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Notes on the ExactPack Implementation of the DSD Explosive Arc Solver 
 

Ann Kaul, XCP-5 
 
The DSD explosive arc problem requires the solution of the level set equation 

𝜙𝜙𝑡𝑡 +𝐷𝐷𝑛𝑛|∇𝜙𝜙| = 0 
where 𝐷𝐷𝑛𝑛 is the detonation velocity in the shock-normal direction given by 

𝐷𝐷𝑛𝑛 = 𝐷𝐷𝐶𝐶𝐶𝐶− 𝛼𝛼𝛼𝛼 
and 𝜅𝜅 is the curvature of 𝜙𝜙.  
 
The complete problem is defined in either a planar configuration and consists of a semi-annulus of HE located in 
𝑟𝑟1 ≤ 𝑟𝑟 ≤ 𝑟𝑟2 ,−𝜋𝜋

2
≤ 𝜗𝜗 ≤ 𝜋𝜋

2
, with a free boundary at the inner radius and a fixed or confined boundary at the outer 

radius. The calculation is done in 𝑟𝑟𝑟𝑟-space.  
 
Development of the Level Set Equation 
The level set function is assumed to be of the form 

𝜙𝜙 = 𝑓𝑓(𝑟𝑟, 𝑡𝑡) −𝜗𝜗 
and the burn front is assumed to be located at 𝜙𝜙 = 0. Taking the appropriate derivatives, we obtain 

𝜙𝜙𝑡𝑡 = 𝑓𝑓𝑡𝑡 

∇𝜙𝜙 = 𝑓𝑓𝑟𝑟𝚤𝚤 −
1
𝑟𝑟 𝚥𝚥 

|∇𝜙𝜙| =
1
𝑟𝑟
�1 + (𝑟𝑟𝑓𝑓𝑟𝑟)2 

and 

𝜅𝜅 =
𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟 + 𝑟𝑟2(𝑓𝑓𝑟𝑟)3 + 2𝑓𝑓𝑟𝑟

(1 + (𝑟𝑟𝑓𝑓𝑟𝑟)2)3 2⁄ . 

The level set equation can then be written as 

𝑓𝑓𝑡𝑡 = −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟
�1 + (𝑟𝑟𝑓𝑓𝑟𝑟)2 +

𝛼𝛼
𝑟𝑟
𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟 + 𝑟𝑟2(𝑓𝑓𝑟𝑟)3 + 2𝑓𝑓𝑟𝑟

1 + (𝑟𝑟𝑓𝑓𝑟𝑟)2 . 

 
Initial and Boundary Conditions 
The HE is ignited by a point detonator located at (−𝑥𝑥𝑑𝑑 ,−𝑦𝑦𝑑𝑑), where 

𝑦𝑦𝑑𝑑 =
𝑟𝑟1 + 𝑟𝑟2

2 . 

The HE burns in a counterclockwise direction around the annulus. The initial condition specifies the location of 
the burn front at 𝑡𝑡 = 0 as it reaches the edges of the annulus at 𝜗𝜗 = − 𝜋𝜋

2
: 

(𝑥𝑥 + 𝑥𝑥𝑑𝑑)2 + (𝑦𝑦+ 𝑦𝑦𝑑𝑑)2 = 𝑟𝑟𝑑𝑑2, 
where 𝑟𝑟𝑑𝑑 is the radius of the detonation at 𝑡𝑡 = 0: 

𝑟𝑟𝑑𝑑 = �𝑥𝑥𝑑𝑑2 +𝑅𝑅2 
and 

𝑅𝑅 =
𝑟𝑟2 − 𝑟𝑟1

2 . 



Because 𝜗𝜗 = 𝑓𝑓(𝑟𝑟, 𝑡𝑡), the 𝜗𝜗-location of the initializing wave front must be calculated for each 𝑟𝑟-location of the 
grid. This point is located at the intersection of the detonation circle given above and the circle centered at the 
origin with radius 𝑟𝑟: 

𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2. 
After some algebra, the intersection point is found to be 

𝑦𝑦 =
−𝑏𝑏 −√𝑏𝑏2− 4𝑎𝑎𝑎𝑎

2𝑎𝑎 , 

where 
𝑎𝑎 = 4(𝑥𝑥𝑑𝑑2 + 𝑦𝑦𝑑𝑑2), 

𝑏𝑏 = 4𝑦𝑦𝑑𝑑(𝑟𝑟2 + 𝑥𝑥𝑑𝑑2 + 𝑦𝑦𝑑𝑑2 − 𝑟𝑟𝑑𝑑2), 
𝑐𝑐 = (𝑟𝑟2 + 𝑥𝑥𝑑𝑑2 + 𝑦𝑦𝑑𝑑2 − 𝑟𝑟𝑑𝑑2)2− 4𝑟𝑟2𝑥𝑥𝑑𝑑2, 

and  
𝑥𝑥 = �𝑟𝑟2 − 𝑦𝑦2. 

