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Radii of neutron drops probed via the neutron skin thickness of nuclei
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Multi-neutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron
stars. Neutron drops, neutrons confined in an external field, are investigated systematically in
both non-relativistic and relativistic density functional theories and with ab initio calculations. We
demonstrate a new strong linear correlation, which is universal in the realm of mean-field models,
between the rms radii of neutron drops and the neutron skin thickness of 2°®Pb and *Ca; i.e.,
the difference between the neutron and proton rms radii of a nucleus. Due to its high quality,
this correlation can be used to deduce the radii of neutron drops from the measured neutron skin
thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful
constraint for realistic three neutron forces. We also present a new correlation between the slope L
of the symmetry energy and the radii of neutron drops, and provide the first validation of such a
correlation by using density-functional models and ab initio calculations. These newly established
correlations, together with more precise measurements of the neutron skin thicknesses of 2°*Pb and
18Ca and/or accurate determinations of L, will have an enduring impact on the understanding of
multi-neutron interactions, neutron-rich nuclei, neutron stars, etc.

PACS numbers: 21.60.Jz, 21.10.Gv, 21.30.-x, 21.45.Ff

Pure neutron systems have attracted considerable at-
tention in nuclear physics, since their properties are cru-
cial for understanding neutron-rich systems ranging from
microscopic rare isotopes at the femtometer scale to
macroscopic neutron stars. On the one hand, they are
very useful to probe possible new physics for nuclei with
large isospin in as yet unexplored regions of the nuclear
chart [1]. Such interests are supported further by the
advent of new rare-isotope facilities [2] and also by the
quest to understand the origin of the elements in the
Universe through nucleosynthesis processes [3, [4]. On
the other hand, understanding the inner crust of neutron
stars also requires accurate knowledge of inhomogeneous
neutron matter [5-7].

Although a candidate resonant tetraneutron state was
proposed recently [g], most multi-neutron systems are not
self-bound and, thus, an external potential must be em-
ployed to produce bound states; i.e., the so-called “neu-
tron drops”. Due to its simplicity, a neutron drop can
serve as a unique test case for various nuclear many-
body methods; e.g., ab initio approaches for light nu-
clei and density-functional theories (DFTs) for heavy
ones. The former solve directly a many-body Hamil-
tonian with realistic nucleon-nucleon (NN) and three-
nucleon (3N) interactions, while the latter resort to a
variation of an energy functional with respect to nucleon
densities. Moreover, neutron drops also provide an essen-
tial test for density matrix expansion (DME) techniques,
which aim to build DFTs from realistic NN and 3N in-
teractions 9], and can describe properties of neutron-rich
nuclei [10, [11].

So far, neutron drops have been studied with many
ab initio approaches. Quantum Monte Carlo (QMC) [12]
studies for neutron drops can be traced back to the 1990s,
and only light droplets with NV = 6, 7, 8 were calculated at

that time [13]. Systematic calculations, covering a wide
range of neutron numbers and external potentials, have
been performed recently with high-accuracy phenomeno-
logical and chiral NN+3N interactions [14-17]. These ab
initio solutions for neutron drops provide important ref-
erences for nuclear energy density functionals which are
usually determined by fitting to available nuclei. In com-
parison with the QMC calculations, traditional Skyrme
density functionals considerably overbind neutron drops
and yield too-large a spin-orbit splitting [13, [14].

All density-functional studies of neutron drops hith-
erto are in the framework of non-relativistic DFTs, and
a relativistic study is still missing. Relativistic (covari-
ant) DFTs, which invoke a different organization of the
nuclear many-body problem, are particularly compelling
because the spin degrees of freedom dictated by relativity
can be naturally included [18; [19]. On the other hand,
the existing predictions vary largely among different the-
ories, since neither the isospin T' = 3/2 component of the
3N force |20, 21] nor the isovector parts (depending on
the difference of the neutron and proton densities) of the
density functionals [22] are clearly known.

