up the organs of the body. Any potential radiation damage to the body begins with the ionization of the atoms. Therefore, radiation causes damage to humans by the ionization of atoms in the cells. This ionization changes the properties of vital cell chemicals and causes undesirable secondary chemical reactions to occur.

Possible Effects of Radiation on Cells

Radiation may strike a vital part of the cell (such as the nucleus), a less-vital part (such as the body of the cell), or a cell molecule (such as water). When radiation strikes cells,

- some cells are damaged,
- most cells repair the damage,
- some cells die as a result of the damage, and
- some cells will undergo a damaging alteration.

At any given moment, thousands of cells are dying and being replaced by normal cells. Most cells die naturally; a few cells die from damage caused by a variety of external sources, including exposure to chemicals, trauma, and radiation.

As long as the number of cell deaths from external sources is small compared with the natural deaths, the body is programmed to handle this cell loss. However, when the damage is extensive, the body may take some time to repair the damage, and radiation sickness may result. Radiation sickness usually occurs only after an acute whole-body dose of more than 100,000 mrem (100 rem).

Types of Effects

Somatic and Heritable Effects

The effects of chromosome damage in a cell resulting from exposure to radiation can be

- somatic (bodily) or
- heritable.

Somatic Effects

A **somatic** effect occurs only in the body of the individual exposed to radiation. Somatic effects depend on many factors (discussed later in this unit). Somatic

effects such as hair loss, diarrhea, vomiting, coma, or even death can occur, but only at doses many times greater than occupational dose limits allow.

One somatic effect of concern is cancer. An individual exposed to radiation can experience chromosome damage that could eventually cause the cell to become a cancer cell. However, the probability of cancer resulting from occupational doses of radiation (discussed later in this unit) is very low compared with the natural probability (20%) of having a fatal cancer.

Heritable Effects

A **heritable** effect is inherited or passed on to an offspring conceived after the exposure. Damage that occurs to chromosomes in the sperm or ovum and then is passed on to future generations but does not affect the exposed individual is a heritable effect.

Heritable effects from radiation have been observed in studies of plants and animals but have never been observed in humans. Studies have included 77,000 Japanese children born to the survivors of Hiroshima and Nagasaki (conceived after explosion of the atomic bombs). These studies have followed their children and grandchildren. No effects have been observed in those children who were conceived and born after the atomic bombs.

Factors Affecting Biological Damage

Contributing Factors

Several factors contribute to the biological effects of radiation exposure, including the

- type of radiation;
- total radiation dose;
- radiation dose rate;
- cell sensitivity;
- individual sensitivity (dose rate, cell repair rate, and physical condition of the individual); and
- area of the body exposed.

Type of Radiation

Different types of radiation affect the body differently. For the same energy deposited, alpha and neutron radiation are more damaging than beta or gamma radiation.

Total Radiation Dose

In general, the biological effects will increase when the dose and dose delivery rate are increased.

Radiation Dose Rate: Acute and Chronic

The faster the dose is delivered, the less time the cell has to repair the damage. Radiation doses can be grouped into two categories:

- acute dose—a dose of radiation, typically a large amount, received in a short period; and
- chronic dose—a dose of radiation, typically a small amount, received over a long period.

Acute Dose

A very large dose of radiation is required for damaging effects to occur. The possibility of a radiological worker's receiving an acute dose on the job is extremely remote. In many areas where radioactive material is handled, the quantities are small enough to prevent emissions of large amounts of radiation. Where a potential exists for larger exposures, safety measures are in place to prevent such exposures.

Radiation exposure may be limited only to a part of the body, such as the hand. In accidents involving x-ray machines, individuals have exposed their fingers to part of the x-ray beam. In some cases, individuals have received dose equivalents of millions of millirems, resulting in the loss of finger(s) or other exposed body parts.

Radiation therapy patients receive high doses of radiation in short periods, generally only to a small portion of the body. Some effects of radiation therapy include hair loss, nausea, and tiredness.

The following table describes the acute effects of radiation doses at specific dose rates.

Effects of Radiation Dose (All of the Body)		
Dose (rad)	Dose (mrad)	Effect (assuming no medical intervention)
≈0–25	≈0–25,000	Nondetectable
≈25–100	≈25,000–100,000	Transient changes in the blood, but no symptoms of radiation sickness
≈100–300	≈100,000–300,000	Radiation sickness, including nausea, diarrhea, and vomiting from damage to intestinal lining Probable radiation sickness Note: Radiation therapy patients often receive doses in this range to their whole body, although doses to the tumor region might be many times higher. After such an acute dose, new cells will replace damaged cells, and the body will repair itself. This process may take many months.
≈300–600	≈300,000–600,000	Diarrhea, hemorrhage, and possible death
≈600–1000	≈600,000–1,000,000	Probable death Example: Twenty-eight people involved in the Chernobyl accident died following doses in excess of 800,000 mrad (800 rad), compounded by other injuries.
>1000	>1,000,000	Death

Chronic Dose

A chronic dose is when an individual receives a small amount of radiation over a long period, such as the dose received from natural background radiation or the dose received from occupational exposure. The body is better equipped to tolerate a chronic dose. The body has time to repair damage because a smaller percentage of cells needs repair at any given time. The body also has time to replace dead or nonfunctioning cells with new, healthy cells.

A chronic dose of radiation does not result in physical changes to the body such as those seen with acute doses. Because of cell repair, even sophisticated analyses of the blood do not reveal any biological effects.

The biological effects of concern from a chronic dose are latent effects, such as

cancer, cataracts, and lost life expectancy (LLE) that appear later in life.

The probability of cancer resulting from typical occupational doses of radiation (44 mrem per year for DOE radiological workers) is very low.

Risk of Cancer

No increases in cancer have been observed in individuals who receive a dose of ionizing radiation at occupational levels. The possibility of cancer induction cannot be dismissed, even though an increase in cancers has not been observed. Risk estimates have been derived from studies of individuals who have been exposed to high levels of radiation.

The natural incidence of cancer is approximately 20%. Extensive studies of approximately 100,000 radiation workers have shown no increase in the natural

Unit 2: Biological Effects

incidence of cancer in workers exposed to radiation at LANL or at similar places worldwide. In other words, radiological workers at LANL and at other laboratories throughout the world do not have a higher incidence of cancer than the rest of the population. These studies do not prove that radiation does not cause cancer; rather, they suggest that the radiation dose normally received by radiological workers at LANL is too small for any effect to be observed.

However, an increased incidence of cancer has been observed in those survivors who received acute doses of 35,000 mrem (35 rem) or more from the Hiroshima and Nagasaki atomic bombs. Survivors who received 35 rem have a 3% higher incidence of cancer than unexposed individuals, which means 20.6% rather than the 20.0% natural probability rate.

The report from the National Research Council's Fifth Committee on the biological effects of ionizing radiation (*Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V*, National Academy Press, Washington, D.C., 1990) estimated an assumed risk of 4×10^{-4} per rem chronic dose, or four cancer deaths per 10,000 persons, which is above the normal expectation of 2220 cancer deaths per 10,000 persons (*Cancer Facts and Figures 1995*, American Cancer Society, January 1995). Although risk estimates are less certain when applied to low doses, they do provide a reasonable basis for public health policy.

Cell Sensitivity

Radiation damage to cells depends on how sensitive the cells are to radiation.

Actively Dividing Cells (Nonspecialized Cells)

Cells that are actively dividing are more sensitive to radiation. When a cell is in the process of dividing, it is less able to repair any damage. Actively dividing cells (nonspecialized) include blood-forming cells, hair follicles, cells that line the intestinal tract, and cells that form sperm. Cancer cells are also actively dividing, which makes them receptive to radiation therapy.

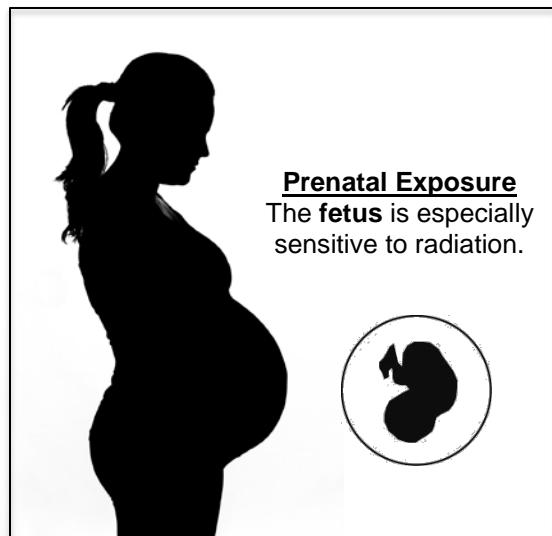
Less-Actively Dividing Cells (More Specialized Cells)

Cells that divide less actively or are more specialized are not as sensitive to radiation. Less-actively dividing cells include nerve cells and muscle cells.

Pregnant Worker Radiation Exposure

Sensitivity of the Embryo/Fetus

Cells of the embryo/fetus are rapidly dividing, which makes them sensitive to radiation. Many chemical and physical factors, such as alcohol consumption and exposure to lead, are also suspected or known to cause damage to the embryo/fetus.


Effects Associated with Pregnant Worker Exposure

Although no effects were observed in Japanese children who were conceived after the atomic bombs at Hiroshima and Nagasaki, effects were observed in some children who were exposed to the radiation of the atomic bomb while in the womb. Some of these children were born with low birth weight, small head size, and mental retardation. Radiation exposures to the embryo/fetus are suspected, but not proven, to also increase the chance of childhood cancer. Only when dose equivalents exceed

Unit 2: Biological Effects

15,000 mrem (15 rem) is there a significant increase in risk.

Limits are established to protect the embryo/fetus from any potential effects that may occur from a significant amount of exposure to radiation from either external or internal sources. At current occupational dose limits, the actual risk to the embryo/fetus is negligible when compared with the normal risks of pregnancy.

Individual Sensitivity

Some individuals are more sensitive to radiation than others. Children are more sensitive than adults. The developing embryo/fetus is the most sensitive of all. In general, the human body becomes relatively less sensitive to radiation with increasing age. The elderly, who are more sensitive than middle-aged adults, are the exception because they are less able to repair damage as quickly because of their less-efficient cell repair mechanisms.

Radiation Dose Limits

To minimize the risks of biological effects associated with exposure to radiation, dose limits have been established for DOE sites. The LANL radiation dose

policy is more conservative than the DOE limits. The LANL policy was established to ensure that the DOE limits are not exceeded and to help reduce individual and total worker population radiation dose (collective dose).

The DOE has established radiation dose limits based on guidance from the Environmental Protection Agency, the National Council on Radiation Protection & Measurements, and the International Commission on Radiological Protection.

Specific Dose Limits and Control Levels

Area of the Body Exposed

The larger the area of the body that is exposed to radiation, the greater the biological effects. Extremities are less sensitive than internal organs. Therefore, the annual dose limit for extremities is higher than for a whole-body exposure that irradiates the internal organs.

Whole Body

The whole body extends from the top of the head down to just below the elbow and just below the knee. This mid-area is the location of most of the blood-producing and vital organs.

Controls are established to limit both external exposure to radiation and internal exposure from the intake of radioisotopes. Radiation dose limits are based on the sum of internal and external exposure.

During routine conditions, the DOE whole-body dose limit for radiation workers is 5 rem/year.

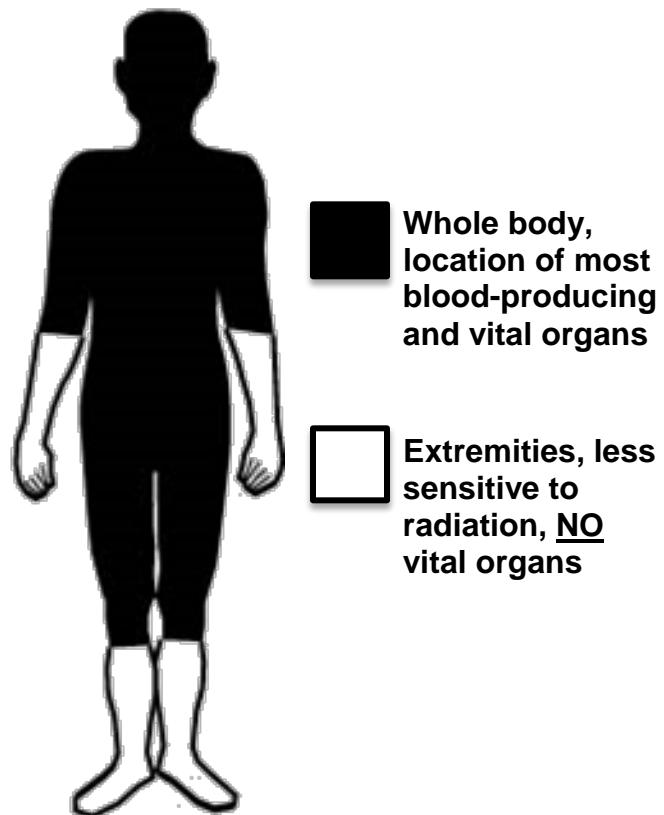
Extremities

Extremities include the hands and arms below the elbow and the feet and legs below the knees. Extremities are less

Unit 2: Biological Effects

sensitive to radiation than the whole body and can tolerate a larger dose. During routine conditions, the DOE dose limit for a radiation worker's extremities is 50 rem/year.

Skin or Internal Organs


The skin and individual internal organs are less sensitive to radiation than the whole body. During routine conditions, the DOE radiation dose limit for skin or internal organs is 50 rem/year.

Lens of the Eye

The lens of the eye is sensitive to beta radiation. An acute dose of 600–900 rem to the lens of the eye can result in the formation of a cataract or opaque area on the lens, which prevents light from reaching the retina within the eye. Safety glasses can shield the lens of the eye from radiation. During routine conditions, the DOE radiation dose limit for the lens of the eye is 15 rem/year.

Visitors and the Public

For visitors and the public, the DOE radiation dose limit is 100 mrem/year from the sum of internal and external sources.

Dose limits do not include background dose.

The doses discussed above are listed in the following table.

Radiation Dose Limits

Affected Personnel	DOE Dose Limits	
Worker: whole body	5 rem/yr	5000 mrem/yr
Worker: extremity	50 rem/yr	50,000 mrem/yr
Worker: skin	50 rem/yr	50,000 mrem/yr
Worker: internal organ	50 rem/yr	50,000 mrem/yr
Worker: lens of the eye	15 rem/yr	15,000 mrem/yr
Visitors and public	0.1 rem/yr	100 mrem/yr
Pregnant worker embryo/fetus	0.5 rem during entire pregnancy (no more than 0.05 rem per month allowed)	500 mrem during pregnancy (no more than 50 mrem per month allowed)

Your Responsibilities

Workers' Responsibilities Regarding Dose Limits

You are responsible for complying with the DOE radiation dose limits. If you suspect that a dose limit is being approached or exceeded, you should notify your supervisor immediately.

You must comply with posted radiological control rules when accessing radiological work areas. Recognize that your actions directly affect radiation exposure, contamination control, and the overall radiological work environment.

Risks in Perspective

Risks and Life Expectancy

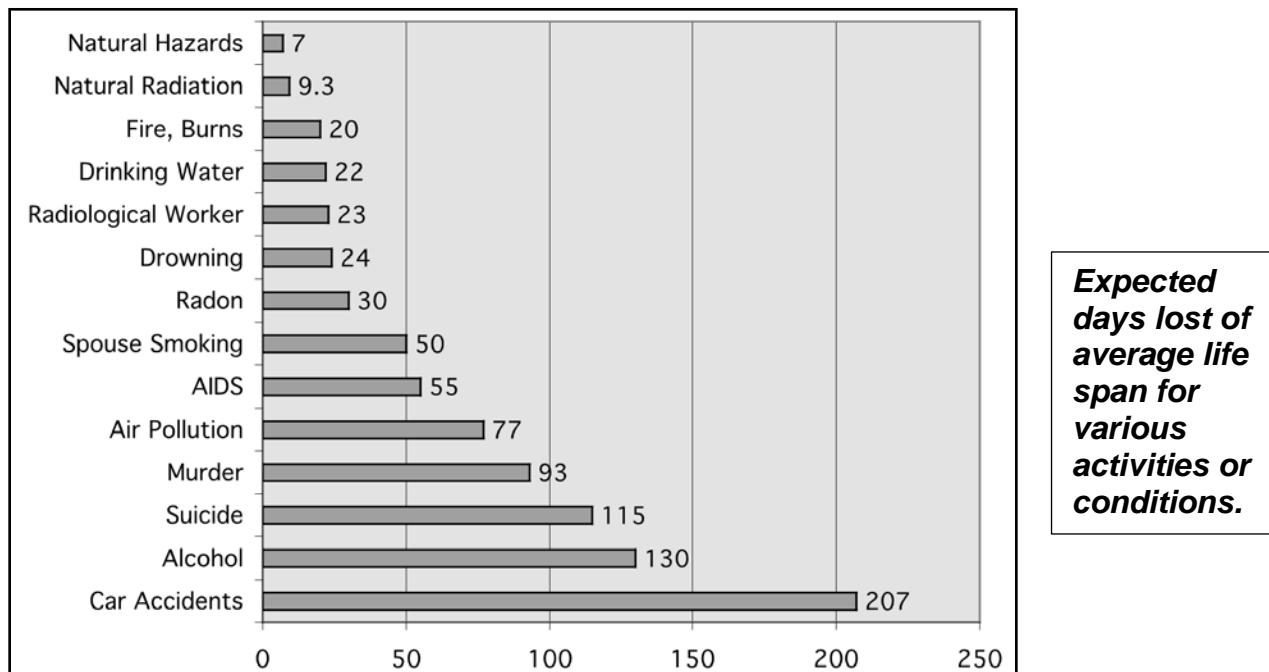
Life expectancy is dependent on many risk factors. Occupation is just one of these factors. Because it is not possible to measure the effects of low levels of radiation, risk estimates have been assumed from the studies of individuals exposed to high levels of radiation.

Acceptance of a risk is a highly personal matter and requires a good deal of informed judgment. One way of evaluating risk is to compare the LLE of a variety of occupations.

The following table compares the estimated LLE for a variety of occupations over a 50-year period.

Assessing Your Risk

In assessing your risk of radiation exposure, you can assume the following:


- If close to the source, an individual exposed to a large, acute whole-body dose, such as that received at Chernobyl, may be killed.
- Small doses of radiation are far less harmful than routine activities, such as driving a car.

Before entering a situation where you might receive doses of radiation between these two extremes, you should be well informed about the doses that exist.

Comparison of Risks—Lost Life Expectancy	
Occupation or Activity over a 50-Year Span	LLE (in days)
Demolition	1500
Coal or uranium mining	1100
Fire fighting	800
Railroad	500
Agriculture	300
Construction	200
Transportation/public utilities	160
Average of all occupations	60
Government	55
Radiological worker with a dose of 1000 mrem/year	50
Service	45
Trade	30
Single radiation dose of 1000 mrem	1.5

Unit 2: Biological Effects

Comparison of Occupational Doses	
Occupation	mrem per year
DOE employees and site workers (radiological work activities)	44
Medical personnel (patient diagnosis/treatment)	70
Grand Central Station workers (building materials)	120
Nuclear power plant workers (radiological work activities)	700
Airline flight crew members (cosmic radiation)	1000

Notes. . .

Unit 3: Personnel Monitoring Programs

Learning Objectives

Major Objectives

Upon completing this unit, you will be able to discuss the personnel monitoring programs used in terms of types, purpose, and your responsibilities.

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 state the purpose of each of the external dosimeter devices used at the Laboratory;
- EO2 identify the correct use of each of the external dosimeters used;
- EO3 identify the correct response for lost, damaged, or off-scale dosimeters;
- EO4 discuss internal dosimetry methods;
- EO5 identify your responsibilities concerning internal dosimetry programs;
- EO6 identify the requirements for declaring a pregnancy;
- EO7 identify your responsibilities for reporting radiation dose received from other sites and from medical applications; and
- EO8 state the method for obtaining radiation dose records.

Introduction

An important part of ensuring that workers (and visitors) keep their doses as low as reasonably achievable (ALARA) is to

- assess the potential for personal radiation exposure before performing work;
- monitor the doses of individuals through the use of dosimetry (the measurement of external radiation by specialized devices called dosimeters); and
- routinely monitor individuals for evidence of accidental intake of radioactive material through the use of bioassay, which involves the direct measurement and analysis of samples, such as blood or urine, taken from the body.

To ensure that the appropriate levels of dosimetry and bioassay are established, all visitors, newly hired workers [Los Alamos National Security, LLC (LANS) or contractor], and rehired workers (with the assistance of their supervisors) must request enrollment in these programs by completing the dosimetry enrollment process online. In addition, individuals and their supervisors must provide updated information through the dosimetry enrollment process upon changing job assignment, job location, or when deemed necessary by a reevaluation of the individual's dosimetry and bioassay results.

Special requirements also exist when an individual enrolled in any routine

Unit 3: Personnel Monitoring Programs

bioassay program wishes to be terminated from these programs. Radiation Protection Services-Internal Dosimetry (RP-SVS) must be notified 3 days *in advance of termination* at 667-6275. Termination samples will be collected at the time of termination from the Laboratory or at the time the individual is removed from the program. For more information, contact RP-SVS.

External Dosimetry

Types of External Dosimeters

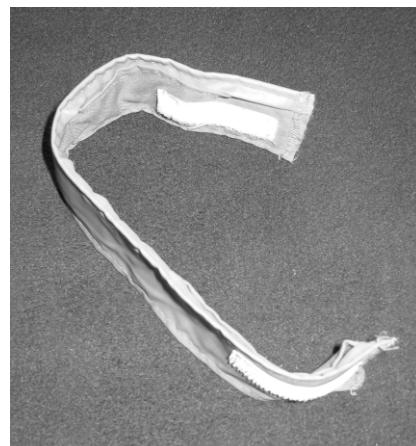
Various types of external dosimeters are used to assess personnel dose from external sources of radiation. The dosimeters used at the Laboratory are the

- thermoluminescent dosimeter (TLD),
- wrist dosimeter,
- track-etch dosimeter,
- nuclear accident dosimeter, and
- electronic personal dosimeter.

thermoluminescent dosimeter

Thermoluminescent Dosimeters (TLDs) (Dual Card)

A TLD is used to assess the legal dose-of-record because it is the most accurate indicator of dose equivalence. TLDs are used to assess beta, gamma, x-ray, and low- to mid-energy neutron radiation dose.


TLDs contain lithium fluoride chips. Ionizing radiation transfers energy to electrons in the atoms of the chips. When the chips are heated to approximately 300°C, light is emitted in proportion to the radiation energy absorbed by the chip. The light is measured, and the actual dose equivalent is calculated.

TLDs are issued by RP-SVS through various group offices and are processed monthly, quarterly, or as needed.

Wrist Dosimeters

Wrist dosimeters are used to assess high-energy beta, gamma, and x-ray radiation dose and to provide an estimate of neutron radiation exposure to the extremities during certain jobs. The wrist dosimeter contains a lithium fluoride chip similar to that in the TLD.

Wrist dosimeters are issued by RP-SVS, through DSESH-RP in the field. They are processed monthly or at the end of a job, whichever comes first.

wrist dosimeter

Unit 3: Personnel Monitoring Programs

Track-Etch Dosimeters

Track-etch dosimeters are used to assess dose from neutron radiation when energies are greater than 5 MeV.

These dosimeters are issued by RP-SVS to workers only at certain TAs at the Laboratory and are processed quarterly or as needed.

track-etch dosimeter

Pocket Ionization Chambers

Pocket ionization chambers, such as pencil dosimeters or bubble dosimeters and similar electronic dosimeters, are used at certain areas to provide supplemental dosimetry during some jobs with a potential for exposure to ionizing radiation. These supplemental dosimeters are used only as ALARA tools, not to assess the dose-of-record.

Pencil dosimeters are used to assess gamma and x-ray radiation exposure. Pencil dosimeters are manufactured with scales in different ranges; the 0–500-mR range, marked in increments of 20 mR, is most often used. The scale is crossed with a hairline that moves upscale in proportion to exposure.

Electronic Personal Dosimeters (EPDs)

Electronic personal dosimeters (EPDs) are replacing pencil dosimeters in most areas of the Laboratory. The one notable exception is in areas where personnel may be exposed to pulsed photons, such as pulsed x-rays. One of the primary advantages of these new dosimeters is the ability to set them to alarm at a specified accumulated dose or dose rate. Another advantage is the immediate EPD digital readout.

Bubble dosimeters are used to assess neutron radiation doses and are read by counting the number of bubbles formed in the chamber.

Pocket ionization chambers and electronic dosimeters are issued by RP-SVS, through Deployed Services Environmental, Safety, & Health (DSESH)-RP in the field. They should be read before entry into and after exit from a radiological area, at a minimum, and they should be reset daily.

electronic personal dosimeter

Nuclear Accident Dosimeters

Nuclear accident dosimeters are used when sufficient quantities and kinds of fissile materials (materials that can be split apart by nuclear reaction) are present to potentially constitute a critical mass. These dosimeters are used in situations where personnel can be exposed to a criticality accident or a sustained nuclear fission chain reaction. They are used to assess high-level neutron radiation doses over the whole energy range.

These dosimeters are issued by RP-SVS only at certain technical areas at LANL, such as TA-55, and are processed as needed.

nuclear accident dosimeter

Correct Use of Dosimeters

- Dosimeters must be worn at all times in areas that are controlled for radiological purposes when required by signs, work permits, or radiological control personnel.
- Dosimeters for declared pregnant workers should be worn between the neck and waist for the term of the pregnancy. The frequency of exchange is determined by the fetal radiation protection specialist as part

of the Reproductive Health Assistance Program.

- Other whole-body dosimeters must be worn on the chest area between the waist and neck.
- TLDs are worn with the LANL emblem facing outward so that lightly shielded windows face the radiation source.
- Pocket or electronic dosimeters, when required, should be worn within 3 inches of the TLD to provide consistent dose measurement.
- Dosimeters should be kept clean, not be opened, and not be contaminated with any foreign material, such as chemicals, oils, detergents, or colognes.
- Dosimeters are sensitive to shock, temperature, and sunlight and should not be left in the car on the dashboard or in direct sunlight for long periods.
- Dosimeters should not be exposed to sources of radiation that do not relate to your work activities, such as medical, dental, or security x-rays. You should notify RP-SVS of any non-work-related exposures when dosimeters are returned. Dosimeters must be returned for processing as required.
- Never put TLDs in checked or carry-on luggage. LANL TLDs should not be taken on travel without first contacting RP-SVS.
- Dosimeters issued by LANL must not be worn outside LANL. It is important to know where the dose was received. If you visit another DOE site and radiation exposure is anticipated, you will be issued a temporary dosimeter at that site. That site is required to send you a report of your exposure within 30 days.

Unit 3: Personnel Monitoring Programs

- Dosimeter storage procedures are specific to each facility. (This information is provided in facility-specific training.)

Lost, Damaged, Off-Scale, Alarming, or Contaminated Dosimeters

While in an area controlled for radiological purposes, you must take proper actions if a dosimeter is lost, off-scale, alarming, damaged, or contaminated. These actions are as follows:

- stop work activities;
- place work activities in a safe condition;
- alert others, as appropriate (request other workers to read their pocket dosimeters);
- immediately exit the area; and
- notify an RCT.

If your TLD is lost, contact your local RCT. Your line manager should complete a Lost Dosimeter form (Form 1325) and submit it to RP-SVS.

If the TLD is found later, both the lost and the replacement TLD should be brought to the DSESH-RP representative in the workplace for a determination as to which TLD should continue to be worn.

Internal Dosimetry

Internal Dosimetry Methods

Any accidental intake of radioactive material can cause an additional dose to the whole body or individual organs.

To measure the amount of radioactive material present inside the body, in vivo monitoring (direct measurement of the body) and/or in vitro monitoring (measurement by the analysis of samples of body fluids or other body

material) are used. From these measurements, an internal dose can be calculated.

In Vivo Monitoring (Direct Bioassay)

In vivo monitoring measures the amount of internally deposited radioactive material by direct measurement from outside of the body. Whole-body counting, chest counting, thyroid counting, and wound counting are examples of in vivo monitoring.

Whole-body counters measure gamma radiation emitted from radioactive material throughout the body. Chest counters measure gamma and x-ray radiation emitted from materials, such as uranium or plutonium daughter products, that have been inhaled.

In Vitro Monitoring (Indirect Bioassay)

In vitro monitoring measures the amount of internally deposited radioactive material by the analysis and evaluation of body fluid or other material excreted or removed from the human body. In vitro samples include urine, fecal, blood, and saliva sampling; nasal swipes; and tissue counting.

In vitro sampling measures alpha or beta radiation. At LANL, routine urinalysis is conducted to detect the presence of plutonium, tritium, uranium, and americium. RP-SVS schedules and tracks all in vitro procedures.

Tracking Derived-Air-Concentration (DAC) Hours (Workplace Air Monitoring)

DAC values can be used to analyze radioactive material levels in air. These values can also be used to estimate the potential for inhalation of radioactive

Unit 3: Personnel Monitoring Programs

material and guide decisions about the need for controls such as personal protective equipment (PPE).

Internal Dosimetry Responsibilities

If you are required to have routine whole-body counts, you should have an initial baseline whole-body count. Routine whole-body counts may be required once a year for workers in certain areas. If you are instructed by an RP PROG primary (or DSESH) representative to have a nonroutine whole-body count, you must do so. If you are in the whole-body count program, you will be required to have a final whole-body count upon termination of your job.

If your routine duties may involve exposure to surface or airborne contamination or to radioisotopes readily absorbed through the skin, you are required to submit in vitro samples at the frequency specified by your particular bioassay program. A baseline procedure should be completed, as required.

Pregnant Worker Radiation Exposure

Special Monitoring Program for Declared Pregnant Workers

A female radiological worker, especially if she believes she may be pregnant, is encouraged to, in writing, voluntarily notify Occupational Health (OH) to begin the process of a family planning, pregnancy, or nursing consultation. No appointment is needed. A nurse will initiate the Reproductive Health Assurance Program evaluation process, including a workplace evaluation. All medical information obtained during this process is confidential. Male radiological workers may also contact OH about reproductive concerns.

The employee will be asked to obtain a supervisor's signature on the Declaration of Pregnancy form. If the worker signs the form, she is considered to be a declared pregnant worker. If the worker does not want to declare her pregnancy, she may still have a workplace evaluation done. The written declaration may be revoked at any time by the worker. If the workplace evaluation identifies the need for changes in her duties, the supervisor will need to be notified. The necessary changes can be implemented only after the worker has signed the Declaration of Pregnancy. The supervisor should provide the option of a mutually agreeable assignment of work tasks, with no loss of pay or promotional opportunity, so that further occupational radiation exposure is unlikely.

The DOE radiation dose limit for an embryo/fetus is 500 mrem over the course of the pregnancy, with a recommended monthly limit of 50 mrem.

The radiation dose to the fetus is measured by the worker's TLD, which is worn between the neck and waist. If the dose is determined to have already exceeded 500 mrem when a radiological worker declares her pregnancy, the worker will not be assigned to tasks in which additional occupational radiation exposure is likely during the remainder of the pregnancy.

The declared pregnant worker should make every reasonable effort using the usual ALARA techniques to minimize her exposure to radiation fields and radioactive material during the pregnancy.

Radiation Doses Received Outside LANL

When traveling to another DOE site, including the NNSS, or a non-DOE site where dosimeters are issued, you should *not* wear a LANL-issued dosimeter. You should provide the sites visited with the address of RP PROG, Radiation Dosimetry Reports & Records, MS E546. The sites visited should notify RP PROG that a dosimeter was issued. If notification is not possible, then you are responsible for informing RP PROG of this occupational exposure.

Radiation Doses from Medical Procedures

If you have been administered radioisotopes for diagnostic or therapeutic medical purposes, you must report your medical procedure to DSESH before returning to work. Send an e-mail to medrad@lanl.gov when (preferably before) you are administered a medical radionuclide by your health care provider, including any details available, such as the type of procedure and nuclide. (Routine medical or dental x-rays do not have to be reported unless a TLD has been exposed to them.)

Radioisotope injections or ingestions for medical purposes will sound the security alarm on special nuclear material (SNM) portal monitors and other radiation detection instruments. If you receive such treatments and work in a protected area or in a material access area, including TA-48, TA-55, or the CMR Building, the following procedure must be followed:

- Before the planned treatment, and as far in advance as possible, your group leader must inform DSESH and Material Control & Accountability

(SAFE-MCAS4), MS G735 (5-1744), of the planned treatment and justify why you cannot be assigned to a non-SNM area during the affected period.

- Following SAFE-MCAS4 approval, LANL protective force will issue supplemental station orders that detail limitations and conditions for allowing you to enter and exit through the appropriate guard stations or security posts.

Radiation Dose Records

Radiation dose reports are maintained by RP-PROG and are provided as follows:

- You may access your monthly dose reports online at
http://int.lanl.gov/safety/radiation_protection/dosimetry_measurements/index.shtml

Note: All dose reports require CRYPTOCard authentication. Some have additional requirements.

- You may request access from RP-PROG.
- Hard-copy reports of occupational dose are sent to individual workers on an annual basis only.
- Termination reports of the dose received at LANL are sent to all terminated workers as soon as the data are available or within 90 days of termination.
- Reports of visitor dose for non-DOE or DOE contract workers are sent to the visitor and/or the visitor's employer within 30 days of the visit or within 30 days after the dose has been determined.

Unit 3: Personnel Monitoring Programs

Notes. . .

Unit 4: ALARA

Learning Objectives

Major Objective

Upon completion of this unit, you will be able to explain the methods used to implement the ALARA—as *low as reasonably achievable*—program.

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 state the DOE and LANL management policies for the ALARA program;
- EO2 identify the LANL policy on lifetime dose;
- EO3 identify your responsibilities as a radiological worker in the ALARA program;
- EO4 identify the basic protective measures of time, distance, and shielding for reducing external radiation dose;
- EO5 state examples of the use of time, distance, and shielding;
- EO6 state the routes through which radioactive material can enter the body;
- EO7 identify the methods for minimizing (reducing) intake of radioactive material;
- EO8 identify the methods you can use to minimize (reduce) radioactive waste;

EO9 identify the requirements for removal of waste from a radiological controlled area (RCA) that is controlled for contamination; and

EO10 identify the requirements for shipping, receiving, labeling, and working with radioactive material.

Introduction

ALARA stands for “as low as reasonably achievable.” The goal of the ALARA Program is to keep radiation dose well below dose limits and the appropriate action level. You should always try to maintain your radiation dose ALARA by using protective measures and methods to reduce exposure to radiation.

Note: *An action level is a notification “flag” that is used to notify the worker, line management, the DSESH team leader, and the radiation protection program manager (RPPM) that the worker has exceeded a predetermined external dose level and is possibly approaching dose limit.*

ALARA Program

ALARA Principles

The principles of ALARA include minimizing (reducing) both external and internal doses from radiation and radioactive material. These principles are an integral part of all Laboratory activities that involve the use of radioactive materials or radiation-producing

Unit 4: ALARA

machines. You are responsible for implementing the principles of ALARA.

DOE Management Policy

The DOE ALARA policy states that radiation exposures to workers and the public must be

- maintained ALARA;
- kept well below regulatory limits; and
- controlled so that there is no exposure without commensurate (equal) benefit, based on sound economic principles.

Laboratory Management Policy

Each line organization with radiological workers must have a documented ALARA program with a scope that fits the organization's potential for radiation exposure. The ALARA Steering Committee reviews the LANL-wide and the facility-specific ALARA programs. In addition, ALARA committees are formed in large organizations that have a greater potential for exposure.

Laboratory Policy on Lifetime Dose (Whole Body)

The Laboratory policy requires that you keep the amount of your lifetime dose (in rem) equal to or less than your age in

years. If your lifetime dose exceeds your age, a special dose management plan will be established to realign your dose with your age.

ALARA Program Responsibilities

Action Levels

Action levels are established to keep doses well below the regulatory limits listed in Table 4-3 of P121-4.0, Radiation Protection. When an action level is exceeded during the calendar year, RP-PROG provides notification to the following personnel:

- the individual with the reported dose,
- the individual's group leader,
- the DSESH team leader assigned to the individual's technical area, and
- the RP Division Leader.

The following table lists the established action levels.

Action Levels	
Dose Being Reported	Notification Action Level
Whole body dose	1.0 rem
Lens of the eye	3.0 rem
Extremity/organ/tissue	10 rem
Embryo/fetus	0.1 rem

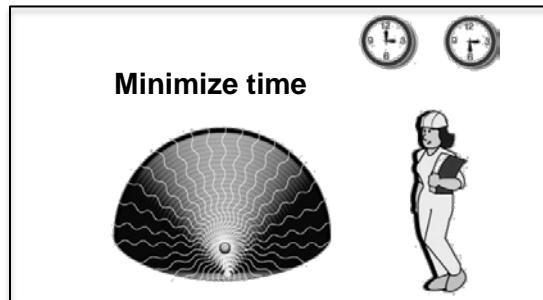
Note: These action levels are based on yearly cumulative doses.

You, the Radiological Worker

You are expected to demonstrate responsibility and accountability through an informed, disciplined, and cautious attitude toward radiation and radioactive materials. You must

- maintain radiation dose ALARA by using dose reduction techniques discussed in this unit;
- know the dose limits and the remaining dose available for the job;
- know the radiological conditions in the work area;
- obey the posted, written, and oral radiological control instructions and procedures;
- take part in pre-job and post-job briefings;
- report radiological problems to an RCT and/or a supervisor; and
- stop work when conditions or practices are unsafe.

External Radiation Dose Reduction

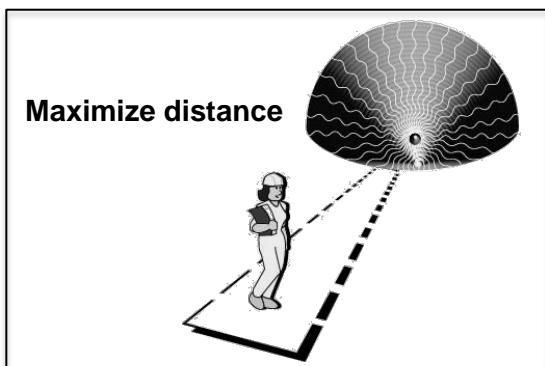

Basic Protective Measures to Reduce External Radiation Dose

Basic protective measures used to reduce external radiation dose are

- minimizing time in a radiation field,
- maximizing distance from a source of radiation,
- using shielding whenever practicable, and
- using source reduction whenever practicable.

Methods for Minimizing Time

Reducing the amount of time you spend in a field of radiation will lower the dose you receive.



You should

- plan and discuss the task thoroughly before entering the work area (You should be in the work area only if you are required to do the job.);
- have all the necessary tools before entering the work area;
- use mockups and practice runs that duplicate work conditions;
- exit a radiological area as soon as work is completed;
- work efficiently but swiftly;
- do the job right the first time;
- perform as much work as possible outside the area, or when practicable, move parts or components outside the area to perform work; and
- observe stay time if a time has been assigned. (An RCT may limit the amount of time you may stay in an area. This concept is known as stay time [stay time = allowable dose/area dose rate]. Stay time may be assigned in areas where standard dose reduction techniques are not practical.)

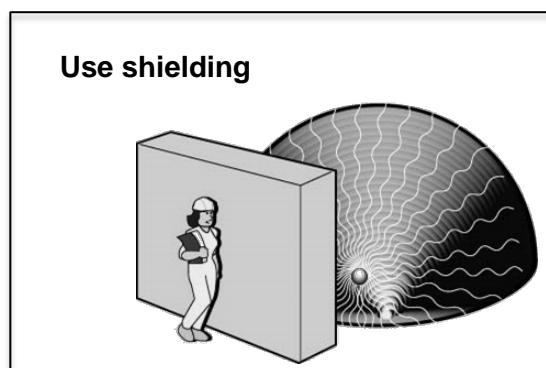
Methods for Maximizing Distance

Maximizing your distance from a source of radiation will lower the dose you receive.

You should

- stay as far away as practicable from the source of radiation (for point sources, the dose rate follows the inverse square law. If the distance is doubled, the dose rate falls to one-fourth of the original dose rate. If the distance is tripled, the dose rate falls to one-ninth of the original dose rate.);
- be familiar with the radiological conditions and the sources of radiation in the work area;
- during work delays or when on standby, move to lower dose rate areas;
- carry radioactive material at a distance from your body or use remote handling devices when practicable; and
- whenever possible and with a supervisor's permission, move the work to an area with a lower dose rate.

Proper Use of Shielding


Shielding reduces the amount of radiation dose you receive. Different

materials shield you from different types of radiation. You should

- take advantage of permanent fixtures, such as nonradiological equipment and structures, which may provide some shielding;
- use available shielded containment, such as glove boxes;
- wear safety glasses or goggles when applicable to protect your eyes; and
- use temporary shielding, such as lead or concrete blocks, only with proper authorization from your supervisor and DSESH-RP. The placement of shielding could actually increase the total dose because of the man-hours involved in the placement or through interactions between the radiation and improperly selected shielding material.

Methods of Source Reduction

Source reduction involves procedures such as flushing radioactive systems, moving radioactive materials, or decontaminating to reduce the amount of radioactive materials present that contribute to radiation levels in an area.

With supervisory approval, you should

- flush components or piping systems with clean water before performing maintenance activities;

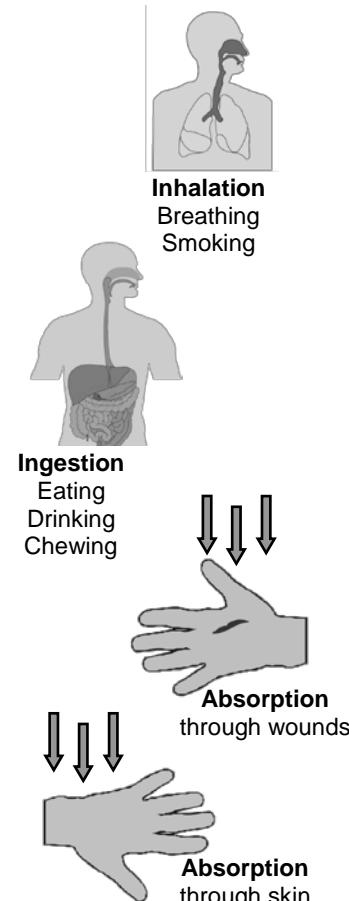
Unit 4: ALARA

- drain pipes, tanks, or components that contain residual contaminated liquid; and
- remove packaged radioactive material (waste or other storage containers) from the work area.

Note: Inverse Square Law. If the distance from the source is doubled, the exposure will drop to one-fourth of the previous value.

At 1 foot, 100 mrem/hour:

At 2 feet, 25 mrem/hour:



Internal Radiation Dose Reduction

Routes of Entry

Internal exposure results when radioactive material is taken into the body. Radioactive material can enter the body through one or more of the following pathways:

- inhalation (breathing, smoking),
- ingestion (eating, drinking, chewing, applying cosmetics and lip balms),
- absorption through the skin (e.g., tritium and radioiodine), and
- absorption through wounds.

Methods to Reduce Internal Radiation Dose

Reducing the potential for radioactive material to enter the body is important. You should

- wear protective clothing, as required;
- wear respirators properly, as required;
- report all wounds, cuts, scabs, or rashes before entering areas controlled for radiological purposes;
- comply with the requirements of work documents;
- do not eat, drink, smoke, apply cosmetics or lip balms, or chew in areas controlled for contamination; and
- use extra caution with sharp tools, and use proper controls when grinding and sanding.

Working with Radioactive Material

Radioactive material exists in many forms. It may be solid (metal, powder, etc.), liquid, gases, or vapors. It may be used or stored in many different containers or exist as a radioactive sealed source, where it is enclosed in a protective container or firmly fixed to a support surface.

No matter what form the material or container, steps must be taken to control the use and movement of radioactive material.

Required Labeling of Radioactive Material

- Individual containers of radioactive material and/or radioactive items must be labeled.
- Packaging of items having removable surface contamination in excess of Radiation Protection P121, Table 14-2 values, must be labeled when used, handled, or stored in areas other than contamination areas, high-contamination areas, or airborne radioactivity areas.
- If a label is applied to packaged radioactive material, it must be applied to the outside of the package or be visible through the package.
- Labels must include the standard radiological warning trefoil and the words CAUTION or DANGER and RADIOACTIVE MATERIAL.
- A tag may be used to meet the labeling requirements described in this chapter. In addition to required information, a tag is subject to additional requirements:
 - must be used only temporarily (for removal, transport, or short-term holding of items);

- must be completed by DSESH; and
- may not be used in environments that could degrade the tag or its legibility.

Packaging and Storing Radioactive Material

- Radioactive material may be stored in radiological areas, radiological buffer areas (RBAs), RCAs, or uncontrolled areas, as long as the above labeling requirements are met and posting requirements for radiological hazards are met.
- For radioactive material used or stored in uncontrolled areas, the material and its intact packaging must not present the potential for 100 mrem/yr external dose or contamination above the values in Radiation Protection P 121, Table 14-2. If radioactive material will be used or stored in an uncontrolled area, a radiation protection (RP) subject matter expert (SME) must evaluate the conditions to ensure these criteria are met.
- Radioactive material must be packaged and stored so that the package integrity is maintained to prevent the release of contamination; higher-risk materials require more robust packaging.
- As an ALARA measure, package contents should be readily identifiable. Using transparent packaging material for items with removable contamination is one method to address this issue.
- As another ALARA measure, items with loose surface contamination that are located within contamination areas, high-contamination areas, or airborne radioactivity areas should be

Unit 4: ALARA

wrapped, bagged, or otherwise controlled.

Shipping and Receiving Radioactive Material from Transportation

The requirements in this section are supplemental to those of the packaging and transportation program maintained by Operations Support-Packaging & Transportation (OS-PT) and defined in P 151-1, "Hazardous Material (Hazmat) Packaging and Transportation."