The desired angle is then found by 

𝜗𝜗 = tan−1
𝑦𝑦
𝑥𝑥. 

 
The boundary condition at the inner boundary is specified as  

𝑟𝑟1𝑓𝑓𝑟𝑟(𝑟𝑟1 , 𝑡𝑡) = cot(𝜔𝜔𝑠𝑠) 
where 𝜔𝜔𝑠𝑠 is the sonic angle of the HE at a free surface. The boundary condition at the outer boundary satisfies 
the DSD edge angle condition along the confinement material: 

𝑟𝑟2𝑓𝑓𝑟𝑟(𝑟𝑟2, 𝑡𝑡) = − cot(𝜔𝜔𝑐𝑐). 
If the boundary is a fixed or symmetry boundary, 𝜔𝜔𝑐𝑐 = 𝜋𝜋

2
. 

 
Discretization of the Level Set Equation 
Let the subscript denote the 𝑥𝑥-location of a grid point: 

𝑟𝑟𝑖𝑖 = 𝑖𝑖∆𝑟𝑟, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 
and the superscript denote the time step. The following discretizations are used in the solver: 

𝑓𝑓𝑡𝑡(𝑟𝑟𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡  

𝑓𝑓𝑟𝑟(𝑟𝑟𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟  

𝑓𝑓𝑟𝑟𝑟𝑟(𝑟𝑟𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛

(∆𝑟𝑟)2 . 

This leads to the following discretization of the level set function in the slab case: 

𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡 = −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑖𝑖
�1 + �𝑟𝑟𝑖𝑖

𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟
�
2

+
𝛼𝛼
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 �
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛

(∆𝑟𝑟)2 �+ 𝑟𝑟𝑖𝑖2 �
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟 �
3

+ 2 �
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟 �

1 + �𝑟𝑟𝑖𝑖
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟 �
2  

 
In order for a discretization to be useful, it must be convergent. The usual way to show convergence is to show 
that a scheme is both consistent (the difference between the discretization scheme and the corresponding PDE 



approaches 0 as ∆𝑡𝑡 and ∆𝑟𝑟 approach 0) and stable (the solution remains bounded in some sense). In addition, 
the problem must be well-posed. The following sections address the consistency and stability of the proposed 
discretization. 
 
Consistency of the Discretization 
To prove consistency, we expand the function values at other nodes using a Taylor series about 𝑥𝑥𝑖𝑖𝑛𝑛 such as 

𝑓𝑓𝑖𝑖𝑛𝑛+1 = 𝑓𝑓𝑖𝑖𝑛𝑛 + ∆𝑡𝑡𝑓𝑓𝑡𝑡 +
1
2

(∆𝑡𝑡)2𝑓𝑓𝑡𝑡𝑡𝑡 +⋯ 

𝑓𝑓𝑖𝑖+1𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑛𝑛 + ∆𝑟𝑟𝑓𝑓𝑟𝑟 +
1
2

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟 +
1
6

(∆𝑟𝑟)3𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +⋯ 

and  

𝑓𝑓𝑖𝑖−1𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑛𝑛 − ∆𝑟𝑟𝑓𝑓𝑟𝑟 +
1
2

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟 −
1
6

(∆𝑟𝑟)3𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +⋯ 

It can then be shown that 
𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡 = 𝑓𝑓𝑡𝑡 +
1
2∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑂𝑂((∆𝑡𝑡)2) 

𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑟𝑟 = 𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟+ 𝑂𝑂((∆𝑟𝑟)4) 
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛

(∆𝑟𝑟)2 = 𝑓𝑓𝑟𝑟𝑟𝑟 +
1

12
(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4). 

Substituting these into the discretization scheme gives the following equation which must be compared to the 
original PDE: 

𝑓𝑓𝑡𝑡 +
1
2∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 +𝑂𝑂((∆𝑡𝑡)2)

= −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑖𝑖

�1 + 𝑟𝑟𝑖𝑖 2 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑂𝑂((∆𝑟𝑟)4)�
2

+
𝛼𝛼
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 �𝑓𝑓𝑟𝑟𝑟𝑟 + 1
12 (∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�+ 𝑟𝑟𝑖𝑖2 �𝑓𝑓𝑟𝑟 + 1

6 (∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�
3

+ 2 �𝑓𝑓𝑟𝑟 + 1
6 (∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�

1 + 𝑟𝑟𝑖𝑖2 �𝑓𝑓𝑟𝑟 + 1
6 (∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�

2 . 