Since it is not possible to carry out direct measure-
ments, a connection between the neutron drop and an
isospin-sensitive observable in finite nuclei can be of help
in further understanding the properties of neutron drops.
The neutron skin thickness; i.e., the difference between
neutron and proton rms radii Ary, = r, —7p, is a typical
isospin-sensitive observable for finite nuclei. Its connec-
tion to the symmetry energy of nuclear matter has at-
tracted a lot of attention |23-26]. Moreover, worldwide
efforts have been made to measure Ary,, through parity-
violating electron scattering |27], coherent pion photo-
production [28], elastic proton scattering [29], antipro-
tonic atoms [30,131], electric dipole polarizability [32,[33],
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and other methods. In particular, by measuring parity-
violation in electron scattering, the lead and calcium ra-
dius experiments, PREX and CREX, at the Thomas Jef-
ferson National Accelerator Facility (JLab) aim to pro-
vide a Ary,, value for 2°®Pb and #8Ca independent of
most strong interaction uncertainties [34].

In this Rapid Communication, we focus on the con-
nection between the observable Ary,, and neutron drops.
To this end, a systematic investigation of neutron drops
has been carried out with both non-relativistic and rel-
ativistic DFTs. Many well-determined density function-
als, widely used for nuclear and astrophysical problems,
have been employed in the calculations. By doing so, a
strong linear correlation between the neutron skin thick-
ness Ary,, and the rms radii R of neutron drops is re-
vealed. This correlation is universal with respect to the
variation in neutron number and the strength of an ex-
ternal field for neutron drops, once the central density of
the drop is close to nuclear saturation density. This al-
lows one to extract R of neutron drops from the measured
neutron skin thickness in a model-independent way.

The skin thickness of large nuclei is correlated to the
slope L of the symmetry energy, which is directly related
to the equation of state (EOS) of pure neutron matter
and to the radii of neutron stars [35-37]. In particular,
a strong linear correlation between the skin thickness of
208Ph and the value of L has been demonstrated within
mean-field models [38]. In this Rapid Communication,
we will also discuss the relation between radii of neutron
drops and the value of L from the EOS in the framework
of both mean-field models and ab initio calculations with
several microscopic Hamiltonians. We employ the auxil-
iary field diffusion Monte Carlo (AFDMC) method [39]
to calculate the energy and radii of 20 neutrons in a har-
monic oscillator trap [14] and the EOS of neutron mat-
ter [40] using several nuclear Hamiltonians, including the
Argonne AV8" and AV8'+UIX [41], and local chiral forces
at next-to-next-to-leading-order (N?LO) [42, l43].

We first present the first relativistic study of neu-
tron drops in the framework of covariant DFT. The ap-
proach starts from a Lagrangian and the corresponding
Kohn-Sham equations have the form of a Dirac equa-
tion with effective fields S(r) and V(r) derived from this
Lagrangian [44]. For neutron drops, these fields are as-
sumed to be spherical and the calculations are carried
out with an external field V., which, in this work, has
the form of an harmonic oscillator (HO) field,

[a-p+B(m+S)+V + Veu [hr = exty. (1)

Here V., = (mw?/2)r? is the external HO field with
h?/m = 41.44 MeV fm?. The fields S and V are con-
nected in a self-consistent way to densities, so this equa-
tion requires an iterative solution, which yields the total
energies, rms radii, etc. The pairing correlations are con-
sidered by solving the full relativistic Hartree-Bogoliubov

(RHB) problem with a separable pairing force [45]. For
details, see Refs. |44, 46, 47).
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FIG. 1. (color online) Total energies (scaled by hiwN*/3) of
N-neutron systems in a HO trap (fuww = 10 MeV) predicted
with various relativistic density functionals (solid symbols).
The shaded area indicates the ab initio QMC results from
Refs. |14, [15] for the NN interaction AV8' (center dashed
line) as well as the AV8' plus 3N interactions of UIX (upper
solid line) and IL7 (lower solid line).