RCTs perform surveys and provide results in support of packaging and transportation processes, providing information to characterize hazards associated with items, their packaging, and their shipping containers.

- An RCT must perform receipt surveys of radioactive material shipments when shipments are received at the central shipping and receiving warehouse (or other facility used as a depot and the container is moved or handled) as soon as practicable but not later than 8 hours after the beginning of the working day following receipt of the package.
- An RCT must perform receipt surveys of radioactive material shipments when received at the final destination facility before the shipping vehicle leaves that facility.
- When outer transport containers of radioactive material are initially opened following receipt, an RCT must be present to perform surveys to ensure that no unanticipated conditions exist (i.e., contamination on inner packaging).
- Receipt surveys are required for
 - waste shipments;

- accountable sealed sources or radioactive material required to be labeled;
- any 10 CFR 835 threshold that requires receipt survey;
- large items having the potential for contamination;
- a package containing radioactive material of any type or quantity that arrives damaged (e.g., crushed or wet); or
- other radioactive material (except for limited exceptions).

When in doubt, consult with your RCT.

Control of Radioactive Sealed Sources

Sealed sources that have not been properly controlled can be hazardous to both workers and the public. At the Laboratory, radioactive sealed sources are tracked from the time they are ordered to the time of their disposal (cradle to grave).

You should contact your sealed source custodian if

- you are planning to order a new radioactive sealed source,
- you discover a radioactive sealed source in your work area that is not accounted for, or
- you have questions about procedures for controlling radioactive sealed sources.

The sealed source custodian will contact line management and the Radioactive Sealed Sources & Radiation Generating Devices (RP-PROG RSS/RGD) office.

Additional training will be required. (Course 15907, Radioactive Sealed Source Safety Self-Study).

Lessons Learned: Personal, Offsite Contamination Discovered

Occurrence Report: ALO LA LANL SIGMA 2005 0007

A Laboratory technical staff member (TSM) received contamination to his skin, and contamination was spread to sites in three other states. Workers who were potentially exposed to the material, Americium-241, were placed on special bioassay sampling to determine any internal exposure.

A radiological control technician supervisor first discovered the contamination on July 25, 2005, at Technical Area 3, Building SM 66 (Sigma Complex) after she found a radiological material tag inside a trash can located in an uncontrolled area. The RCT supervisor learned that the TSM had received and unpacked a shipment of radioactive material from TA 55 on July 14, 2005. The RCT supervisor surveyed the local area and found surface contamination in several areas near the glove box, which was operated with positive pressure. The RCT also detected contamination on the TSM's skin and personal items. Subsequent surveys discovered contamination in his office, personal vehicle, and home.

MST Division took immediate actions, including convening a critique to understand the scope of the issue, evacuating the facility, monitoring all 160 or so residents for contamination (no contamination was detected), and commissioning a comprehensive survey of the facility. Based on survey results and continuing discussion with facility staff, additional workers and areas of the facility were considered potentially affected by this contamination. These workers were placed on special bioassay programs, and the offices and associated spaces were surveyed. Additional controls were temporarily placed at the exit of the facility, and additional surveys of high-traffic areas were initiated to ensure that any contamination would be detected and mitigated. Areas found contaminated or considered "suspect contaminated" were cordoned off, decontaminated as necessary, and released systematically.

Based on information from the TSM and evaluation of coworkers' spaces, the Radiological Assistance Program (RAP) deployed a series of teams to offsite locations, including the TSM's home and the homes of several coworkers. Contamination was discovered on a number of items in the TSM's home and one low-level spot in one coworker's home. Based on information from the TSM, a RAP team was deployed to his wife's home in Colorado, his mother's home in Kansas, and a hotel room in Kansas; low-level contamination was found and mitigated in each of these locations.

Additionally, the TSM had prepared two weld test samples for offsite shipment in one package to Bechtel Bettis in Pennsylvania. Bettis evaluated the samples and confirmed that the shipment had low-level contamination. Further investigation revealed that an Actinide and Fuel Cycle Technologies Group (NMT-11) worker transported the package in his privately owned vehicle July 20, 2005, and delivered it to the SM-30 warehouse for shipment as a nonhazardous, domestic, unclassified shipment. Surveys of the NMT-11 worker's vehicle and office found contamination only on a towel where this package had been placed in his vehicle. Surveys of the SM-30 warehouse area and personnel did not detect any contamination.

NOTE: Several procedures relating to the transportation and receipt of radioactive material were violated. There were also communication issues between the shipper, receiver, and radiation protection personnel.

Control of Radiation Generating Devices (RGDs)

RGDs consist of devices such as x-ray security scanners, x-ray diffraction instruments, and electron microscopes.

You should contact your RGD owner/custodian if

- you are planning on ordering a new RGD,
- you are planning on relocating or moving an RGD,
- you are making any repairs/modifications to an RGD, or
- you have any questions about procedures for controlling RGDs.

The RGD owner/custodian will contact line management and the RGD Office (RP-PROG)

Additional training will be required (Course 44626, Radiation Generating Devices Safety Self-Study).

Control of Radioactive Material

Immediately contact your RCT or facility manager if radioactive material is unaccounted for. Radiation safety, public protection, and national security are important reasons for controlling radioactive material and radioactive sealed sources.

Radioactive Waste Minimization

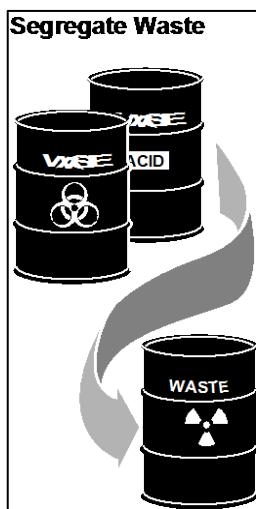
Generation of Radioactive Waste

Working in and around radioactive material generates radioactive waste, which ultimately must be disposed of. Some examples of radioactive waste are contaminated

- paper,
- gloves,
- glassware,

- tissues, and
- mops.

Minimize the Materials Used for Radiological Work


To minimize exposure and reduce costs associated with the handling, packaging, and disposal of radioactive waste, you must minimize the amount of radioactive waste generated. Minimizing the materials used for radiological work minimizes the amount of radioactive waste generated. You should

- take only the tools and materials needed for the job into areas that are controlled for radiological purposes, especially contamination areas;
- unpack equipment and tools in a clean area to avoid bringing excess clean material (the packaging) to the work area;
- whenever possible, use equipment identified for radiological work; and
- use only the materials required to clean the area (an excessive amount of bags, rags, and solvent adds to radioactive waste).

Segregate (Separate) Radioactive from Nonradioactive Waste

Segregating radioactive from nonradioactive waste minimizes the amount of radioactive waste generated. You should

- place radioactive waste in the receptacles identified for radioactive waste, not in receptacles for nonradioactive waste; and
- do not throw nonradioactive waste or radioactive material that may be reused into radioactive waste containers.

Segregate Compactable Waste from Noncompactible Waste

Segregating compactable from noncompactible materials contributes to waste minimization. You should dispose of

- small solid materials, such as paper, plastic, rubber, glassware, conduit, and chips of wood or sheet metals, as compactable waste; and
- large or bulky materials, such as heavy pipes, angle iron, equipment, lumber, and soil, as noncompactible waste.

Minimize the Amount of Mixed Waste Generated

Mixed waste is radioactive waste mixed with hazardous waste. Hazardous materials such as lead, oil, or solvents identified as radioactive may not be disposed of in the same manner as radioactive waste. The storage and disposal of mixed wastes such as these require additional cost and space. You should

- consider the use of nonhazardous materials;
- determine the type of waste to be generated and the proper disposal

procedure for the waste before performing a job;

- place mixed waste in receptacles identified for mixed waste;
- not dispose of chemicals, solvents, or oils in floor drains;
- contact your waste management coordinator before disposing of any mixed waste material or other hazardous materials; and
- contact your waste manager when in doubt about hazardous materials or if you have any questions about waste disposal.

Good Housekeeping Techniques

Good housekeeping techniques contribute to waste minimization. You should

- keep the work area neat by promptly placing drop cloths and catch bags under the work area and by properly segregating and removing all items and waste;
- prevent spills of radioactive liquids (promptly notify an RCT or a supervisor of all spills); and
- place all protective clothing, respiratory equipment, and tools in proper containers (not in radioactive waste containers, unless told to do so by an RCT).

Radiological Controlled Areas

Removing Waste from Radiological Controlled Areas (RCAs)

Two types of RCAs where radioactive waste is likely to exist are

- RCA for surface contamination: an area where a reasonable potential exists for surface contamination in excess of those amounts specified in P121-1.0, Table 14-2, or that could

Unit 4: ALARA

- lead to an exposure in excess of 0.1 rem/year from intake of radioactive material; or
- RCA for volume contamination: an area where a reasonable potential exists for contamination to be dispersed throughout material or waste that is not individually labeled.

Waste Segregation (Separation)

Waste should be segregated before leaving an RCA. The primary methods used to segregate waste are

- acceptable knowledge (see glossary for more information),
- surface contamination measurement,
- volume contamination measurement, or
- any combination of the three.

Any waste from RCAs must be removed only in accordance with a procedure approved by line or facility management. You should address any questions regarding this procedure to the area waste management coordinator or a designated alternate.

Notes. . .

Unit 5: Radioactive Contamination Control

Learning Objectives

Major Objectives

Upon completing this unit, you will be able to discuss the methods used to control the spread of radioactive contamination.

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 define fixed, removable, and airborne contamination;
- EO2 state sources of radioactive contamination;
- EO3 state the appropriate response to indicators of potential area contamination;
- EO4 state the appropriate response to indicators of personnel contamination;
- EO5 identify the methods used to control radioactive contamination;
- EO6 identify the proper use of protective clothing;
- EO7 explain the purpose and use of handheld personnel contamination monitors (PCMs); and
- EO8 identify the normal methods used for decontamination.

Introduction

Contamination control is one of the most important aspects of radiological

protection. Using proper contamination control practices will help ensure a safe working environment. You should recognize potential sources of radioactive contamination and use appropriate contamination prevention methods.

Radioactive Contamination

Comparison of Radiation and Radioactive Contamination

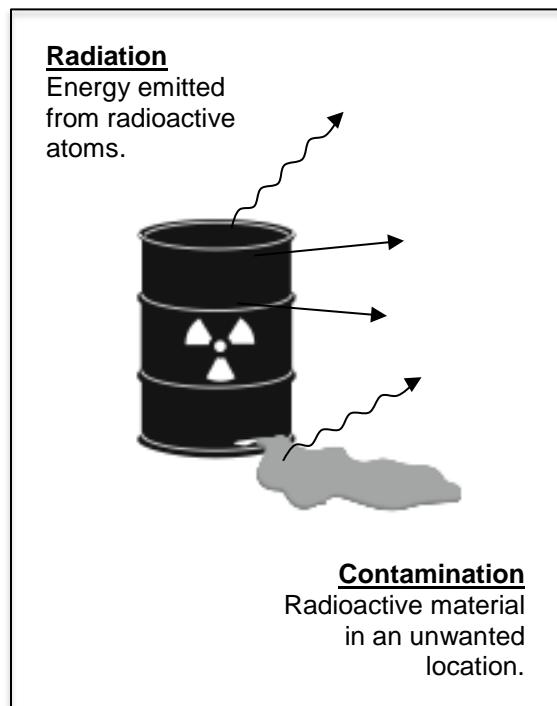
The following define radioactivity and radioactive contamination:

- **Radiation** is energy moving through space. It can be electromagnetic, such as ultraviolet rays, or particles, such as alpha particles.
- **Radioactive material** contains radioactive atoms. Radioactive atoms have unstable atomic nuclei that spontaneously emit (give off) radiation.
- **Ionizing radiation** is energy emitted from radioactive atoms. To be ionizing, the radiation must have enough energy to ionize atoms. It is a stream of particles, such as alpha particles, beta particles, neutrons, or high-energy photons (gamma rays), or a mixture of these emissions.
- **Radioactive contamination** is radioactive material in an unwanted location.

Types of Radioactive Contamination

Radioactive contamination can be fixed, removable, or airborne.

Fixed Contamination


Contamination that cannot be readily removed from surfaces is **fixed contamination**. Fixed contamination cannot be removed by casual contact (wiping, brushing, or washing). It may be released when the surface is disturbed (buffing, grinding, or cleaning with acids). Over time it may weep, leach (drain), or otherwise become removable. It can be fixed because of how it was produced (i.e., many activation products), or it may be fixed intentionally to control contamination.

Removable Contamination

Contamination that can be readily removed from surfaces is called **removable contamination**. It is also known as loose or transferable contamination. It may be transferred by casual contact: wiping, brushing, or washing. Air movement across removable contamination can cause airborne contamination. An object that comes in contact with removable contamination may in turn become contaminated. This concept is known as cross-contamination.

Airborne Contamination

Contamination dispersed in the air in the form of dust, particles, vapors, or gases is called **airborne contamination**. Operations that include cutting, grinding, machining, or sanding of radioactive material or contaminated equipment can generate airborne contamination. Contamination in this form spreads readily with the flow of air. One very important concern is breathing the contaminated air. Careful monitoring and the use of respiratory protection are methods to control internal dose caused by airborne contamination.

Sources of Possible Contamination

Radioactive material can be spread to unwanted locations through a lack of awareness or failure to follow procedures. You may encounter radioactive contamination in the form of a solid, liquid, or gas/vapor.

The following are some sources of possible contamination:

- leaks or tears in radiological containers, such as barrels, plastic bags, glove boxes, or glove box gloves;
- repackaging of radioactive material;
- airborne contamination depositing on surfaces;
- excessive motion or movement in areas of high contamination;
- uncovering buried radioactive material;
- leaks or breaks in radioactive systems;

Unit 5: Radioactive Contamination Control

- opening of radioactive systems without proper controls;
- opening of shipping containers that contain radioactive material;
- small, sometimes microscopic pieces of highly radioactive material that may be present when contaminated systems are opened;
- machining, cutting, or grinding highly radioactive or contaminated material;
- fragments of activated material that have escaped containment;
- poor housekeeping in contaminated areas;
- sloppy work practices (such as cross-contamination of tools, equipment, or workers) resulting from walking on, touching, brushing against, or laying tools and equipment on contaminated surfaces; and
- not following procedures and work documents that cover all types of radiological work.

Indicators of Radioactive Contamination

Indicators of Possible Contamination

Indicators of contamination can be

- leaks, spills, and standing water;
- damaged radiological containers;
- airborne contamination monitor alarms;
- unexplained personnel contamination; and
- higher-than-normal background readings on personnel contamination survey devices.

Your Response to Suspected Contamination

If you discover or suspect contamination, you should

- stop work,
- back away from the possible contamination,
- warn others,
- notify an RCT and your appropriate supervisor, and
- work with the RCT to decontaminate the work area.

In response to airborne contamination or to a continuous air monitor (CAM) alarm (if you are not wearing a respirator), you should

- leave the area immediately, alerting others;
- contact an RCT and your appropriate supervisor;
- proceed to the predetermined safe location until both the workers and the area are surveyed; and
- alert others as you leave.

If you are wearing respiratory protection, you should

- stop the operation safely,
- alert others in the area,
- contact an RCT and follow instructions, and
- do not remove your respirator until surveyed for contamination.

In response to a PCM alarm, you should

- remain in the immediate area (as close as practicable to the PCM);
- notify an RCT (by telephone or intercom, or with help from a coworker);
- take available actions to minimize cross-contamination, such as putting a glove on a contaminated hand if practicable; and
- follow RCT instructions for decontamination.

Control of Radioactive Contamination

Contamination Control

Radioactive contamination can be controlled by the use of source reduction, engineered controls, administrative controls, proper radiological practices, PPE, and decontamination.

Proper controls help prevent the spread of contamination to other areas and can decrease personnel contamination.

Personnel contamination can result in

- radioactive material on the skin or inside the body, which could cause a dose to the skin or a whole-body dose; and/or
- radioactive material spreading beyond established boundaries, which could present a hazard to the public.

Source Reduction

Source reduction is the safe removal of unneeded radioactive sources or the removal of radioactive material from the immediate work area, work processes, or radiological systems.

Contamination Control Methods

Engineered Control Methods

Engineered controls are included in the building's construction and/or into the planning of radiological work. Engineered controls designed to prevent the spread of contamination include

- ventilation that maintains airflow from areas of least contamination to areas of most contamination (clean from contaminated to highly contaminated areas) and that maintains a slight negative pressure on buildings or rooms with a potential for contamination;

- high-efficiency particulate air (HEPA) filters that remove radioactive particles from the air;
- building and shielding materials selected for ease of decontamination;
- remote handling equipment for remote operations;
- containment, such as vessels, glove boxes, tents, or plastic coverings that control contamination;
- sticky mats to reduce the tracking of contamination;
- corridors to establish traffic patterns; and
- walls or doors that act as barriers.

Note: HEPA filters are not effective with gases such as tritium.

Administrative Control Methods

Administrative controls include access restrictions, exit requirements, procedures, postings, work documents, work permits, and briefings.

Access Restrictions

To control contamination, access to contaminated areas is limited by

- postings (yellow with a black or magenta radiation symbol) that list hazard information and
- control points at locations with an increased potential for contamination and/or exposure.

Exit Requirements

Continued strict requirements and procedures apply when a person or item leaves an area that has a potential for contamination. These requirements include

- surveying for contamination and
- documenting equipment and item removal.

Procedures, Work Documents, Work Permits, and Briefings

Operating and maintenance procedures, work permits, and briefings should incorporate contamination control measures. Preventive measures used to control contamination include

- establishing adequate work controls before starting jobs and
- discussing (during pre-job/post-job briefings) and implementing measures that will help prevent the spread of contamination.

Proper Radiological Practices

Good Housekeeping

Good housekeeping is an important part of an effective contamination control program. It involves the interactions of all groups within the facility. You should

- keep your work area neat;
- try to confine radioactive material to a small area;
- control and minimize all material taken into or out of contaminated areas;
- keep your work area neat to prevent spills of radioactive liquids;
- identify and report leaks before they become serious problems;
- use sound preventive maintenance practices to minimize the likelihood of radioactive material releases; and
- recognize that, despite precautions, radioactive material will occasionally escape and contaminate an area.

Good Work Practices

Good work practices are essential to contamination control. You should be alert for violations of the principles of contamination control, such as improper

work methods, poor work practices, or procedure violations. You must

- prepare work areas to prevent the spread of contamination, such as covering piping or equipment below a work area to prevent dripping contamination onto clean(er) areas and covering or taping tools or equipment to minimize decontamination after the job;
- comply with procedures, work permits, postings, or instructions from radiological control personnel;
- wear protective clothing and respiratory equipment whenever required, and follow donning and doffing procedures;
- avoid contact of skin, clothing, and respiratory equipment with contaminated surfaces;
- change out gloves or other PPE as needed to prevent cross-contamination of equipment;
- not eat, drink, smoke, chew, or apply cosmetics or lip balms in areas that have a potential for contamination; and
- take the following special precautions when containing radioactive material in plastic bags:
 - use PPE as applicable;
 - roll the sides of the bag over to protect the outside of the bag, as well as the hands;
 - do not force excess air out of the bag, which may cause radioactive material to become airborne (in some cases, pointing the open portion of the bag away from the face and gently squeezing the bag may be appropriate, with approval of an RCT);

Unit 5: Radioactive Contamination Control

- tape the ends of any sharp items to prevent the bag from being punctured;
- tape the ends of the bag securely to prevent leakage; and
- place an approved absorbent material into the bag to absorb free-standing liquid.

Personal Protective Equipment

PPE, such as protective clothing and respiratory equipment, is used to supplement engineering and administrative controls.

Protective Clothing

Workers must wear PPE, such as protective clothing (anticontamination clothing, often called anti-Cs), to enter contamination areas to prevent the contamination of skin or personal clothing. The degree of protective clothing required depends on the work area radiological conditions and the nature of the job.

Protective clothing generally consists of

- coveralls (white or yellow);
- two pairs of surgeon's gloves (cotton glove liners may be worn inside surgeon's gloves for comfort but not for protection); and
- shoe covers, hood, and/or skull cap.

Prescribed anti-Cs are listed on work permits and/or postings or are specified by an RCT. Specific procedures for donning and doffing anti-Cs may be posted in the vicinity of step-off pads. When using protective clothing, you should

- inspect all protective clothing for rips, tears, or holes before use;

- avoid wearing personal effects such as jewelry in known contamination situations;
- after donning protective clothing, proceed directly from the dress-out area to the work area;
- after exiting the work area, proceed directly to the doffing area;
- avoid getting nonplastic coveralls wet (wet coveralls allow contamination to reach the skin or personal clothing);
- contact an RCT if protective clothing becomes torn or ripped; and
- avoid touching uncovered portions of the body (such as wiping the face or pushing up glasses) with gloves or sleeves of anti-Cs.

Respiratory Protective Equipment

Respiratory protective equipment is used to prevent the inhalation of radioactive material. Respiratory protective equipment is used when engineered controls may not be able to maintain airborne contamination at acceptable levels. Minimum requirements are stated in operating procedures and work permits.

Respiratory protection should be considered under the following conditions:

- when entering a posted airborne radioactivity area;
- during operations that breach contaminated systems; and
- when cutting, grinding, or welding contaminated surfaces.

Radiological Worker Training *does not* qualify you to wear respiratory protective equipment. You must meet the following requirements for wearing respiratory protective equipment:

Unit 5: Radioactive Contamination Control

- pass a physical exam,
- receive specific training,
- perform a respiratory fit test,
- be clean shaven as required by respirator type, and
- have a current respirator card issued by Industrial Hygiene and Safety-- Institutional Programs (IHS-IP).

Minimum PPE for Entry into Areas		
For entry into . . .	and this situation . . .	this PPE is required.
RCA controlled for contamination	Routine entry	Long pants and shoes that enclose the foot (not considered PPE, but required as a minimum)
Radiological buffer area (RBA) controlled for contamination	Routine entry	Anticontamination (anti-C) lab coat and booties (including long pants and shoes that enclose the foot)
Contamination Area or High Contamination Area	Light and moderate work	Level I clothing: one pair of coveralls, two pair of impermeable gloves (inner pair taped), one pair of booties, and optional skull cap or hood
Contamination Area or High Contamination Area	Heavy work	Level II clothing: two pair of coveralls, two pairs of impermeable gloves (inner pair taped), two pairs of booties, and optional skull cap or hood
Airborne Radioactivity Area	Any	Level I or Level II clothing with hood and required respiratory protection equipment

Minimum PPE for Selected Activities	
For this activity . . .	this PPE is required.
Routine work in or accessing containment or confinement systems with dispersible radioactive material (e.g., glove boxes, hoods); the established engineered controls are working	Anti-C lab coat, gloves, booties
Working with items with removable contamination in excess of the levels specified in P121 Table 14-2 (e.g., benchtop work with contaminated radioactive material or surfaces)	Anti-C lab coat, gloves, booties
Activities where the potential for personal contamination is limited to the hands, arms, and upper front portion of the body	Anti-C lab coat, gloves,
Handling large quantities of contaminated liquids where immersion is possible	Level I with water-resistant or impermeable outer layer
Penetrating or otherwise challenging contaminated systems (e.g., glove boxes, hoods, ventilation systems, pumps); the established engineered controls are breached; this is not considered routine work	Level I or II, dependent on potential hazard; additional SME review and approval required for each evolution
Responding to releases of radioactive material (mitigation, characterization, recovery)	Case dependent; use conservative PPE under the direction of appropriate SME or follow emergency response procedures
Other activities with the potential for personnel contamination	Case dependent; follow posting, work control documents, and SME instructions

Decontamination

When the presence of removable contamination is discovered, decontamination is a valuable means of control. However, decontamination of the area is not always possible because of

- economical conditions—the cost of time and labor to decontaminate the location outweighs the hazards of the contamination present, or
- radiological conditions—the radiation dose rates or other conditions present hazards that far exceed the benefits of decontamination.

When decontamination is not possible, other means of control, such as engineered controls, administrative

controls, proper radiological practices, and PPE, must be used.

Decontamination is the removal of radioactive material from a location where it is not wanted. This process does not result in the disappearance of the radioactive material but involves the removal of the radioactive material to another location.

Material Decontamination

Material decontamination involves the removal of radioactive material from tools, equipment, floors, and other surfaces in the work area. When material decontamination is necessary, you should

- notify an RCT before beginning any decontamination, and follow the

Unit 5: Radioactive Contamination Control

RCT's instructions and radiological work permit (RWP) requirements,

- obtain prior approval before using any chemical solvents or cleaners that will generate mixed waste, and
- follow RCT instructions for the decontamination process.

Material decontamination is accomplished by

- using masking tape,
- mopping or wiping with soap and water,
- scrubbing or wiping with damp rags or pads,
- scrubbing with wire brushes, or
- using chemical solvents or cleaners.

Personnel Decontamination

Internal Decontamination

Radioactive material deposited inside the body is a continuous source of internal exposure until it is removed or decays. The reduction of radioactive material inside the body depends on

- the radioactive half-life of the particular isotope, and
- the normal biological elimination process (exhalation, perspiration, urination, and defecation).

In some cases, the biological elimination process may be enhanced by the use of chelating agents, under medical advice and supervision.

Note: A chelating agent is a substance that attaches to heavy metals (plutonium, uranium, mercury, and lead), some of which may be radioactive, and is used to speed their removal from the bloodstream.

External (Skin and Clothing) Decontamination

Personnel decontamination involves the removal of radioactive material from skin or personal clothing. If you detect contamination on skin or personal clothing, you must notify an RCT and your line manager to ensure accurate occurrence reporting and to initiate appropriate bioassay sampling.

Contaminated wounds may require emergency medical care, which takes precedence over radiological considerations.

The decontamination process should always avoid skin abrasions, which may lead from external contamination to internal contamination.

Skin and clothing decontamination is normally accomplished by

- using a dry decontamination material such as masking tape on clothing and
- washing with mild soap and lukewarm water, if necessary.

Washing will produce contaminated water, which must be properly managed. This method will be used only with RCT supervision.

If more intense skin decontamination is required, OH medical personnel must be contacted. Washing too vigorously or with harsh chemicals could increase the intake of radioactive material.

Detection and Measurement of Contamination

Methods of Detection and Measurement

Different methods are used to detect different types of radioactive contamination. Once detected, the amount of contamination present is

recorded on work documents, survey maps, and status boards.

Fixed Contamination

Fixed contamination is detected and measured by direct frisking of the area. An RCT passes a survey instrument directly over the area, measuring the amount of radioactivity present. This measurement is reported in units of dpm/100 cm².

Removable Contamination

Removable contamination is detected by smearing or swiping surface areas. (This technique is not appropriate for detecting contamination on personnel because it could spread or embed contamination.)

- Smear (used for smaller surface areas such as 100 cm² or smaller)—a small filter paper is used to smear a 4-x-4-inch area (100 cm²). Radiological control personnel count the smear using counting equipment and report the amount of radioactivity in units of dpm/100 cm².
- Swipe (used for larger surface areas)—a highly absorbent cotton mesh pad is used to swipe an area larger than 100 cm².

Airborne Contamination

Airborne contamination is detected and measured using either portable or stationary air samplers. Contamination levels are typically reported in units of $\mu\text{Ci}/\text{cm}^3$, $\mu\text{Ci}/\text{ml}$, or $\mu\text{Ci}/\text{m}^3$ of air.

Radioactive Material Suspended in a Liquid

Radioactive liquids are detected and measured by taking samples of the liquid. Radiological control personnel count the samples and report the contamination levels in units of $\mu\text{Ci}/\text{ml}$ or $\mu\text{Ci}/\text{l}$.

Hot Particles

Highly radioactive hot particles can cause a high, localized dose if they remain in direct contact with the skin or extremities. These particles are very difficult to detect because of their small, sometimes microscopic size.

DSESH personnel may touch an area using adhesive tape to remove hot particles and then slowly move a survey instrument over the tape to verify the removal of the particles. Caution must be used when performing a whole-body frisk to prevent accidentally knocking the particles off and losing track of them.

Hot particles are small, sometimes microscopic pieces of highly radioactive material that may be released and spread when contaminated systems are opened.

Personnel Contamination Monitoring (PCM) Equipment

Using a Handheld Contamination Monitor

Only personnel who have been specifically trained at their work site to perform contamination monitoring will be authorized to perform that monitoring. The training will be site specific, instrument specific, and conducted by an authorized person.

Unit 5: Radioactive Contamination Control

Contamination monitoring equipment is used to detect radioactive contamination on personnel. To use a handheld contamination monitor, you must

- be properly trained on an instrument before using it;
- verify that the instrument is in calibration (by checking the calibration void date);
- check for any physical damage, such as torn MylarTM, damaged cables, or a damaged case;
- verify that the battery is in operable condition;
- verify that the instrument is on and set to the proper scale and that the audio can be heard;
- source-check the instrument. If the response is more or less than expected, do not use the instrument. Contact an RCT for a replacement instrument;
- hold the probe approximately $\frac{1}{2}$ inch or less from the surface for beta and gamma radiation and $\frac{1}{4}$ inch or less for alpha radiation;
- move the probe slowly over the surface, about 1–2 inches per second; and
- proceed with the whole-body frisk in the following order:
 - head (start at the mouth and nose area and pause about 5 seconds);
 - neck and shoulders;
 - arms (pause at each elbow):
 - hands (be sure hands are dry);
 - chest and abdomen;
 - back, hips, and seat of pants;
 - legs (pause at each knee);
 - shoe tops; and

- shoe bottoms (pause at sole and heel).

Take a minimum of 2–3 minutes to complete a whole-body frisk:

- If the count increases during frisking, pause 5–10 seconds over the area to provide adequate time for instrument response.
- If contamination is indicated by an increased count rate, move the detector away, allow the count rate to return to background, and then resurvey the area. If the increased count rate is repeated, remain in the area and notify an RCT.
- If contamination is indicated by a detector alarm, remain in the area and notify an RCT.
- Minimize cross-contamination while waiting for an RCT to arrive, and do not attempt to perform personnel decontamination.

Notes. . .

Unit 6: Radiological Emergencies

Learning Objectives

Major Objectives

Upon completing this unit, you will be able to identify the radiological emergencies and alarms and the appropriate response to each.

Enabling Objectives (EOs)

- EO1 recognize that alarms and responses vary from one facility to another,
- EO2 state the purpose of and identify the two primary types of radiological emergency alarms used at the Laboratory,
- EO3 state the correct response to an area radiation monitor (ARM) alarm,
- EO4 state the correct response to a continuous air monitor (CAM) alarm,
- EO5 state the correct response to a personnel contamination monitor (PCM) alarm,
- EO6 identify responses to personnel injuries, and
- EO7 state the possible consequences of disregarding radiological alarms.

Introduction

Various radiological monitoring systems are used to warn you of abnormal radiological conditions. You must

become familiar with these alarms to prevent unnecessary exposure to radiation and/or contamination.

Emergency Alarms and Responses

Alarms and Responses at LANL Facilities

Equipment that monitors for abnormal radiation exposure levels and airborne contamination levels is placed in strategic locations throughout the facilities. You must be able to identify the equipment and alarms and respond appropriately to each.

Emergency alarms and responses differ from one facility to another at the Laboratory, although some basic principles apply in all emergency situations. Additional emergency response training will be provided in facility-specific training.

The primary types of radiological emergency alarms are

- ARMs and
- CAMs.

Although not a true emergency alarm, the correct response to PCMs is important.

Area Radiation Monitors

An ARM is an instrument that measures the ambient radiation exposure level. The types of ARMs are specific to each facility and will be discussed during the facility orientation.

Unit 6: Radiological Emergencies

ARMs are installed in frequently occupied locations where the potential for unexpected increases in dose rates exists. They are also installed in remote locations where there is a need for local indication of dose rates before personnel enter the work area.

ARMs are not a substitute for radiation exposure surveys in characterizing the work area.

ARMs will alarm when area radiation levels exceed a set level. When an ARM alarms, you should

- leave the area immediately, alerting others, and
- contact an RCT.

area radiation monitor (ARM)

Continuous Air Monitors

A CAM is an instrument that continuously samples and measures the level of airborne radioactivity on a real-time basis. The three types of CAMs are alpha, beta/gamma, and tritium.

CAMs will alarm when airborne radioactivity levels exceed a set level. If you do not have respiratory protection when a CAM alarms, you should

- leave the area immediately, alerting others;
- contact an RCT; and

- proceed to the predetermined safe location until both the workers and the area are surveyed.

continuous air monitors (CAMs)

If you have respiratory protection, you should

- stop the operation safely,
- alert others in the area,
- contact an RCT and follow instructions, and
- do not remove your respirator until it is surveyed for contamination by an RCT.

Personnel Contamination Monitors

PCMs are placed at the exit from a posted area. You must monitor yourself for contamination whenever you leave the area.

If a PCM alarms, you must

- remain in the immediate area,
- notify an RCT,
- minimize cross-contamination, and
- do not attempt to perform personnel decontamination without RCT guidance.

If you must leave the area, for example to use a phone to notify an RCT if one is not on hand, you must inform the RCT of all locations where you have been.

Unit 6: Radiological Emergencies

Cross-contamination can be cleaned up, but only if the RCT knows about it.

Disregard for Radiological Alarms

Consequences of Disregarding Alarms

Disregarding or tampering with any radiological alarms may

- jeopardize both your safety and your coworkers' safety,
- cause excessive personnel exposure,
- result in the unnecessary spread of contamination, and
- lead to disciplinary action.

Radiological Emergency Situations

Emergencies in Radiological Areas

Performing work in a radiological environment requires that more precautionary measures be taken than performing the same work in a nonradiological setting. An emergency in a radiological area requires additional precautionary measures.

Situations Requiring Immediate Exit

Situations that require immediate exit from an area that is controlled for radiological purposes are a/an

- ARM alarm,
- CAM alarm (unless the worker is wearing a respirator),
- criticality alarm,
- evacuation alarm set off by a release of radioactive material,
- stop work and evacuation order,
- lost or damaged dosimeter,
- irregular or off-scale reading of any supplemental dosimetry, and

- torn protective clothing.

Response to Personnel Injuries

In response to personnel injuries in areas that are controlled for radiological purposes, you should follow these guidelines:

- For serious injuries, first aid takes priority over radiological concerns: call 911, administer first aid, and contact an RCT. The immediate health of the individual, rather than the radiological protection procedure, is the primary consideration.
- The following are considered serious injuries that have the potential to cause loss of life, disability, or serious pain (this list is not a complete list):
 - head or neck injury;
 - penetrating injury (except for a minor puncture wound to an extremity);
 - loss of consciousness;
 - disorientation;
 - convulsion;
 - loss of motor function;
 - limbs at abnormal angles (breaks or dislocations);
 - amputations;
 - burns of the face, hands, feet, or genitals;
 - burns larger than the palm of the hand;
 - inhalation of any abnormal substance;
 - extensive bleeding; and
 - abnormal breathing patterns.
- For minor injuries, contamination control takes priority:
 - contact an RCT immediately,

Unit 6: Radiological Emergencies

- follow RCT instructions,
- have any wounds surveyed by an RCT for contamination,
- contact your supervisor, and
- administer first aid after decontamination.

Accidental Breach, Leak, or Spill

An accidental breach of or leak from a radioactive system or a spill of radioactive material or radioactive liquid require immediate response. Contact the RCT and follow the SWIMS (Stop, Warn, Isolate, Minimize, Secure) or facility-specific procedure:

- **S**top and evaluate the situation.
- Safely stop work that is in progress.
- Evaluate what supplemental actions are needed.
- If a leak is from a valve or piping system, do not close the valve (only qualified personnel should close valves).
- Do not attempt to collect leaking liquids unless told to do so by an RCT.
- Cover the spill with spill pads, if practicable and if criticality or other safety concerns are not an issue.
- **W**arn others of the hazard, and evacuate the area.
- Inform an RCT, DSESH, and others in the area of the situation.
- Recruit available coworkers to help make emergency notifications or to respond to the incident.
- Pass on to others information about the type, quantity, and location of the spill; information on any contaminated personnel; and any other pertinent information.

- **I**solate the area.
- Place personnel, rope, or tape at entry points to the area.
- Limit access to the area to minimize the spread of contamination, and assist cleanup personnel in determining the extent of the spill.
- **M**inimize exposure to both contamination and radiation.
- Move upwind and away from the spill.
- Use protective clothing, if available.
- Do not touch areas suspected of being contaminated.
- Prevent tracking contamination to other areas.
- **S**ecure unfiltered ventilation, as appropriate.

Rescue and Recovery Operations

Considerations in Rescue and Recovery Operations

In extremely rare cases, emergency exposure to high levels of radiation may be necessary to rescue personnel or to protect major property. Rescue and recovery operations that involve radiological hazards can be a very complex issue with regard to the control of personnel exposure.

The type of response to these operations is generally left up to the officials in charge of the emergency situation. The officials' judgment is guided by many variables, which include determining the risk versus the benefit of the action, as well as how to involve other personnel in the operation.

Unit 6: Radiological Emergencies

If the situation involves a substantial personal risk, informed volunteers will be used. The use of volunteers will be based on various factors, such as age, experience, and previous exposure. The ALARA principle still applies to these operations.

Emergency Dose Limits

The DOE guidance on emergency doses for these personnel is as follows:

- Protecting major property where the routine dose limit (5 rem per year) is not practicable.
- The DOE emergency level is 10 rem.
- Lifesaving or protecting a large population where the lower dose limit is not practicable.
- The DOE emergency level is 25 rem.
- Lifesaving or protecting a large population—only on a voluntary basis, and only personnel fully aware of the risks involved may volunteer.
- The DOE emergency level is greater than 25 rem (no upper limit).

Note: Response to these types of situations usually involves emergency response personnel who have received Emergency Responder Radiological Training.

Unit 6: Radiological Emergencies

Notes. . .

Unit 7: Radiological Postings and Controls

Learning Objectives

Major Objectives

Upon completion of this unit, you will be able to identify radiological postings as well as general and job-specific radiological work permits (RWPs).

Enabling Objectives (EOs)

You will be able to select the correct response from a group of responses, which verifies your ability to

- EO1 identify the colors and symbols used on radiological postings, signs, and labels;
- EO2 define the types of radiological areas;
- EO3 state the entry and exit requirements for each area controlled for radiological purposes;
- EO4 state the radiological and disciplinary consequences of disregarding, altering, removing, or relocating radiological postings, signs, and labels;
- EO5 state the purpose of and information found on RWPs;
- EO6 identify your responsibilities in using RWPs; and
- EO7 state the correct response if the RWP is incorrect or if you do not understand the information.

Introduction

Radiological postings and work permits inform you of radiological hazards and controls required for radiological work.

Radiological Postings

Purpose of Radiological Postings

Radiological postings are used to alert personnel to the presence of radiation and radioactive material. Postings also identify areas that are controlled for radiological purposes based on radiation dose rates and/or contamination levels.

Postings Colors and Symbols

Areas controlled for radiological purposes must be posted with a black or magenta, standard three-bladed radiological warning symbol, or trefoil, on a yellow background. Radioactive material must be identified with black or magenta print on yellow labels or tags. At LANL, black on yellow is used for most postings and labels.

Additionally, yellow and magenta ropes, tapes, chains, or other barriers must be used to mark the boundaries. These barriers must be clearly visible from all directions.

Posting Information

A radiological posting contains the following information from top to bottom:

- a warning word such as “CAUTION” or “NOTICE” that indicates the level of hazard;

Unit 7: Radiological Postings and Controls

- the area designation, such as Radiation Area or Contamination Area;
- radiation levels and airborne radioactive concentration as applicable; and
- the normal entry requirements.

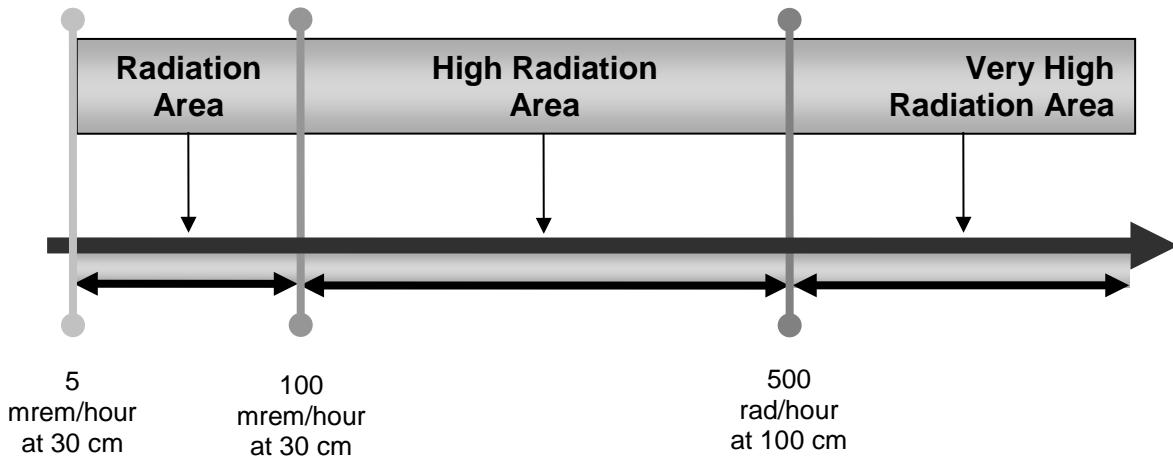
Because radiological conditions may change, the information on the hazard-level postings is also changed

to reflect the new conditions. Therefore, a posting seen on one day may be replaced with a new posting the next day.

Note: RCTs are responsible for the placement and/or removal of all radiological postings.

The following table lists the first word(s) of the radiological posting, indicating its hazard level and the appropriate responses:

Hazard Levels of Radiological Postings			
The word(s) . . .	is like . . .	and means . . .	You should . . .
NOTICE	the road sign "traffic signal ahead"	hazards may exist.	proceed.
CAUTION	a flashing yellow traffic light	hazards do exist.	proceed with caution, accompanied by an RCT or other appropriate personnel.
DANGER	a flashing red traffic light	significant dangers do exist.	pause to evaluate the danger, with the help of an RCT or other appropriate personnel.
GRAVE DANGER	a red light	a very great danger exists.	STOP. Do not proceed until the conditions have been evaluated by an RCT and a senior manager. Only volunteers who are fully aware of the risks may proceed.


Types of Radiological Areas

The three primary types of radiological areas found at LANL are

- radiation areas,
- contamination areas, and
- airborne radioactivity areas.

The words "high" or "very high" may also appear on the radiological posting. For example, you may encounter postings containing the wording "CAUTION: Radiation Area" or "Grave Danger: Very High Radiation Area."

Unit 7: Radiological Postings and Controls

Criteria for Radiological Postings

Posting	Defining Conditions	Minimum Entry Requirements	Exit Requirements	Working Requirements
Controlled Area	Not expected to receive a dose exceeding 100 mrem/yr; contamination unlikely.	General Employee Radiological Training (GERT), facility-specific training If RCA is controlled for contamination: <ul style="list-style-type: none">Long pants	RCAs controlled for external radiation: <ul style="list-style-type: none">None RCAs controlled for contamination: <ul style="list-style-type: none">Hand and foot friskMonitor other areas of the body suspected of contamination	Follow job-authorized procedures and protection requirements. Practice ALARA. Do not loiter during work delays. Follow no eating, drinking, smoking, or chewing policy, except in RCA for legacy contamination.
Radiological Buffer Area	Where individuals are likely to receive >100 mrem/yr or potential contamination levels greater than Table 14-2 of P121 values (spon-1.0). May be used for areas containing hoods, glove boxes, and rooms with radiation-producing machines.	Radiological Worker II Training Live, Course 20301, and facility-specific training RBAs controlled for external radiation: <ul style="list-style-type: none">TLD RBAs controlled for contamination: <ul style="list-style-type: none">Anti-C labcoatBootiesLong pantsShoes that enclose the foot	RCAs controlled for external radiation: <ul style="list-style-type: none">None RCAs controlled for contamination: <ul style="list-style-type: none">Hand and foot friskMonitor other areas of the body suspected of contamination	Report controls that are not adequate or are not being followed. Obey posted, written, or oral requirements. Be aware of changing

Unit 7: Radiological Postings and Controls

Radiation Area	>5 mrem/hour at 30 cm from source up to 100 mrem/hour	Radiological Worker II Training Live, Course 20301, and facility-specific training <ul style="list-style-type: none"> • TLD • FRPR^a or RWP 	None	radiological conditions. Report any unusual conditions.
High Radiation Area	>100 mrem/hour at 30 cm from source up to 1 rem/hour at 30 cm from source	Radiological Worker II Training Live, Course 20301, and facility-specific training <ul style="list-style-type: none"> • TLD • Supplemental Dosimeter • FRPR or RWP 	None	
Very High Radiation Area	>500 rad/hour at 100 cm from source	Training to be determined and approved by the RP division leader	None	
Hot Spot	≥5 times area dose rate and >100 mrem/hour or ≥5 times surface contamination level	N/A	N/A	
Radioactive Material	Accessible areas where items or containers of radioactive material in quantities greater than Appendix 16A values (P121-1.0) are used, handled, and stored	GERT, facility-specific training	N/A	
Hot Job Exclusion Area	As posted	Consistent with area conditions RWP required for planned radiological work	Consistent with area conditions	


^aFRPR = facility radiation protection requirements.

Unit 7: Radiological Postings and Controls

Controlled Area

A controlled area, also called a radiological controlled area (RCA), is an area of relatively low radiological risk around other areas controlled for radiological purposes.

The area is established to control potential external exposure and/or contamination. Individuals working in RCAs are not expected to receive more than 100 mrem per year. In areas controlled for contamination, contamination at levels higher than the limits specified in P121, Table 14-2 (Surface Contamination Values) is not likely. In areas controlled for depleted uranium (DU), fragments of DU may exist on the ground and also may be embedded in trees and on the walls of buildings in the area.