The calculations were carried out with six typical rel-
ativistic density functionals shown to be successful in
many applications for finite nuclei. They cover nearly
all the existing ways to build a relativistic functional;
i.e., the nonlinear meson exchange functionals NL3 [4§]
and PK1 [49], density-dependent meson exchange ones
DD-ME2 [50] and PKDD [49], a nonlinear point coupling
one PC-PK1 [51], as well as the density-dependent point
coupling one DD-PC1 [52]. In Fig. [l the calculated to-
tal energies for neutron drops are presented by scaling
with the Thomas-Fermi N-dependence (N*/3) and the
HO strength (Aw = 10 MeV). For comparison, the ab
initio QMC results obtained in Refs. [14, [15], are also
given, where the AV8' NN interaction [41] is used with
two different 3N interactions, Urbana IX (UIX) |41] and
Nlinois-7 (IL7) [53].

The 3N force IL7 is known to be far too attractive
at high densities in pure neutron systems [15, [54], and
it conflicts with the observations in two-solar-mass neu-
tron stars. Thus, as indicated in Fig. 0l the significant
reduction of energies given by adding IL7 to AVS&' for
the droplets with large neutron numbers should not be
viewed as reliable. All the density-functional results here
are larger than those given solely by the AV8" Hamilto-
nian at large neutron numbers. This is also consistent
with the results given by adding the UIX interaction to
AVS8' in particular, for the PKDD and DD-ME2 func-
tionals. Although other functionals provide slightly lower
energies, it should be noted that the recent ab initio study
with chiral Hamiltonians indicates only weak contribu-
tions from the inclusion of the chiral 3N forces [16].



For light nuclei (up to A=12), however, IL7 provides a
much better description than either AV8" or AV&'+UIX,
which typically underbind these nuclei [12]. This suggests
that the IL7 force may be more reliable for the droplets
with small neutron numbers. Moreover, Ref. [15] demon-
strates that the AV8'+IL7 results below 12 neutrons are,
indeed, very similar to the no-core-shell-model (NCSM)
ones with a nonlocal NN interaction JISP16 [55], which
also gives a good description of light nuclei. The density-
functional results in Fig.[Il except those for the DD-ME2
functional, are also closer to AV8'+IL7 at small neutron
numbers, in particular those computed with the PKDD
and DD-PC1 functionals. Figure [l also shows that the
uncertainties associated with the realistic 3N forces and
the isovector parts of the density functionals are almost
at the same level when predicting neutron drop proper-
ties. Therefore, an experimental knowledge can be very
helpful to probe both. However, since it is hardly possi-
ble to directly measure a neutron drop, we intend here to
connect its properties to an isospin-sensitive observable
of finite nuclei; e.g., the neutron skin thickness.

We computed the neutron skin thicknesses Ary, of
208Ph and “®Ca using a large sample of nuclear den-
sity functionals based on very different schemes: from
non-relativistic to relativistic ones [59], from finite range
meson-exchange to zero-range point-coupling ones [19].
Figure 2 depicts Ar,,, obtained for 2°*Pb and *®Ca as a
function of the rms radius R of 20 neutrons trapped in a
HO potential with fiw = 10 MeV. All the functionals con-
sidered here are quite successful in describing bulk prop-
erties such as binding energies and charge radii for nuclei
over the entire nuclide chart. However, one can clearly
see in Fig. 2 that their predictions for Ar,), are very dif-
ferent, from 0.1 to 0.3 fm, since the isovector channels
in these phenomenological functionals are loosely deter-
mined in the fitting procedures. The functionals with
softer (stiffer) symmetry energy at the saturation den-
sity yield smaller (larger) Ar,, values |24].