Areas Controlled for Legacy Contamination

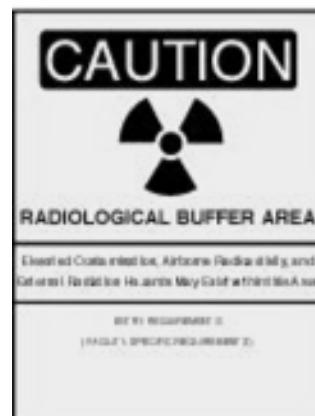
In these areas, no potential for contamination in normal (routine) activities may exist. Possible contamination may exist in some systems of the facility, and controls must be in place for work on these systems. No restrictions exist on eating or drinking, and there are no exit requirements.

Other conditions

RCAs may contain radioactive material that does not present significant contamination or external radiation hazards. Volume-contaminated materials may be present and may not be individually labeled.

Entry Requirements for a Controlled Area

Entry requirements include


- General Employee Radiological Training (GERT);
- additional facility- or operation-specific training, as required; and
- protective clothing, as required at specific facilities.

Exit Requirements for a Controlled Area

The Laboratory has no exit requirements for areas controlled for potential external exposure. In areas controlled for potential contamination or for DU, personnel and equipment monitoring is required at exit points.

Radiological Buffer Area

An RBA is a secondary boundary area around other radiological areas containing greater radiological hazards. It is established to control potential external exposure or contamination.

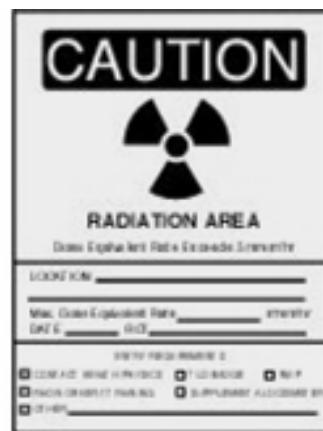
Unit 7: Radiological Postings and Controls

Individuals in an RBA are likely to receive more than 100 mrem in a year. There may be a higher potential for contamination above P121 Table 14-2 levels. RBAs may also be used for laboratories containing hoods or glove boxes and for rooms containing radiation generating devices.

Minimum Entry Requirements for a Radiological Buffer Area

Entry requirements are facility-specific and usually include

- radiological worker training,
- facility-specific training, and
- appropriate external and internal dosimetry.


Exit Requirements for a Radiological Buffer Area

- Monitoring requirements for exiting are facility specific. In RBAs so designated for potential contamination, you must
- monitor personnel and equipment for contamination as instructed on the posting at the area exit; and
- monitor personal items, such as notebooks, papers, or flashlights, as well as equipment used or stored in the area.

Radiation Area

A radiation area is an area in which the whole-body radiation dose rate is greater than 5 mrem at 30 cm from the source in 1 hour up to 100 mrem at 30 cm in 1 hour from the source.

Radiation Area Posting

Minimum Entry Requirements for a Radiation Area

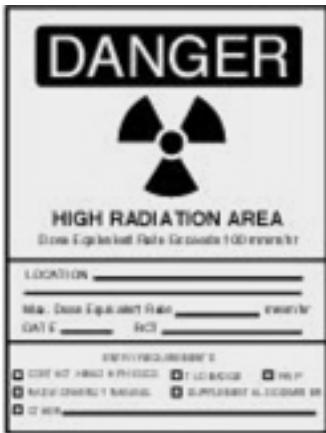
Entry requirements include

- radiological worker training,
- facility-specific training,
- a TLD and other appropriate supplemental external dosimetry, and
- written authorization to enter and/or perform work in the area using a required work control document (FRPR or RWP).

Exit Requirements for a Radiation Area

The Laboratory has no exit requirements for radiation areas, high radiation areas, or very high radiation areas when no other radiological hazards are present.

High Radiation Area


A high radiation area is an area in which the whole-body radiation dose rate is greater than 100 mrem in 1 hour at 30 cm from the source up to 500 rad in 1 hour at 30 cm from the source.

Unit 7: Radiological Postings and Controls

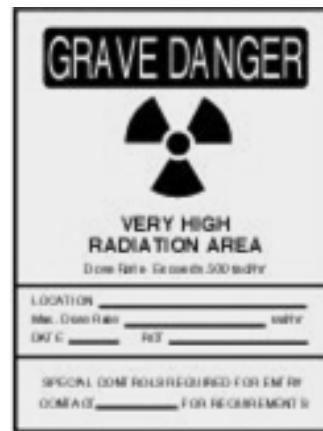
The two high radiation area posting requirements are

- >100 mrem/hour to 1 rem/hour at 30 cm, posted as Caution High Radiation Area, radiological worker training, facility-specific training, TLD, supplemental dosimeter, FRPR or RWP; and
- >1 rem/hour up to 500 rad/hour at 100 cm, posted as Danger High Radiation Area, radiological worker training, facility-specific training, TLD, supplemental dosimeter, RWP.

High Radiation Area Posting

Minimum Entry Requirements for a High Radiation Area

Entry requirements include


- radiological worker training,
- facility-specific training,
- a worker's signature on a job-specific RWP,
- a TLD and supplemental dosimetry,
- written authorization to enter and/or perform work in the area using a required work control document (FRPR or RWP), and
- a radiation survey before entry.

Where dose rates are greater than 1 rem/h, additional requirements are specified in P 121, Chapter 9, Access Control.

Very High Radiation Area

A very high radiation area is an area in which the whole-body radiation dose rate is greater than 500 rad in 1 hour at 100 cm from the source.

Very High Radiation Area Posting

Entry Requirements for a Very High Radiation Area

Very high radiation areas are kept locked, and entry is normally controlled. When entry is required, the dose rate usually can be reduced below the limits for a very high radiation area by removing or shielding the source of radiation. Employee training to be determined and approved by the RP division leader.

General Considerations for High or Very High Radiation Areas

Dose rates in a high radiation area range from 0.1 to 500 rad/h. In some very high radiation areas at LANL, dose rates can exceed a million rad/second. Because of the very wide range of hazards, each entry into a high or very high radiation area is evaluated individually, beginning with a job-specific RWP. Access is

Unit 7: Radiological Postings and Controls

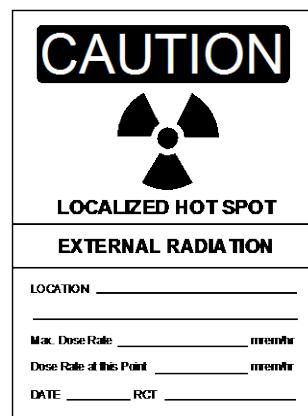
controlled by physical barriers,* and actual entry may be controlled by full-time RCTs. Dose rates are continuously monitored by dosimeters. In other words, entry into a high or very high radiation area is very strictly controlled.

***Note:** Physical controls and other measures are required at >1 rem in 1 h.

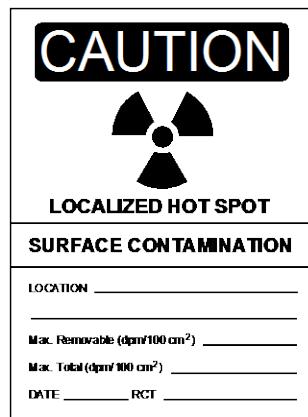
Requirements for Working in All Radiological Areas

While working in radiological areas, you must

- practice ALARA;
- move to lower dose areas whenever possible;
- not loiter during work delays;
- follow the no eating, drinking, smoking, or chewing policy;
- obey any posted, written, or oral requirements, including evacuate, hold-point, or stop-work orders from an RCT. (Hold points are specific times, as noted in a procedure or work permit, that work must stop for radiological control evaluations. Stop-work orders usually result from inadequate radiological controls, radiological controls not being implemented, and/or not being observed.);
- report to an RCT if radiological controls are not adequate or are not being followed;
- be aware of changing radiological conditions;
- ensure that your activities do not create radiological problems for others;
- be alert that others' activities may change the radiological conditions in the area; and


- report to an RCT any unusual conditions, such as leaks, spills, or radiological control instrumentation alarms.

Hot Spots


There are two types of hot spots. One type is categorized as external radiation and the other as surface contamination.

A hot spot is a localized source of radiation or radioactive contamination that is sometimes found in equipment or piping. The radiation level at a hot spot (external radiation) is at least five times the level in the surrounding area and greater than 100 mrem/h. You should avoid these spots.

Hot Spot Posting: External Radiation

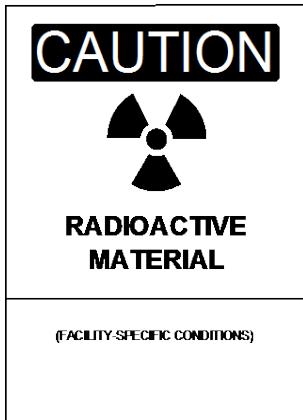
Hot Spot Posting: Surface Contamination

Unit 7: Radiological Postings and Controls

Criteria for Radiological Postings and Entry/Exit Requirements				
Posting	Defining Conditions	Minimum Entry Requirements	Exit Requirements	Working Requirements
Contamination Area	Levels (dpm/100 cm ²) that are greater than (or likely to exceed) Table 14-2 values but do not exceed 100 x Table 14-2 values (ISD 121-1.0).	Radiological Worker II, TLD, anti-Cs, and authorization by way of work control documents as required and appropriate internal dosimetry programs.	Exit only at step-off pad(s). Remove anti-Cs carefully. Monitor personnel via a whole body frisk. Monitor personal items and equipment.	Follow all of the requirements for working in radiological areas. Avoid unnecessary contact with contaminated surfaces. Avoid stirring up contamination. Secure hoses and cables. Wrap or sleeve materials, equipment, and hoses.
High Contamination Area	Levels (dpm/100 cm ²) that are greater than (or likely to exceed) 100 x Table 14-2 values (ISD 121-1.0).	Radiological Worker II, TLD, anti-Cs, RWP, and authorization by way of work control documents as required and appropriate internal dosimetry programs. Read and sign that you understand the job, radiological conditions, and protection requirements as written in the RWP and will abide by them.		
Airborne Radioactivity Area	Concentrations (μ Ci/cm ³) above backgrounds that are greater than the derived air concentration (DAC) values or that would result in an individual's being exposed to greater than 12 DAC-hours in a week.	Radiological Worker II, TLD, anti-Cs, RWP, respirator, and authorization by way of work control documents as required and appropriate internal dosimetry programs.		
Soil Contamination Area	Contaminated soil not releasable in accordance with DOE Order 5400.5.	Radiological Worker II, facility/ job-specific requirements.	Facility/job-specific requirements may apply.	
Fixed Contamination	No removable contamination and total contamination levels that are greater than Table 14-2 values (ISD 121-1.0).	N/A	N/A	Bag contaminated tools. Avoid touching exposed skin. Exit area immediately if wound occurs or if anti-Cs tear.

Radioactive Material

A Radioactive Material posting indicates a location where radioactive material is used, handled, or stored. This posting is not required when radioactive material is


located inside contamination or airborne radioactivity areas but may be used to provide more information.

For posting purposes, radioactive material includes equipment,

Unit 7: Radiological Postings and Controls

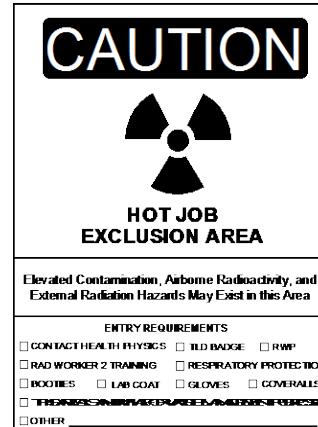
components, and materials that have been exposed to contamination or have been made radioactive by activation. Radioactive material also includes sealed or unsealed radioactive sources. A radioactive sealed source is radioactive material encapsulated or bonded to prevent loss and dispersal of the material during continued or repetitive use as a source of test radiation. Examples include radioactive material that is contained in a sealed capsule (sealed between two layers of nonradioactive material) or firmly fixed to a nonradioactive surface.

Radioactive Material Posting

Note: Postings that designate equipment or components with actual or potential contamination will contain wording such as "CAUTION: Internal Contamination" or "CAUTION: Potential Internal Contamination."

Entry/Exit Requirements for Radioactive Material

The Laboratory has minimum entry requirements, such as taking GERT and facility-specific training. There are no exit requirements.


Hot Job Exclusion Area

A Hot Job Exclusion Area posting is a temporary sign used only while a job is in progress. It cannot be used for more than

8 hours. If the job is not complete after 8 hours, the posting must be replaced by another posting, such as Contamination Area or Radiation Area.

The RWP is posted at the job site. In an emergency, contact the RCT assigned to the job.

Hot Job Exclusion Area Posting

ENTRY REQUIREMENTS

- CONTACT HEALTH PHYSICS TLD BADGE RWP
- RAD WORKER 2 TRAINING RESPIRATORY PROTECTION
- BOOTS LAB COAT GLOVES COVERALLS
- ~~TRANSMITTERS AND RECEIVERS~~
- OTHER _____

Entry/Exit Requirements for Hot Job Exclusion Area

Entry is restricted to workers and RCTs who have signed the RWP acknowledgment log. Entry and exit requirements are specific to the job and are listed on the posting and the RWP.

Contamination Area

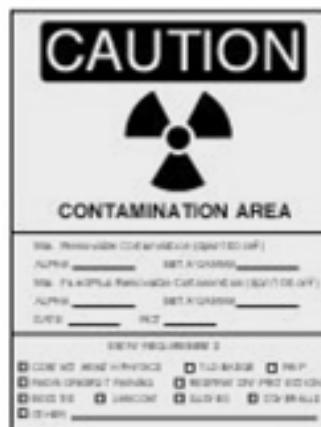
A Contamination Area is an area in which the removable contamination level is greater than the limits but less than 100 times the limits specified in Table 14-2 of P 121.

Contamination Area Posting

Entry Requirements for a Contamination Area

Entry requirements include

- radiological worker training;
- facility-specific training;
- a TLD;
- your signature on the RWP;
- protective clothing, as required by the RWP, posting, or RCT;
- appropriate internal dosimetry programs; and
- written authorization to enter and perform the work.


Exit Requirements for a Contamination Area

When exiting a contamination area, you must follow the exit requirements listed on page 73 of this manual.

High Contamination Area

A high contamination area is an area in which the removable contamination level is greater than 100 times the limits specified in Table 14-2 of P 121.

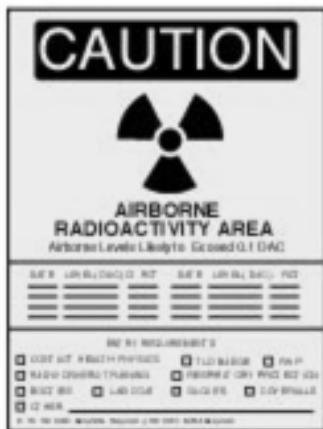
High Contamination Area Posting

Entry Requirements for a High Contamination Area

Entry requirements include

- radiological worker training;
- facility-specific training;
- a TLD;
- your signature on the RWP or FRPR;
- Level 1 protective clothing, as required by the RWP, posting, or RCT;
- a pre-job briefing;
- appropriate internal dosimetry programs; and
- written authorization to enter and perform the work.

Exit Requirements for a High Contamination Area


When exiting high contamination areas, you must follow the exit requirements, including whole-body frisk.

Airborne Radioactivity Area

An Airborne Radioactivity Area is an area in which the airborne concentrations above background that are greater than, or likely to exceed, the DAC values or that would result in an individual (without respirator) being exposed to greater than 12 DAC-h in a week.

Unit 7: Radiological Postings and Controls

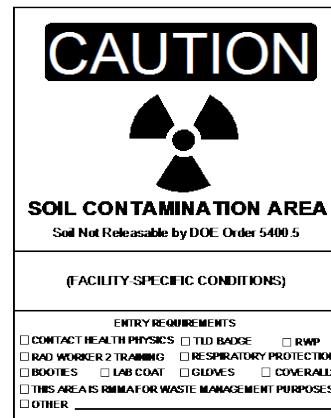
Airborne Radioactivity Area Posting

Entry Requirements for an Airborne Radioactivity Area

Entry requirements include

- radiological worker training;
- facility-specific training;
- a TLD;
- your signature on the RWP;
- level-I or level-II protective clothing with a hood, and respiratory equipment, as required by the RWP, posting, or an RCT;
- a pre-job briefing;
- appropriate internal dosimetry; and
- written authorization to enter and perform the work.

Exit Requirements for an Airborne Radioactivity Area


When exiting airborne radioactivity areas, you must follow the exit requirements, including whole-body frisk.

Soil Contamination Area

A Soil Contamination Area is an area in which soil contamination produces a reasonable potential to cause more than 15 mrem/year for personnel off site, or 30 mrem/year for personnel on site. Soil Contamination Areas may be located outside RCAs if the material in the area

is not likely to produce a TED in excess of 100 mrem in a year for any individual.

Soil Contamination Area Posting

Note: Postings may also contain warnings such as "Consult with Radiological Control before Digging" or "Subsurface Contamination Exists."

Entry Requirements for a Soil Contamination Area

Entry requirements include

- radiological worker training and
- facility- or job-specific requirements.

Exit Requirements for a Soil Contamination Area

Exit requirements for a soil contamination area are facility- and job-specific.

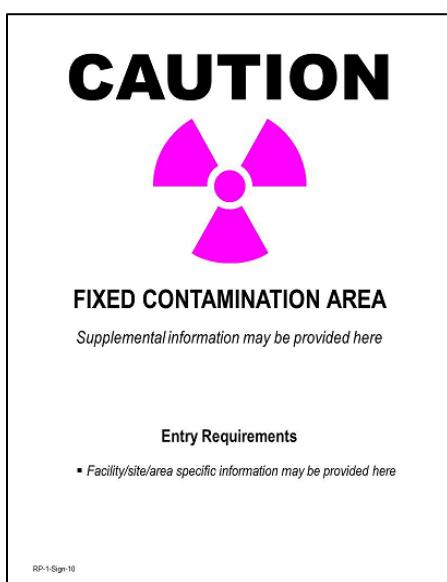
Fixed Contamination

A Fixed Contamination posting indicates a location or equipment with no removable contamination and with a fixed contamination level that exceeds the limits specified in Table 14-2 of P121-1.0.

Entry/Exit Requirements for Fixed Contamination

LANL has no requirements, unless specified by other radiological postings.

Fixed contamination locations have no exit requirements. Soil contamination


Unit 7: Radiological Postings and Controls

areas have facility-specific requirements. When exiting from other contamination and airborne radioactivity areas, you must

- exit only at a designated exit point with a step-off pad, which provides a barrier between contaminated and other areas to prevent or control the spread of contamination between areas (if more than one step-off pad is used, the final step-off pad is clean, located outside the exit point, and adjacent to the boundary);
- remove protective clothing carefully, following doffing procedures;
- perform a whole-body frisk (if contamination is indicated, stay in the area, notify an RCT, and take actions to minimize cross-contamination);
- monitor personal items and equipment, following indicated monitoring requirements; and
- after exiting and monitoring, wash hands as a precautionary measure before eating, drinking, chewing, or applying cosmetics.

Fixed Contamination Posting

Requirements for Working in Contamination and Airborne Radioactivity Areas

While working in contamination and airborne radioactivity areas, you must follow the requirements for working in radiological areas and also

- avoid unnecessary contact with contaminated surfaces;
- avoid stirring up contamination—it could become airborne;
- secure hoses and cables to prevent them from crossing in and out of a contamination area;
- when possible, wrap or sleeve materials, equipment, and hoses;
- place contaminated tools and equipment inside plastic bags when work is finished;
- avoid touching exposed skin surfaces; and
- exit immediately if a wound occurs or protective clothing tears.

Your Responsibilities

Your Responsibilities Regarding Postings, Signs, and Labels

You are responsible for reading and complying with all the information on radiological postings, signs, and labels. Radiological conditions may change, and more than one radiological hazard may be identified on a posting, sign, or label. Therefore, it is important to **read daily** all of the information on postings, signs, and labels.

Disregarding any postings, signs, or labels or removing or relocating them without permission can lead to

- unnecessary or excessive radiation exposure,
- personnel contamination, and

Unit 7: Radiological Postings and Controls

- release of contamination or radioactive material to the environment or the general public.

Deliberately disregarding, relocating, or removing radiological postings, signs, and labels is considered extremely serious misconduct and could result in disciplinary action, up to and including immediate termination.

Note: Any type of radiological hazard identification sign found outside an area that is controlled for radiological purposes should be reported immediately to radiological control personnel.

Your Responsibilities Regarding Escorting

If you perform escort duties for your organization, you must ensure that you have received the required training for unescorted entry into a work area. When you escort someone, you must ensure that the person being escorted complies with the requirements of the LANL Radiation Protection Program and has received training in

- the risks of exposure to radiation and radioactive material,
- the risks of pregnant worker radiation exposure, and
- the methods for requesting their individual exposure records.

Radiological Work Permits

Purpose of Radiological Work Permits

RWPs are used to identify radiological conditions, establish worker protection and monitoring requirements, and facilitate work control. They are required under certain conditions (such as in high

radiation areas) and serve as records of the work performance.

Types of Radiological Work Permits

Two types of RWPs are used, depending on the radiological conditions:

- A general RWP is used to control routine or repetitive activities, such as tours and inspections, in areas with historically stable radiological conditions. It is valid only for up to one calendar year (with 3-month reviews).
- A job-specific RWP is used to control nonroutine operations or work in areas with changing radiological conditions. It is valid only for the duration of a particular job (subject to 3-month reviews, should the job last that long).

RWPs include the following sections:

- **General Requirements:** provides contact information and a summary of work to be performed.
- **Required Radiological Training.**
- **Expected Isotopes and Their Activities:** identifies the radioisotopes involved in the work and the amounts.
- **Work Description:** gives a scope of the work to be performed and identifies other potential hazards that may be present (chemical, trips and falls, electrical, etc.)
- **Radiological Control Requirements:** lists the required safety essentials per task, which include
 - expected radiological conditions;
 - maximum radiological conditions allowed before stopping job;
 - protective clothing and equipment;

Unit 7: Radiological Postings and Controls

- dosimetry;
- ALARA requirements (containments, ventilation, remote handling tools, etc.); and
- task-specific hold points and special instructions.
- **Existing Pre-Job Conditions:** lists potential radiological issues, such as penetrating a surface with fixed contamination.
- **Job-Specific Hold Points and Special Instructions:** lists hold points and instructions that apply to overall work activity.
- **Monitoring Instructions:** provides requirements for workers.
- **Instrumentation Requirements:** identifies any special instrumentation needs.
- **Bioassay Requirements:** identifies any required special bioassay needs.
- **Completed by DSESH RWP Authority:** identifies who prepared the RWP.
- **Approvals:** requires appropriate signatures from DSESH-RP and line management.

Your Responsibilities Regarding Radiological Work Permits

You are responsible for ensuring that you have been authorized by your management to perform the activities covered by the RWP.

You are responsible for signing the RWP acknowledgment log to indicate that you have read, understand, and will comply with requirements of the permit before entering the radiological area.

If you do not think that the RWP is correct or do not understand any part of

the information, you should not start the job and should contact an RCT or your supervisor.

Any changes to the RWP must be made by a DSESH-RP SME and approved by a line manager before you start the job. You must obey any instructions written on the permit and must never make substitutions for specified requirements.

Unit 7: Radiological Postings and Controls

Notes. . .

Appendix

Web Resources

LANL P 121-1.0 Radiation Protection

<https://int.lanl.gov/policy/documents/P121.pdf>

Unit 2

Harry K. Daghlian, Jr.

http://members.tripod.com/~Arnold_Dion/Daghlian/index.html

The Radium Dial Girls

https://en.wikipedia.org/wiki/Radium_Girls

Background Radiation Calculator

<http://environweb.lanl.gov/newnet/info/dosecalc.aspx>

Unit 3

Dosimetry at LANL

http://int.lanl.gov/safety/radiation_protection/dosimetry_measurements/index.shtml

Unit 4

ALARA Center

<http://int.lanl.gov/safety/alaras/index.shtml>
[Radiation Protection Programs. "So You . . ." Educational Pamphlets](http://int.lanl.gov/safety/alaras/index.shtml)
[So, you alarmed a contamination monitor \(pdf\)](http://int.lanl.gov/safety/alaras/index.shtml)

Specific Radiological Hazards (must sign into UTrain to access)

- Accelerator Safety Self-Study
- Plutonium Safety Self-Study
- Radioactive Sealed Source Safety Self-Study
- Radiation-Generating Device Safety Self-Study
- Radioactive Material Handling: Labeling, Shipping, And Receiving Self-Study
- Radioactive Material Handling: Temporary Containment Systems
- Radiological Material Handling: Bench Top Operations Self-Study

Other

Museum of Atomic Permutation

<http://www.nukes.org/MAp/dally.html>

Technologically Enhanced Naturally Occurring Radioactive Material (TENORM)

www.tenorm.com/

Radiation and Health Physics page

<http://www.umich.edu/~radinfo/>

The Radiation Information Network

<http://www.physics.isu.edu/radinf/index.html>

Appendix

Health Physics Historical Instrumentation
Museum Directory

[http://www.orau.org/ptp/museumdirectory
.htm](http://www.orau.org/ptp/museumdirectory.htm)

The Health Physics Society

<http://www.hps.org/>

How Stuff Works

<http://www.howstuffworks.com/index.htm>

Note: *References to Web sites outside of LANL are provided for informational use only and do not imply any endorsement by Los Alamos National Security, LLC.*

Glossary

absorbed dose. The average energy imparted by ionizing radiation to the matter in a volume element per unit mass of irradiated material, expressed in units of rad. (1 rad equals 100 ergs deposited per gram of material).

acceptable knowledge. A method used in lieu of or in conjunction with sampling and analysis to characterize materials and items through knowledge of (1) origin, (2) processes involved, (3) storage, (4) use of materials, or (5) segregation. The method may include supplemental waste analysis data, and facility records or analysis as applied to waste characterization.

action level. Radiation dose limit established by the Laboratory to keep radiation dose below regulatory limit.

activation. The process in which nonradioactive atoms are changed into radioactive atoms by bombardment with neutrons (most commonly), protons, or other nuclear particles.

acute exposure (dose). The exposure to a relatively large amount of radiation (or intake of radioactive material) over a short period of time, such as an hour or a day.

airborne contamination, airborne radioactive material, or airborne radioactivity. Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases.

airborne radioactivity area. Any accessible area where (1) the

concentration of airborne radioactivity (above the natural background) exceeds or is likely to exceed the derived air concentration (DAC) values listed in Appendix A or Appendix C of 10 CFR 835, November 4, 1998; or (2) an individual without respiratory protection could receive an intake exceeding 12 DAC-hours in a week.

alpha particle. A positively charged particle emitted from the nucleus of an unstable atom, with a range of about 1–2 inches in the air. An alpha particle can be stopped by a sheet of paper or the layer of dead skin. Considered an internal hazard.

area radiation monitor (ARM). An instrument that measures the external radiation exposure level and alarms when the level exceeds the set point.

area. For purposes of radiological control, a space is considered an area (and would be posted as an area) if it is accessible to an individual and that individual could receive a whole-body exposure (extremities are not considered whole body). However, containment devices such as glove boxes, hoods, or open-front boxes would not be posted as areas for radiological purposes unless an individual were to enter them.

as low as reasonably achievable (ALARA). An approach to radiological control to manage and control exposures (individual and collective) to the work force and to the general public at levels that are as low as is reasonable, taking into account social, technical, economic,

Glossary

practical, and public policy considerations. ALARA is not a dose limit, but a process which has the objective of attaining doses as far below the applicable limits of 10 CFR 835 as is reasonably achievable.

atom. The smallest part of an element that still retains the chemical properties of that element. The atom is made up of three subatomic particles: protons, neutrons, and electrons.

barrier. An obstruction that prevents access to an area where high dose rates may exist.

beta particle. A negatively or positively charged particle emitted from the nucleus of an unstable atom. Physically identical to an electron, its range in air is typically about 10 feet.

bioassay. Determining the kinds, quantities, or concentrations and (in some cases) locations of radioactive material in the human body, whether by direct measurement or by analysis and evaluation of radioactive material excreted or removed from the body.

calibration. Adjusting and/or determining either one of the following:
(1) responding to or reading of an instrument relative to a standard or to a series of conventionally true values; or
(2) the strength of a radiation source relative to a standard or conventionally true value.

cell. The smallest structural unit of an organism that is capable of independent functioning.

certification. Formally documented, auditable, quality assurance process by which LANL management is assured that employees have the requisite skills,

knowledge, and abilities to perform their assigned duties.

check source. A radioactive source, not necessarily calibrated, that is used to confirm the continuous satisfactory operation of an instrument.

chelating. Removing a heavy metal such as lead or mercury from the bloodstream through a medical process.

chronic exposure (dose). Typically a small dose of radiation received over a long period (months or years) and better tolerated by the body than an acute dose.

compactible waste. Solid waste that consists of trash-type material, such as paper, plastic, rubber, small items of glassware (up to 1 gallon) or pipe conduit (up to 12 inches) and small chips of wood or sheet metal.

containment device. A barrier, such as a glove bag, glove box, or tent, that is used for stopping or slowing the release of radioactive material from a specific location.

contamination area. Any accessible area where removable surface contamination levels exceed or are likely to exceed the removable surface contamination values specified in Table 14-2 but do not exceed 100 times those values.

contamination survey. Use of smears, swipes, or direct instrument surveys to identify and quantify radioactive material on personnel, on equipment, or in areas.

contamination. See radioactive contamination.

continuous air monitor (CAM). An instrument that continuously measures the level of airborne radioactivity and

Glossary

alarms when the level exceeds the set point.

controlled area (same as radiological controlled area). Any area to which access is managed by or for DOE to protect individuals from exposure to radiation and/or radioactive material.

counts per minute (cpm). The number of disintegrations measured by a radioactive source as detected by an instrument.

critical mass. The smallest mass of fissionable material that will support a self-sustaining chain reaction under specified conditions.

criticality. A sustained nuclear fission chain reaction.

curie (Ci). The unit of measurement for radioactivity (2.22×10^{12} dpm).

declared pregnant worker. A woman who has voluntarily declared to her employer, in writing, her pregnancy for the purpose of being subject to the occupational dose limits to the embryo/fetus as provided at Table 4-2. This declaration may be revoked, in writing, at any time by the declared pregnant worker.

decontamination. The process of removing radioactive contamination and material from personnel, equipment, or areas.

depleted uranium (DU). Uranium that is almost exclusively U-238 because the naturally occurring isotope U-235 has been extracted.

derived air concentration (DAC). For the radionuclides listed in Appendix A of 10 CFR 835, the airborne concentration that equals the annual limit on intake

divided by the volume of air breathed by an average worker for a working year of 2000/hour (assuming a breathing volume of 2400 m³). For radionuclides listed in Appendix C of 10 CFR 835, the air immersion DACs were calculated for a continuous, nonshielded exposure via immersion in a semi-infinite atmospheric cloud.

detector. A device that enables radiation levels to be measured or radioactive material/radiation emissions to be located.

direct survey. Quantitative survey for detecting the presence of both removable and fixed contamination (total contamination) on a surface. *Note: This test is usually performed by either holding or slowly moving a portable survey instrument detector over a surface and counting the radioactive emissions from the total contamination residing on the surface.*

disintegrations per minute (dpm). The rate of emission by radioactive material as determined by correcting the counts per minute (cpm) observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

DOE activity. An activity taken for or by DOE in a DOE operation or facility that has the potential to result in the occupational exposure of an individual to radiation or radioactive material.

doffing. The process of taking off protective clothing.

donning. The process of putting on protective clothing.

dose equivalent. The product of average absorbed dose in tissue or organ and a radiation weighting factor.

Glossary

For an external dose, the equivalent dose to the whole body is assessed at a depth of 1 cm in tissue; the equivalent dose to the lens of the eye is assessed at a depth of 0.3 cm in tissue, and the equivalent dose to the extremity and skin is assessed at a depth of 0.007 cm in tissue. An equivalent dose is expressed in units of rem.

dose rate. The amount of radiation (dose) received per unit of time.

dose. The amount of energy deposited in the body from radiation exposure.

dosimeter. A device used to assess radiation dose.

electron. A negatively charged particle that orbits the nucleus of the atom and determines the chemical properties of an atom.

embryo. The developing human from the time of conception through the eighth week of pregnancy.

engineered controls. Use of physical components and systems to reduce dose, airborne radioactivity, and/or the spread of contamination (e.g., piping, containment devices, ventilation, filtration, or shielding).

entrance or access point. Any location through which an individual could gain access to areas controlled for the purposes of radiation protection.

exposure. Expressed in roentgens, it measures the amount of ionizations caused by gamma rays and x-rays in air.

external radiation. Radiation emitted from a source outside the body.

extremities. Below the elbow (hands and arms) and below the knee (legs and feet).

fetus. The developing human from the ninth week after conception through birth.

fissile waste. Waste that contains nuclides that can undergo nuclear fission. For waste generated by Laboratory operations, fissile materials are plutonium, americium, uranium-233, and uranium-235.

Fixed Contamination (posting). An area or equipment with no removable contamination but with a fixed contamination level that exceeds the limits specified in P121, Table 14-2.

fixed contamination. Contamination that cannot easily be removed from surfaces by casual contact, such as wiping, brushing, or washing.

frisk/frisking. The process of monitoring personnel for contamination with a handheld survey instrument, with an automated monitoring device, or by a RCT.

gamma ray. A highly penetrating, chargeless electromagnetic wave or photon emitted from the nucleus of an unstable atom. It has a long range in air; can be shielded by dense materials such as lead, concrete, or steel; and is considered an external hazard.

half-life. See radioactive half-life.

heritable effect. An effect caused by chromosome damage that is passed on to the children of the individual exposed to radiation.

high contamination area. An area where removable surface contamination levels exceed or are likely to exceed 100 times the removable surface contamination values specified in Table 14-2 of P121-1.0.

Glossary

high radiation area. Any accessible area where radiation levels could result in an individual receiving an equivalent dose to the whole body in excess of 0.1 rem in 1 h at 30 cm from the radiation source or from any surface that the radiation penetrates.

high-efficiency particulate air (HEPA) filter. A pleated medium-dry-type filter with (1) a rigid casing enclosing the full depth of the pleats, (2) a minimum particle removal efficiency of 99.9% for a standard challenge particulate, and (3) a maximum pressure drop 1.0-inch water gauge (w.g.) when clean and operated in its rated airflow capacity.

high-level waste. Highly radioactive waste material that results from the reprocessing of spent nuclear fuel, including liquid waste produced directly during reprocessing and any solid waste derived from that liquid and that contains a combination of transuranic waste and fission products in concentrations requiring permanent isolation. (No high-level waste currently is generated at the Laboratory.)

hot job exclusion area. Temporary area established around an unknown condition in the event of a radiological incident or an operation that is expected to increase the potential for contamination and/or personnel exposure because of the nature of the hot job.

hot particle. A small, loose, highly radioactive particle with an activity greater than 15,000 disintegrations per minute (dpm) and/or the capability of producing a shallow dose equivalent greater than 100 mrem/hour.

hot spot. A localized source of radiation or radioactive contamination sometimes

found in equipment or piping. The radiation level at a hot spot is at least five times the level in the surrounding area and greater than 100 mrem/h.

infrequent or first-time activities. Radiological work activities or operations that require special management attention and consideration of new or novel radiological controls. The designation of infrequent or first-time activities applies specifically to facilities that conduct routine and recurring process operations and does not apply to facilities, such as experimental or research facilities, that routinely conduct first-time activities.

instrument. A complete system designed to quantify one or more particular types of ionizing radiation.

interlock. A device for precluding access to an area of radiation hazard by either preventing entry or by automatically removing the hazard. One example is an electro-mechanical control mechanism that interrupts the beam of ionizing radiation or shuts down the radiation installation whenever the interlock is challenged.

internal radiation. Radiation emitted from a source that has been taken into the body.

ion. An atom or a group of atoms that has a positive or negative electrical charge.

ionization. The process of removing an electron from an atom.

ionizing radiation. Radiation that has enough energy to cause ionization of an atom with which it interacts.

Glossary

ion pair. A positively charged atom and a negatively charged electron removed from an atom.

isotope. One of two or more atoms of the same element that has the same number of protons but a different number of neutrons.

large-area swipe area. Qualitative survey for detecting the presence of removable contamination by wiping Masslin (or an equivalent material such as cheesecloth) over at least 1000 cm of the surface and counting the residual activity on the Masslin with an appropriate portable radiation survey instrument.

lead RCT. The RCT who is assigned the primary responsibility for radiological control at a facility.

level I clothing. One pair of coveralls, two pair of anti-C gloves (inner pair taped), one pair of booties, and a hood.

level II clothing. Two pairs of coveralls, two pairs of anti-C gloves (inner pair taped), two pairs of booties, and a hood.

lifetime dose. Total occupational exposure over a worker's lifetime, including external and committed internal dose.

likely. Having a greater than 50% probability of occurrence within a period of time, typically a year.

low-level radioactive solid waste. Waste material that has been contaminated or activated in excess of established limits and has not been classified as high-level waste, transuranic waste, spent fuel, or mixed waste.

manmade background radiation. Radiation that has been generated or

produced by humans. Examples include medical x-rays or treatments, consumer products, atmospheric testing of nuclear weapons, and industrial radiography.

minor. An individual who is under 18 years of age.

mixed waste. Hazardous wastes that also contain radioactive material. Mixed waste is regulated under the RCRA and the Atomic Energy Act. The hazardous component of the mixed waste is regulated by the Environmental Protection Agency under RCRA. The radiological component of the mixed waste is regulated by the DOE.

monitoring. Measuring radiation levels, airborne radioactivity concentrations, radioactive contamination levels, quantities of radioactive material, and individual doses and using the results of these measurements to evaluate radiological hazards or potential and actual doses resulting from exposures to ionizing radiation.

natural background radiation. Radiation that comes from naturally occurring radioactive material in the rocks and soil of the earth, from food and water, from radon, and from cosmic rays from the sun and other sources in space.

neutron. A particle with no electrical charge that is located in the nucleus of the atom. The number of neutrons determines the isotope of an element.

neutron particle (as a form of radiation). A highly penetrating particle with no electrical charge that is emitted from the nucleus of an unstable atom. A neutron has a long range in air, can be shielded by materials that are rich in hydrogen (such as water or plastic), and is considered an external hazard.

Glossary

noncompactible waste. Large or bulky waste exceeding maximum dimensions of compactible packages or other clearly noncompactible common waste, such as heavy pipe, angle iron, equipment, lumber, building rubble, and soil. Tritium waste in concentrations greater than 20 mCi/m³ is also considered to be noncompactible waste.

nonionizing radiation. Radiation that does not have enough energy to cause ionization to an atom with which it interacts.

nucleus. The central portion of the atom, which contains protons and neutrons.

nuclide. A general term referring to all atomic forms of all the elements.

occupational radiation dose. An individual's ionizing radiation dose (external and internal) that is received as a result of that individual's work assignment. Occupational dose does not include doses received as part of a medical procedure or doses resulting from background radiation or participation as a subject in medical research programs.

operational check. A test of an instrument to determine if that instrument is operating acceptably.

operation-specific training. Training required for a worker to perform a particular aspect of a job or unique operation.

performance check (or performance test). A test of an instrument to determine if (1) its response is within a stated acceptable range, (2) any alarms associated with the instrument work correctly, and (3) the instrument is otherwise operating acceptably.

personal protective equipment (PPE). Equipment such as booties, anti-C overalls, gloves, respirators, face shields, and safety glasses used to protect workers from excessive exposure to radioactive or hazardous materials.

personnel contamination monitor (PCM). Used to detect radioactive contamination on personnel.

personnel dosimetry. The use of devices designed to be worn by an individual to assess equivalent dose. Such devices include thermoluminescent dosimeters (TLDs), track-etch dosimeters, electronic personal dosimeters (EPDs), and personal nuclear accident dosimeters.

personnel monitoring. Systematic and periodic estimate of occupational radiation dose to individuals and monitoring of personnel and their excretions, skin, or any part of their clothing to determine the amount of radioactivity present.

planned special exposure. Preplanned, authorized, and infrequent exposure to radiation, tracked separately from and in addition to the annual dose limits.

pregnant worker radiation exposure. Radiation exposure to the unborn child.

protective clothing. Clothing provided to workers to minimize the potential for contamination to skin or personal clothing. Also referred to as anticontamination clothing, or anti-Cs.

proton. A positively charged particle located in the nucleus of the atom. The number of protons determines the element.

quality factor. A number, multiplied by the number of rads to determine the

Glossary

number of rems, which accounts for the different levels of biological damage associated with each type of radiation.

rad (radiation absorbed dose). The unit used to measure the absorbed dose in any material from all types of radiation.

radiation. Ionizing radiation, which is alpha particles, beta particles, gamma rays, x-rays, neutrons, high-speed electrons, high-speed protons, and other particles capable of producing ions. Radiation as used in this document does not include nonionizing radiation, such as radio- or microwaves, or visible, infrared, or ultraviolet light.

radiation area. Any accessible area in which radiation levels could result in an individual's receiving an equivalent dose to the whole body in excess of 0.005 rem in 1 h at 30 cm from the source or from any surface that the radiation penetrates.

radioactive contamination. Radioactive material in an unwanted location.

radioactive decay. The transformation of a nuclide into a different energy or into a different nuclide, which results in the emission of radiation and a decrease, over time, of the original radioactive atoms. Also known as disintegration.

radioactive half-life. The time it takes for one-half of the radioactive atoms present to decay.

radioactive liquid waste. Liquid waste contaminated or potentially contaminated with radioisotopes.

Radioactive Material (posting). Any accessible area within an RCA in which items or containers of radioactive material are present and the total activity of radioactive material exceeds the

applicable values listed in Appendix 16A of P121.

radioactive sealed source (RSS). A radioactive source manufactured, obtained, or retained for the purpose of using the emitted radiation. The RSS consists of a known or estimated quantity of radioactive material contained within a sealed capsule or container, sealed between layer(s) of nonradioactive material, or firmly fixed to a nonradioactive surface by electroplating or other means intended to prevent leakage or escape of the radioactive material.

radioactivity. The spontaneous decay of unstable, or radioactive atoms that emit radiation as they attempt to become stable.

radioisotope. An isotope that exhibits radioactivity.

radiological area. A general term referring to any area containing radiological hazards, within (but not including) a controlled area.

radiological buffer area (RBA). A secondary boundary area around other radiological areas containing greater radiological hazards, established to control potential external exposure or contamination.

radiological controlled area (RCA). An area controlled to protect individuals from exposure to external radiation. All radiological areas (radiation areas, high radiation areas, very high radiation areas, contamination areas, high contamination areas, and airborne radioactivity areas) lie within the boundaries of RCAs.

radiological control hold point. Cautionary step in an RWP, hazard

Glossary

control plan, or technical work document in which work is stopped and the RCT performs some action or verification.

radiological control personnel. Individuals within the radiation protection organization.

radiological control technician (RCT). An individual trained and qualified through the RCT qualification program at LANL, whose RCT qualification is current and who is assigned to or authorized by the RP or DSESH Division to provide radiological safety support.

radiological posting. Sign, label, or tag that indicates the presence or potential presence of radiation or radioactive material.

radiological work. Any activity that requires the handling of materials or items that are likely to be radiologically contaminated, hands-on activities with contaminated systems, operation of radiation generating devices (RGDs), or handling RSSs that could result in an external dose greater than 100 mrem/year to the worker.

radiological worker. A general worker whose job involves operating radiation-producing devices or working with radioactive material or who is likely to be routinely and occupationally exposed above 0.1 rem (100 mrem) per year total effective dose equivalent.

radiological work permit (RWP). The permit that identifies radiological conditions, establishes worker protection and monitoring requirements, and contains specific approvals for radiological work activities. The RWP serves as an administrative process for planning and controlling radiological work and informing the worker of the radiological conditions.

radiological work permit (RWP) (general). The permit used to control routine operations or work in areas with stable radiological conditions, valid for up to 1 year.

radiological work permit (RWP) (job-specific). The permit used to control nonroutine operations or work in areas with changing radiological conditions, valid only for the duration of a particular job.

rem (roentgen equivalent man). The unit of dose equivalence used for human exposures, which considers the biological effects of different types of radiation on the body.

removable contamination. Radioactive material that can be removed from surfaces by nondestructive means, such as casual contact, wiping, brushing, or washing.

roentgen. The unit of exposure used to measure ionizations caused by gamma rays or x-rays in the air.

routine radiological work. Work that is performed repetitively on a recurring process, or an operation that incorporates standard radiation protection requirements and practices based on experiences with the existing radiological conditions.

shield or shielding. Material that is used to reduce exposure of personnel to radiation.

smear survey. Quantitative test for detecting the presence of removable contamination. The test is usually performed by wiping a filter paper over 100 cm² of the surface and measuring the amount of radioactive material so collected.