A strong linear correlation is found between the neu-
tron skin thickness Ar,, and the rms radius R of the
20 neutrons in the potential with Aw = 10 MeV. The
Pearson’s correlation coeflicient is r = 0.95 (see, e.g.,
Ref. [56]) for 2°8Pb and r = 0.97 for 8Ca. We note that
this strong linear correlation is universal in the realm of
mean-field theory, since it is based on widely different
nuclear density functionals. It reflects the fact that both
the neutron skin thickness and the radius of a neutron
drop are highly relevant to the behavior of the nuclear
symmetry energy. Such a high quality linear correla-
tion allows one to deduce the rms radius R from the
measured Ary,,. In Fig. la), the measured Ary,, of
208Ph from antiprotonic atoms (circle) [31], pion pho-
toproduction (square) [28], and electric dipole polariz-
ability (diamond) [57] are shown. These data have their
central values around 0.15 fm and agree well with each
other within the errors. They determine, through the
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FIG. 2. (color online) (a) Neutron skin thickness Ary,, of
208ph against the rms radius R of 20 neutrons trapped in a
HO potential with hw = 10 MeV for various nuclear density
functionals. The inner (outer) colored regions depict the 95%
confidence (prediction) intervals of the linear regression, and
Pearson’s correlation coefficient r is also displayed (the r is
a value between +1 and 1 inclusive, where +1 is total pos-
itive correlation, 0 is no correlation, and 1 is total negative
correlation; see, e.g., Ref. [50]). The data of Ar,, in differ-
ent measurements with antiprotonic atoms [31] (circle), pion
photoproduction [28] (square), and electric dipole polarizabil-
ity [57] (diamond), are also given together with their projec-
tions on the radius of the neutron drop. (b) Same plot, but
for the neutron skin thickness Ar,;, of 48(Ca. The estimate of
Ary,p is from a prediction of electric dipole polarizability |58].

linear fit of Fig. 2l(a), that the rms radius R has a cen-
tral value around 3.0 fm. Note that the 16% accuracy
in Aryp from the electric dipole polarizability leads to
a ~2.5% accuracy in R of the neutron drop. There is
also a large set of experiments which suggests a larger
neutron skin Ar,, ~ 0.2 fm for 2°8Pb (see Table 1 in
Ref. [60]). In particular, the first PREX experiment gives
Arpp = 0.337015 fm [27]. This value is not shown in
Fig. 2 due to its large error bar. However, the usefulness
of the correlation described here can be easily repeated,
once we know the result from the upcoming PREX-IT ex-
periment, which is aimed at reducing the uncertainty by
a factor of 3 [61].

Apart from 2%Pb, the neutron skin thickness Ar,,,
of 48Ca has been another recent focus of experiment,



and it may provide key information for bridging DFT's
and ab initio approaches |62]. Since the experiments for
Arp, of 8Ca are still ongoing, an estimate of Ar,, =
0.16 £ 0.01 fm from a prediction of electric dipole polar-
izability [58] is shown in Fig. 2(b). The resulting R for
the neutron drop from the linear fit is R = 3.04 4+ 0.04
fm, which is consistent with the R value determined from
the Ary, of 2%Pb. Note that, in this case, the 6.25% ac-
curacy in Ary,), leads to an accuracy of 1.3% in R for the
neutron drop.
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FIG. 3. (color online) The rms radii for three neutron drops
determined from their linear correlations with the neutron
skin thicknesses of 2°*Pb and *8Ca. For comparison, the ab
initio results obtained using phenomenological forces and lo-
cal chiral forces of Ref. |63] are also shown.