Glossary

Soil Contamination Area. An area where the soil is contaminated and is not releasable in accordance with DOE Order 458.1, Radiation Protection of the Public and the Environment.

somatic effect. An effect from radiation exposure that appears only in the individual exposed to radiation.

special protective equipment. Protective clothing (such as an ice vest, leather gloves, or a lead apron) that provides protection against specific hazards expected during work activities.

special radioactive waste. Radioactive waste that is not mixed waste but that because of various properties must be specially packaged and handled. Examples include radioactive asbestos and biological waste.

step-off pad. An area established at access points to RCAs, RBAs, contamination areas, high contamination areas, airborne radioactivity areas, or hot job exclusion areas and used for donning and doffing protective clothing.

supplemental dosimetry (or secondary dosimetry). Dosimetry used in addition to primary (whole-body) TLDs. Supplemental dosimetry may include extremity dosimetry and electronic dosimetry.

supplied-air suit or bubble suit. A suit that covers the entire body and supplies air to the wearer from an independent air supply.

survey. Evaluating the radiological conditions and potential hazards incidental to the production, use, transfer, release, disposal, or presence of radioactive material or other sources of radiation.

suspect radioactive waste. Waste that is generated in an area where radioactive material may be present but cannot be verified as being radioactive or nonradioactive.

swipe survey. Qualitative test for detecting the presence of removable contamination, normally performed by wiping a cloth over a surface and counting the residual activity on the cloth with an appropriate portable radiation survey instrument.

temporary shielding. Shielding that is constructed for (1) one run cycle (such as at an accelerator facility), (2) the duration of an experiment, or (3) a job that lasts less than 1 year. It is also shielding that is reconfigured to accommodate a new or existing experiment.

thermoluminescent dosimeter (TLD). A radiation monitoring device used to assess the legal dose-of-record from high-energy beta, gamma, x-ray, and neutron radiation.

transuranic mixed waste. Waste that is contaminated with alpha-emitting radioisotopes with an atomic number greater than 92 and that has a half-life greater than 20 years and concentrations greater than 100 nCi/g at the time of measurement.

tritium waste. Solid waste that is contaminated with tritium.

uncontrolled area. An area to which access is not controlled for radiological purposes. The surrounding radiological conditions are essentially natural background.

underground radioactive material area. Underground areas, such as pipelines; radioactive cribs; covered

Glossary

ponds, covered ditches; catch tanks; inactive burial grounds; or sites of known, covered, or unplanned spills that contain radioactive material.

urinalysis. Analysis of a urine sample; commonly used to detect alpha- or beta-emitting nuclides to determine an internal dose.

Very High Radiation Area (posting). Any accessible area in which radiation levels could result in an individual receiving an absorbed dose in excess of 500 rads in 1 h at 1 meter from a

radiation source or from any surface that the radiation penetrates.

volume-contaminated material. Any item or material that contains radioactivity within its volume due to either activation (e.g., neutron activity) of the atoms within the item or material or by the incorporation of radioactive material into the volume of the item or material (e.g., mixing of radioactive material into pulverized concrete).

whole body. The body extending from the top of the head down to just below the elbow and just below the knee.

Index

A

absorption	
through the skin.....	39
through wounds.....	39
action levels	36
actively dividing cells.....	21
acute radiation dose.....	19
airborne contamination.....	48, 56
airborne radioactivity area.....	75
Airborne Radioactivity Area Posting	75
ALARA.....	35
DOE policy	36
principles of	35
responsibilities.....	36
alarms.....	59–61
alpha particles	9
anti-C clothing (PPE).....	52
area radiation monitor.....	59, 61
ARM	See "area radiation monitor"
atom	5
atomic structure.....	5

B

beta particles.....	8, 10
bioassay	27, 31
bubble dosimeter.....	29

C

CAM	See "continuous air monitor"
cancer.....	18, 20–21
cell damage.....	18
cell sensitivity	21
chelating agents	55
chronic radiation dose.....	20
Ci (curie).....	13
commensurate	36
consumer products.....	17
contamination	
airborne	48, 56
area	74
control methods.....	50
detection and measurement of.....	55

Index

engineering controls	50
fixed	48, 56, 76
indicators of possible	49
monitoring equipment	57
preventive measures for controlling	51
removable	48, 56
suspended in liquid	56
Contamination Area Posting	74
continuous air monitor	60
control of radioactive contamination	50
controlled area	69
Controlled Area Posting	69
correct use of dosimeters	30
cosmic radiation	16
counts per minute	13
cpm	See "counts per minute"
criteria for radiological postings	67

D

declared pregnant worker	32
decontamination	54, 55
internal	55
material	54
personnel	55
skin and clothing	55
detection and measurement	55
Direct Bioassay	31
disintegrations per minute	13
distance, maximizing	38
dose	
acute	19
chronic	20
lifetime	36
limit, public	23
limit, visitor	23
limits	23
records	33
reduction	37
dosimeter	
damaged	31
electronic personal	29
lost	31
nuclear accident	30
track etch	29
types of	28
use and care	30
wrist	28
dosimetry	28
dpm	See "disintegrations per minute"

E

effects of radiation	20
heritable	18
on cells	17, 21
somatic	18

Index

electronic personal dosimeter	29
electrons.....	6
embryo/fetus	23
emergencies	
alarms.....	59
responses.....	59
situations	61
engineering control methods.....	50
entry requirements	67, 73
EPD	See "electronic personal dosimeter"
escorting.....	78
exit requirements.....	67, 73, 77
external dosimetry.....	28-31
external radiation hazard.....	7
extremities	22

F

fetus/embryo	23
fixed contamination	48, 56, 76
fixed contamination area	76
<i>Fixed Contamination Posting</i>	76
frisking	57

G

gamma rays.....	11
good housekeeping.....	51
good work practices	51

H

half-life	7
hand-held contamination monitor.....	56
heritable effects.....	18
high contamination area.....	75
High Contamination Area Posting	75
high radiation area	70
High Radiation Area	70
High Radiation Area Posting	71
hot job exclusion area	74
Hot Job Exclusion Area Posting.....	74
hot particles	56
hot spot.....	72
Hot Spot Postings	72

I

<i>in vitro</i> monitoring	31
<i>in vivo</i> monitoring	31
indicators of possible contamination	49
inhalation	39
internal dosimetry	31
internal exposure.....	39
internal monitoring.....	31
internal radiation hazard.....	7
ion.....	7

Index

ionization	7
ionizing radiation	7–8
isotopes	6

L

labels	65, 77
LANL limit on lifetime dose.....	36
learning objectives	
Unit 2	15
Unit 3	27
Unit 4	35
Unit 5	47
Unit 6	59
Unit 7	65
lens of the eye	23, 36
less actively dividing cells	21
lifetime dose	36
liquids, radioactive material in.....	56
lost life expectancy (LLE)	24

M

manmade radiation	16
maximizing distance	38
medical procedures, reporting doses from.....	33
medical radiation	17
millirem conversion	14
minimizing time	37
monitoring equipment	57
more specialized cells	21

N

natural radiation	15
neutrons	12
nonspecialized cells	21
nuclear accident dosimeter	30
nuclear medicines	17

P

PCM	See "personnel contamination monitor"
pencil dosimeter	29
personal protective equipment (PPE)	52
personnel contamination monitor	55–57
postings	68, 69, 73
PPE	See "personal protective equipment"
pregnant worker	21, 23, 30, 32
pregnant worker radiation exposure	21
preventive measures for controlling contamination	51
protective clothing	52
protons	6
public dose limit.....	23

Index

R

rad	See "radiation absorbed dose"
radiation absorbed dose	13
radiation area	70
Radiation Area	70
radiation dose	
acute	19
chronic	20
limits	23
records	33
Radiation Protection Program (RPP)	1
radioactive	
contamination	47
half-life	7
liquids	56
material	7
Radioactive Material	73
radioactive material area	73
Radioactive Material Posting	74
radioactivity	7
radiological	
buffer area	69
controlled area	69
emergency alarms	49
emergency alarms and responses	59–60
emergency situations	61
labels	65, 77
minimizing waste	43–44
posting criteria	67, 73
posting requirements	65
postings	67, 68, 73
proper practices	51
ropes	65
routes of entry	39
tapes	65
warning symbol	65
waste	46
work permit (RWP)	65, 78, 79
Radiological Buffer Area Posting	70
radionuclide	22, 32, 33
radon	16
RCA	See "radiological controlled area"
RCT	See "radiological control technician"
reducing dose	37
reducing risks	See "dose reduction"
rem	13
removable contamination	48, 56
removing waste	44
reporting	
doses from medical procedures	33
doses received outside LANL	33
rescue and recovery operations	61
respirator	52
respiratory protective equipment	52
response	
to accidental breach, leak, or spill	62

Index

to emergency situations	61
to indicators of possible contamination	49
to personnel injuries	61
responsibilities	
ALARA	36
escorting	78
of the radiological worker	37
regarding alarms	59
regarding postings, signs, and labels	77
regarding RWPs	79
risks, comparing radiation	24
roentgen	13
roentgen equivalent man (rem)	13
routes of entry	39
RPP	See "Radiation Protection Program"
RWP	See "radiological work permit"

S

shielding	38
skin dose limit	23
soil contamination area	76
somatic effects	18
sources	
of manmade radiation	16
of naturally occurring radiation	16

T

terrestrial radiation	16
thermoluminescent dosimeter	28
time, minimizing	37
TLD	See "thermoluminescent dosimeter"
track etch dosimeter	29
trefoil	65
types of external dosimeters	28

U

unstable atoms	6
----------------------	---

V

very high radiation area	71
Very High Radiation Area Posting	71
visitor dose limit	23

W

waste removal	44
waste segregation	44
wrist dosimeter	28

X

x-rays	8, 11
--------------	-------

Taking the Quiz

To receive credit for this self-study, you must complete the associated quiz in UTrain. You can access the quiz in either of two ways.

CRYPTOCard

If you have a CRYPTOCard that is assigned to you with administrative authorities to LANL's Integrated Computing Network (ICN):

1. Click on the link below to return to UTrain.
2. Click on the "Return to Content Structure" button.
3. Click on the "Quiz" link to begin the quiz.

To return to UTrain, click on the following link:

<http://int.lanl.gov/training/tools/wrapper/submit.html>

No CRYPTOCard

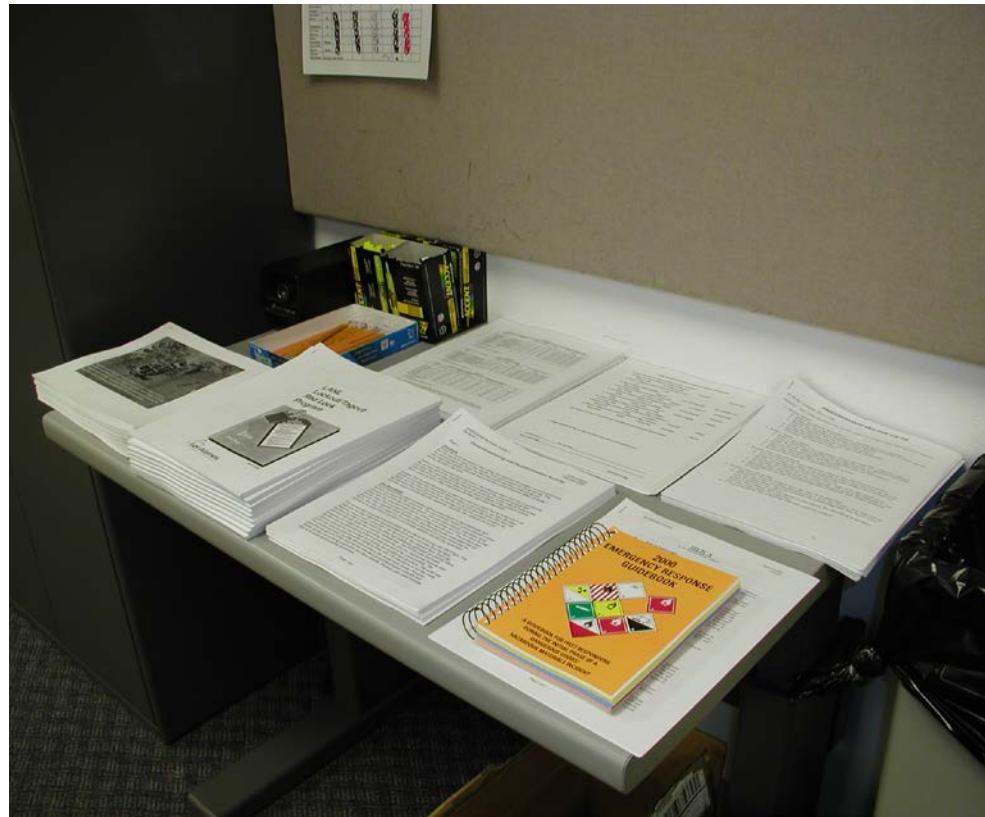
If you *do not* have a CRYPTOCard or if you have a CRYPTOCard *without* administrative authorities to LANL's ICN, you will need to locate a worker with UTrain proxy authority to grant you access to the quiz.

Call or email your training administrator for assistance. The following link should help you find your training administrator.

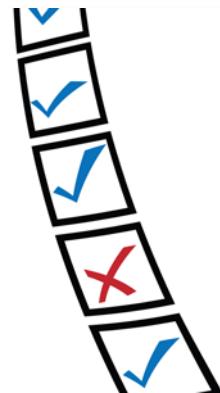
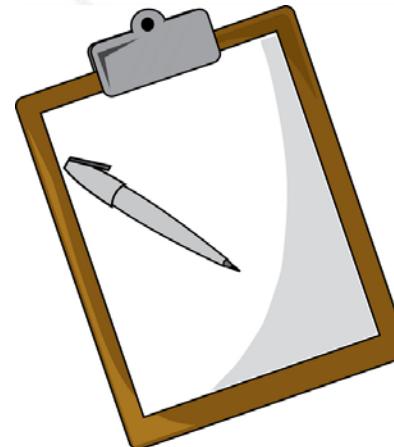
<http://int.lanl.gov/services/training/admin-proxy.shtml>

Radiological Worker II Training

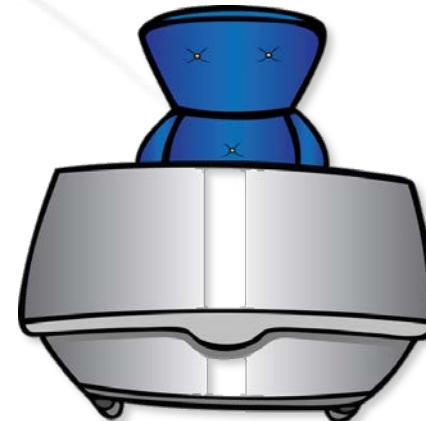
**COURSE 20301
TEST 12909**


January 2017

RWII_20301_AM_VG,R4.0



Before You Sit Down . . .

Pick up course materials when you enter the room.


When in the Classroom . . .

- Be sure to sign the roster:
 - print your name legibly
 - sign your name **IN INK**
 - print your Z number
- Make sure to fill out a class evaluation. We value your feedback!

Please Be Courteous!

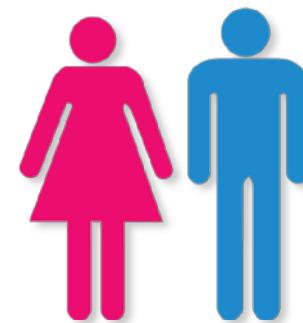
- So others can exit easily, always push in your chair when you take a break or leave the classroom.

- Turn off cell phones or put them on vibrate.

Cell Phones

- Your cell phone texting or conversation may interfere with the learning process of other students.
- Please take your phone calls to the student lobby and have your conversation there.

Thank you!



Yes, we're all very interested in what you're having for dinner tonight.

(Please keep phone conversations to yourself.)

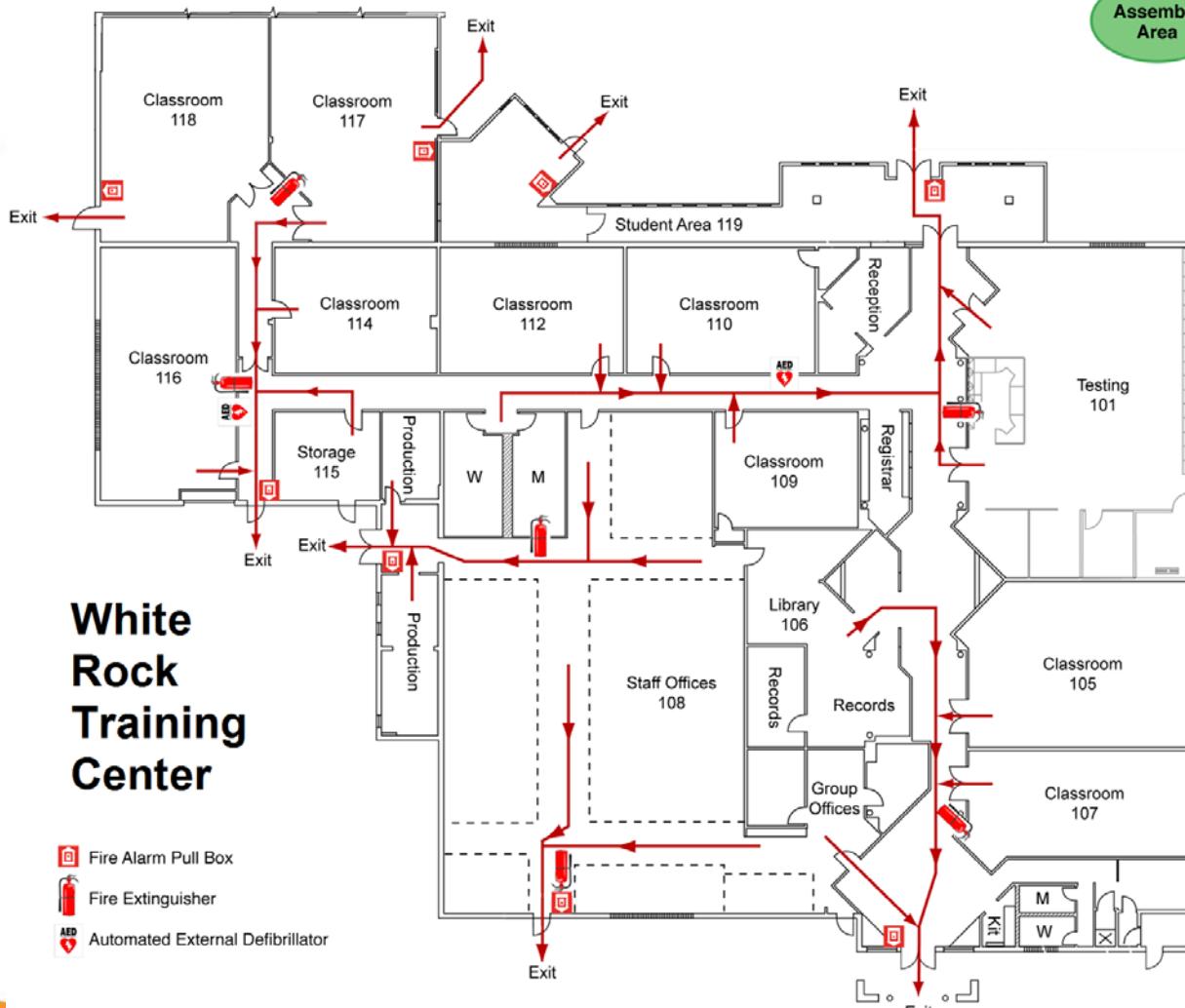
Break Time

- Telephones are located in the front lobby, just beyond the reception area.
- Soft drink and snack machines are located by the telephones.
- Restrooms are located off the hallway between the reception area and classrooms 114–118.

Recycle Your Aluminum Cans and Plastic Bottles

- Please put trash and recyclables in the proper receptacles located in the front lobby. Do not leave trash at your seat.

Do not put plastic or aluminum in trash cans.



Emergency Evacuation

- If an alarm sounds, evacuate the building and report immediately to the assembly area.
- Eating, drinking, and smoking are prohibited during evacuations and at the assembly area.

Emergency Exit Routes

Assembly Area

Go to the assembly area when you exit for an emergency.

- DO NOT LEAVE AREA
- NO FOOD OR DRINK
- NO SMOKING
- MINIMIZE TALKING

WRTC Evacuation Assembly Area

After exiting the building during an emergency, assemble at the grassy knoll beside the front parking lot.

Radworker Training Compliance Documents

Manual p. 1

- 10 CFR 835: Prescribes radiation safety training
- DOE Handbook 1130-98: Specifies radiological worker training objectives and course content
- P121-1.0: Provides LANL occupational radiation protection requirements
- At LANL, “radiological worker” means “Radiological Worker II”

You are required to pass an electronic test with this class.

If you have a **CRYPTOCard** with administrative (A-level) access, you **MUST** have it with you to be proctored for the test.

Radiological Worker Test

Manual p. 1

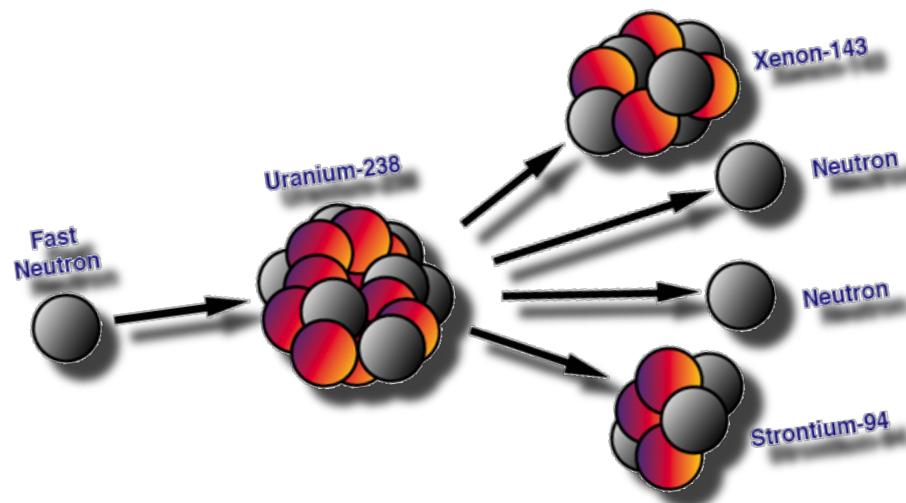
- The Radiological Worker Test is a 50-question, multiple-choice, **open-book** test that must be retaken every 24 months.
- The Radiological Worker Practical needs to be taken only once for LANL work.
 - Note: Radiological work at other DOE sites, such as the Nevada National Security Site, requires that the practical be retaken every 2 years.
- The passing score for each is 80%.

Class Agenda (approximate times)

- Today
 - 8:00 to 3:00
 - 3:00 to 4:00

Classroom presentation
RW Practical Pre-Job Brief and Quiz
- Thursday
 - 8:00

RWII Test in White Rock Training Center Testing Office, followed by Practical Evaluation
- Alternate option for Thursday
 - 7:00 to 8:00


Sign up for an “Early Bird” Practical, followed by the written test

14

Let's get started!

Unit 1: Radiological Fundamentals

16

Curiosity and Controversy

Radioactivity tends to generate feelings ranging from curiosity to extreme controversy and fear.

Posters from
Oak Ridge Associated Universities' (ORAU)
Health Physics Historical Instrumentation Collection
Oak Ridge, TN
<http://www.orau.org/ptp/museumdirectory.htm>

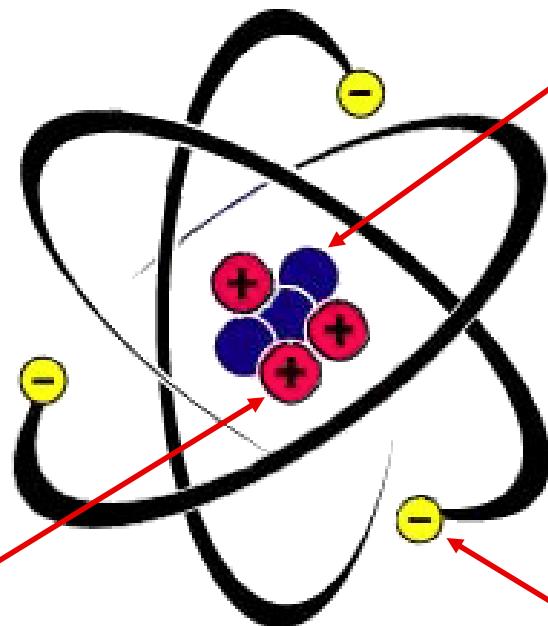
17

One Source of Lessons Learned at LANL

Unit 1 Objectives

Manual p. 5

- Define
 - radiation
 - radioactivity
 - radioactive half-life
 - radioactive material
 - radioactive contamination
 - ionization
- Distinguish between
 - ionizing and nonionizing radiation


Unit 1 Objectives (cont)

Manual p. 5

- State the basic types of ionizing radiation
- Identify the range, shielding, and biological hazards for each type of ionizing radiation
- Identify the units used to measure radiation, radioactivity, and radioactive contamination
- Convert **rem** to **millirem**
- Convert **millirem** to **rem**

Atomic Structure

Manual pp. 5-6

Proton

- +1 charge
- In nucleus
- Number determines element

Neutron

- No charge
- In nucleus
- Number determines isotope

Electron

- -1 charge
- Outside nucleus
- Determines chemical properties

What Is an Isotope?

Manual p. 6

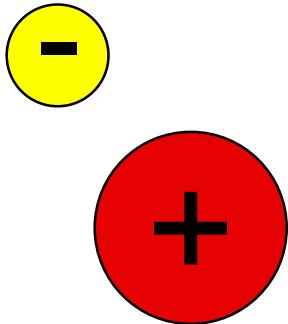
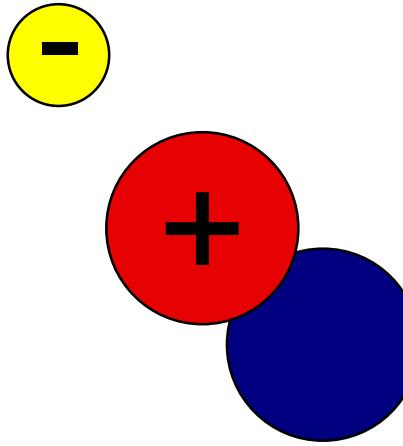
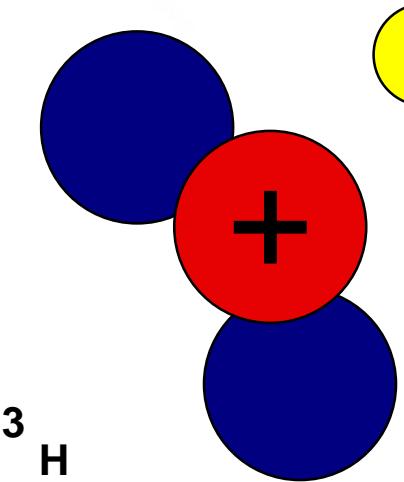
■ Isotopes

- are atoms of the same element,
- have the same number of protons (+1 charge), and
- have a different number of neutrons (no charge).

■ Radioactive isotopes are also called

- radioisotopes
- radionuclides
- radioactive nuclides
- radioactive atoms

U-238

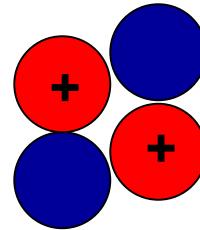



U-234

U-235

22

Isotopes of Hydrogen

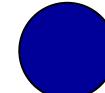
Manual p. 6


STABLE	STABLE	UNSTABLE
Hydrogen	Deuterium	Tritium
 $^1_{\text{H}}$	 $^2_{\text{H}}$	 $^3_{\text{H}}$
1 proton 1 electron 0 neutrons	1 proton 1 electron 1 neutron	1 proton 1 electron 2 neutrons

Radioactive

What Is Radioactivity?

Manual p. 7


- The spontaneous decay or release of particles or energy from an unstable (radioactive) nucleus
 - Three types of speeding particles

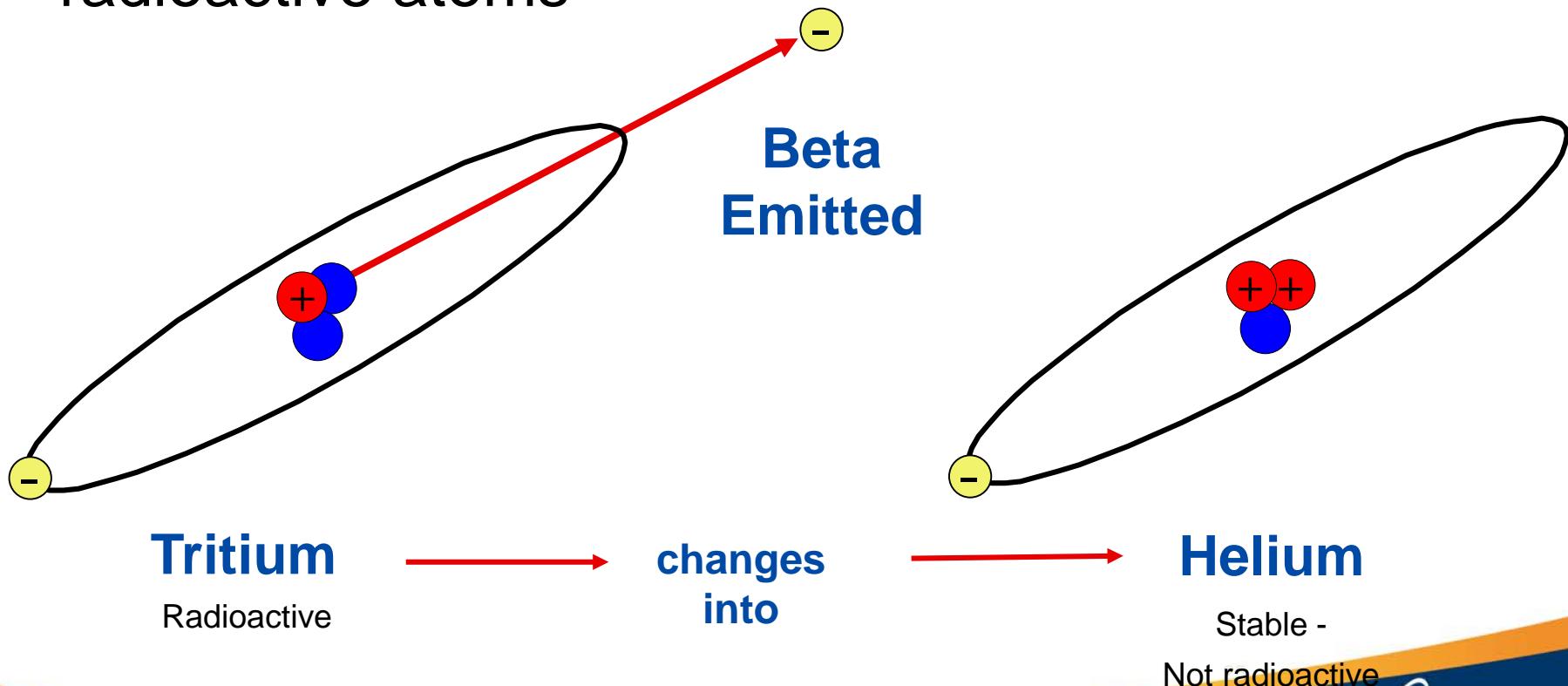
Alpha

Beta (- or +)

Neutron

- Two forms of energy waves

Gamma Ray

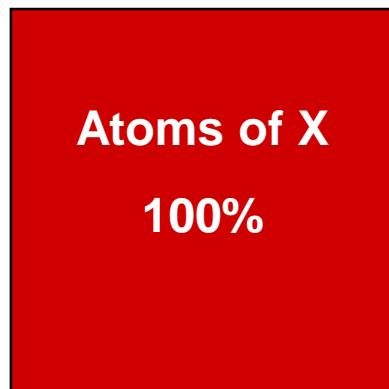

X-Ray

24

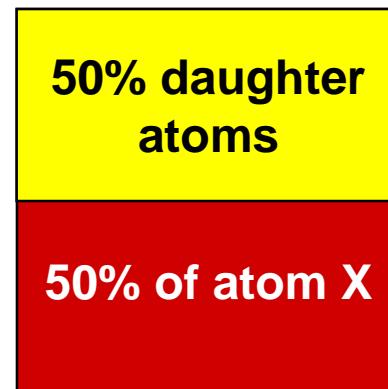
What Is Radioactivity?

Manual p. 7

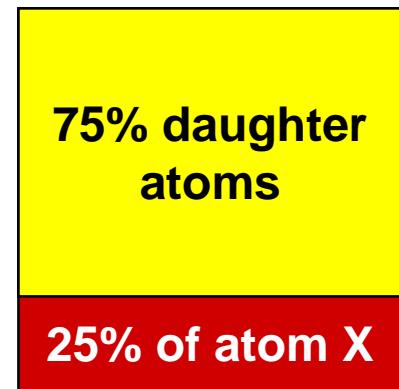
The spontaneous decay or disintegration of radioactive atoms


Radioactive Half-Life

Manual p. 7


Element X has a half-life of 24 days.

What does half-life mean?


The time it takes for one-half of the unstable (or radioactive) atoms present to decay or disintegrate.

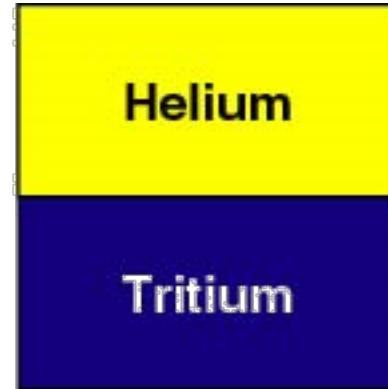
Day 0

Day 24

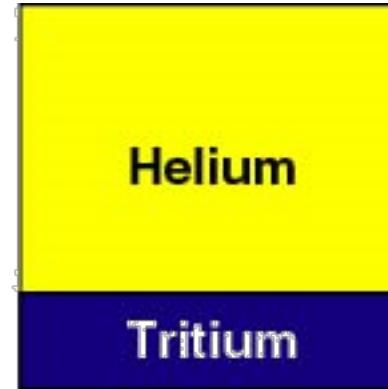
Day 48

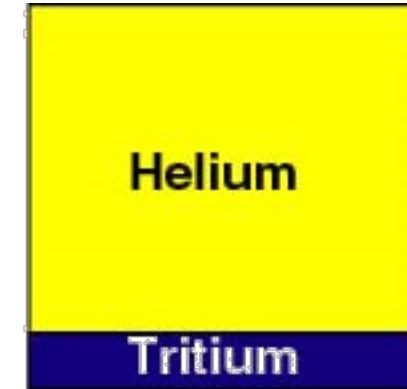
26

Tritium Half-Life


Manual p. 7

Tritium has a half-life of ~12 years.


Tritium 100%


Tritium 50%

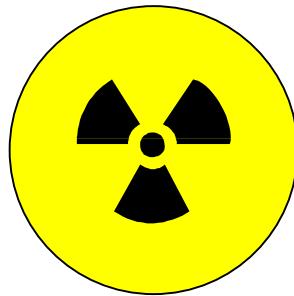
Tritium 25%

Tritium 12.5%

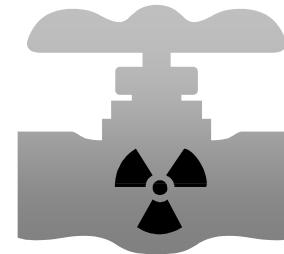
Day 0

~12 years

~24 years


~36 years

Decay products (helium in this example) can be stable or radioactive.


What Is Radioactive Material?

Manual p. 7


Any material containing radioactive atoms that spontaneously emit ionizing radiation.

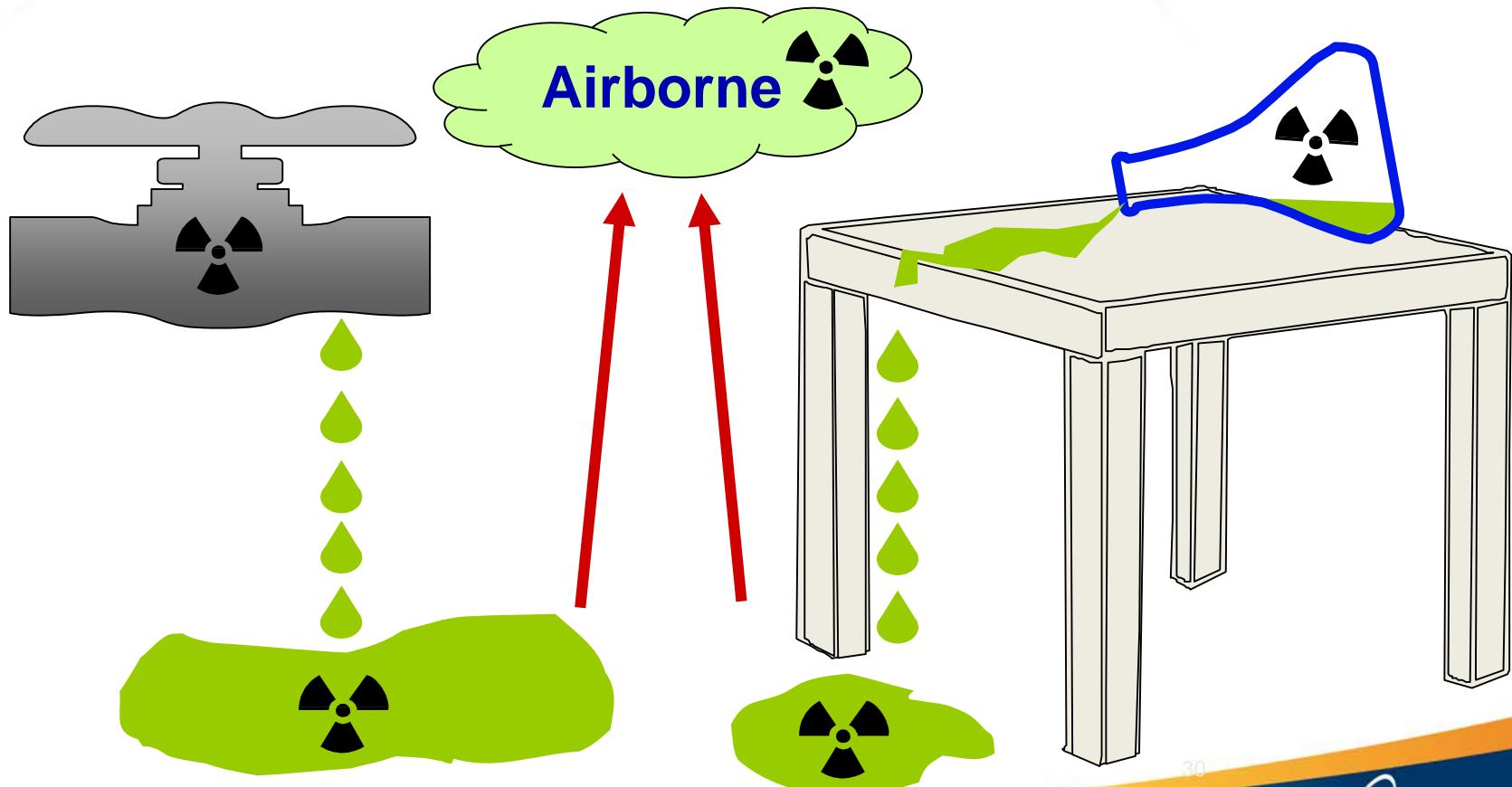
Sealed radioactive sources

Activated components

Contained for analysis or experiments

Neutron Activation

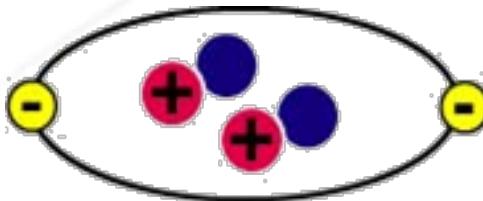
How is something activated?


Natural
(not radioactive)

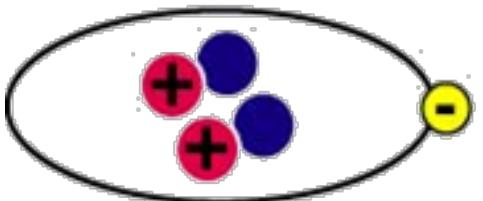
Becomes radioactive
(activated)

What Is Radioactive Contamination?

Manual p. 7

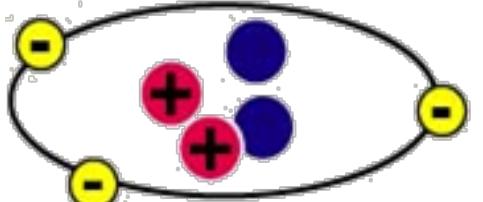

Radioactive material in an unwanted place

30


Ions Are . . . Charged Atoms

Manual p. 7

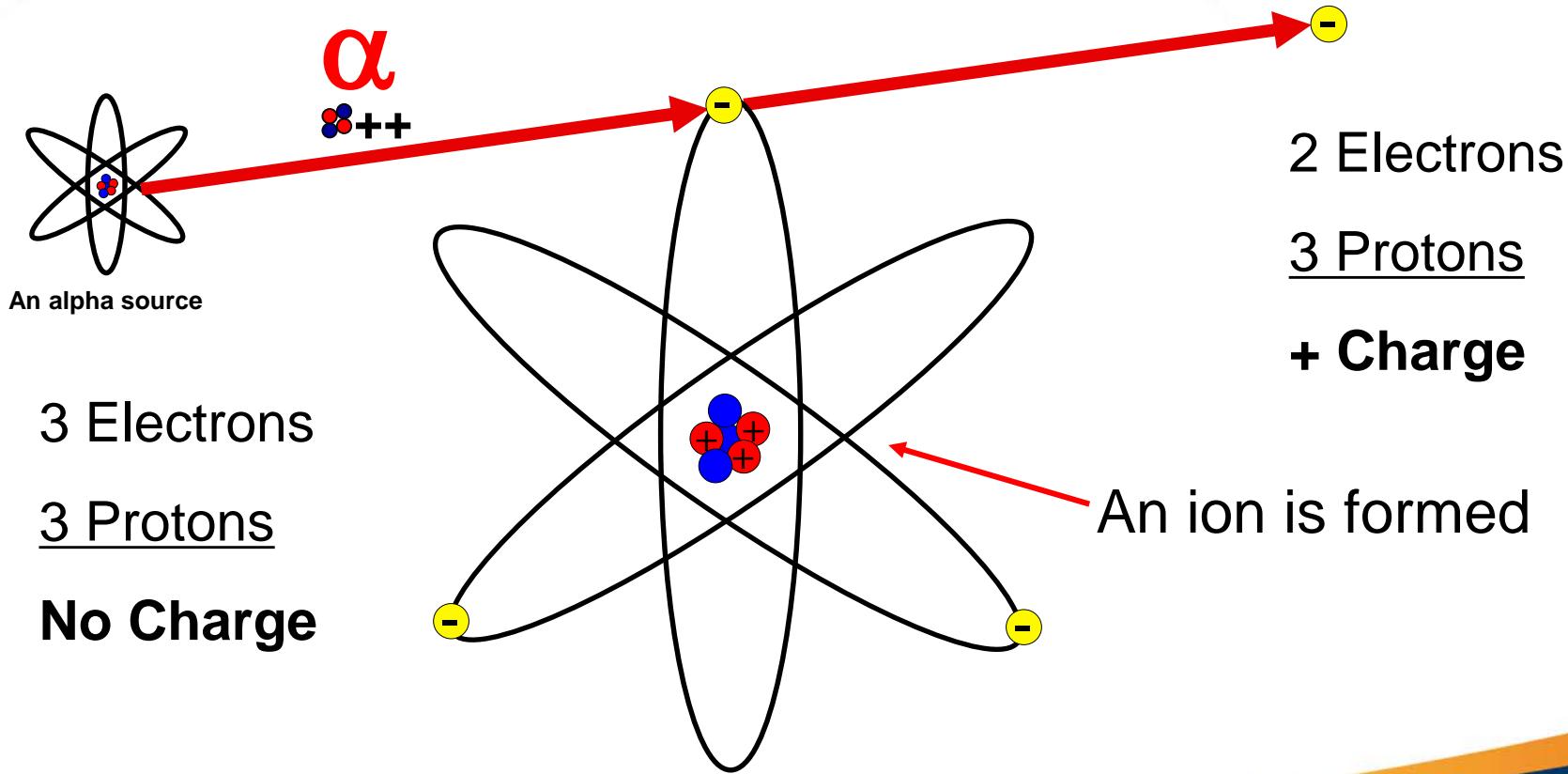
No charge (neutral)


Equal number of protons
and electrons

Positive charge (+)

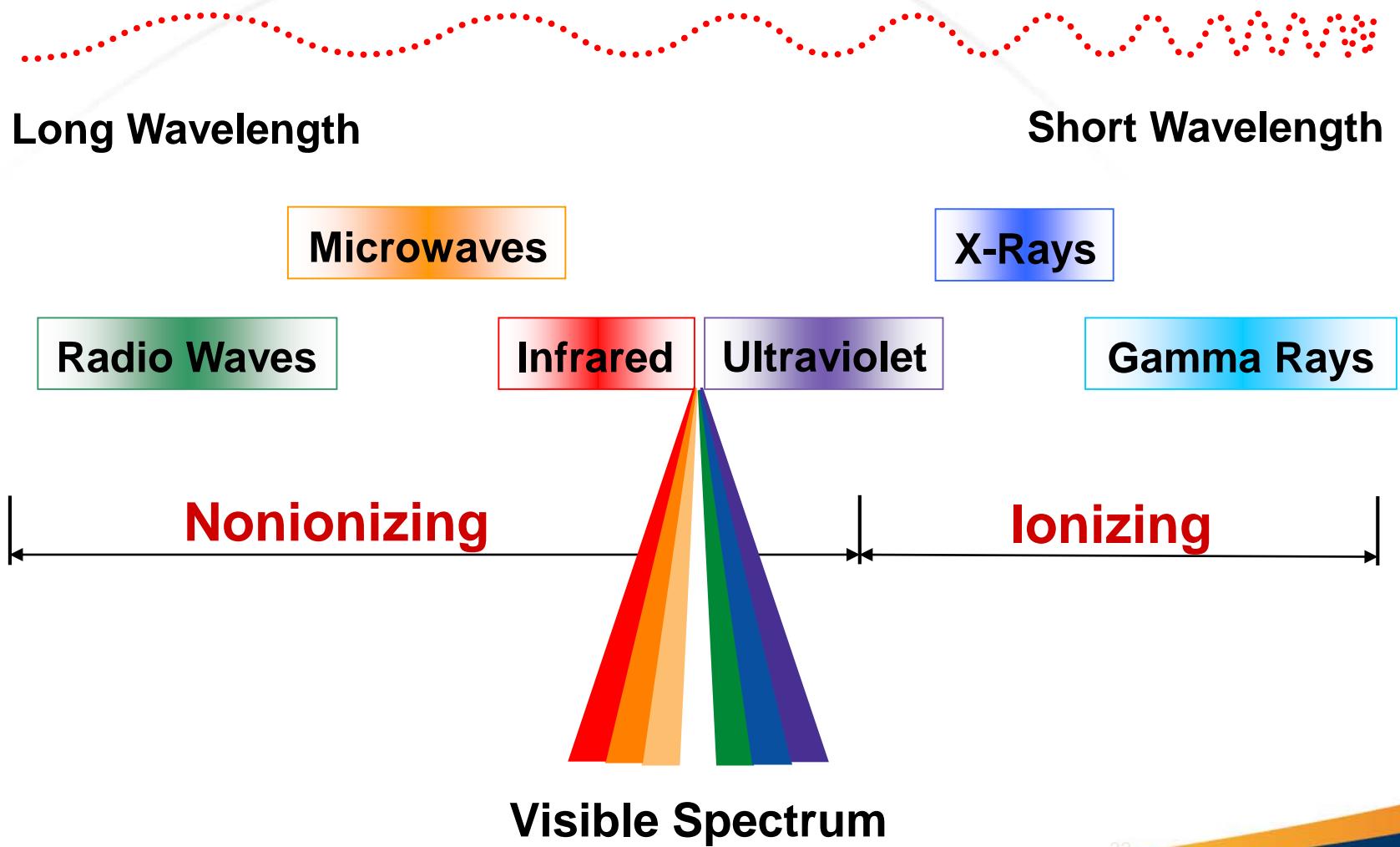
A positive ion or charged particle
More protons than electrons

Ions are more chemically reactive than neutral atoms.

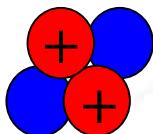

Negative charge (-)

A negative ion
More electrons than protons

What Is Ionization?


Manual p. 7

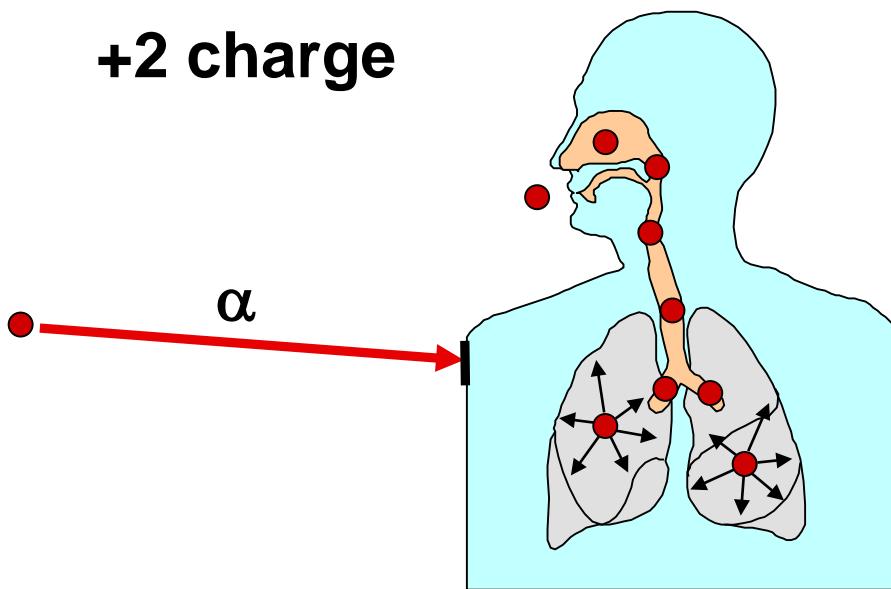
The process of forming an ion by removing an electron from an atom


Types of Nonionizing and Ionizing Radiation

Manual pp. 7-8

Alpha Particles

Manual p. 9



Symbol: α

2 Protons

2 Neutrons

+2 charge

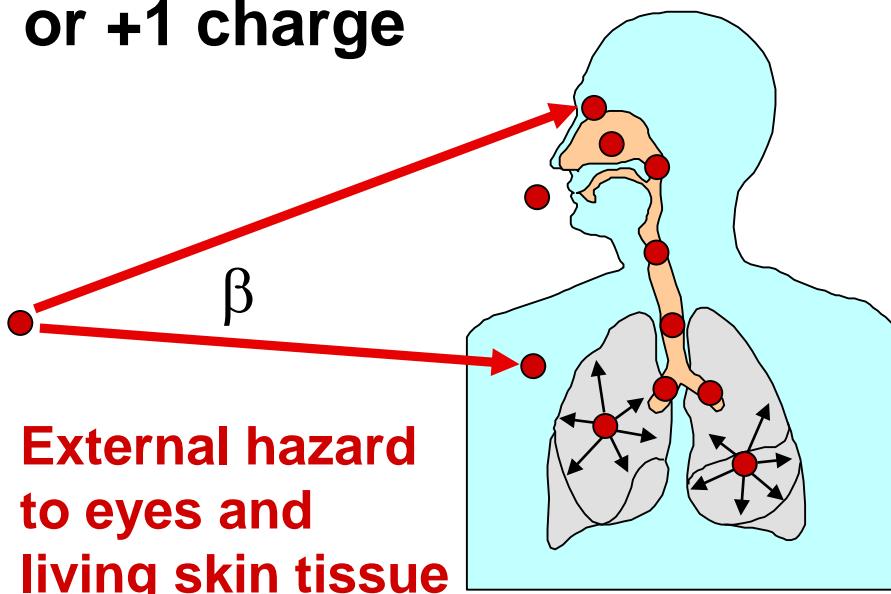
What is the range in air?

Short range in air: 1–2 inches

- Shielded by:
 - paper
 - outer layer of dead skin

Internal hazard only

34


Beta Particles

Manual p. 10

Symbol: β

Same mass as an electron

-1 or +1 charge

- Short range in air:
 - ~10 feet per MeV (million electron volts)

What is used as shielding material for beta particles?

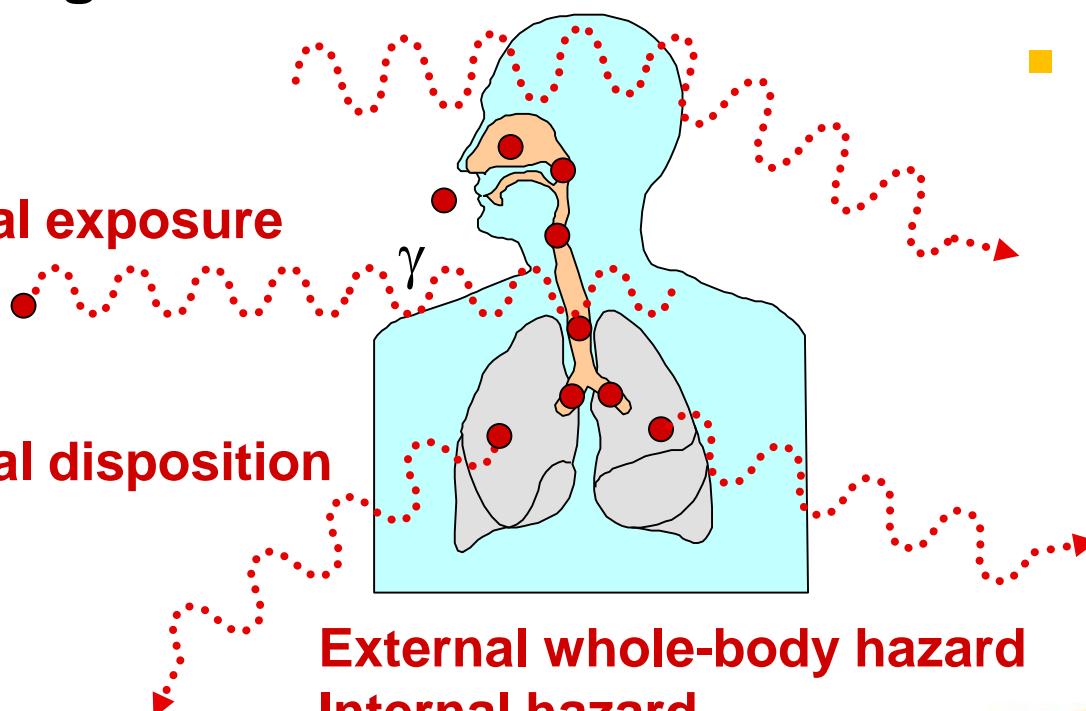
- Shielded by:
 - plastic
 - aluminum
 - glass

Gamma Rays

Manual p. 11

Symbol: γ

No mass


No charge

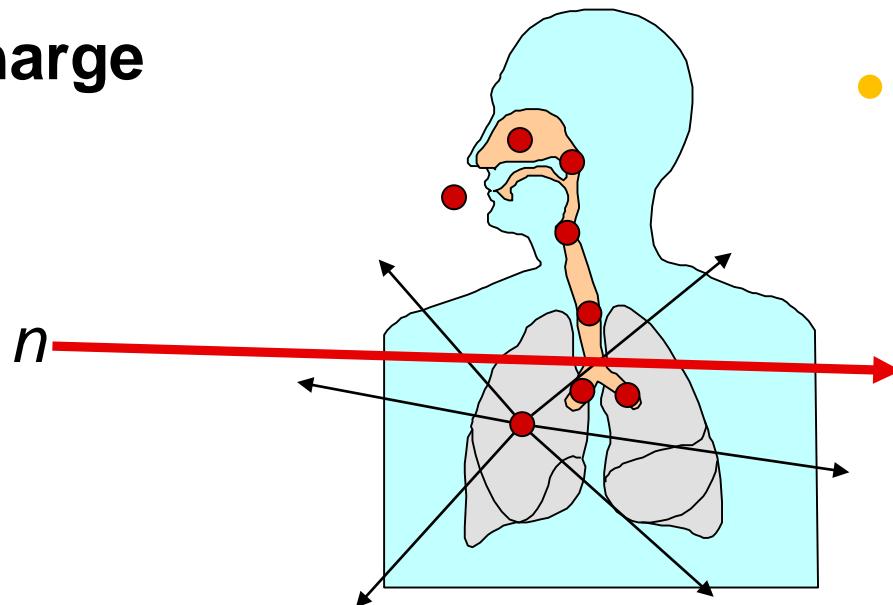
External exposure

Internal disposition

- Long range in air:
 - several hundred feet

Scattered radiation

- Shielded by:
 - lead
 - steel
 - concrete


Neutron Particles

Manual p. 12

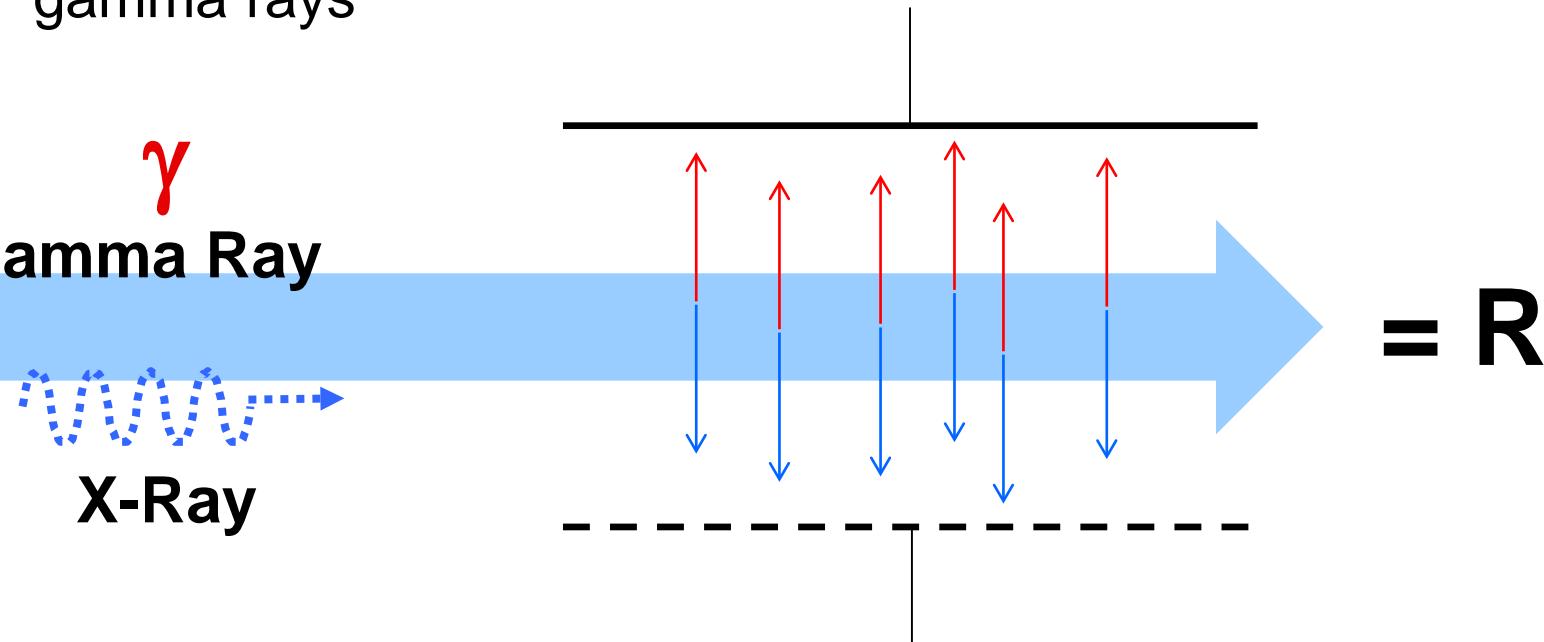
Symbol: n

Same mass as a proton

No charge

- Long range in air:
 - several hundred feet

- Shielded by:
 - water
 - plastic (polyethylene)
 - materials containing lots of hydrogen atoms

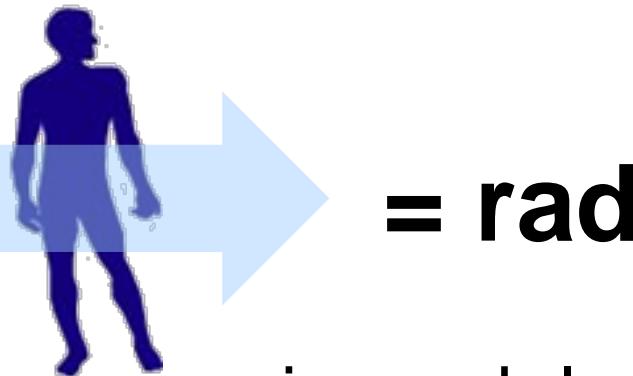

External whole body hazard
Internal hazard

37

Units of Measure for Radiation

Manual p. 13

- roentgen (R)
 - unit of exposure for ionizing radiation
 - used to measure ionization in air caused by x-rays and gamma rays

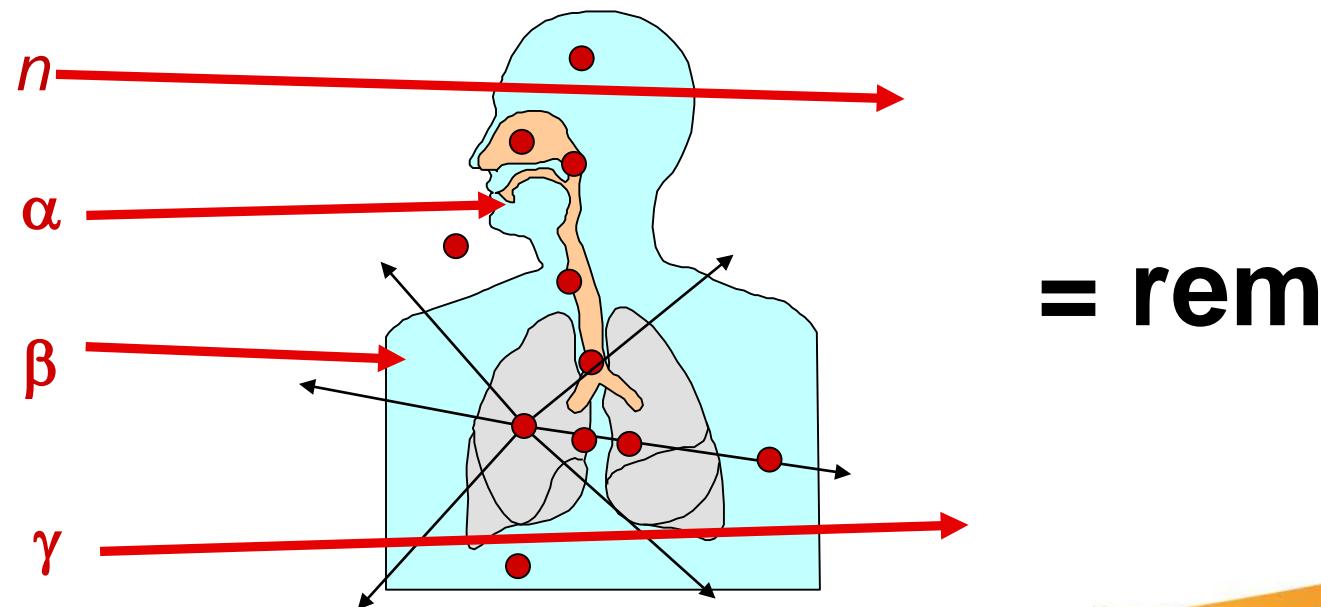


Units of Measure for Radiation (cont)

Manual p. 13

- radiation absorbed dose (rad)
 - a special unit of absorbed dose
 - a measure of energy deposited by any type of ionizing radiation into any type of material

... including humans!



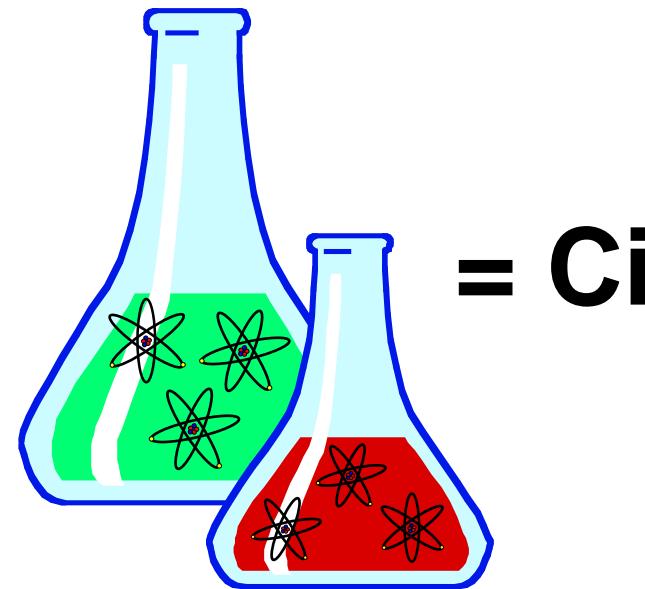
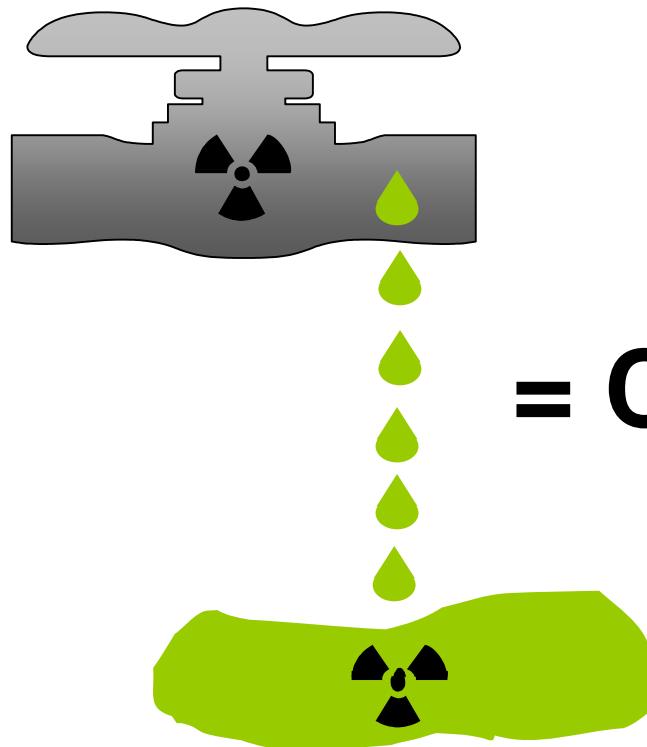
- But 1 rad from gamma rays is much less dangerous than 1 rad from alpha particles – rad does not measure health risk well

Units of Measure for Radiation (cont)

Manual p. 13

- roentgen equivalent man (rem)
 - unit of dose equivalence used for human exposures
 - considers the biological effects of different types of radiation on the human body

40

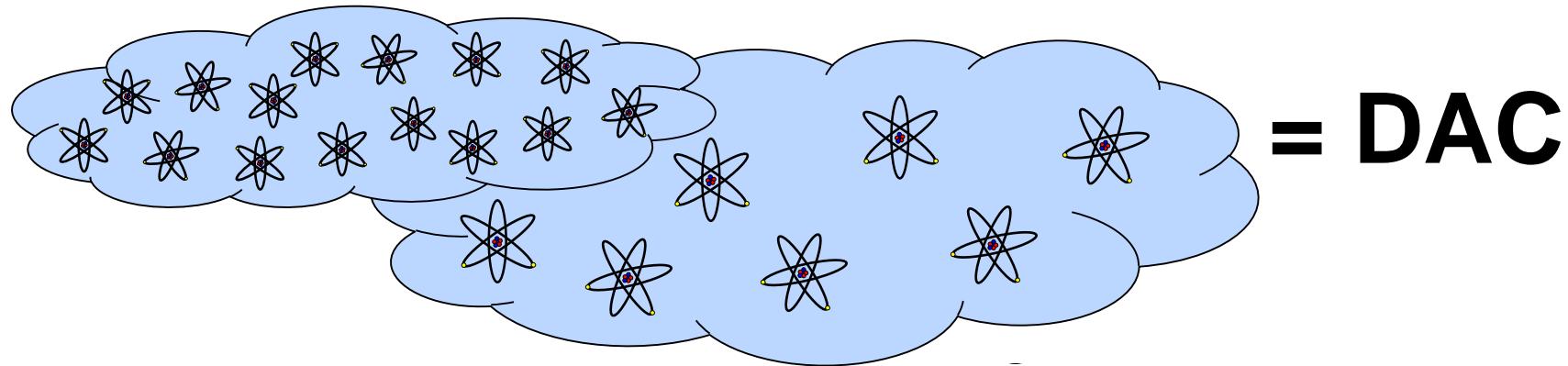



Other Units of Measure

Manual p. 13

Basic unit of activity: curie (Ci)

- unit of measure for the amount of radioactive material present


41

Other Units of Measure (cont)

Manual p. 13

Derived air concentration (DAC)

- unit of measure for the amount of radioactive material present per unit volume in air
- the concentration of radioactivity in the air

Units of Measure for Contamination

Manual p. 13

- Measured in counts per minute (cpm)

- Correct for detector efficiency, and then...
- Reported in disintegrations per minute (dpm)
per 100 cm² (dpm/100cm²)

PRE-JOB RADIOPHYSICAL CONDITIONS (to be completed by RCT/HPT)					
<input type="checkbox"/> Anticipated radiological conditions (enter anticipated conditions if survey cannot be performed before work begins) or					
<input checked="" type="checkbox"/> Measured radiological conditions (Record all readings as highest/general area.) <input type="checkbox"/> See attached map					
Surface Contamination (dpm/100 cm ²)			External Dose Rate (mrem/hr in work area)		
Alpha	Direct <u>3000</u> / <u>3000</u>	Smear <u>2500</u> / <u>2000</u>	LAS (large area swipe) <u>NA</u> / <u>NA</u>	Beta + gamma <u>30</u> / <u>5</u>	Neutron <u>NA</u> / <u>NA</u>
Beta/gamma	<u>NA</u> / <u>NA</u>	<u>NA</u> / <u>NA</u>	<u>NA</u> / <u>NA</u>	Total ($\beta + \gamma + n$) <u>30</u> / <u>5</u>	
Tritium	<u>NA</u> / <u>NA</u>				
Identify anticipated radionuclides: U-235, U-238			Airborne Radioactivity <u>NA</u> DAC <input type="checkbox"/> Isotope <input type="checkbox"/> Expected or <input type="checkbox"/> Measured		
Identify any contamination under paint or on inaccessible surfaces: None					
Completed by RCT/HPT (printed name) I. M. Tech		Signature		Z Number XXXX1	Date 02/06/03

Units of Measure Conversion

Manual p. 14

1 rem = 1000 millirem (mrem)

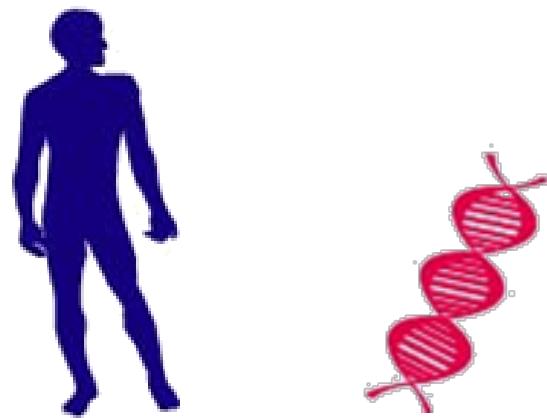
- to convert rem to mrem, multiply by 1000
 - 0.425 rem = 425 mrem

$$\text{rem} \times 1000 = \text{mrem}$$

- to convert mrem to rem, divide by 1000
 - 570 mrem = 0.57 rem

$$\text{mrem} / 1000 = \text{rem}$$

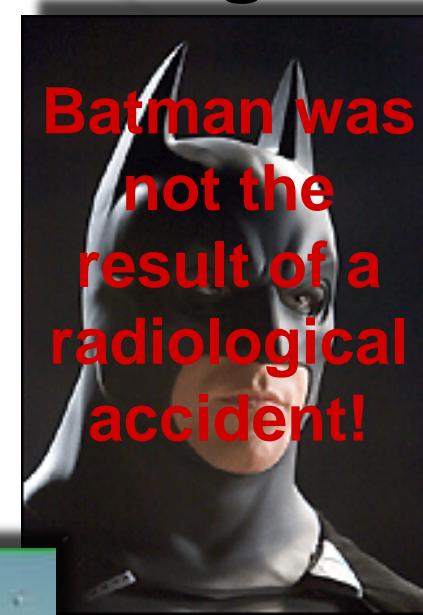
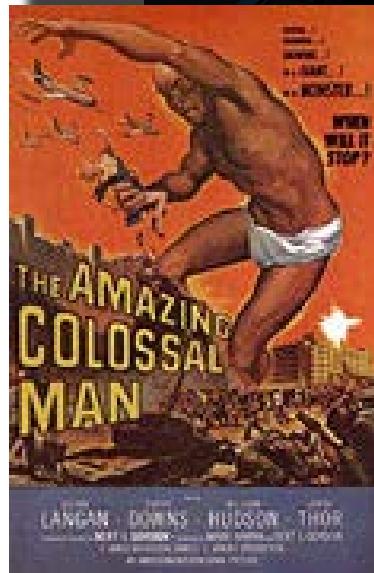
44


mrem \longleftrightarrow **rem**

Manual p. 14

- 3 rem = 3000 mrem
- 13,000 mrem = 13 rem
- 0.26 rem = 260 mrem
- 45 mrem = 0.045 rem

Questions?



Unit 2: Biological Effects

47

RWII_20301_AM_VG,R4.0

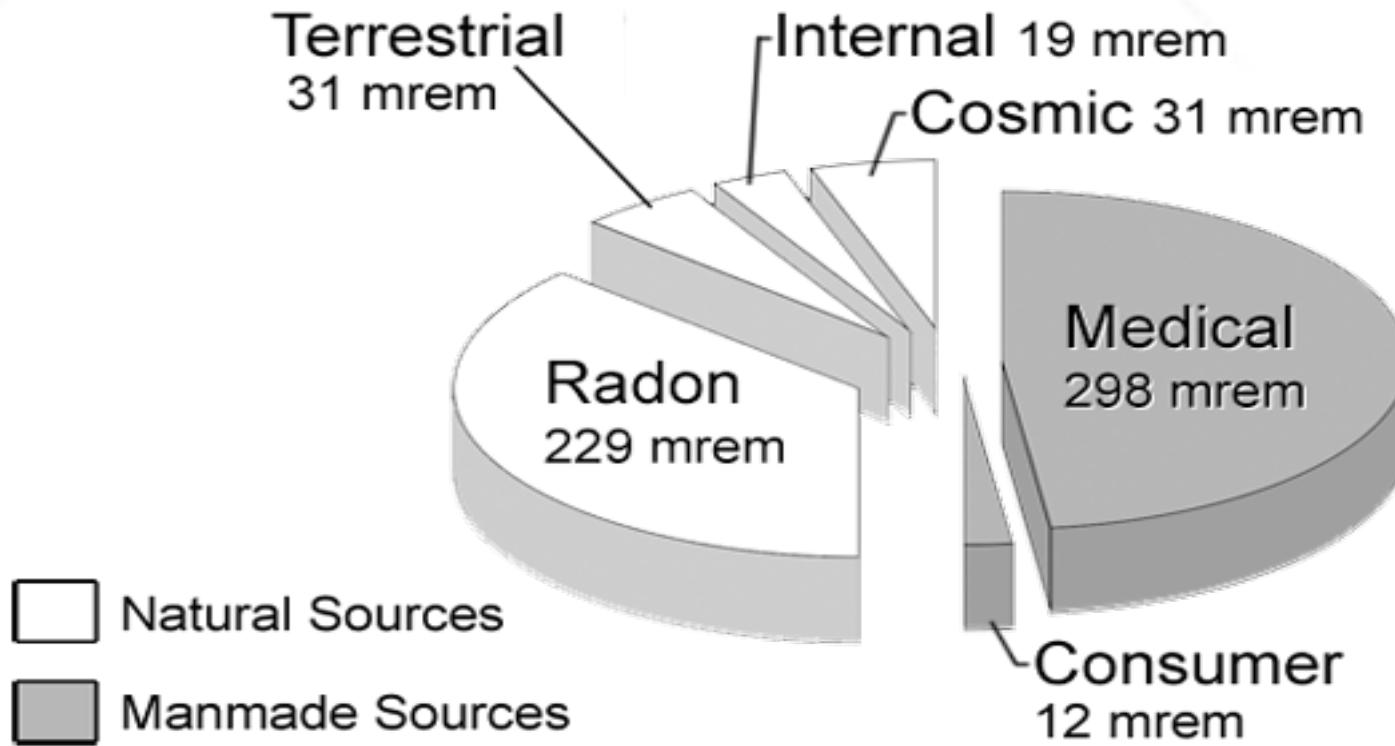
Which One Does NOT Belong?

Unit 2 Objectives

Manual p. 15

- Describe the major sources of
 - natural and background radiation
 - manmade radiation
- State the methods by which radiation causes damage to cells
- Identify the possible effects of radiation on cells
- Define somatic and heritable effects
- Define acute and chronic radiation dose

Unit 2 Objectives (cont)


Manual p. 15

- State examples of chronic radiation dose
- State the potential effects associated with prenatal radiation dose
- Identify the DOE radiation dose limits
- Identify your responsibilities concerning radiation dose limits
- Compare the biological risks from chronic radiation doses with the health risks to workers from industrial exposure

Background Radiation

Manual p. 16

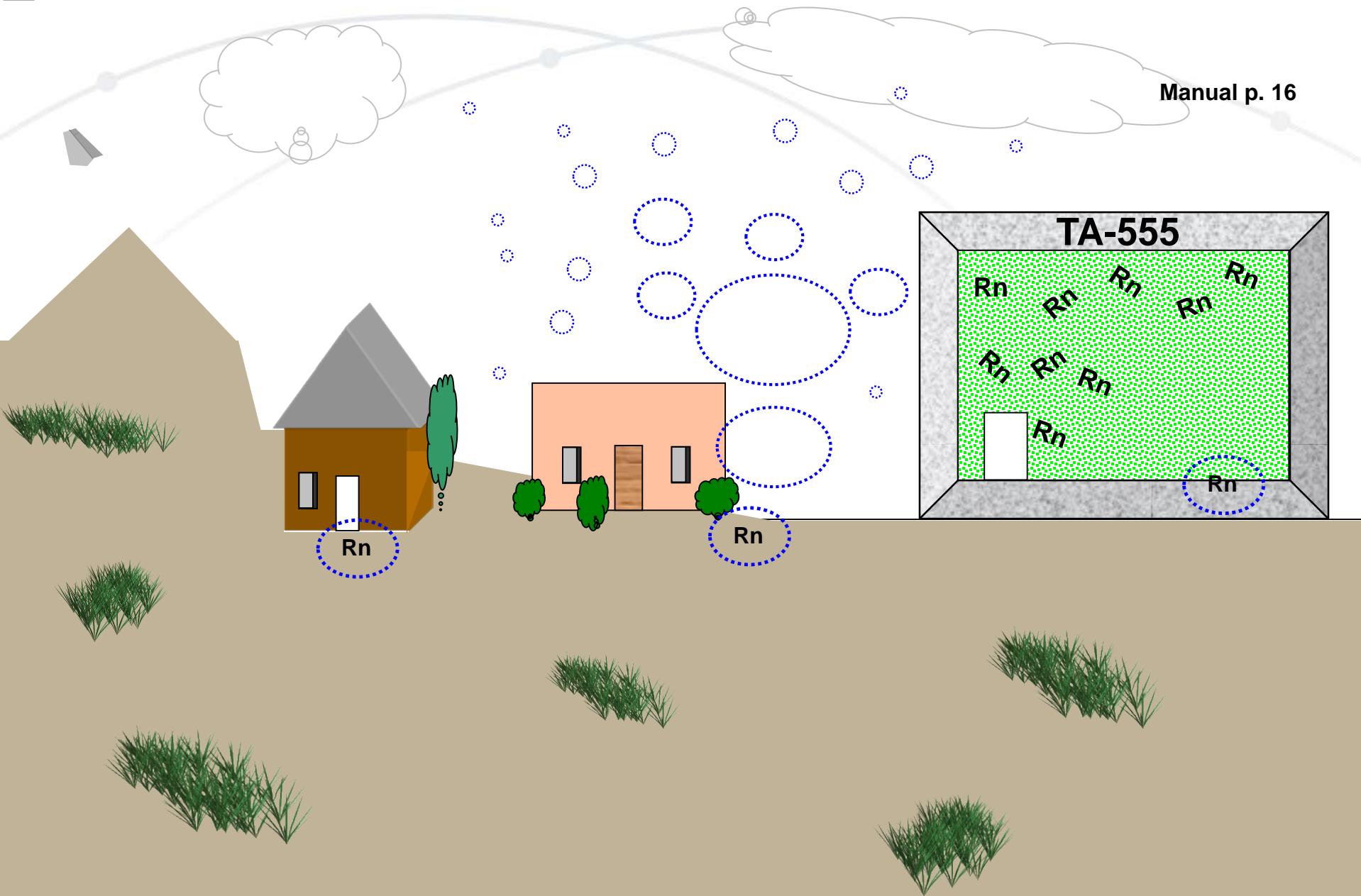
Average nationwide dose is **620 mrem**

Uranium Decay Series and Radon

Element	Uranium-238 Series							
Uranium	U-238 4.5×10^9 y		U-234 245,000 y					
Protactinium		Pa-234 1.2 min						
Thorium	Th-234 24.1 d		Th-230 75,400 y					
Radium			Ra-226 1600 y					
Radon			Rn-222 3.8 d					
Polonium			Po-218 3.1 min		Po-214 0.00014 s		Po-210 138 d	
Bismuth				Bi-214 19.9 min		Bi-210 5.0 d		
Lead			Pb-214 26.8 min		Pb-210 22.3 y		Pb-206 stable	

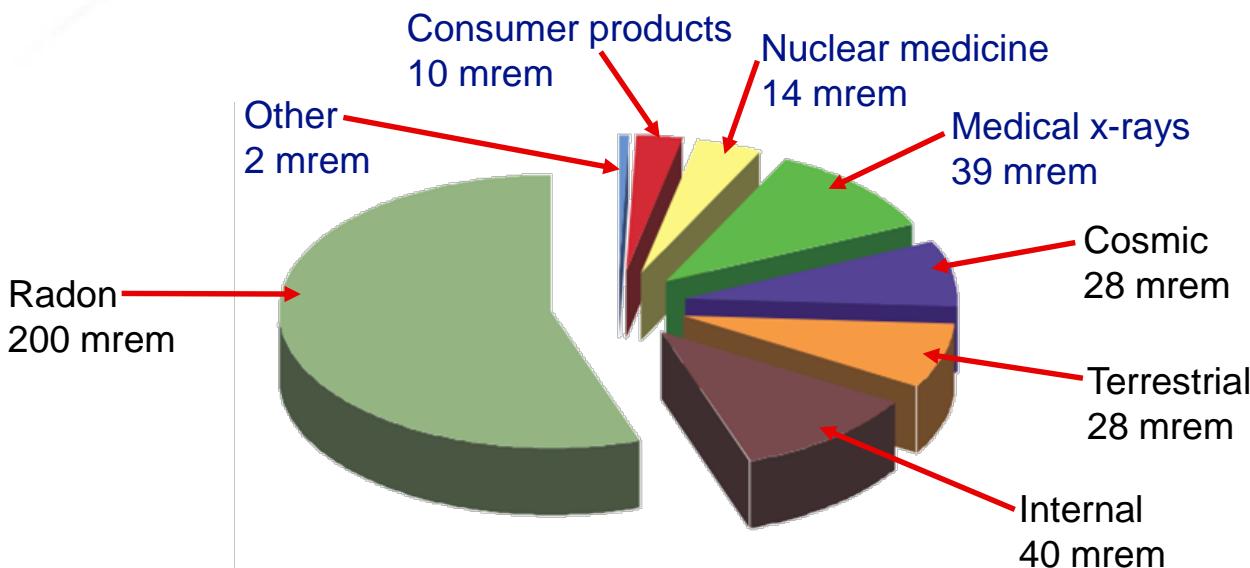
Annotations on the table:

- Red circles highlight the element symbol "Pa-234" and the half-life "32,500 y".
- A red dashed circle highlights the Rn-222 decay step.
- Callouts with arrows point to specific decay details:
 - An arrow points to the α -decay box: "α-decay Z: -2 N: -4".
 - An arrow points to the β -decay box: "β-decay Z: +1 N: 0".
 - An arrow points to the half-life of Rn-222: "3.8 d".


Element Symbol Mass Number

Pa-231
32,500 y

Half-life


Manual p. 16

Background Radiation

Manual pp. 15-17

The average annual dose in the US from background radiation is about 620 mrem.

Natural sources

- Cosmic
- Terrestrial
- Internal
- Radon

Manmade sources

- Other
- Consumer products
- Nuclear medicine
- Medical x-rays

The Los Alamos average background dose is about 414 mrem.
Why?

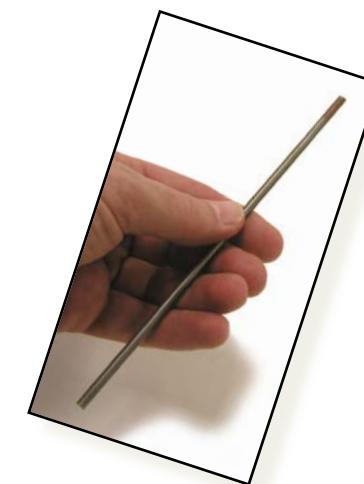
Sources of Radiation

Manual p. 17

Consumer product examples

Orange Fiesta® Ware

Camera lenses


Salt substitute

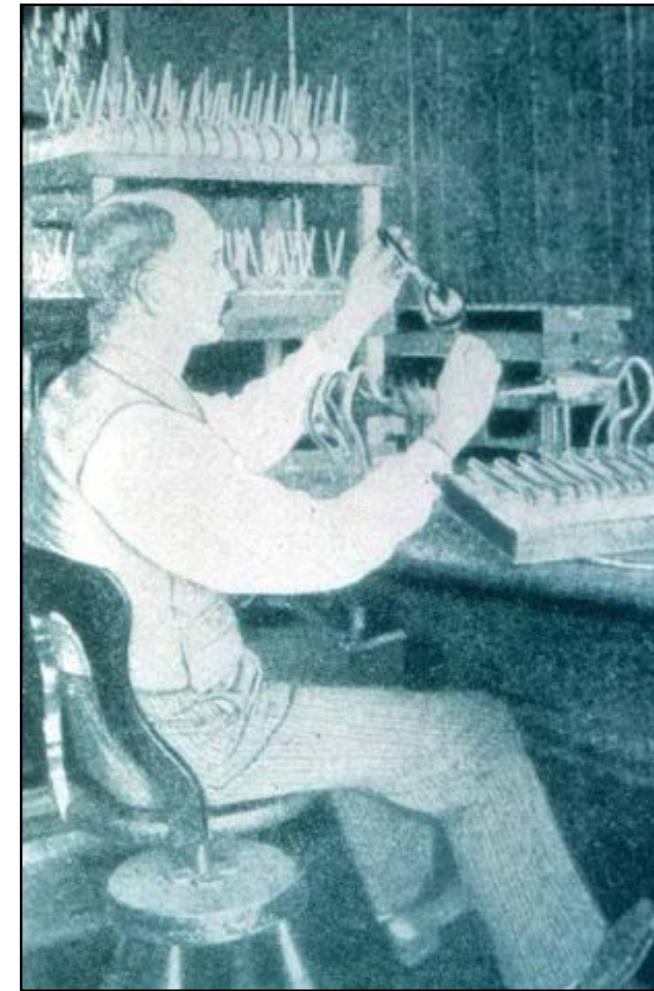
Cloisonné enamelwork

Smoke detectors

Welding rod

Biological Effects

Manual p. 17


- Information about the biological effects of radiation is available from
 - early workers
 - atomic bomb survivors
 - radiation accident victims
 - radiation therapy patients

Biological Effects to Early Workers

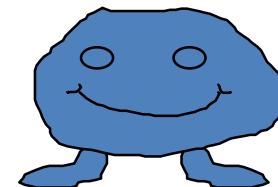
Manual p. 17

- Clarence Dally (1865–1904)
 - Dally made x-ray tubes for Thomas Edison.
 - His radiation dose led to amputations of fingers, hands, and arms.
 - He died in 1904, less than 10 years after the first paper on x-rays was published in 1896 by Wilhelm Conrad Röntgen (Roentgen).

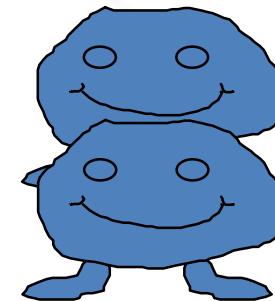
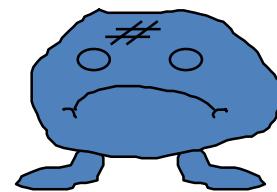
Biological Effects to Early Workers

Manual p. 17

- Radium dial workers (late 1910s)
 - Workers painted dials with radium paint to make them glow in the dark.
 - They were never told of the hazard.
 - Women would sometimes paint their teeth and nails to surprise their boyfriends.
 - They began to develop bone cancers in the 1920s.

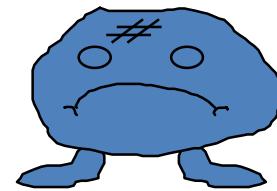


58

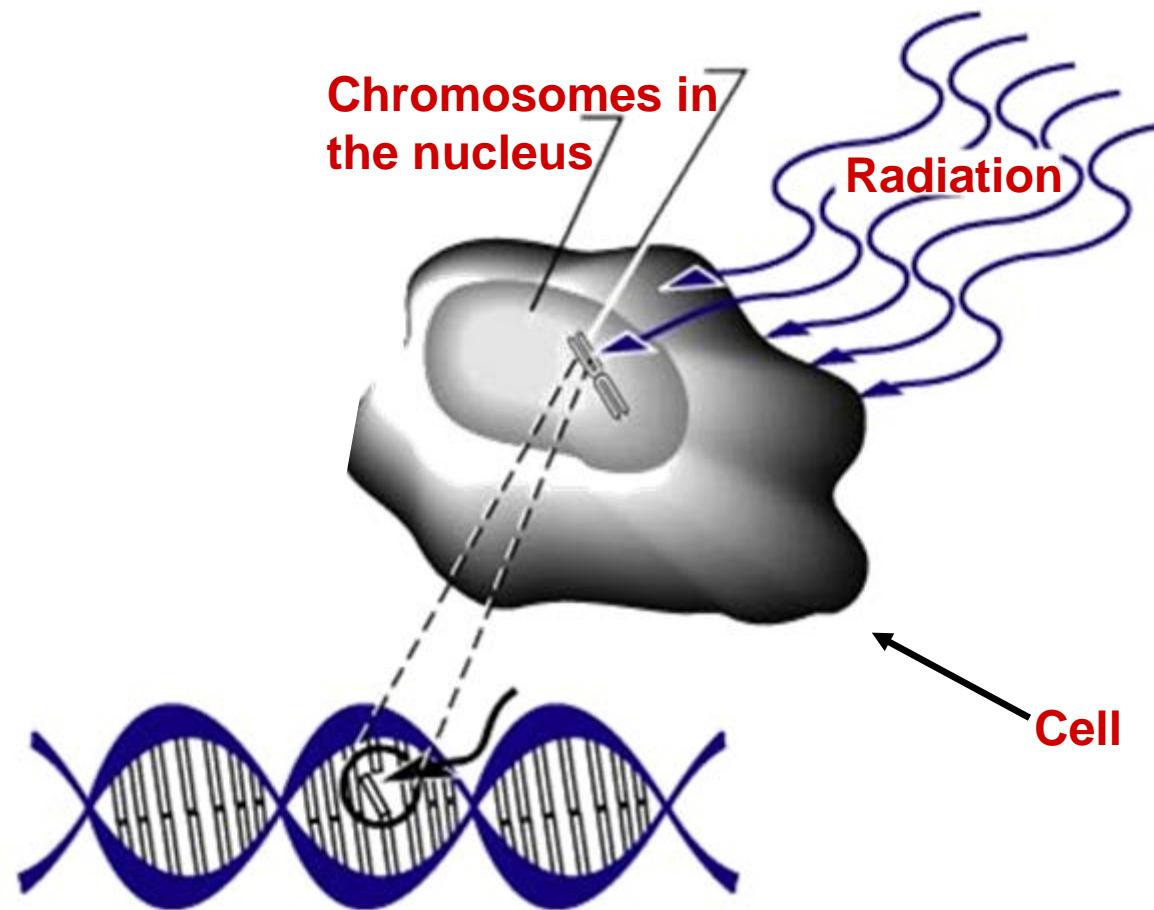


Consequences of Cell Damage

Manual pp. 17-18

Nothing happens


Cell repairs itself

Cell is damaged or mutates


Cell dies

59

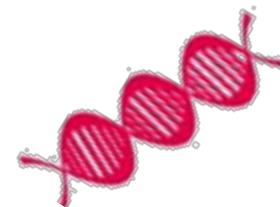
Radiation Damage to Cells

Manual p. 18

60

Types of Biological Effects

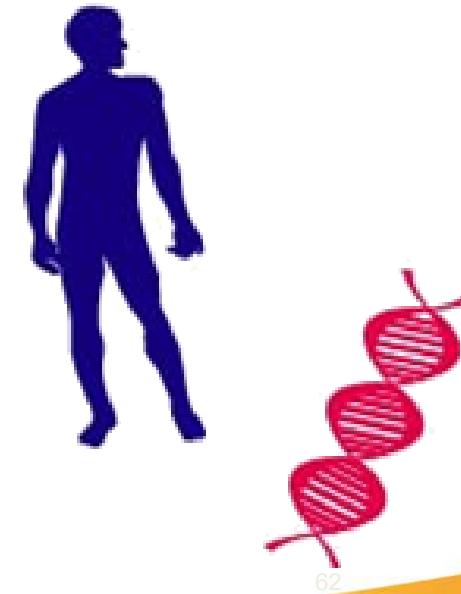
Manual p. 18


- Somatic effect
 - occurs in the individual exposed to the radiation

“What is exposure going to do to ME?”