There is no particular reason to study 20 neutrons,
other than the fact that it is a closed shell configuration.
In fact, the linear correlations found for N = 20 are also
obtained for neutron drops with different neutron num-
bers and different external traps. The only requirement
inherent in this result is that the central density of the
neutron drop does not differ greatly from the saturation
density (~ 0.16 fm_?’). This condition can be readily sat-
isfied by varying the strength of the external field; i.e.,
larger (smaller) neutron numbers should be associated
with weaker (stronger) external fields. We have consid-
ered three different neutron drop systems, with 20 and 14
neutrons in a HO with Aiw = 10 MeV, and 8 neutrons in
15 MeV. For all three systems, strong linear correlations
between their rms radii and the neutron skin thickness
Arp, of 2%Pb or %8Ca are found. The resulting rms
radii from different data of Ary,, are compared in Fig. [3]
with the AFDMC calculations for 20 neutrons obtained
using different nuclear Hamiltonians including the Ar-
gonne AV8’ and AV8'+UIX [14], and local chiral forces
of Ref. [63]. We have also calculated the radial density,
and verified that, in the center, the density of the drop
is always within 0.16 + 0.02 fm>.

The determined radii of the N = 14 droplet from
the skin thickness are smaller than the results with
AV8'+UIX [14], showing that the UIX force might be

too repulsive here. For the N = 20 droplet, the radii ob-
tained from AFDMC with local chiral forces are smaller
than those with AV8 and UIX forces, and they agree
quite well with the radii determined by the skin thick-
nesses. With the development of the high-accuracy mea-
surements of neutron skin thickness, especially the PREX
and CREX programs at JLab [61], the radii of neutron
drops will be deduced more accurately in the near future.

Finally, we have calculated the EOS of pure neutron
matter using AFDMC to fit the slope L of the symmetry
energy as discussed in Refs. |35, 164]. Since the radius R
of neutron drops is correlated with the skin thickness of
nuclei, and the skin thickness with the value of L [3§], it
is interesting to plot these quantities together, see Fig. [l
The values of L for the various functionals considered are
taken from Refs. |65, 166]. We find that the two quantities
R and L are a bit less well correlated than R vs Ary,,
or Arpy, vs L of Ref. [38]. The Pearson’s coefficient is
obtained as 7 = 0.92 by fitting the density-functional re-
sults. It is interesting to note that the density-functional
predictions of the correlation between R and L is com-
patible with ab initio calculations. This provides the first
validation of such a new correlation between L and pure
neutron systems with ab initio calculations. The slope L
has been related to many other nuclear properties and,
thus, can be determined by various ways, though with
currently large uncertainties. Therefore, we note that
important constraints on the three-neutron force can be
obtained when L or the neutron skin thickness of nuclei
are accurately measured.
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FIG. 4. (color online) The values of the slope L of the sym-
metry energy against rms radii of 20 neutrons in a HO with
hw = 10 MeV, obtained with density functional theories (open
circles) and ab initio methods (solid circles).

In summary, the properties of neutron drops have
been investigated systematically with DFTs in compari-
son with results from ab initio calculations. In particular,
this is the first investigation of neutron drops using rela-
tivistic functionals. The uncertainties of the realistic 3NV
forces and the isovector parts of density functionals are



found to be large and comparable for predicting neutron
drop properties. A new strong linear correlation between
the rms radii of neutron drops and the neutron skin thick-
nesses of 208Pb and 48Ca has been demonstrated. This
correlation is universal in the realm of density functional
theories, and applies to different neutron drops. Due to
its high quality, this linear correlation can be used to
deduce the radii of neutron drops by measuring the neu-
tron skin thickness, and these radii can in turn provide
a useful constraint for realistic 3N forces. In view of
upcoming high-precision measurements of neutron skin
thicknesses in 2°®Pb and *®Ca, this correlation is likely to
have an enduring impact on the understanding of multi-
neutron interactions. We have also provided the first
validation of a new correlation between radii of neutron
drops with the slope of the symmetry energy by using
density-functional models and ab initio calculations. In
this case, the density-functional results are very close to
the ab initio ones, suggesting that radii of confined neu-
trons can give important information of the slope of the
symmetry energy. Future similar calculations of radii of
neutron drops in different external traps might open the
way to calculating and predicting L at different densities.
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