- Heritable effect
 - is passed on to the offspring of the individual exposed to radiation

“If I get exposed to radiation, will I pass on a birth defect to MY CHILDREN?”



61

Factors Affecting Biological Damage

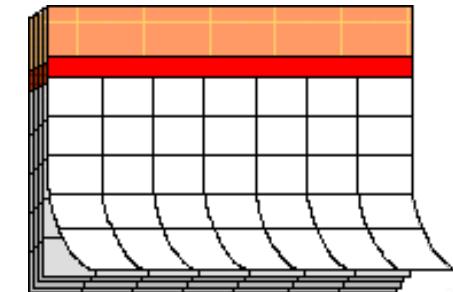
Manual p. 19

- Total ionizing radiation dose
- Type of radiation
- Radiation dose rate
- Area of body exposed
 - Cell sensitivity
 - Tissue sensitivity
- Individual sensitivity

Radiation Dose Rate

Manual pp. 19-20

“What is an acute dose?”


- Acute dose
 - Radiation dose received in a short period of time
 - Typically a relatively large amount of radiation

“What is a chronic dose?”

- Chronic dose
 - Radiation dose received over a long period of time
 - Typically a relatively low level of radiation

$$(0.62 \text{ rem} \times 75 \text{ years}) = 47 \text{ rem}$$

Effects of Acute Dose to the Whole Body

Manual p. 20

- $\approx 0\text{--}25$ rad: no detectable effect
- $\approx 25\text{--}100$ rad: temporary blood changes
- $\approx 100\text{--}200$ rad: nausea, vomiting, and diarrhea
(first symptoms of radiation sickness)
- $\approx 200\text{--}300$ rad: probable radiation sickness
- $\approx 300\text{--}600$ rad: possible death
- $\approx 600\text{--}1000$ rad: probable death
- >1000 rad: death

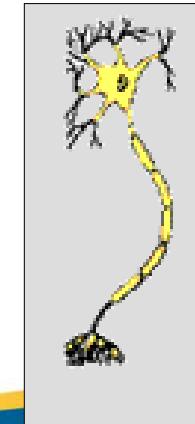
Note: At these high levels, rem = rad = R

64

Chronic Dose: Cancer

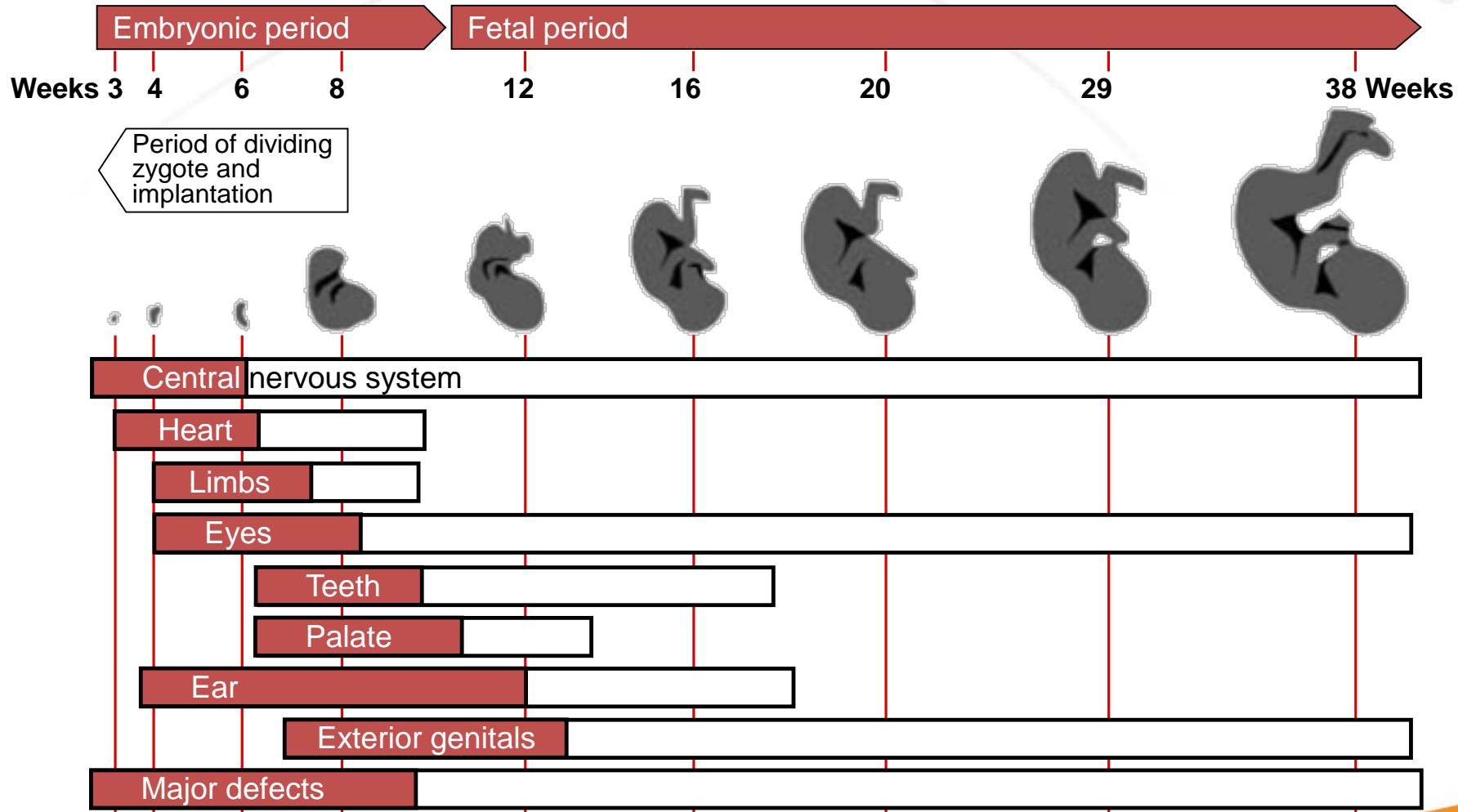
Manual p. 20

- Although widely thought of as a cause of cancer . . .
 - The risk of exposure to chronic low levels of radiation (background or occupational doses) is **not** precisely known.
 - Acute radiation exposure **may contribute** to a limited increase in cancer risk.



65

Cell Sensitivity


Manual p. 21

- Actively dividing and nonspecialized cells are more sensitive to radiation. Examples include
 - blood-forming cells
 - hair follicles
 - lining of the lungs
 - embryo/fetus
 - intestinal tract cells
- Less-actively dividing and specialized cells are less sensitive to radiation. Examples include
 - brain cells
 - muscle cells

Critical Beginnings

Manual p. 21

67

Effects of Prenatal Exposure

Manual pp. 21-22

- Low birth weight
- Small head size
- Mental retardation
- Possible increased risk of childhood cancer

No heritable effects have been observed in children *conceived after exposure – this would be a genetic effect, not prenatal exposure.*

68

Dose Limits

Manual pp. 22-23

- Radiation protection standards assume that any radiation dose causes an increased risk of negative health effects.
- DOE has established dose limits* at DOE sites to minimize the possible biological effects caused by radiation exposure.

* These limits are virtually identical across the globe

Dose Limit Definitions

Manual p. 23

- Whole body
 - Top of the head to the elbows and knees
- Extremities
 - Arms below the elbow
 - Legs below the knee
- Organs
 - Group of tissues that together perform one or more definite functions
 - Examples include lungs, liver, kidney, skin, and bone

70

Radiation Dose Limits

Manual p. 23

Affected Personnel	DOE Dose Limits	
Worker: whole body	5 rem/yr	5000 mrem/yr
Worker: extremity	50 rem/yr	50,000 mrem/yr
Worker: skin	50 rem/yr	50,000 mrem/yr
Worker: internal organ	50 rem/yr	50,000 mrem/yr
Worker: lens of the eye	15 rem/yr	15,000 mrem/yr
Visitors and public	0.1 rem/yr	100 mrem/yr
Declared pregnant worker Embryo/fetus	0.5 rem during pregnancy (0.05 rem/month)	500 mrem during pregnancy (50 mrem/month)

Prenatal Radiation Exposure

Manual p. 23

- What is the dose limit for an embryo/fetus?

500 mrem for entire pregnancy (9 months)

Declaration of pregnancy is not a requirement – it's the mother's choice.

72

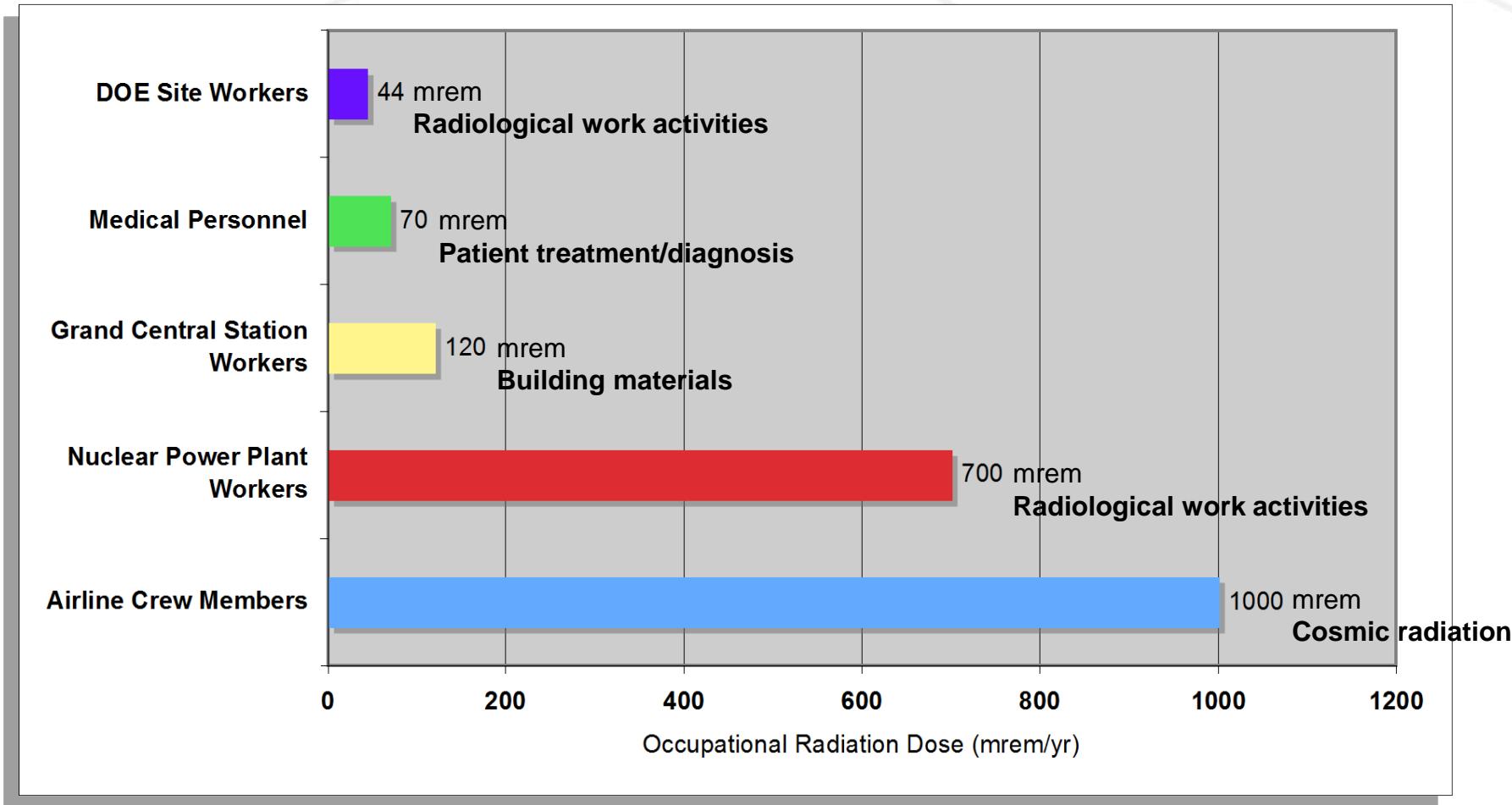
Your Responsibilities

Manual p. 24

- Comply with radiation dose limits
- Comply with radiological control rules
- Recognize the impact of one's actions
- Notify supervisor if dose limits are being approached

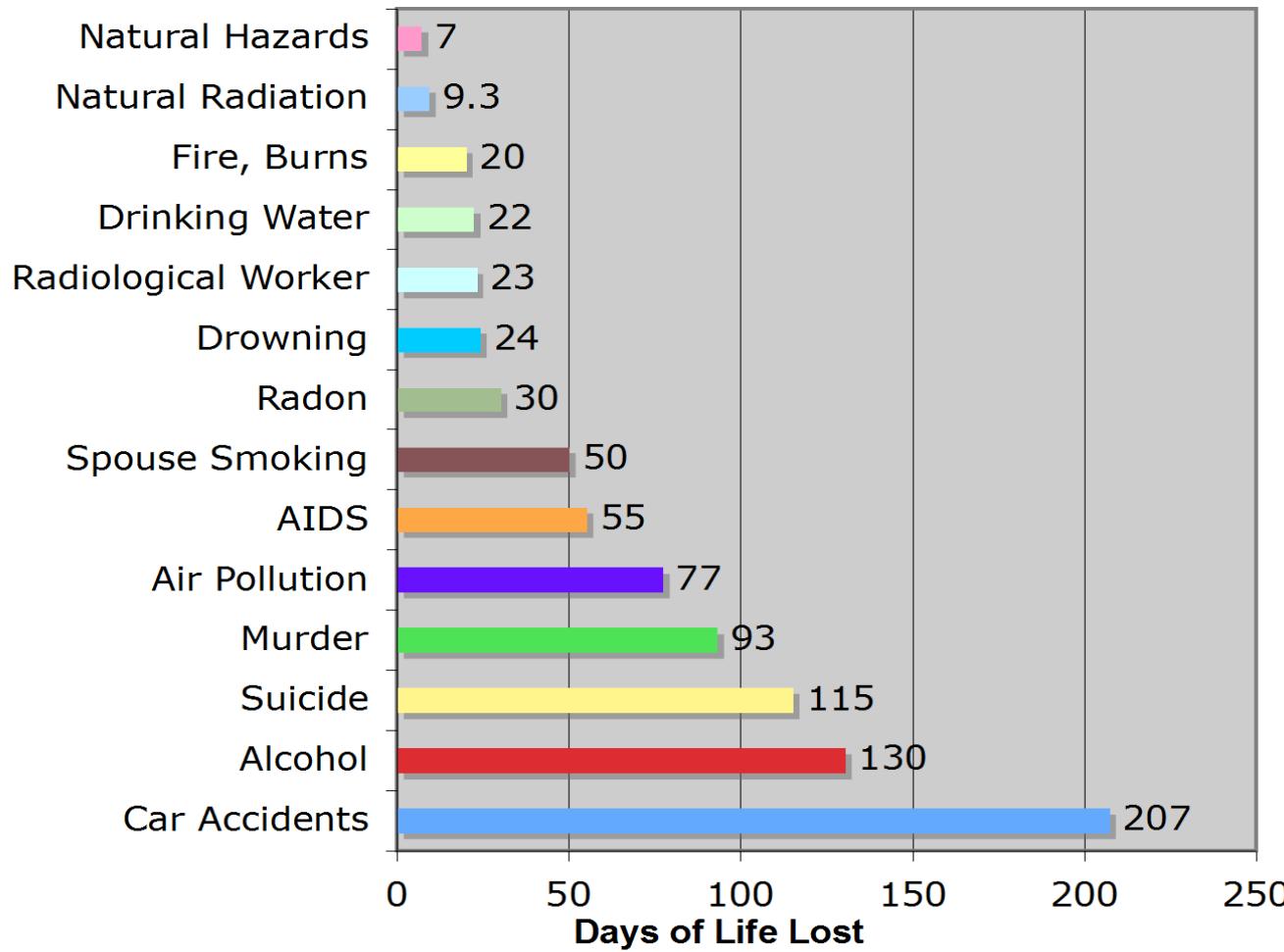
73

Comparing Occupational Risks


Manual p. 24

Occupation	Days Lost from Life Expectancy
Demolition	1500
Coal or uranium mining	1100
Fire fighting	800
Railroad	500
Agriculture	300
Construction	200
Transportation/public utilities	160
Average of all occupations	60
Government	55
Radiation dose of 1000 mrem per year	50
Service	45
Trade	30
Single radiation dose of 1000 mrem	1.5

74


Comparing Occupational Dose

Manual p. 25

Days of Life Lost from Life Expectancy

Manual p. 25

Ready for the next unit?

Dosimetry at LANL

78

RWII_20301_AM_VG,R4.0

Unit 3 Objectives

Manual p. 27

- State the purpose of each external dosimeter device used at LANL
- Identify the correct use of each external dosimeter device
- Identify the correct response to lost, damaged, or off-scale dosimeters
- Discuss internal dosimetry methods

Unit 3 Objectives (cont)

Manual p. 27

- Identify your responsibilities concerning internal dosimetry programs
- Identify the requirements for declaring a pregnancy
- Identify your responsibilities for reporting dose received from other sites or from medical procedures
- State the method for obtaining radiation dose records

80

Health Physics Checklist

- Used to assign individuals to the appropriate monitoring program
- Completed when a supervisor requests permanent dosimetry for an individual
- A new form is completed if a change in job assignment may affect monitoring requirements

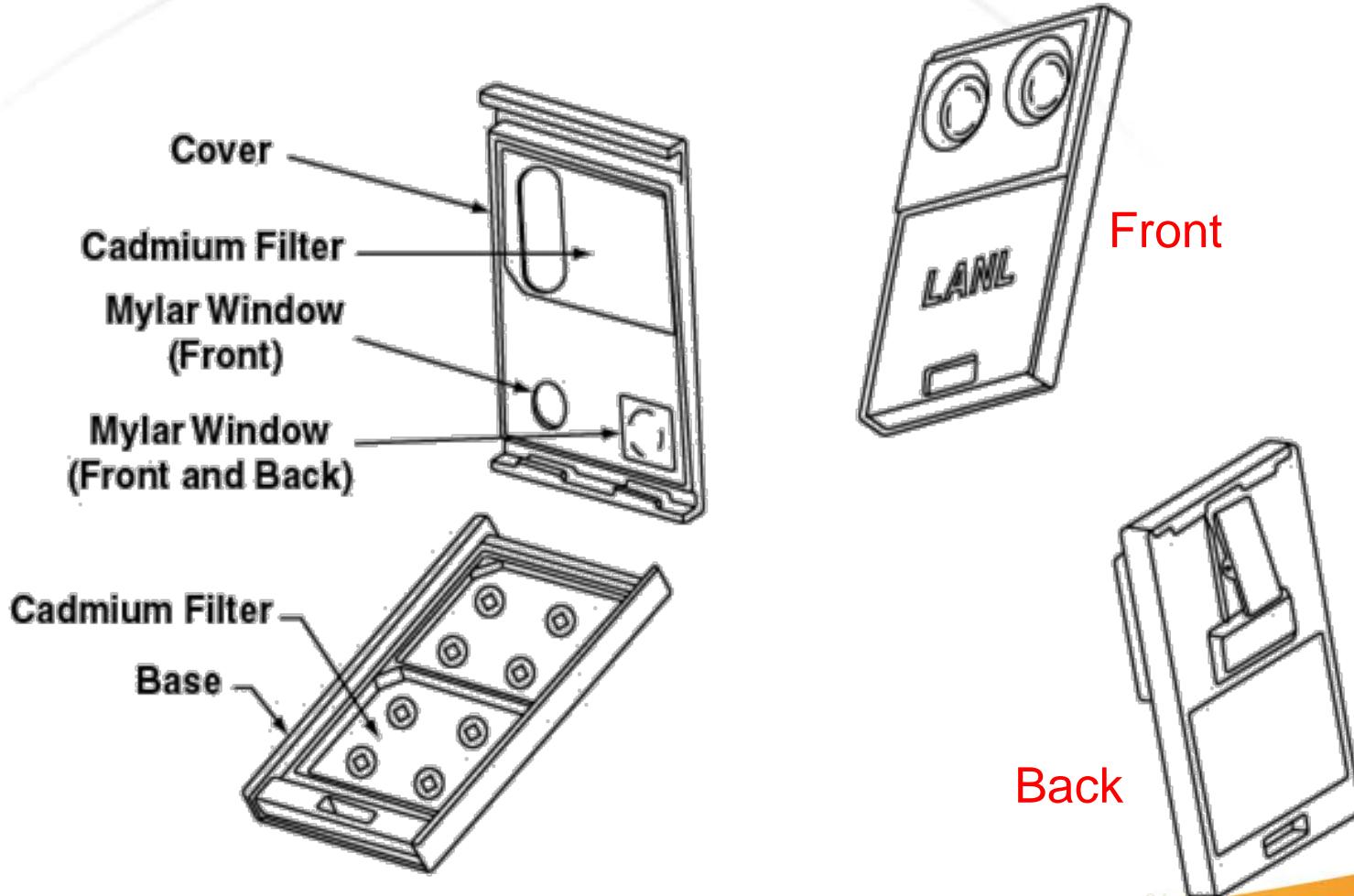
Dosimetry Evaluation System

Types of External Dosimeters

Manual p. 28

- Thermoluminescent dosimeter (TLD)
- Wrist dosimeter
- Track-etch dosimeter (lemon drop)
- Nuclear accident dosimeter
- Electronic pocket dosimeter (EPD)

Thermoluminescent Dosimeter (TLD)


Manual p. 28

- Used to assess the legal dose of record
- Assesses high-energy beta, gamma, x-ray, and neutron radiation dose
- Issued by RP-PROG through group offices
- Processed monthly, quarterly, or as needed

Thermoluminescent Dosimeter (TLD)

Manual p. 28

84

Wrist Dosimeter

Manual p. 28

- Contains a TLD chip
- Measures high-energy beta, gamma, and x-ray radiation dose to extremities
- Measures exposure to the extremities
- Issued by RP-PROG through the RCTs
- Processed monthly or at the end of the job

Track-Etch Dosimeter

Manual p. 29

- Commonly referred to as a “lemon drop”
- Assesses dose from neutron radiation at energies greater than 5 MeV
- Issued by RP-PROG through RCTs at certain technical areas
- Processed quarterly or as needed



Electronic Pocket Dosimeter (EPD)

Manual p. 29

- Assesses high-level gamma rays
- Issued by RP-PROG through the RCTs for certain jobs
- Digital display
- Alarm can be set to warn when a specified level or dose rate is reached

Electronic Pocket Dosimeter (EPD)

Manual p. 29

- Real-time display of data includes background exposure level
- Not a dosimeter of record

Pocket ion chamber is used in RW practical evaluation and in limited use at LANL.

88

Nuclear Accident Dosimeter

Manual p. 30

- Used at locations where the possibility of a criticality accident exists
- Used to measure high-level neutron radiation dose over the whole energy range
- Issued by RP-PROG through the RCTs at certain technical areas
- Processed as needed

RWII_20301_AM_VG,R4.0

Correct Use of Dosimeters

Manual pp. 30-31

- Wear at all times in designated areas
- Wear TLD on the chest between the neck and the waist (declared pregnant worker wears dosimeter between neck and waist)
- Wear supplemental dosimeters within 3 inches of primary dosimeters
- Keep clean, closed, and free from contamination
- Return for processing as required
- Follow facility-specific storage procedures

Correct Use of Dosimeters (cont)

Manual pp. 30-31

DO NOT . . .

- Leave in the car on the dashboard or in direct sunlight
- Expose to non-work-related sources of radiation
- Take on travel or wear at any other location without permission from RP-PROG

Damaged, Off-Scale, or Contaminated Dosimeters

Manual p. 31

If your dosimeter is **damaged** or **off scale** or if it **alarms** or becomes **contaminated**,

1. stop work
2. place work in a safe condition
3. alert others
4. exit the area
5. notify an RCT

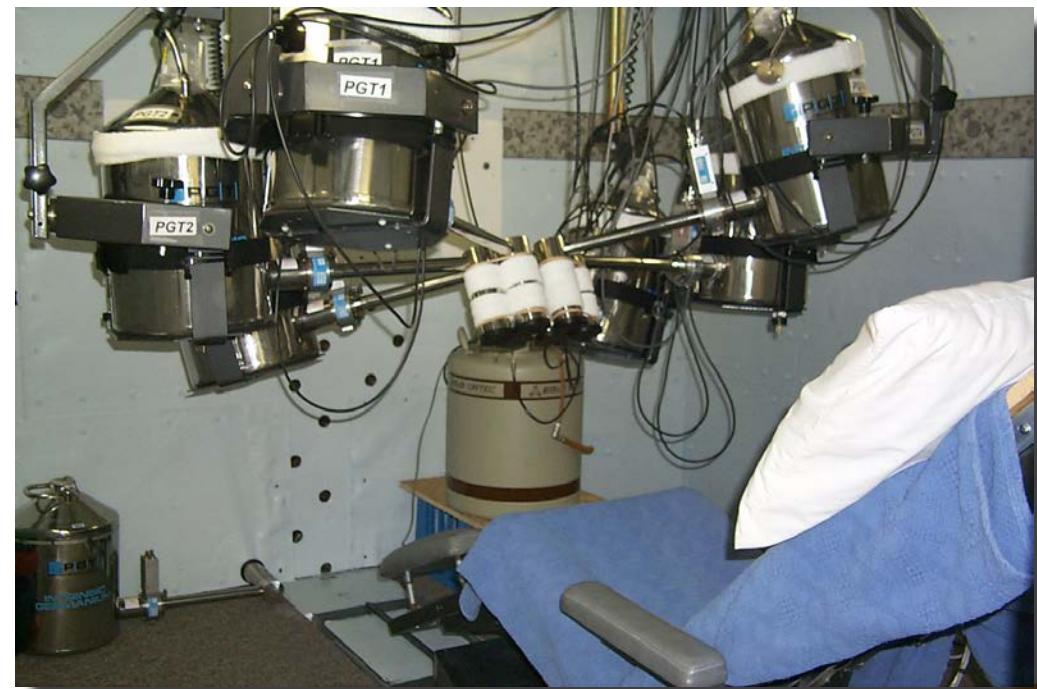
Lost Dosimeters

Manual p. 31

- If your TLD is lost, contact an RCT
- Line manager completes and submits a report to RP-PROG
- If your lost TLD is found later, RP-PROG determines whether the lost or replacement TLD should be worn

93

Internal Dosimetry Methods


Manual p. 31

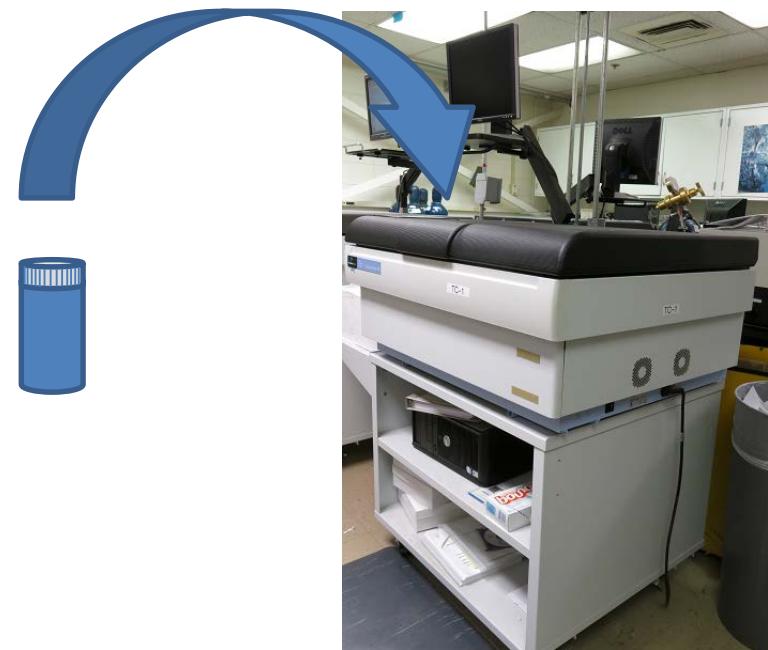
- In vivo monitoring (direct bioassay)
 - Direct measurement from outside the body

- In vitro monitoring (indirect bioassay)
 - Analysis of bodily fluid or material

In Vivo Monitoring

Manual p. 31

- Measures amount of internally deposited radioactive material by direct measurement from outside the body
- Examples include
 - whole body counting
 - chest counting
 - thyroid counting
 - wound counting



95

In Vitro Monitoring

Manual p. 31

- Measures internally deposited radioactive material by analysis of bodily fluid or material
- Examples include
 - urine sampling
 - fecal matter sampling
 - blood sampling
 - saliva sampling
 - nasal swiping
 - wound tissue sampling

Your Internal Dosimetry Responsibilities

Manual p. 32

- Have whole-body counts as follows:
 - baseline
 - whenever instructed
 - termination of employment

- Submit in vitro samples as follows:
 - baseline
 - as required by program
 - termination of employment

97

Monitoring Pregnant Workers

Manual p. 32

- A female radiological worker who is pregnant is encouraged to notify OH (Occupational Health) in writing
- The RHAP will evaluate your work situation

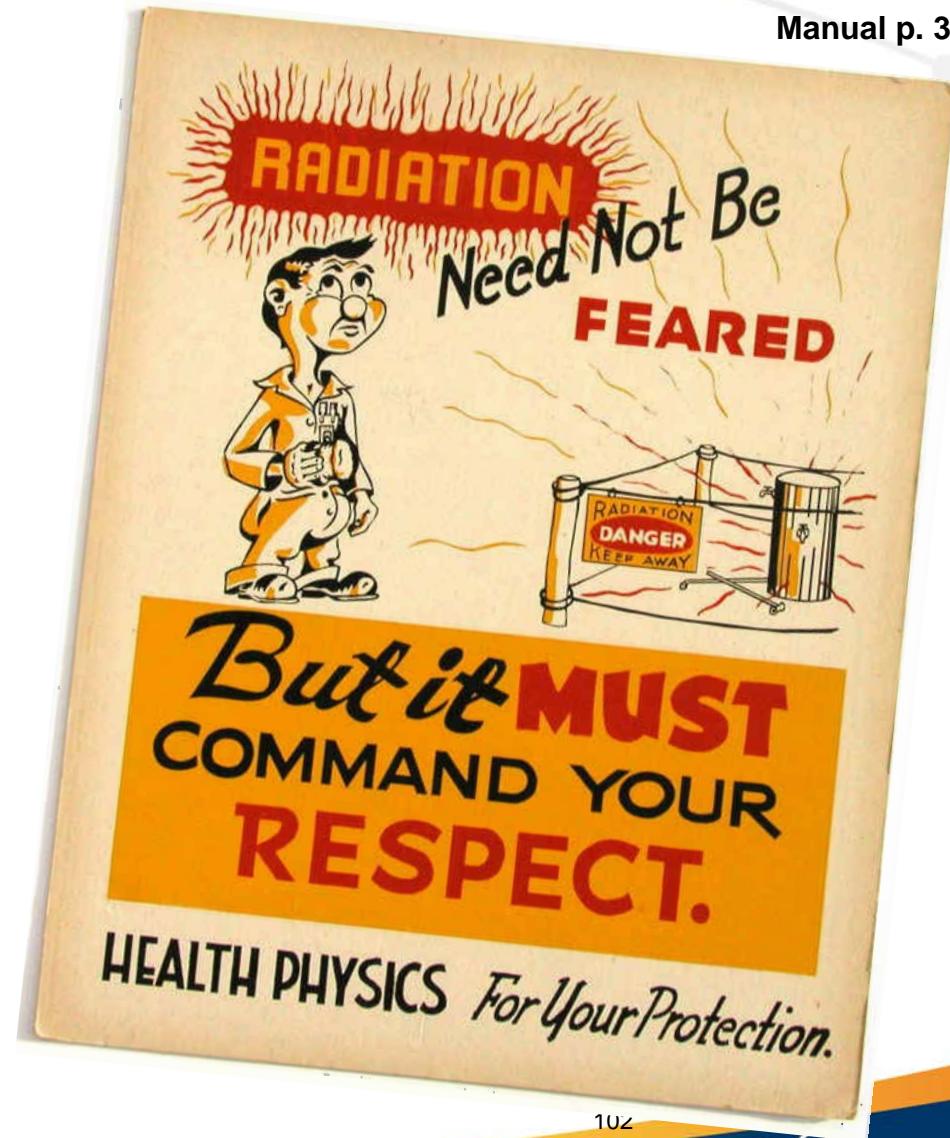
98

Radiation Dose Reporting

Manual p. 33

- Workers must report to the Dose Assessment Team, Health Physics Measurements, RP-PROG
 - doses received at other DOE sites
 - medical radiological procedures to your RCT
- Report medical radiological procedures to your group leader or supervisor as far in advance as possible

Radiation Dose Records


Manual p. 33

- RP-PROG maintains records and provides
 - monthly records to line organizations
 - annual records to individual workers
 - termination records within 90 days
 - visitor records within 30 days

Any questions?

Unit 4: ALARA

102

Unit 4 Objectives

Manual p. 35

- State the DOE and LANL management policies for the ALARA program
- Identify the LANL policy on lifetime dose
- Identify your responsibilities as a radiological worker in the ALARA program
- Identify the basic protective measures of time, distance, and shielding for reducing external radiation dose

103

Unit 4 Objectives (cont)

Manual p. 35

- State examples of the use of time, distance, and shielding
- State the routes through which radioactive material can enter your body
- Identify the methods for minimizing intake of radioactive materials
- Identify general requirements for shipping and receiving radioactive material

104

Unit 4 Objectives (cont)

Manual p. 35

- Identify the methods used to minimize radioactive waste
- Identify the requirements for removal of waste from a Radiological Controlled Area (RCA) that is controlled for contamination

105

ALARA

Manual p. 35

As

Low

As

Reasonably
Achievable

100

DOE Management ALARA Policy

Manual p. 36

Radiation exposure

- MUST be maintained ALARA
- MUST be kept well below regulatory limits

“No radiation exposure to workers or the public should occur without receiving commensurate (equal) benefit based on sound economic principles.”

107

LANL Policy on Lifetime Dose

Manual p. 36

LANL's policy states that workers must keep the amount of their lifetime doses (in rem) less than their ages (in years).

You have worked for LANL for 30 years and
you are 50 years old.

30 yr x 5 rem/yr DOE dose limit = 150 rem

**However, the LANL Lifetime Dose Policy
requires that your dose rate must be**

less than how many rem?

**At age 50, your radiation dose
should be less than 50 rem.**

108

Radiological Control Technicians' Responsibilities

RCTs

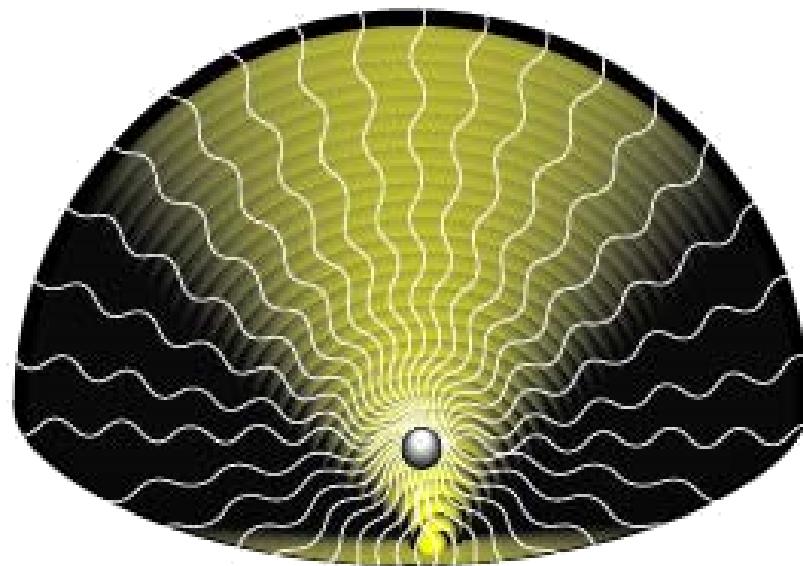
- Conduct radiological surveys
- Provide information on radiological conditions
- Implement requirements
- Specify exposure and contamination controls
- Answer radiological questions and address concerns
- Stop work when conditions are unsafe

Your Responsibilities

Manual p. 37

- Maintain radiation dose ALARA by knowing dose limits and your remaining dose
- Know the area radiological conditions
- Read and obey posted, written, and oral instructions such as signs, RWPs, IWDs, SOPs, and RCTs' instructions
- Participate in pre-job briefings and post-job reviews
- Report any radiological or safety problems
- Use your “stop work” authority when conditions or work practices are unsafe

Reducing External Radiation Dose


Manual p. 37

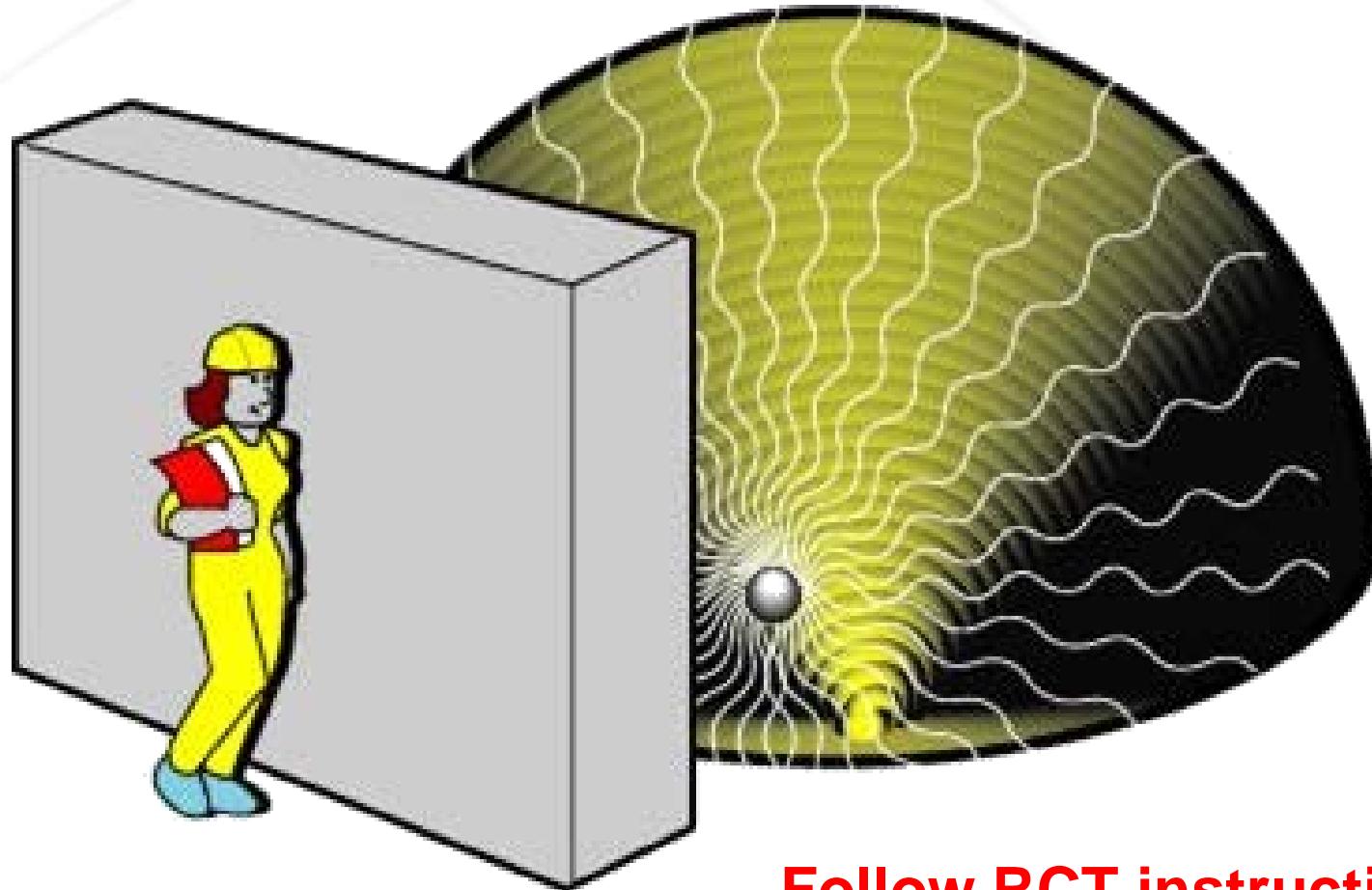
- Minimize time
- Maximize distance
- Use appropriate shielding
- Use source reduction, when appropriate

113


Minimize Time

Manual p. 37

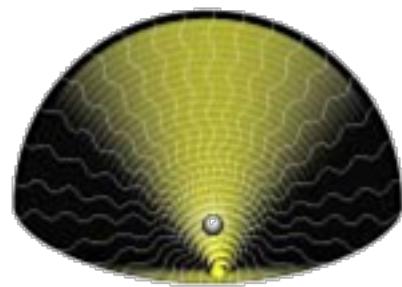
Maximize Distance


Manual p. 38

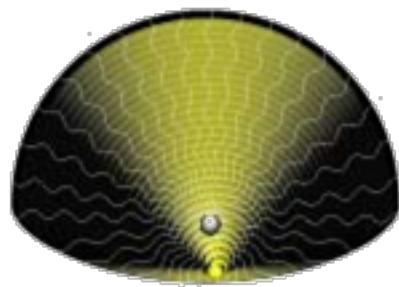
115

Use Shielding

Manual p. 38


Follow RCT instructions!

110


Inverse Square Law

Manual p. 39

Doubling the distance cuts the radiation to 1/4

*1 foot
100 mrem per hour*

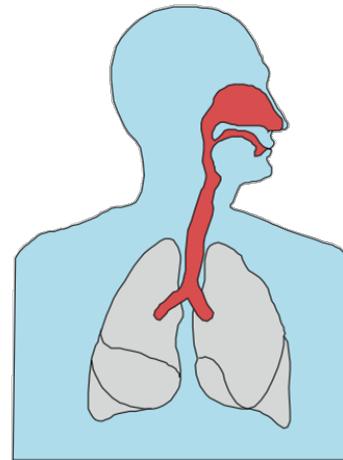
*2 feet
25 mrem per hour*

117

Reducing Radiological Sources

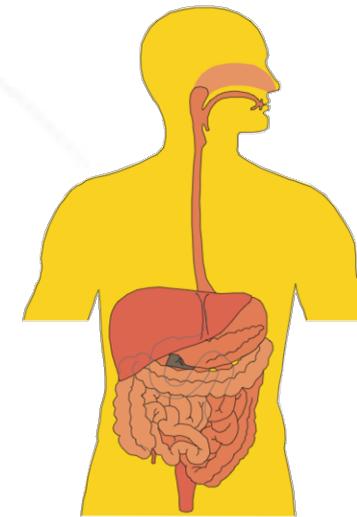
Manual pp. 39-40

- Flush components or piping systems
- Drain pipes, tanks, or components
- Remove packaged radioactive material from the work area

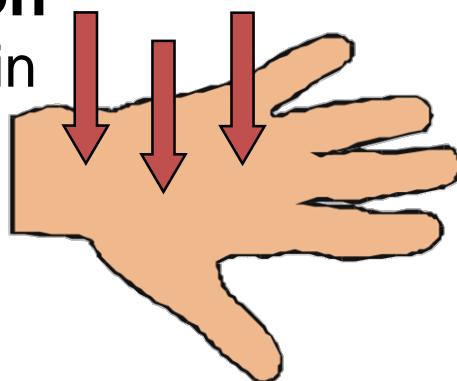

118

Routes of Entry

Manual p. 39


Inhalation

Breathing
Smoking



Ingestion

Eating
Drinking
Chewing

Absorption through skin

Absorption through wounds

Reducing Internal Radiation Dose

Manual p. 39

- Report all wounds, cuts, scabs, or rashes to your RCT before starting work
 - Must be cleared by Occupational Health (OH) to perform work
- Wear PPE as required
- Wear respirators properly and when required
- Comply with work document requirements
- Do not eat, drink, smoke, chew, or apply cosmetics or lip balm in controlled areas
- Use extra caution with sharp tools
- Immediately report any injuries to the RCT

120

Labeling of Radioactive Material

Manual p. 40

- Individual containers of radioactive material and/or radioactive items must be labeled
- Packaging of items having removable surface contamination in excess of Radiation Protection P 121, Table 14-2 values must be labeled when used, handled, or stored in areas other than
 - Contamination Areas,
 - High Contamination Areas, or
 - Airborne Radioactivity Areas
- Labels must be applied to the outside of the package or be visible through the package

121

Labeling of Radioactive Material (cont)

Manual p. 40

- Labels must include the standard radiological warning trefoil and the words CAUTION or DANGER and RADIOACTIVE MATERIAL
- A tag may be used to meet the P 121 labeling requirements. Additional information may also be required
- Tags must
 - be used only temporarily (for removal, transport, or short-term holding of items)
 - be completed by RP-PROG
 - NOT be used in conditions that could degrade the tag or its legibility

Radworker Responsibilities for Labels & Tags

Manual p. 40

- The radworker's responsibilities regarding radioactive material labels and tags are to
 - read ALL radioactive material labels, tags, and postings
 - report any missing or illegible tags to the RCT
 - follow ALARA principles and other radiation protection requirements when handling radioactive material
- If you have any problems or concerns, contact the RCT before handling any radioactive material

Packaging & Storing Radioactive Material

Manual p. 40

- Radioactive material may be stored in radiological areas, RBAs, RCAs, or uncontrolled areas, as long as the labeling and posting requirements for radiological hazards are met.
- For radioactive material used or stored in uncontrolled areas, the material and its intact packaging must not present the potential for 100 mrem/yr external dose or contamination above the P-121 Table 14-2 values.
- If radioactive material will be used or stored in an uncontrolled area, an RP SME must evaluate the conditions to ensure that these criteria are met.

Packaging & Storing Radioactive Material (cont)

Manual p. 40

- Radioactive material must be packaged and stored so that the package does not leak.
- As an ALARA measure, package contents should be readily identifiable.
- As an ALARA measure, items with loose surface contamination within Contamination Areas, High Contamination Areas, or Airborne Radioactive Areas should be contained.
- The packaging and transportation program is maintained by OS-PT and defined in IPP 525.2, “Hazardous Material (Hazmat) Packaging and Transportation.”

125

Shipping & Receiving from Transportation

Manual p. 41

- An RCT must perform receipt surveys of radioactive material shipments when received at the central shipping and receiving warehouse (or other facility used as a depot and the container is moved or handled) as soon as practicable.
- An RCT must perform receipt surveys of radioactive material shipments when received at the final destination facility before the shipping vehicle leaves that facility.
- When outer transport containers of radioactive material are initially opened following receipt, an RCT must be present to perform surveys to ensure no unanticipated conditions exist (i.e., contamination on inner packaging).

126

Shipping & Receiving from Transportation (cont)

Manual p. 41


- Receipt surveys are required for
 - waste shipments
 - accountable sealed sources or radioactive material required to be labeled
 - any 10 CFR 835 threshold that requires receipt survey
 - large items with the potential for contamination
 - a package containing radioactive material of any type or quantity that arrives damaged (e.g., crushed or wet)
 - other radioactive material (except for limited exceptions)
- When in doubt, consult with your RCT

127

Examples of Radioactive Sealed Sources

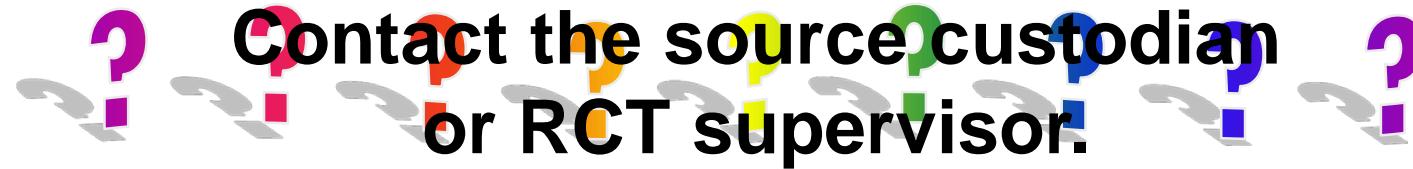
Manual p. 41

128

Control of Radioactive Sealed Sources

Manual p. 41

- Contact the source custodian if you
 - plan to order a new sealed source
 - have questions about procedures for controlling sealed sources
 - discover that a sealed source is unaccounted for, missing, or not properly controlled
- The source custodian must immediately contact the line manager and the source control office if a source is lost


120

Control of Radioactive Material

Manual p. 41

You discover that radioactive material is missing or not properly controlled.

What do you do?

Contact the source custodian or RCT supervisor

130

Control of Radioactive Material (cont)

Manual p. 41

It is important to keep track of radioactive material and radioactive sealed sources because of

- radiation safety
- public protection (people and environment)
- national security issues
 - preventing the spread of nuclear weapons
 - terrorism (dirty bombs)

Reducing Radioactive Waste

Manual pp. 43-44

- Minimize radioactive waste
- Segregate or separate radioactive waste from nonradioactive waste
- Segregate compactible waste from noncompactible waste
- Minimize the amount of mixed waste generated
- Use good housekeeping techniques

132

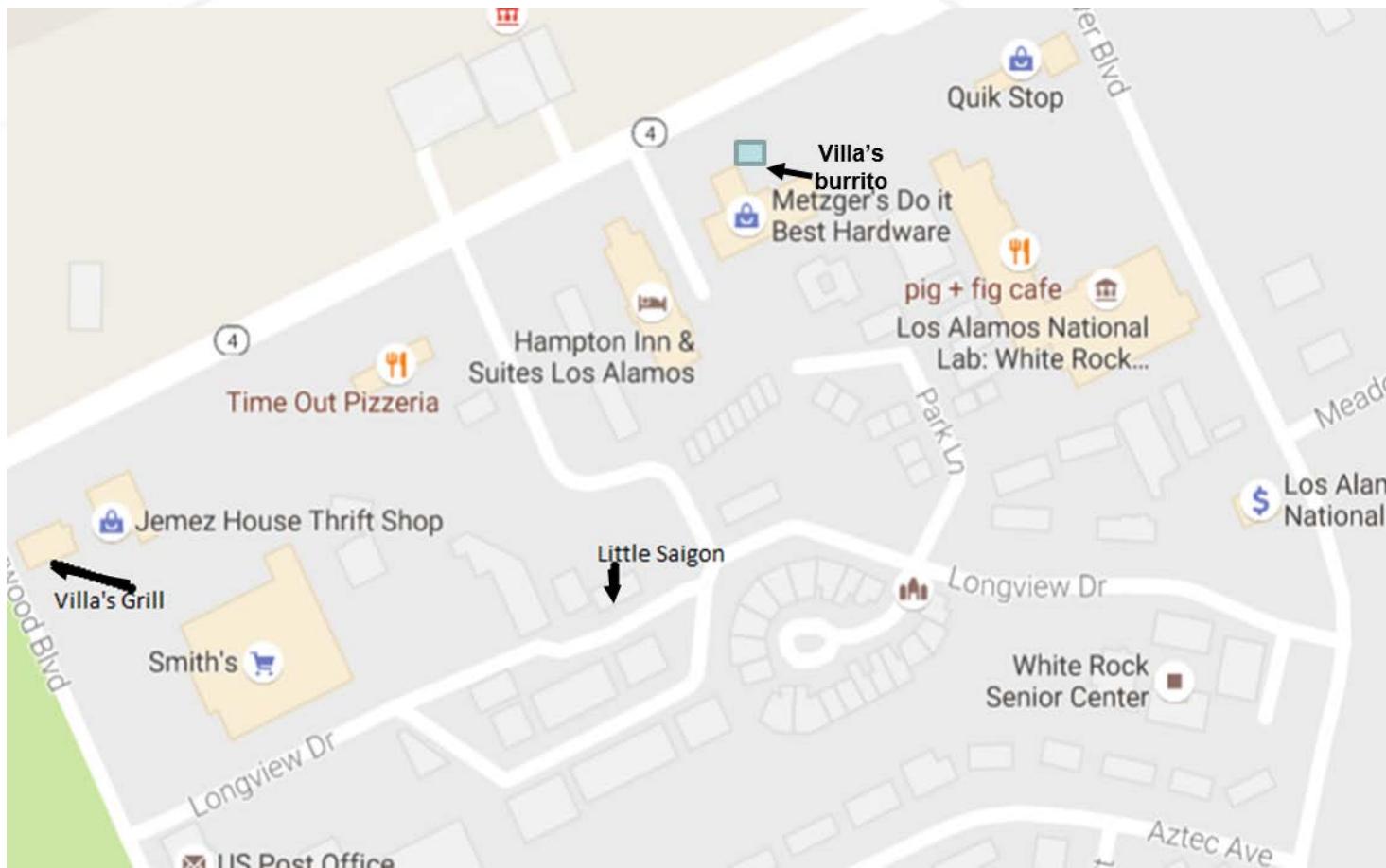
Removing Waste

Manual p. 44

- Waste removal from a Radiological Controlled Area (RCA) requires procedure approval by line or facility management
- Applies only to RCAs controlled for
 - surface contamination
 - volume contamination
- Segregation methods
 - acceptable knowledge
 - measurement
 - combination of the two

133

ALARA Resources


134

Visit the Practical Room

Make sure to visit Room 110, the Practical Room, during breaks this afternoon!

Lunchtime in White Rock

Unit 5: Contamination Control

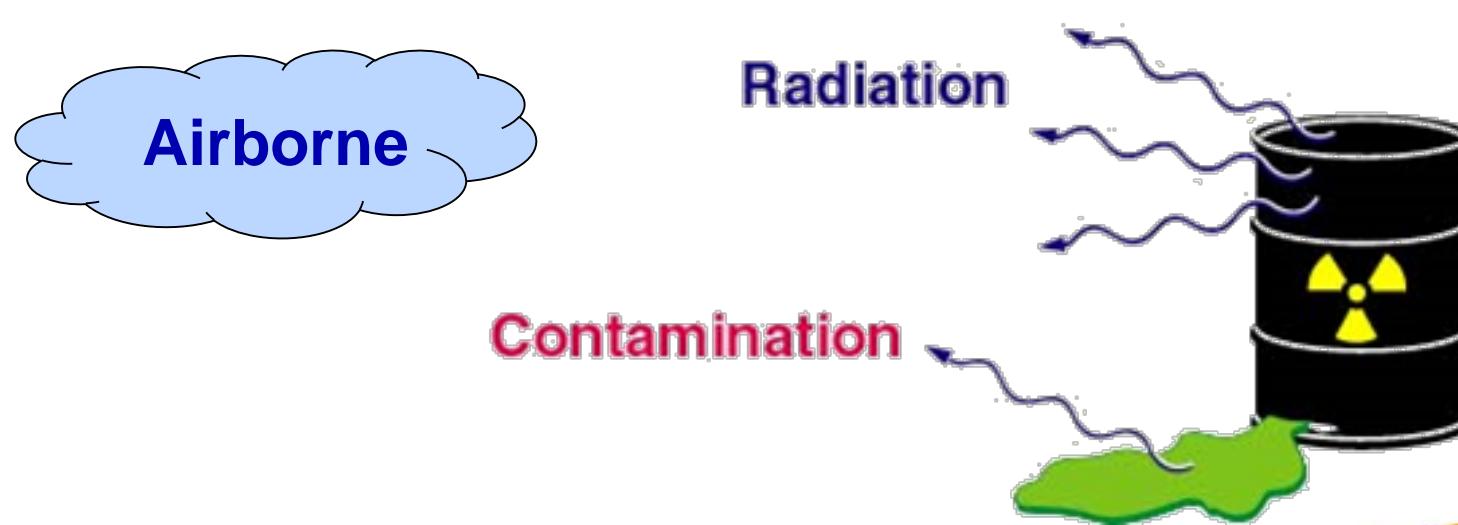
Unit 5 Objectives

Manual p. 47

- Define
 - fixed contamination
 - removable contamination
 - airborne contamination
- State sources of radioactive contamination
- State the appropriate response to indicators of potential area contamination
- State the appropriate response to indicators of personnel contamination

134

Unit 5 Objectives (cont)


Manual p. 47

- Identify the methods used to control radioactive contamination
- Identify the proper use of protective clothing
- Explain the purpose and use of handheld personnel contamination monitors
- Identify the normal methods used for decontamination

Review of Radiation & Contamination

Manual p. 47

- Ionizing radiation: Energy emitted from radioactive atoms that can cause ionization
- Radioactive contamination: Radioactive material in an unwanted location

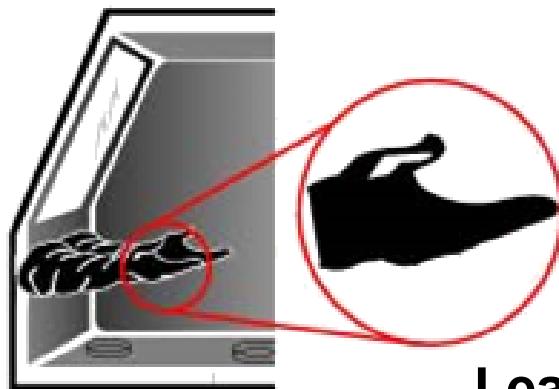
136

RWII_20301_PM_VG,R4.0

Types of Contamination

Manual pp. 47-48

- Fixed contamination
 - cannot be readily removed from surfaces
- Removable contamination
 - can be readily removed from surfaces
- Airborne contamination
 - can result from resuspension of removable contamination on a surface


Sources of Possible Contamination

Manual pp. 48-49

Sharp objects in plastic bags containing radioactive material

Leaks in radioactive systems

Leaks in containment vessels

Grinding on radioactive material without proper controls

Indicators of Contamination

Manual p. 49

- Leaks, spills, standing water
- Damaged radiological containers
- Increased count or alarm on personnel monitoring device
- Airborne contamination monitor alarm

139

Discovery of Possible Contamination

Manual p. 49

What do you do if you see a possible source of contamination?


- 1. STOP WORK!**
2. Back away from the possible contamination
3. Warn others
4. Notify an RCT

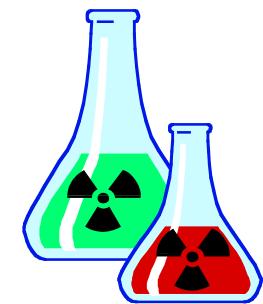
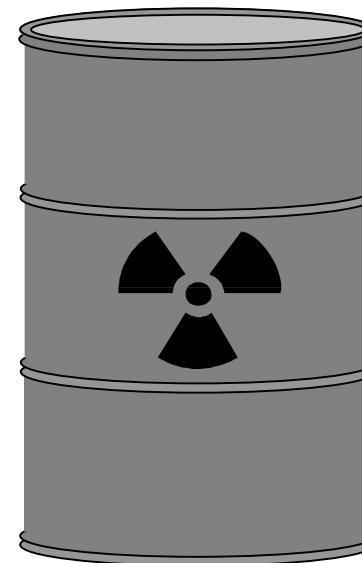
Contamination Posting Levels (Removable)

Type of Contamination	Allowable Total Surface Contamination (dpm/100 cm ²)
Plutonium-238, plutonium-239 Other transuranics (heavier than uranium)	20
Natural thorium, thorium-232, strontium-90, iodine-131	200
Natural uranium, uranium-235, uranium-238 Associated decay products	1000
Cesium-137, cobalt-60 Other beta emitters	1000 (beta-gamma)
Tritium	10,000

Contamination Control

Manual p. 50

Contamination Control Methods



Manual pp. 50-57

- Source reduction
- Engineering controls
- Administrative controls
- Proper radiological practices
- Personal protective equipment
- Decontamination

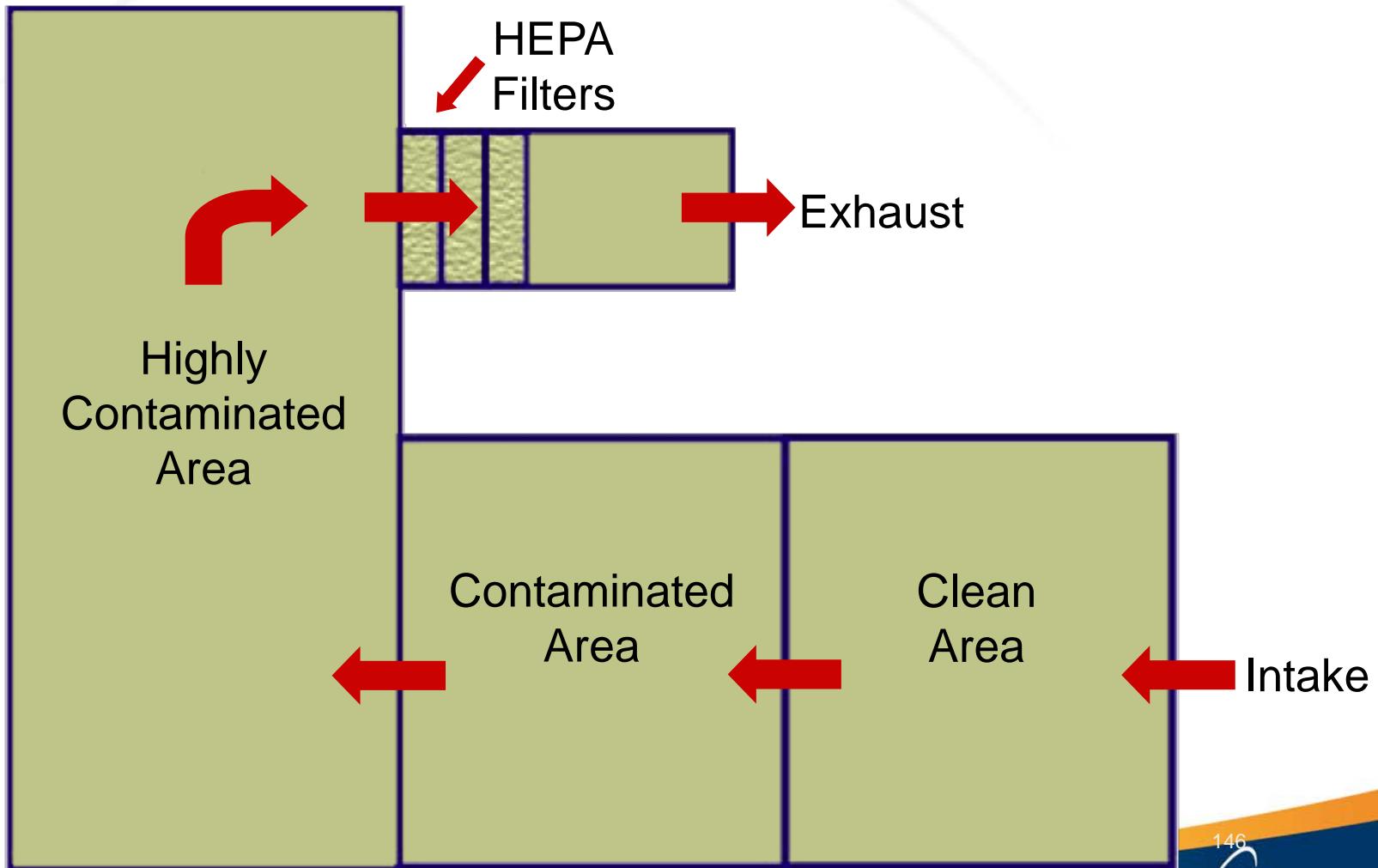
Source Reduction Is . . .

Manual p. 50

The removal of unneeded radioactive sources and material from your immediate work area

144

Engineered Control Methods


Manual p. 50

- Ventilation systems and local ventilation
- HEPA filters
- Easily decontaminated building and shielding materials
- Remote handling equipment
- Containment
- Traffic patterns
- Physical barriers

145

Engineering Control: Ventilation System

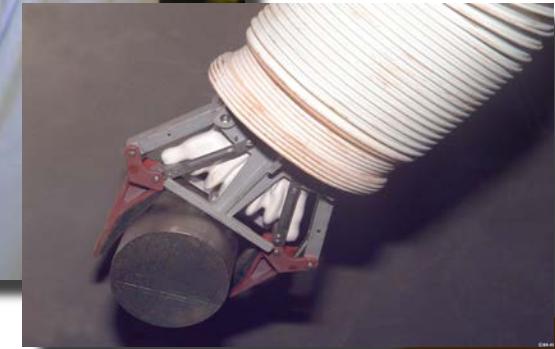
Manual p. 50

Engineering Control: HEPA Filters & Vacuum Cleaners

Manual p. 50

UNCLASSIFIED

Engineering Control: Remote Handler


Manual p. 50

148

Engineering Control: Remote Handler

Manual p. 50

149

Engineering Control: TA-53 Portable Remote Handling Device

Manual p. 50

150

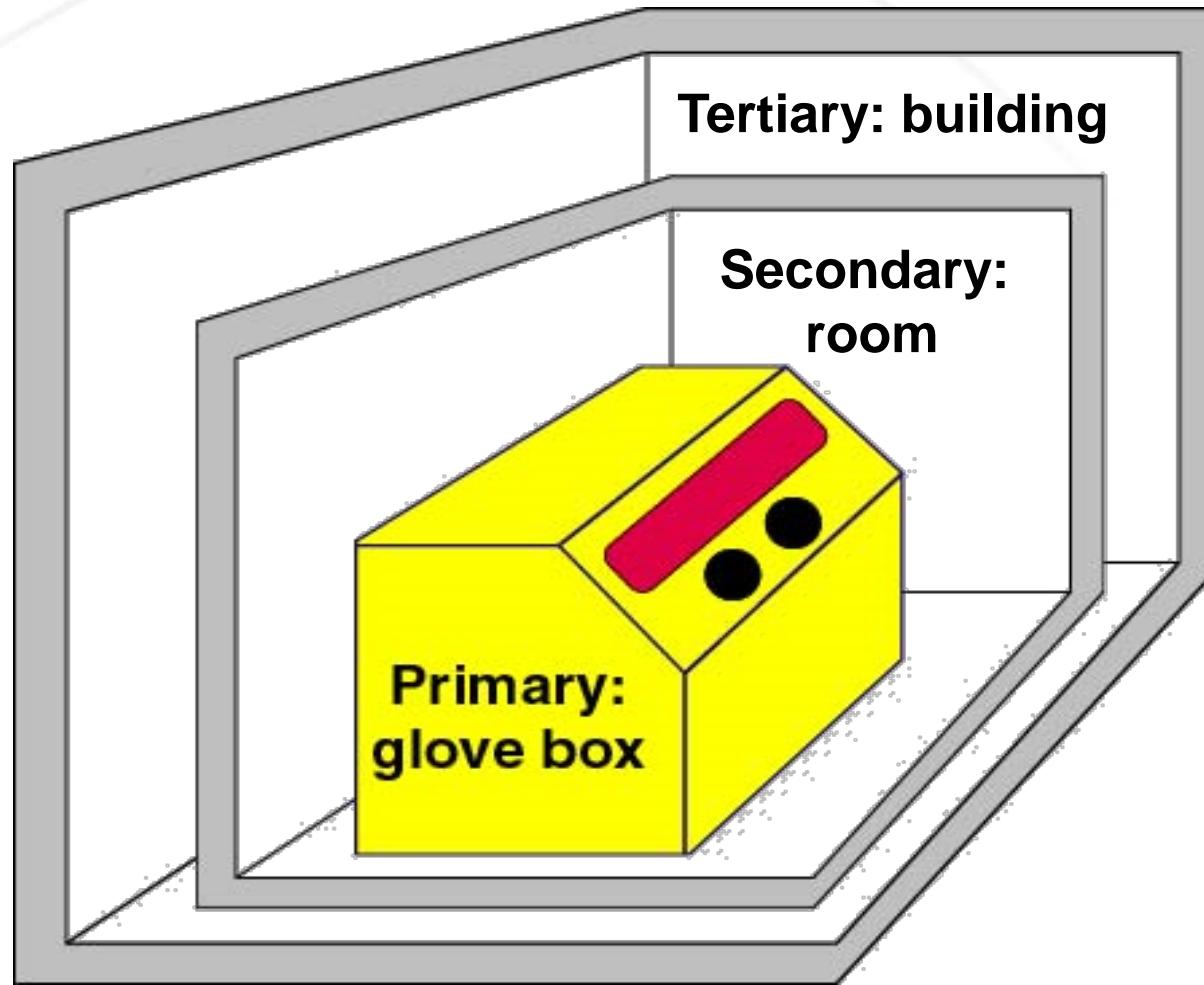
Engineering Control: Containment Tent

Manual p. 50

Engineering Control: Containment Tent

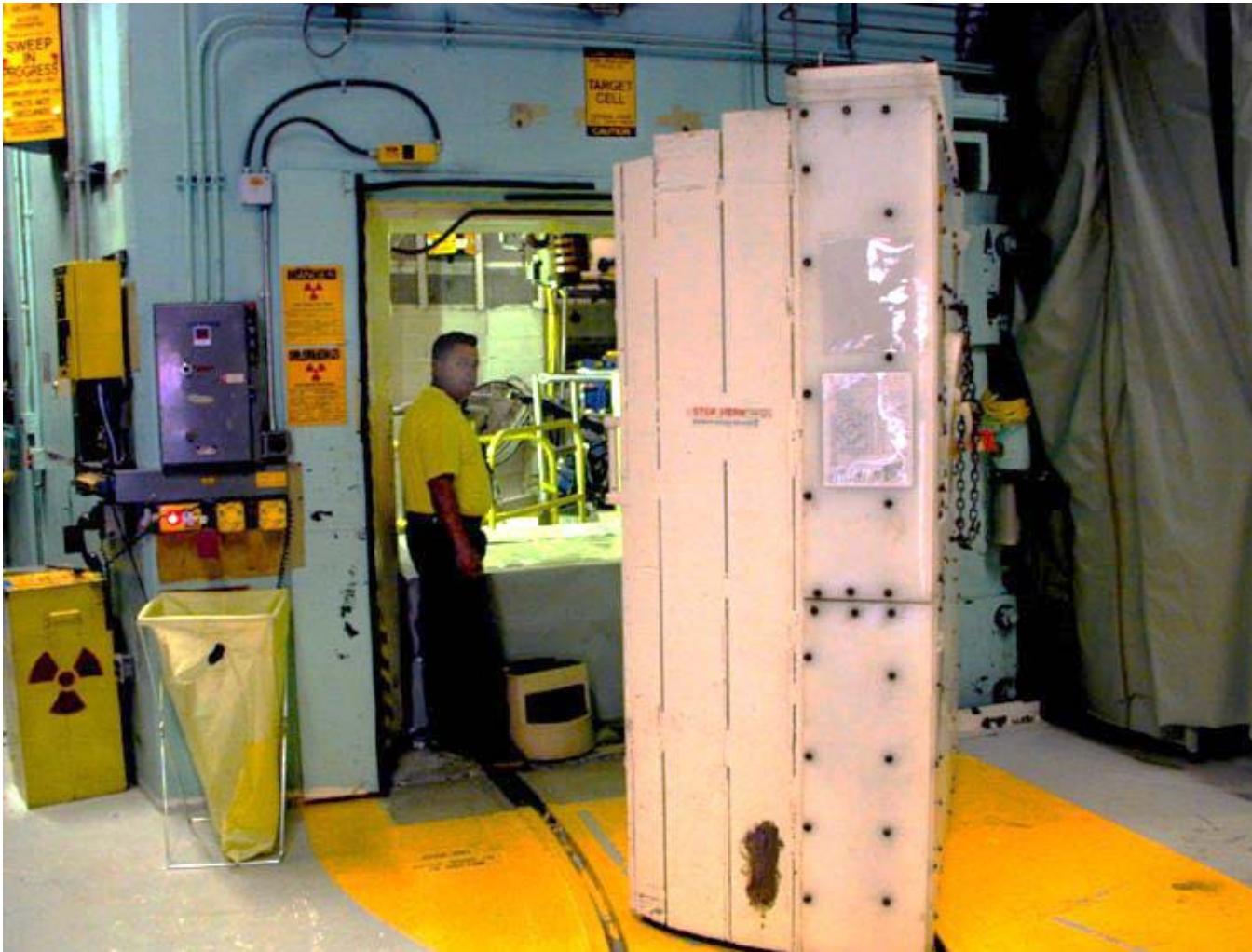
Manual p. 50

RWII_20301_PM_VG,R4.0


Engineering Control: Containment & Fume Hood

Manual p. 52

153


Engineering Control: Physical Barriers

154

RWII_20301_PM_VG,R4.0

Engineering Control: Barriers at TA-53 Crypt Area

RWII_20301_PM_VG,R4.0

155

Administrative Control Methods

Manual pp. 50-51

- Access restrictions
- Exit requirements
- Operating and maintenance procedures
- Technical work documents
- Radiological work permits
- Pre-job and post-job briefings

Proper Radiological Practices

Manual p. 51

Good Housekeeping

- Keep the work area clean
- Confine the spread of radioactive material
- Control and minimize movement of material
- Prevent spills
- Identify and report leaks
- Use preventive maintenance

Proper Radiological Practices (cont)

Manual p. 51

Good Work Practices

- Pre-stage work areas
- Comply with procedures and instructions
- Wear protective clothing and respiratory equipment as required
- Avoid contact with contaminated surfaces

158

RWII_20301_PM_VG,R4.0

Proper Radiological Practices (cont)

Manual p. 51

More Good Work Practices

- Change out protective equipment to prevent cross-contamination
- Do not eat, drink, smoke, chew, or apply cosmetics or lip balm in contaminated areas
- Use precautions when containing radioactive material in trash bags and containers
- Contact an RCT before opening shipped packages containing radioactive material

PPE: Protective Clothing

Manual p. 52

- Anti-Cs required in contamination areas
- Degree of protection depends on conditions and job
- Deliberate decisions are required regarding what is worn under anti-C clothing:
 - Personal clothing or modesty garments may be worn under anti-C lab coats
 - Personal clothing is not worn under level I or II anti-Cs, with the exception of personal underwear and socks or as prescribed in an RWP or FRPS (or in training)
 - Lab-issued underwear is considered modesty garments

Proper Use of Protective Clothing

Manual p. 52

- Inspect PPE for holes
- Do not wear personal effects (jewelry, watch) that you do not want to lose because of contamination
- Proceed directly to the work area
- Contact an RCT if clothing becomes torn
- Do not
 - touch uncovered parts of the body
 - wear anti-Cs outside designated areas
 - get anti-Cs wet

Donning PPE: Higher Risk Area at TA-55

Manual pp. 52-54

162

PPE: Respiratory Protective Equipment

Manual p. 52

- Used to prevent the inhalation of radioactive material
- Requires worker qualification for use

***Note: This course does not
qualify a worker to wear
respiratory equipment.***

Decontamination (Decon)

Manual pp. 54-55

- The removal of radioactive material from locations where it is not wanted
- A means of reducing contamination within limits
- Decon is not always possible because of economic or radiological conditions

Decontamination (cont)

Manual pp. 54-55

- Whom do you notify for all contamination events?
 - Notify an RCT of any and all contamination events
- Decontamination must be done under whose supervision?
 - Decon activities must be performed under RCT direction
 - Some decon events will require a Radiological Work Permit
 - Be aware of chemical cleaners, and avoid mixed waste
 - Follow RCT instructions

Personnel Decontamination

Manual p. 55

- Skin or clothing (under RCT supervision)
 - masking tape on clothing
 - lukewarm, mild soapy water on skin
 - if these decon methods do not work, you will be taken to OH for more aggressive decon, i.e., excision of wounds
- Internal (under medical supervision)
 - radioactive half-life
 - biological half-life (biological elimination)
 - intake of fluids and diuretics to flush contamination from your tissues
 - chelating or blocking agents are occasionally used (**under medical supervision only**)

Self-Surveying for Contamination

- Ensure the detector works
- Maintain proper speed/distance
- Survey from most likely areas to least likely
- Respond properly to the detector output

Ensure the Detector Works

Manual p. 57

1. Check for physical damage
 - Mylar tears
 - Data cord connections/damage
2. Check the calibration date
3. Check for electrical power (battery/cord)
4. Response check the instrument
 - In addition to function checking, response checking can remind you of the proper distance/speed
 - What happens if the source is too far away?
 - How far is too far away?
 - What happens if you move the source?
 - How fast is too fast?

Maintain Proper Speed/Distance

- The faster you go, the more you might miss
- 1-2 inches per second is best

- Distance is critical for alpha surveying
- Surfaces *must be* within $\frac{1}{4}$ " of the detector for alpha, $\frac{1}{2}$ " for beta/gamma
- Better too close than too far away

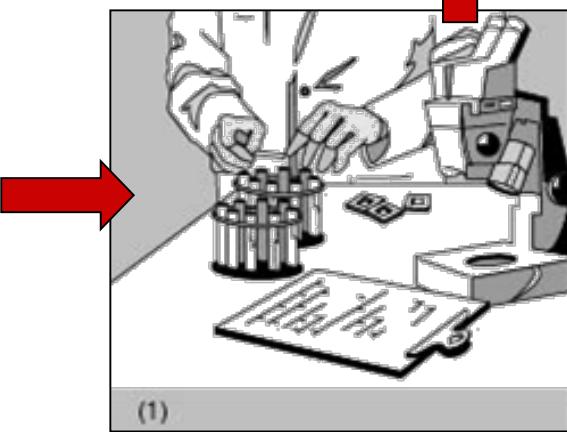
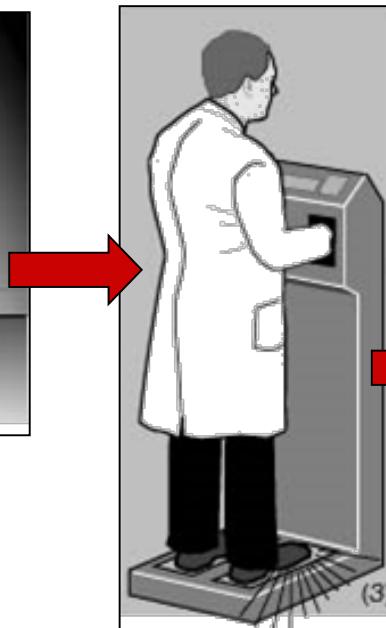
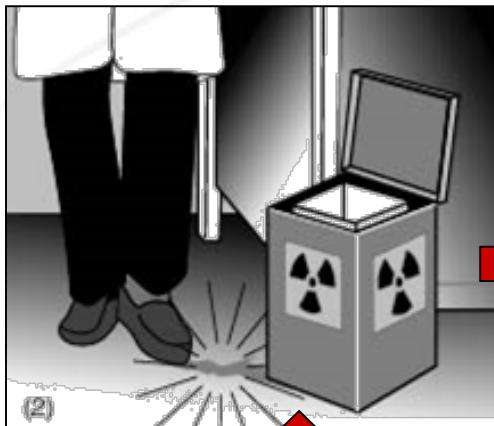
Handheld Contamination Monitors

Manual pp. 56-57

When looking for alpha contamination,

1. how far away should the probe be from the surface you are monitoring?
2. how fast should you move the probe?

- Alpha
 - Hold probe 1/4 inch or less from the surface
 - Move probe 1 to 2 inches per second
- Beta or gamma
 - Hold probe 1/2 inch or less from the surface
 - Move probe 1 to 2 inches per second




Survey from Most Likely to Least Likely

- Feet and hands are most likely to be contaminated
- If they are, the sooner you know it, the better, so start there
- As you work, remember what body parts have “touched down” so you can survey those
- Keep your speed/distance *constant* – do not do a great job on the first limb, and speed up for the rest

Respond Properly to Detector Output

- All detectors see some background (alphas see least, but not zero)
- Detectors can respond without setting off an alarm; this could indicate contamination
 - Is it reproducible? Could it be a random background event? Resurvey to find out!
 - If it is reproducible, stay put and call an RCT
- If the alarm goes off, that is not a background event – stay put and call the RCT

Contamination Occurrence

Visit Room 110 during the break!

Unit 6: Radiological Emergencies

Unit 6 Objectives

Manual p. 59

- State the purpose of and identify the two primary types of radiological emergency alarms at LANL
- Recognize that alarms and responses vary from one facility to another
- State the correct response to an area radiation monitor (ARM) alarm
- State the correct response to a continuous air monitor (CAM) alarm

Unit 6 Objectives (cont)

Manual p. 59

- State the correct response to a personnel contamination monitor (PCM) alarm
- Identify responses to personnel injuries
- State the possible consequences for disregarding radiological alarms

Emergency Alarms and Responses

Manual p. 59

At LANL, radiological emergency alarms and responses to them are facility specific

- Alarms sound different in different facilities
- Some facilities will require you to take and pass site-specific alarm training

178

RWII_20301_PM_VG,R4.0

Types of Radiological Alarms

Manual pp. 59-60

- area radiation monitor (ARM)
- continuous air monitor (CAM)
- personnel contamination monitor (PCM)



179

Area Radiation Monitor (ARM)

Manual pp. 59-60

- Measures radiation exposure level
- Used in locations with the potential for unexpected increases in radiation levels

GRM-3 Area Radiation Monitor

Manual p. 60

Gamma
detector

Response to ARM Alarm

Manual p. 60

When you hear an ARM alarm, what actions do you take?

- Leave the area immediately
- Report to a safe area
- Contact an RCT
- You may need to alert others in the area as you leave.

Continuous Air Monitor (CAM)

Manual p. 60

- Measures airborne radioactivity levels
- Used in locations with the potential for unexpected increases in airborne radioactivity

Continuous air monitor

183

Alpha CAM with Air Sampling Tube

Manual p. 60

Alpha

Response to CAM Alarm

Manual p. 60

If you **are not** wearing a respirator and a CAM alarm sounds,

- Leave the area immediately
- Report to a safe area
- Notify an RCT
- Stand by outside the area while the RCT conducts a survey

You may need to alert others in the area as you leave.

185

Response to CAM Alarm (cont)

Manual p. 60

If you **are** wearing a respirator and a CAM alarm sounds, what actions do you take?

- WITH respiratory protection
 - Stop operation safely
 - Follow RCT instructions
 - Do not remove respirator until surveyed by an RCT

Personnel Contamination Monitor (PCM)

Manual p. 60

When you are self-monitoring for contamination and the PCM you are using alarms, what actions do you take?

- Remain in the immediate area
- Notify an RCT
- Minimize movement and potential for cross-contamination
- Tell the RCT where you have been and what you have touched

Personnel Contamination Monitor (cont)

Manual p. 60

When you are self-monitoring for contamination using a PCM and you get an increased count but no alarm, what actions do you take?

- Reset the instrument
- Recheck that area carefully

If you get an increased count rate the second time, treat the situation the same as a PCM alarm and contact an RCT.

PCM

Manual p. 60

Hand
and
foot
monitor
in use

RWII_20301_PM_VG,R4.0

PCM

Manual p. 60

Whole-body PCM

RWII_20301_PM_VG,R4.0

Disregarding or Tampering with Alarms

Manual p. 61

- Jeopardizes personnel
- Causes excessive personnel exposure
- Results in unnecessary spread of contamination
- Leads to disciplinary action

Situations Requiring Immediate Exit

Manual p. 61

- ARM alarm
- CAM alarm (unless wearing a respirator)
- Criticality alarm
- Evacuation alarm
- Stop work and evacuation order
- Lost or damaged dosimeter
- Off-scale reading on dosimeter
- Torn protective clothing
- Wet anti-Cs (unless using waterproof ones)

Which alarm is missing and does not require immediate exit?

- If the PCM alarms
 - contact an RCT
 - stay in the immediate area

Emergency Assembly Areas

No
commingling!

Serious Personnel Injury Examples

Manual p. 61

- Any head injury
- Major penetrating injury
- Disorientation or loss of consciousness
- Convulsions
- Loss of sensation or motor functions
- Limbs at abnormal angles

Serious Personnel Injury Examples (cont)

Manual p. 61

- Burns of the face, feet, hands, or genitals
- Any burn larger than the palm of your hand
- Extensive bleeding
- Abnormal breathing patterns
- Anything that you are uncomfortable with and think requires immediate treatment to prevent death or permanent disability

195

Response to Personnel Injury

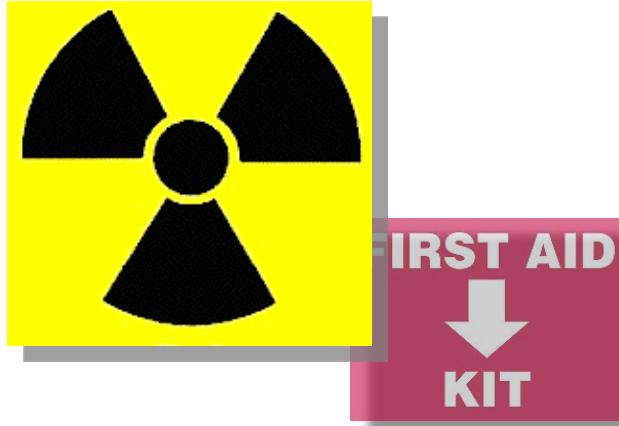
Manual p. 61

- Serious injury
 - Call 911
 - Administer first aid
 - Contact an RCT

Standard first aid takes priority!

Contamination concerns
are secondary.

196

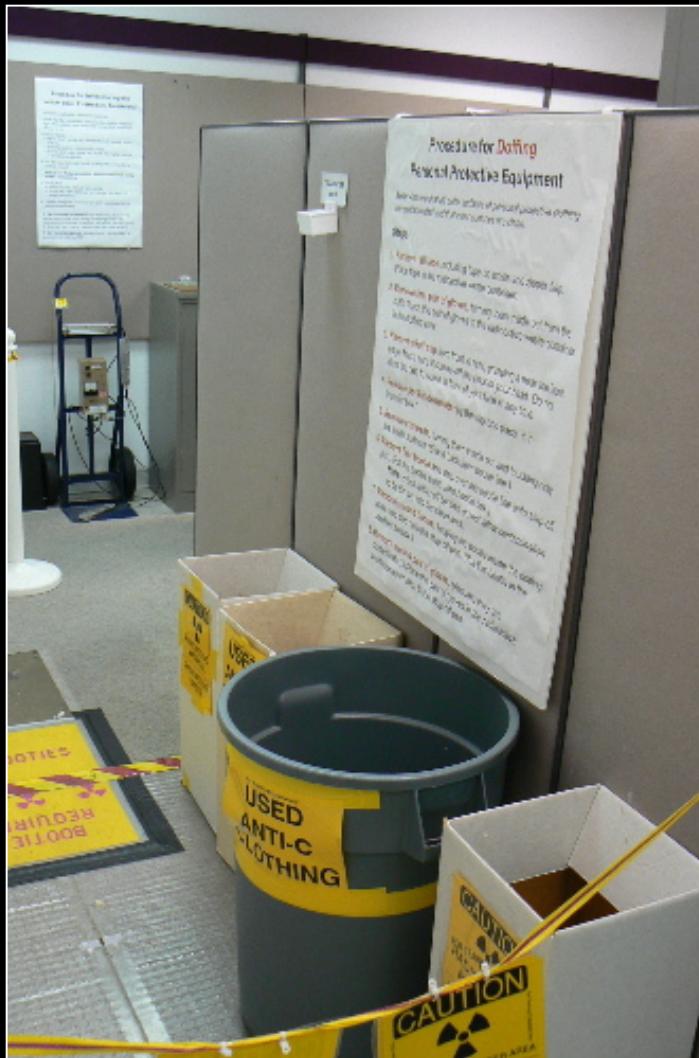

Response to Personnel Injury (cont)

Manual p. 61

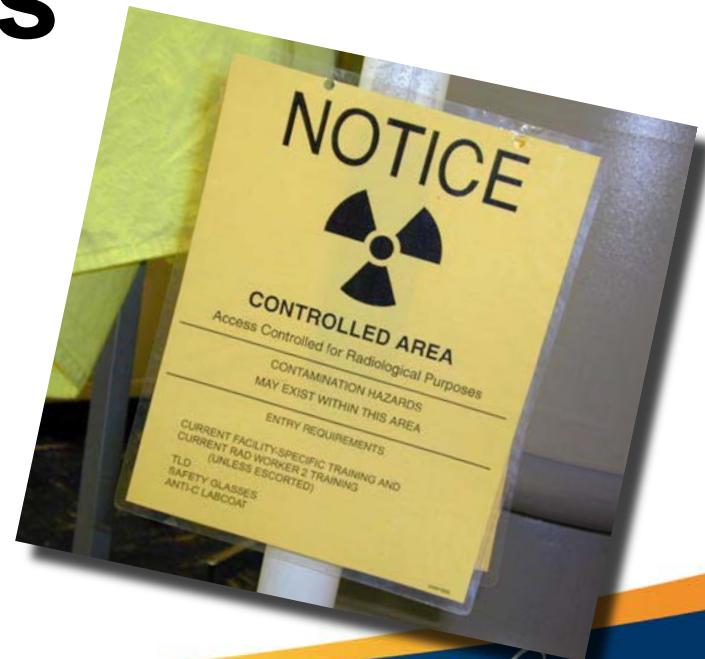
- Minor injury
 - Contact an RCT
 - Follow RCT instructions
 - Contact supervisor

Contamination control takes priority!

Administer first aid
after decontamination.


Accidental Breach, Leak, or Spill

Manual p. 62


- SWIMS
 - **S**top and evaluate the situation
 - **W**arn others of the hazard and ensure that someone contacts an RCT and area supervisor
 - **I**solate the area
 - **M**inimize exposure
 - **S**ecure unfiltered ventilation
- Follow facility-specific procedure priorities
 1. Safety for yourself and coworkers
 2. Environmental safety
 3. Safety of the facility and property

198

Visit Room 110 during the break!

Unit 7: Radiological Postings and Controls

Unit 7 Objectives

Manual p. 65

- Identify the colors and symbols used on radiological postings, signs, and labels
- Define the types of radiological areas
- State the entry and exit requirements for each area controlled for radiological purposes
- State the radiological and disciplinary consequences of disregarding, altering, removing, or relocating radiological postings, signs, and labels

201

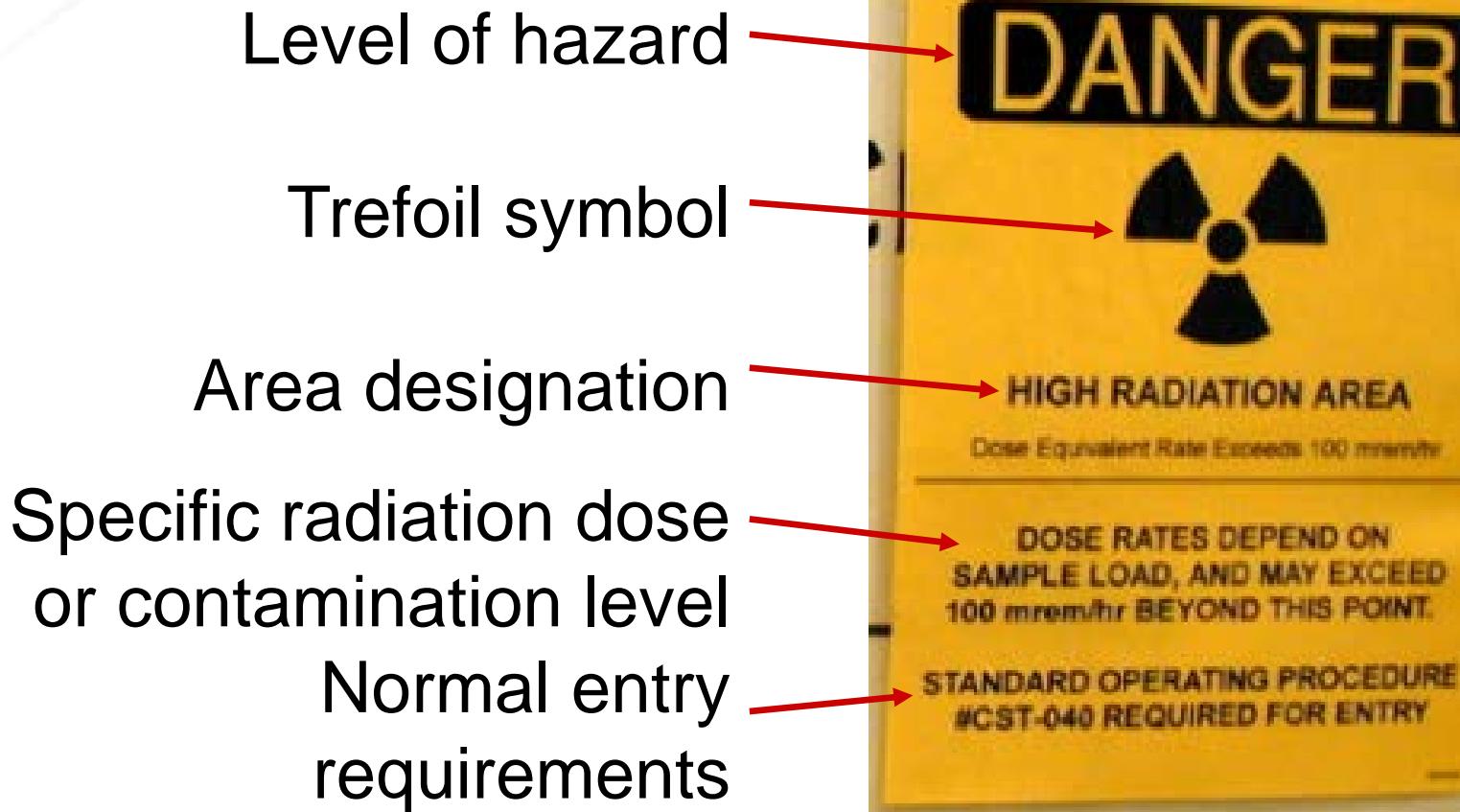
RWII_20301_PM_VG,R4.0

Unit 7 Objectives (cont)

Manual p. 65

- State the purpose of and information found on Radiological Work Permits (RWPs)
- Identify your responsibilities in using RWPs
- State the correct response if the RWP is incorrect or you do not understand the information

Posting Colors and Symbol


Manual p. 65

- Black or magenta lettering and trefoil on a yellow background
- Magenta and yellow barriers, ropes, tape, and chains
- Must be clearly visible from all directions

Posting Information

Manual pp. 65-66


Level of Hazard

Manual p. 66

The word(s) . . .	is like . . .	and means . . .	You should . . .
NOTICE	the road sign “traffic signal ahead”	hazards may exist.	proceed.
CAUTION	a flashing-yellow traffic light	hazards do exist.	proceed with caution, accompanied by an RCT or other appropriate personnel.
DANGER	a flashing-red traffic light	significant dangers do exist.	pause to evaluate the danger, with the help of an RCT or other appropriate personnel.
GRAVE DANGER	a red light	a very great danger exists.	STOP. Do not proceed until the conditions have been evaluated by an RCT and a senior manager. Only volunteers who are fully aware of the risks may proceed.

External Radiation Postings

Manual p. 67

Criteria for Radiological Postings

Manual pp. 67-74

Posting	Defining Conditions	Minimum Entry Requirements	Exit Requirements	Working Requirements
Controlled Area	Not expected to receive a dose exceeding 100 mrem/yr; contamination unlikely	General Employee Radiological Training	Monitor personnel and equipment as required	Follow job-authorized procedures and protection requirements Practice ALARA Do not loiter during work delays
Radiological Buffer Area	Where individuals are likely to receive >100 mrem/yr or potential contamination levels > Table 14-2 of ISD 121-1.0. May be used for areas containing hoods, glove boxes, and rooms with radiation-producing machines	Radiological Worker I and TLD as required by facility	Monitor personnel and equipment as required	Follow no eating, drinking, smoking, or chewing policy Report controls that are not adequate or are not being followed Obey posted, written, or oral requirements
Radiation Area	>5 mrem/hr at 30 cm from source up to 100 mrem/hr	Radiological Worker I, TLD, and written authorization to enter and perform work in area	Obey posted requirements	Be aware of changing radiological conditions Report any unusual conditions
High Radiation Area	>100 mrem/hr at 30 cm from source up to 500 rem/hr at 30 cm from source	Radiological Worker I, TLD, supplemental dosimetry, radiation survey, RWP, and written authorization to enter and perform work in area Read and sign that you understand job radiological conditions and protection requirements written in the RWP and will abide by them	none	
Very High Radiation Area	>500 rad/hr at 100 cm from source	No entry allowed during normal operations	none	
Hot Spot	≥5 times area dose rate and >100 mrem/hr or ≥5 times surface contamination level	N/A	N/A	
Radioactive Material	Accessible areas where items or containers of radioactive material in quantities of greater than Appendix 16A (ISD 121-1.0) are used, handled, and stored	N/A	N/A	
Hot Job Exclusion Area	as posted	as posted	as posted	

Criteria for Contamination Postings

Manual pp. 67-74

Posting	Defining Conditions	Minimum Entry Requirements	Exit Requirements	Working Requirements
Contamination Area	Levels (dpm/100 cm ²) that are greater than (or likely to exceed) Table 14-2 values but do not exceed 100 x Table 14-2 values (ISD 121-1.0)	Radiological Worker II, TLD, anti-Cs, and authorization by way of work control documents as required and appropriate internal dosimetry programs	Exit only at step-off pad(s). Remove anti-Cs carefully. Monitor personnel via a whole body frisk. Monitor personal items and equipment.	Follow all of the requirements for working in radiological areas. Avoid unnecessary contact with contaminated surfaces.
High Contamination Area	Levels (dpm/100 cm ²) that are greater than (or likely to exceed) 100 x Table 14-2 values (ISD 121-1.0)	Radiological Worker II, TLD, anti-Cs, RWP, and authorization by way of work control documents as required and appropriate internal dosimetry programs Read and sign that you understand the job, radiological conditions, and protection requirements as written in the RWP and will abide by them		Avoid stirring up contamination. Secure hoses and cables. Wrap or sleeve materials, equipment, and hoses.
Airborne Radioactivity Area	Concentrations (μ Ci/cm ³) above backgrounds that are greater than the derived air concentration (DAC) values or that would result in an individual's being exposed to greater than 12 DAC-hours in a week	Radiological Worker II, TLD, anti-Cs, RWP, respirator, and authorization by way of work control documents as required and appropriate internal dosimetry programs		Bag contaminated tools. Avoid touching exposed skin. Exit area immediately if wound occurs or if anti-Cs tear.
Soil Contamination Area	Contaminated soil not releasable in accordance with DOE Order 5400.5	Radiological Worker II, facility/ job-specific requirements	Facility/job-specific requirements may apply.	
Fixed Contamination	No removable contamination and total contamination levels that are greater than Table 14-2 values (ISD 121-1.0)	N/A	N/A	

Multiple Condition Posting at TA-53

Manual pp. 69-71

209

Entrance to Hot Cell at TA-48

Manual pp. 69, 71

210

Roof above Hot Cells at TA-48

211

Your Responsibilities

Manual pp. 77-78

- Before entering an area, read any
 - postings
 - signs
 - labels
- Disregarding or removing postings, signs, or labels could lead to
 - unnecessary or excessive personnel radiation exposure
 - personnel contamination
 - release of contamination to the environment or public
 - disciplinary action

212

Escorting Responsibilities

Manual p. 78

When performing escort duties, you must ensure that

- you receive required training
- the person being escorted complies with the radiation protection plan and receives training related to the
 - risks of exposure to radiation and radioactive material
 - risks of prenatal radiation exposure
 - methods for requesting individual exposure records

Purpose of Radiological Work Permits (RWPs)

Manual p. 78

- To inform workers of potential radiological conditions, safety hazards, and other concerns
- To inform workers of radiological controls
- To relate radiation doses from specific jobs to work performed
- To serve as a legal document of record

Note: RWPs require other safety-related documents (an IWD and possibly SOP, SWP, etc.).

Radiological Work Permits

RWPs are good for up to 1 year but must be reviewed quarterly.

RADILOGICAL WORK PERMIT

Los Alamos
NATIONAL LABORATORY

General Requirements

Submitted by
Point of Contact (POC)
Work Summary

Expected Isotopes and their Activities

Work Description

RADILOGICAL WORK PERMIT

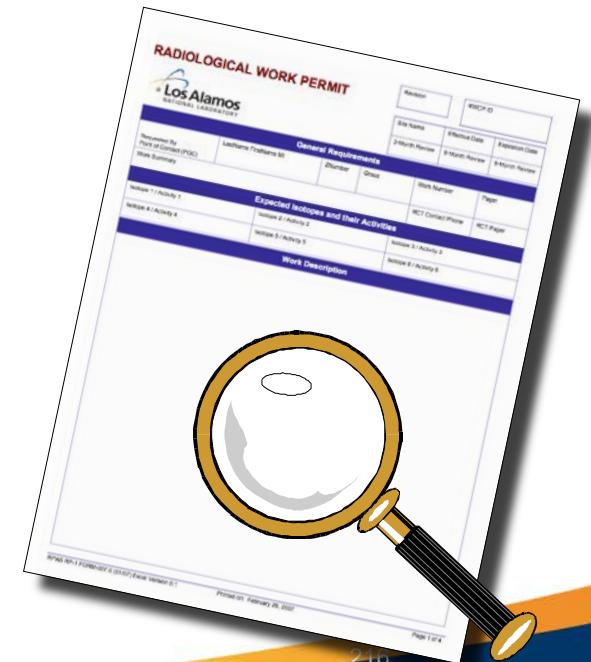
Los Alamos
NATIONAL LABORATORY

General Requirements

Submitted by
Point of Contact (POC)
Work Summary

Expected Isotopes and their Activities

Work Description


Printed on: February 26, 2007
RWP20-107-1 RWP20-107-2 (11.07) Email Version 8.1
Page 1 of 8

215

What Information Is on the RWP?

Manual pp. 78-79

- General work information by stage
(not a detailed step-by-step set of instructions)
- Radiological training requirements
- Pre-job radiological conditions and controls for each stage
- ALARA and radiological protection requirements
- Hold points and special instructions
- Required bioassay
- Approval signatures

210

Your RWP Responsibilities

Manual p. 79

- Read the RWP
- Understand conditions and protections on the RWP
- Attend the pre-job briefing
- Sign the pre-job briefing log to show you understand the RWP
- Obey the instructions on the RWP

Your RWP Responsibilities (cont)

Manual p. 79

What should you do . . .

- if you do not think the RWP is correct?
- if you do not think the RWP is completely filled in?
- if you do not understand any part of the information?

**Do not start the job!
Contact an RCT or your supervisor**

218

RWII_20301_PM_VG,R4.0

Reminder

Please fill out a Course Evaluation form and turn it in with the practical knowledge quiz!

**Course Evaluation
ESH Training**

Los Alamos National Laboratory
The World's Greatest Science Protecting America

Instructions: The ESH Training Center would appreciate your feedback on this class. Please fill in the bubble that best describes your experience.

1. It was easy to register for this class.
 Agree Tend to agree Neutral Tend to disagree Disagree Not applicable

2. The classroom discussion was relevant to my work.
 Not relevant Somewhat relevant Relevant Very relevant Not applicable

3. The course materials will be useful to me as future reference material.
 Yes No

4. The instructor was well prepared.
 Agree Tend to agree Neutral Tend to disagree Disagree

5. The course activities were relevant to my work.
 Not relevant Somewhat relevant Relevant Very relevant Not applicable

6. The instructor used examples that relate to my work.
 Agree Tend to agree Neutral Tend to disagree Disagree

7. The instructor answered questions satisfactorily.
 Agree Tend to agree Neutral Tend to disagree Disagree Not applicable

8. The class improved or refreshed my level of knowledge about the subject.
 Agree Tend to agree Neutral Tend to disagree Disagree

9. Before this class, my level of knowledge about the subject was ...
 Nonexistent Novice Intermediate Advanced Expert

Please comment on course content, materials, and presentation.

What would have made this class more effective?

Additional comments:

Course Date: _____ Course Title: _____ 6.06

Name (optional): _____

CT-2-FORM-066, R1

THANK YOU!

219

RWII_20301_PM_VG,R4.0

**Visit Room 110 now and after
the Practical Quiz!**

Radiological Worker II Training

***Student
Self-Assessment***

January 2017

Student Self-Assessment of Unit 1: Radiological Fundamentals

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question.

1. Match the term to the correct definition. (EO1 and EO2)
 ionizing radiation a. the spontaneous decay, or disintegration, of unstable atoms that emit radiation as they attempt to become stable
 radioactive material b. the time it takes for one-half of the radioactive atoms present to decay
 radioactive contamination c. any material that contains unstable, or radioactive, atoms
 radioactivity d. radiation that has enough energy to remove an electron from its orbit around an atom
 radioactive half-life e. radioactive material in an unwanted location

2. Which of the following correctly distinguish between radiation and contamination? (EO1 and EO2)
 - a. radiation is energy; contamination is matter
 - b. radiation is measured in rad or rem; contamination is measured in cpm and reported in dpm
 - c. radiation ceases to harm you after you leave the area, but you might take contamination with you if it gets on you or into your body
 - d. all of the above

3. Ionization is the process of removing _____ from atoms. (EO3)

4. Which of the following is not a form of ionizing radiation? (EO4)
 - a. alpha particles
 - b. gamma rays
 - c. microwaves
 - d. beta particles

Radiological Worker II Training: Student Self-Assessment

5. Four basic types of ionizing radiation are _____, _____, _____, and _____. (EO5)

6. Match the shielding to the type of ionizing radiation for which it is typically used. (EO6)

<input type="checkbox"/> water	a. alpha particles
<input type="checkbox"/> lead	b. beta particles
<input type="checkbox"/> paper	c. gamma and x-rays
<input type="checkbox"/> $\frac{1}{2}$ inch of plastic	d. neutrons

7. Match the term to the correct definition. (EO7)

<input type="checkbox"/> roentgen	a. the unit used to measure radioactive contamination
<input type="checkbox"/> rad	b. the unit used to measure biological dose equivalence
<input type="checkbox"/> rem	c. the unit used to measure ionization in air caused by gamma and x-rays
<input type="checkbox"/> curie	d. the unit used to measure energy absorbed in any material from any type of ionizing radiation
<input type="checkbox"/> dpm	e. the unit used to measure the amount of radioactive material

8. How many mrem equal 5 rem? (EO8)
 - a. 50
 - b. 500
 - c. 5000
 - d. 50,000

9. How many Ci equal 200 mCi? (EO8)
 - a. 2
 - b. 0.2
 - c. 20
 - d. 0.02

Radiological Worker II Training: Student Self-Assessment

10. 3.7 rem is equal to _____ mrem?
11. 500 mrem is equal to _____ rem?
12. 7000 mCi is equal to _____ Ci?
13. 0.09 rem is equal to _____ mrem?
14. 60 mCi is equal to _____ Ci?
15. 0.003 rem is equal to _____ mrem?

Student Self-Assessment of Unit 2: Biological Effects

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question.

1. The four major sources of naturally occurring ionizing radiation are _____, _____, _____, and _____. (EO1)
2. The four major sources of man-made ionizing radiation are _____, _____, _____, and _____. (EO1)
3. Radiation damages human cells by _____ of the atoms that make up the cells. (EO2)
4. Which of the following statements is true about cells that have been damaged by ionizing radiation? (EO3)
 - a. cells may repair the damage
 - b. cells may be damaged
 - c. cells may die as a result of the damage
 - d. all of the above
5. Radiation sickness generally occurs following an acute whole body dose of more than _____. (EO3)
 - a. 5 rem
 - b. 50 rem
 - c. 200 mrem
 - d. 100 rem
6. Children who were conceived and born in Hiroshima and Nagasaki after the atomic bombs were dropped suffer _____. (EO3 and EO7)
 - a. heritable effects as a result of damage to the sperm or ovum of the parent
 - b. somatic effects such as radiation sickness
 - c. chronic effects such as increased cancer
 - d. no measurable effects

Radiological Worker II Training: Student Self-Assessment

7. Match the term to the correct definition. (EO5 and EO6)

<input type="checkbox"/> acute dose	a. an effect that occurs in the individual exposed to radiation
<input type="checkbox"/> chronic dose	b. typically a large dose received in a short period
<input type="checkbox"/> somatic effect	c. an effect that occurs in the offspring of the affected individual
<input type="checkbox"/> heritable effect	d. typically a small dose received over a long period

8. The dose received from natural background radiation is considered a(an) (EO6)

- a. somatic effect
- b. chronic dose
- c. genetic effect
- d. acute dose

9. Example(s) of potential effect(s) of pregnant worker exposure of the unborn child (embryo/fetus) to radiation include (EO7)

- a. small head size
- b. mental retardation
- c. low birth weight
- d. all of the above

10. Match the area of the body to the correct DOE dose limit. (EO8)

<input type="checkbox"/> whole body	
<input type="checkbox"/> extremity	a. 0.5 rem/pregnancy
<input type="checkbox"/> skin	b. 5 rem/year
<input type="checkbox"/> internal organ	c. 15 rem/year
<input type="checkbox"/> lens of the eye	d. 50 rem/year
<input type="checkbox"/> embryo/fetus	

Radiological Worker II Training: Student Self-Assessment

11. The responsibility of complying with the radiation dose limits belongs to _____. (EO9)
 - a. you
 - b. visitors
 - c. the general public
 - d. all of the above

12. If you suspect that you are approaching your radiation dose limit, you should immediately notify _____. (EO9)
 - a. security personnel
 - b. medical personnel
 - c. your supervisor
 - d. RP-3

13. According to the risk comparison table in this unit, which of the following occupations has the lowest risk associated with it? (EO10)
 - a. radiological work at a DOE site
 - b. construction
 - c. transportation
 - d. agriculture

Student Self-Assessment of Unit 3: Personnel Monitoring Programs

Answer the following questions to test your mastery of this unit. Strive for a score of 80%. (EO#) indicates the enabling objective corresponding to the question.

1. Dosimeters such as TLDs and nuclear accident dosimeters are used to monitor exposure from _____ radiation sources. (EO1)
2. Whole-body dosimeters should be worn between the _____ and the _____. (EO2)
3. Supplemental dosimeters such as electronic dosimeters should be worn (EO2)
 - a. far from the TLD
 - b. near the TLD
 - c. on your belt
 - d. on your wrist
4. Dosimeters for declared pregnant workers should be worn (EO2)
 - a. between the neck and the waist
 - b. at the corner of the chest, near the shoulder
 - c. on the shirt sleeve
 - d. wherever the worker wants to wear it
5. Your TLD must be worn (EO2)
 - a. with the LANL emblem facing inward
 - b. in your pocket
 - c. behind your training badge
 - d. with the LANL emblem facing outward
6. In vivo and in vitro monitoring are used to detect radioactive material (EO3)
 - a. on your skin
 - b. on your clothing
 - c. inside your body

Radiological Worker II Training: Student Self-Assessment

- d. all of the above

7. If participating in an *in vitro* monitoring program, you must (EO4)

- a. not wear external dosimetry
- b. submit samples as required
- c. not eat or drink 12 hours before samples are collected
- d. all of the above

8. If you have been administered radioisotopes for medical purposes, you must report the procedure to which group before returning to work? (EO5)

- a. RP-3 (Rad Engineering)
- b. RP-2 (RP-SVS)
- c. RP-1 (RP-PROG)
- d. IHS-IP

9. To be considered a declared pregnant worker, a female worker is encouraged to notify _____ in writing when she becomes pregnant. (EO6)

10. A pregnant worker (EO4)

- a. is never allowed to receive any radiation dose
- b. must take a leave of absence from LANL
- c. must notify her supervisor, OM, and/or RP-PROG
- d. is encouraged to notify OM

11. Dose records are available from (EO8)

- a. RP-SVS
- b. SB-CS
- c. DSESH
- d. RP-PROG

Student Self-Assessment of Unit 4: ALARA

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question.

1. The DOE/LANL management policy for ALARA states that radiation exposures to workers and the public must ____ (EO1)
 - a. be maintained ALARA
 - b. be kept well below regulatory limits
 - c. have commensurate benefits
 - d. all of the above

2. According to the LANL policy, a 40-year-old worker's lifetime dose should be equal to or less than (EO2)
 - a. 40 rem/year
 - b. 40 rem
 - c. 5 rem
 - d. 50 rem/year

3. Which of the following is the responsibility of the individual radiological worker? (Choose all that apply.) (EO3)
 - a. conducting radiological surveys
 - b. obeying posted, written, and oral radiological control
 - c. following instructions and procedures
 - d. identifying contamination control requirements
 - e. maintaining dose ALARA
 - f. reporting problems
 - g. stopping work when conditions are unsafe

4. Exposure to ionizing radiation can be kept ALARA by following the three basic protective measures of minimizing _____, maximizing _____, and using _____, where practicable. (EO4)

Radiological Worker II Training: Student Self-Assessment

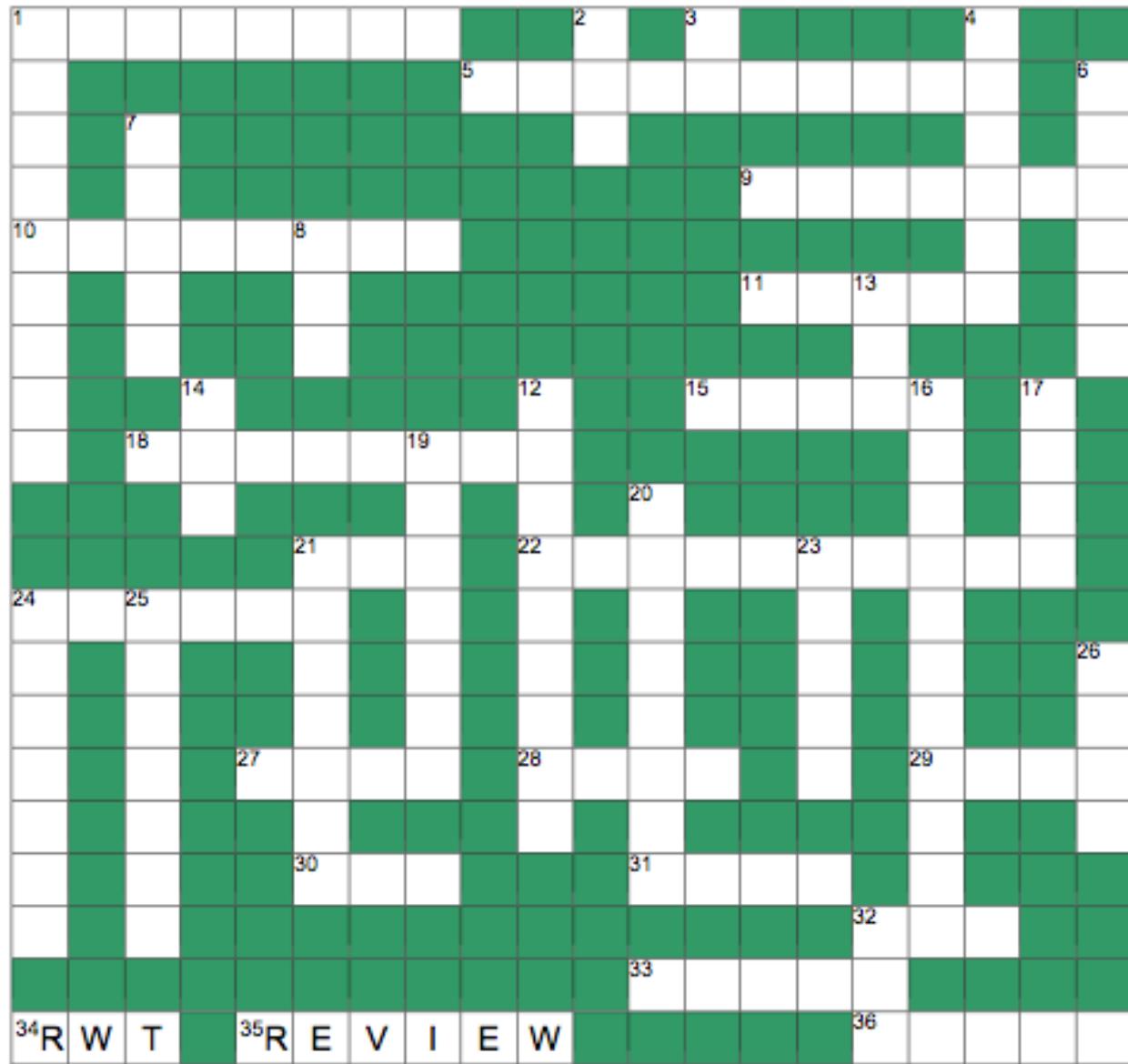
5. Radioactive material can enter the body by which of the following pathways? (EO4)
 - a. ingestion
 - b. absorption
 - c. inhalation
 - d. all of the above

6. Choose one of the two exposure control methods (I or e) for each type of exposure control. (EO4 and EO6)
(i) internal exposure control (e) external exposure control
 minimizing time
 using respirators
 using shielding
 keeping wounds covered
 using latex gloves
 maximizing distance
 using anti-C coveralls
 not eating in contamination areas

7. When working with radiation and contamination, which of the following should be minimized (a) and which should be maximized (b)? (EO4–EO6)
(a) minimize (reduce) (b) maximize (increase)
 time
 distance
 shielding
 sources of radiation
 radioactive waste
 internal exposure to radioactive material
 external exposure to radiation

8. All of the following are ways you can minimize radioactive waste except (EO7)
 - a. minimizing the material used for radiological work

Radiological Worker II Training: Student Self-Assessment


- b. minimizing the amount of mixed waste
- c. mixing radioactive waste with nonradioactive waste
- d. unpackaging new tools in an uncontrolled area

Crossword Activity: Units 1–4

Across	Down
1. Unit for gamma exposure	1. Energy in the form of rays or particles
5. Notified, if pregnant	2. Contamination unit
9. A half-inch of ____ shields betas	3. milliroentgen
10. Respirators protect from _____ radioactive material	4. Positively charged particle(s)
11. Natural radioactive gas	6. Alphas can travel 1 to 2 _____ in air
15. Stops alpha particles	7. _____, Ci for short
18. Time required for half of the atoms to decay	8. Radiation absorbed dose
21. Average dose from radon is _____ hundred mrem/year	12. Effects that could be passed to offspring
22. Process of removing electrons from an atom	13. Sets radiation dose limits
24. Possible effect of chronic radiation exposure	14. Gamma _____
27. Whole-body dose limit is _____ rem/year	16. Contamination is _____ material in an unwanted location
28. 15 rem/year is the dose limit for the _____ of the eye	17. Alpha shield
29. Big three for ALARA: _____, distance, and shielding	19. Same number of protons; different number of neutrons
30. rem: roentgen equivalent _____	20. Alpha biological hazard
31. Maximize distance: use _____-handled tools	21. Hydrogen's radioactive brother
32. 1200 mrem = 1.2 _____	23. Four types of radiation: _____, beta, gamma, neutron
33. Radiation exposure should be kept _____.	24. RCT means radiological _____ technician
34. Radiological worker training	25. Uncharged particle in nucleus
35. Review	26. 1.25 rem = 1250 _____
36. Radioactivity: spontaneous _____ of unstable atoms	32. Unit for energy deposited in any type of material

Radiological Worker II Training: Student Self-Assessment

Student Self-Assessment of Unit 5: Radioactive Contamination Control

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question. More than one response may be correct.

1. Match the term to the correct definition. (EO1)
 fixed contamination a. contamination suspended in air
 removable contamination b. contamination that cannot be easily removed by wiping the surface
 airborne contamination c. contamination that can be easily removed by wiping the surface

2. Which of the following is a possible source of contamination? Choose **all** that apply. (EO2)
 - a. sloppy work practices
 - b. following posted procedures
 - c. good housekeeping practices
 - d. grinding on radioactive material
 - e. leaking radioactive systems
 - f. leaking radiological containers
 - g. opening radioactive systems with proper controls

3. If an instrument is being used for self-monitoring and it indicates higher-than-background readings but does not set off an alarm, you should (EO3)
 - a. decontaminate the affected area
 - b. pause, reset the instrument, and resurvey the area
 - c. ignore the alarm if you believe it is a false alarm
 - d. contact medical personnel immediately

4. If an instrument is being used for self-monitoring alarms, you should (EO3)
 - a. decontaminate the affected area
 - b. remain in the immediate area and contact an RCT
 - c. ignore the alarm if you believe it is a false alarm

Radiological Worker II Training: Student Self-Assessment

d. contact medical personnel immediately

5. If an airborne contamination monitor alarms in the work area and you are not wearing a respirator, you should (EO3)

- remain in the area until help arrives
- contact a personal physician
- immediately leave the room and wait in a designated safe area
- contact a supervisor and continue working until that person arrives

6. When monitoring for alpha contamination, hold the probe less than ____ from the surface and move about ____ per second. (EO3)

- 1/4 inch, 1/4 inch
- 1/4 inch, 1 to 2 in.
- 1 to 2 in., 1/4 in.
- 1 to 2 in., 1 to 2 in.

7. Match the contamination control method to the correct contamination control category (a, b, or c). (EO4)

<input type="checkbox"/> anticontamination gloves	
<input type="checkbox"/> prejob briefings	
<input type="checkbox"/> corridors to establish traffic patterns in radiological areas	a. engineered controls
<input type="checkbox"/> access restrictions	b. administrative controls
<input type="checkbox"/> HEPA filters in ventilation systems	c. personal protective equipment
<input type="checkbox"/> respirators	
<input type="checkbox"/> negative air pressure	

Radiological Worker II Training: Student Self-Assessment

8. The first step in donning protective clothing is to (EO5)
 - a. put on coveralls
 - b. inspect protective clothing for rips or tears
 - c. put on cotton liners
 - d. place jewelry in coverall pockets and tape pockets closed
9. Who must be present during personnel decontamination? (EO7)
 - a. RCT
 - b. supervisor
 - c. group leader
 - d. medical personnel
10. _____ soap and _____ water are used for personnel decontamination. (EO7)

Student Self-Assessment of Unit 6: Radiological Emergencies

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question.

1. An ARM warns personnel of sudden increases in external _____ levels. (EO1)
2. A CAM warns personnel of the presence of airborne _____. (EO1)
3. All of the following are emergency alarms except (EO1)
 - a. CAM
 - b. TLD
 - c. ARM
 - d. criticality
4. If a CAM alarms and you do not have respiratory protection, you should (EO3)
 - a. stay in the area to prevent spreading contamination
 - b. leave the area immediately, notify an RCT, and be on standby outside the area
 - c. continue working until an RCT gives instructions to leave
 - d. ignore the alarm
5. Which one of the following situations requires immediate exit from a radiological area? (EO3 and EO4)
 - a. ARM alarm
 - b. CAM alarm
 - c. criticality alarm
 - d. all of the above

Radiological Worker II Training: Student Self-Assessment

6. In general, the best response to most alarms is to exit immediately. The exception is (EO5)
 - a. CAM alarm
 - b. ARM alarm
 - c. criticality alarm
 - d. PCM alarm
7. The correct response to a serious personnel injury is to (EO6)
 - a. move the injured person to another area
 - b. immediately decontaminate the injured person
 - c. administer first aid to the injured person
 - d. evacuate the area and wait for help
8. In which of the following situations is radiological control a low priority? (EO6)
 - a. a minor skin wound
 - b. life-threatening injury in a contamination area
 - c. PCM alarm
 - d. CAM alarm
9. Disregarding a radiological alarm could result in ____ (EO7)
 - a. personnel contamination
 - b. unnecessary radiation exposure
 - c. release of contamination to the environment
 - d. all of the above

Student Self-Assessment of Unit 7: Radiological Postings and Controls

Answer the following questions to test your mastery of this unit. Strive for a score of 80% or better. (EO#) indicates the enabling objective corresponding to the question.

1. A general or job-specific RWP (EO1)
 - a. keeps track of your yearly exposure
 - b. lists step-by-step procedures for the job
 - c. informs you of area radiological conditions
 - d. all of the above

2. If you are working under an RWP, you are responsible for _____, _____, and _____ with the requirements of the RWP. (EO2)

3. The typical colors used to identify radiological hazards are (EO3)
 - a. magenta on yellow
 - b. white on yellow
 - c. black on yellow (with trefoil)
 - d. both a and c above

4. Match the posting to the correct definition. (EO4)

<input type="checkbox"/> Radiation Area	a. any accessible area where the concentration of airborne radioactivity exceeds the derived air concentration (DAC) or where an individual without respiratory protection could receive an intake exceeding 12 DAC-hours in a week
<input type="checkbox"/> Contamination Area	b. an area where radioactive material is used, handled, or stored
<input type="checkbox"/> Airborne Radioactivity Area	c. an area where the radiation level is between 5 mrem/h at 30 cm from any source up to 100 mrem/h
<input type="checkbox"/> Radioactive Material Area	d. an area where the surface contamination level is between 1 and 100 times

Radiological Worker II Training: Student Self-Assessment

High Radiation Area e. an area where the radiation level is between 100 mrem/hour at 30 cm and 500 rad/h

5. Match the radiological area to the correct minimum training requirements. (EO5)

Radiation Area

Contamination Area a. General Employee Radiological Training

Controlled Area b. Radiological Worker I

Airborne Radioactivity Area c. Radiological Worker II

High Radiation Area

6. The use of time, distance, and shielding is most appropriate in a/an (EO5)

a. Contamination Area

b. Radiation Area

c. Airborne Radioactive Area

d. Fixed Contamination Area

7. Anti-C coveralls are required in a (EO5)

a. Radiation Area

b. High Radiation Area

c. Contamination Area

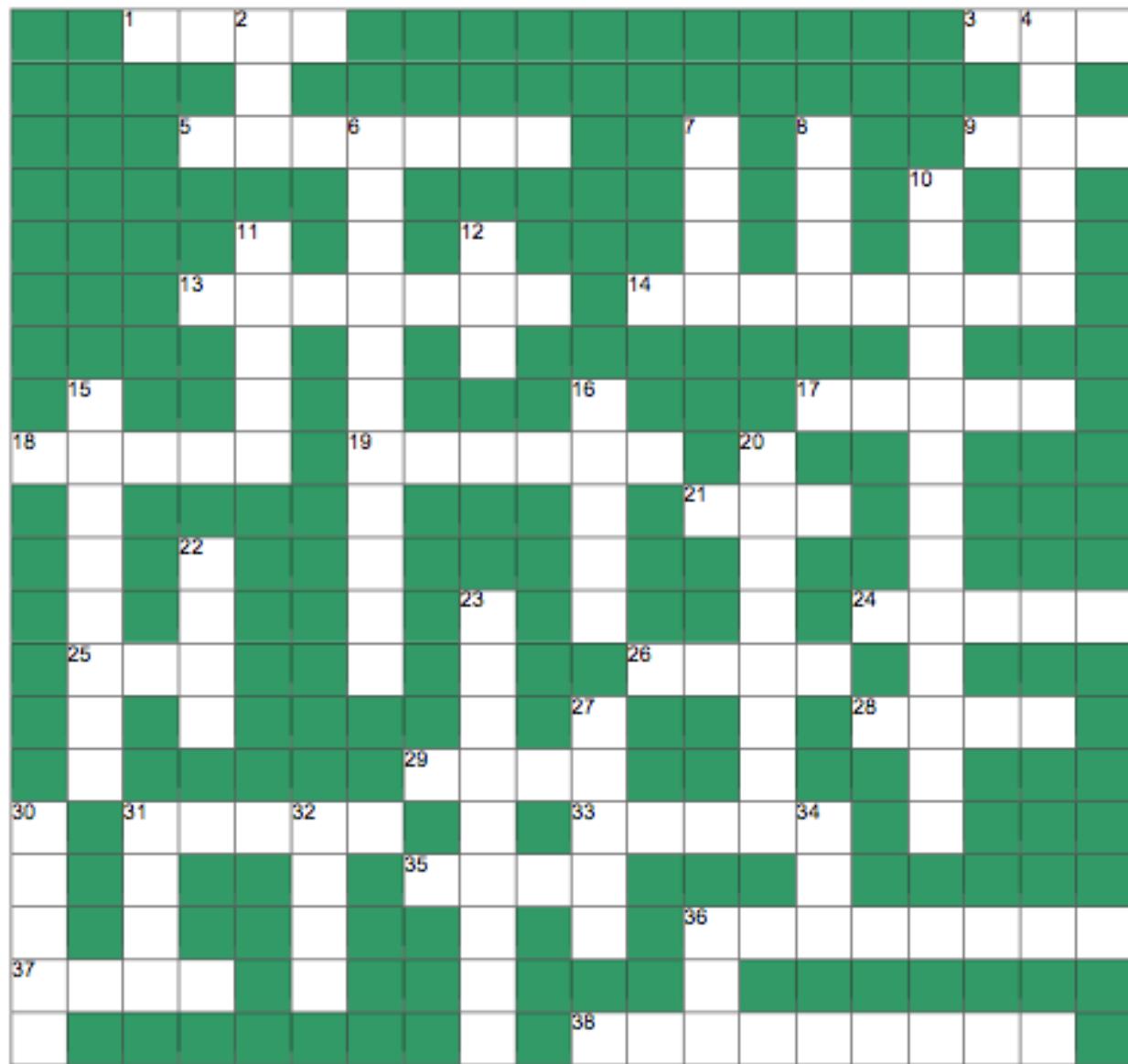
d. Fixed Contamination Area

8. Disregarding or removing radiological signs without permission could result in (EO6 and EO7)

a. personnel contamination

b. unnecessary radiation exposure

c. release of contamination to the environment


d. disciplinary action

e. all of the above

Crossword Activity: Units 5–7

Across	Down
1. SWIMS: stop, ____, isolate, minimize, secure	2. Radiological work permit
3. Unit for reporting contamination	4. ____ monitors detect personnel contamination
5. Supplemental dosimeters serve _____ purposes	6. Nuclear accident dosimeters are used for _____ accidents
9. Area radiation monitor	7. Do not touch unprotected _____ while wearing protective clothing
13. TLD exchange interval	8. _____ warm water is used for skin decontamination
14. Respirators are worn to prevent _____ exposure.	10. Protective clothing is worn to prevent skin _____
17. _____ from radioactive systems are a source of contamination	11. Pathway through which radioactive material enters the body
18. Contamination that is not easily removed	12. Official dose recorder
19. _____ limit is 5 rem	15. CAMS measure _____ contamination
21. High Radiation Area: greater than 0.1 ____/h	16. TLD location: above the _____
24. A pencil dosimeter measures _____ radiation	20. Track-etch dosimeters detect _____
25. Radiological control technician	22. _____-C clothing
26. _____ High Radiation Area: greater than 500 rad/h	23. Term used for all types of TLDS, pocket chambers, etc.
28. A room with 220 mr/h should be posted as a _____ radiation area	27. In vitro sample (type)
29. No limiting radiation value to save a _____	30. An area is _____ after it has been decontaminated
31. Whole-body survey (slang)	31. _____ rem/yr: DOE annual limit for whole-body exposure
33. TLD location: on _____	32. _____ time
35. Shielded by a half-inch of plastic	34. Move the alpha probe at 1 to _____ in. per second
36. Protective _____ consists of coveralls, gloves, booties, etc.	36. Continuous air monitor
37. Radiation _____: between 5 and 100 mrem/h	
38. Opposite of fixed	

Crossword Activity: Units 5–7

Unit 1: Radiological Fundamentals—ANSWERS

1. d, c, e, a, b
2. d
3. electrons
4. c
5. alpha, beta, gamma and x-ray, neutron
6. d, c, a, b
7. c, d, b, e, a
8. c
9. b
10. 3700
11. 0.5
12. 7
13. 90
14. 0.06
15. 3

Unit 2: Biological Effects—ANSWERS

1. cosmic, terrestrial, internal, radon
2. medical x-rays, nuclear medicine, consumer products, and industrial radiation uses
3. ionization
4. d
5. d
6. d
7. b, d, a, c
8. b
9. d
10. b, d, d, d, c, a
11. a
12. c
13. a

Unit 3: Personnel Monitoring Programs—ANSWERS

1. external
2. waist, neck
3. b
4. a
5. d
6. c
7. b
8. c
9. OM
10. d
11. d

Unit 4: ALARA—ANSWERS

1. d
2. b
3. b, c, e, f, g
4. time, distance, shielding
5. d
6. e, i, e, i, i, e, i, i
7. a, b, b, a, a, a, a
8. c

¹ R	O	E	N	T	G	E	N		² D	³ M			⁴ P							
A									⁵ S	⁶ U	⁷ P	E	R	V	I	⁸ S	⁹ O	¹⁰ R	¹¹ I	
D		¹² C							M							O	N			
I		U										¹³ P	L	A	S	T	I	C		
¹⁴ A	I	R	B	O	¹⁵ R	N	E									O	H			
T		I		A							¹⁶ R	A	¹⁷ D	O	N	E				
I	E		D									O					S			
O		¹⁸ R							¹⁹ H			²⁰ P	A	P	E	²¹ R	²² S			
N		H	A	L	F	L	²³ I	F	E							A	K			
		Y			S		R		²⁴ I		²⁵ O	N	I	Z	²⁶ A	T	I	D	I	
				²⁷ T	W	O			ON							O				
²⁸ C	A	²⁹ N	C	E	R		T	T	T			L				³⁰ M	³¹ O	³² P	³³ A	³⁴ M
O	E	I		O			A	E				A				A	C			M
N	U		T		P		B	R				H				C	R			
T	T	³⁵ F	I	V	E		³⁶ L	E	N	S	A				³⁷ T	I	M	E		
R	R		U			E	A								I			M		
O	O		³⁸ M	A	N				³⁹ L	O	N	G			V					
L	N														⁴⁰ R	E	M			
									⁴¹ A	L	A	R	A							
⁴² R	W	T		⁴³ R	E	V	I	E	W						⁴⁴ D	E	C	A	Y	

Unit 5: Radioactive Contamination Controls—ANSWERS

1. b, c, a
2. a, d, e, f
3. b
4. b
5. c
6. b
7. c, b, a, b, a, c, a
8. b
9. a
10. mild, lukewarm

Unit 6: Radiological Emergencies—ANSWERS

1. radiation
2. radioactivity
3. b
4. b
5. d
6. d
7. c
8. b
9. d

Unit 7: Radiological Postings and Controls—ANSWERS

1. c
2. reading, understanding, complying
3. d
4. c, d, a, b, e
5. b, c, a, c, c
6. b
7. c
8. e

	¹ W	A	² R	N						³ D	⁴ P	M			
			W							O					
	⁵ S	P	E	⁶ C	I	A	L		⁷ S	⁸ L		⁹ A	R	M	
				R					K	U		¹⁰ C	T		
	¹¹ W		I		¹² T				I	K	O	A	A		
	¹³ M	O	N	T	H	L	Y	¹⁴ I	N	T	E	R	N	A	L
		U		I		D					T				
	¹⁵ A	N	C				¹⁶ W		¹⁷ L	E	A	K	S		
¹⁸ F	I	X	E	D	¹⁹ A	N	N	U	A	L	²⁰ N		M		
	R				L			I	²¹ R	E	M	I			
B	²² A		I			S			U		N				
O	N		T	²³ D	T				T	²⁴ G	A	M	M	A	
²⁵ R	C	T	Y	O		²⁶ V	E	R	Y		T				
N	I			S	²⁷ F			O	²⁸ H	I	G	H			
E				²⁹ L	I	F	E		N		O				
³⁰ C	³¹ F	R	I	³² S	K	M	³³ C	H	E	S	³⁴ T	N			
L	I		T	³⁵ B	E	T	A			W					
E	V		A	T	L		³⁶ C	L	O	T	H	I	N	G	
³⁷ A	R	E	A	Y	R		A								
N				Y	³⁸ R	E	M	O	V	A	B	L	E		