 
Because the PDE is nonlinear, to finish the consistency argument, both this form of the discretization and the 
original PDE must be expanded in Taylor series, as well. We use the following expansions: 

�1 + 𝑥𝑥2 = 1 +
1
2
𝑥𝑥2 −

1
8
𝑥𝑥4 +

1
16
𝑥𝑥6 +⋯ 

and 
1

1 + 𝑥𝑥2 = 1−𝑥𝑥2 + 𝑥𝑥4 − 𝑥𝑥6 +⋯ 

The PDE becomes 

𝑓𝑓𝑡𝑡 = −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟
�1 +

1
2

(𝑟𝑟𝑓𝑓𝑟𝑟)2−
1
8

(𝑟𝑟𝑟𝑟𝑟𝑟)4 +⋯� +
𝛼𝛼
𝑟𝑟

[𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟 + 𝑟𝑟2(𝑓𝑓𝑟𝑟)3 + 2𝑓𝑓𝑟𝑟][1− (𝑟𝑟𝑓𝑓𝑟𝑟)2 + (𝑟𝑟𝑟𝑟𝑟𝑟)4−⋯ ]. 

The discretization becomes 



𝑓𝑓𝑡𝑡 +
1
2∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 +𝑂𝑂((∆𝑡𝑡)2)

= −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑖𝑖

�1 +
1
2 𝑟𝑟𝑖𝑖

2 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟+ 𝑂𝑂((∆𝑟𝑟)4)�
2

−
1
8𝑟𝑟𝑖𝑖

4 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�
4

+⋯�

+
𝛼𝛼
𝑟𝑟𝑖𝑖
�𝑟𝑟𝑖𝑖 �𝑓𝑓𝑟𝑟𝑟𝑟 +

1
12

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�+ 𝑟𝑟𝑖𝑖2 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟+ 𝑂𝑂((∆𝑟𝑟)4)�
3

+ 2 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑂𝑂((∆𝑟𝑟)4)�� �1− 𝑟𝑟𝑖𝑖2 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�
2

+ 𝑟𝑟𝑖𝑖4 �𝑓𝑓𝑟𝑟 +
1
6

(∆𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +𝑂𝑂((∆𝑟𝑟)4)�
4

−⋯�. 

The difference (discretization – PDE) is 

∆𝑡𝑡�
1
2 𝑓𝑓𝑡𝑡𝑡𝑡

�+𝑂𝑂((∆𝑡𝑡)2)

= (∆𝑟𝑟)2�−
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑖𝑖

�1
6𝑟𝑟𝑖𝑖

2𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 −
1

12 𝑟𝑟𝑖𝑖
4(𝑓𝑓𝑟𝑟)3𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +⋯�

+
𝛼𝛼
𝑟𝑟𝑖𝑖
� 1
12𝑟𝑟𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +

1
2 𝑟𝑟𝑖𝑖

2(𝑓𝑓𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +
1
3𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 −

1
3 𝑟𝑟𝑖𝑖

3𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 −
1
3 𝑟𝑟𝑖𝑖

4(𝑓𝑓𝑟𝑟)4𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 −
1
3𝑟𝑟𝑖𝑖

2(𝑓𝑓𝑟𝑟)2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

+⋯�� +𝑂𝑂((∆𝑟𝑟)4). 

Assuming that all of the derivatives are smooth across the domain, it is easy to see that the consistency 
condition is met by this discretization. This also shows that the discretization should be close to first-order 
accurate in time and second-order accurate in space. 
 
Stability of the Discretization 
Stability analysis is based on Fourier analysis. However, the integrals can be replaced with a simpler and 
equivalent procedure where we define the discretized value at a node to be the complex-valued function 

𝑓𝑓𝑚𝑚𝑛𝑛 = 𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
where 𝑔𝑔 is the amplification factor, which gives the amount that the amplitude of each frequency in the solution 
is multiplied by in each time step. For stability, we need to show that |𝑔𝑔(𝜗𝜗)| ≤ 1.  
We return to the original discretization  

𝑓𝑓𝑚𝑚𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑛𝑛

∆𝑡𝑡 = −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑚𝑚

�1 + �𝑟𝑟𝑚𝑚
𝑓𝑓𝑚𝑚+1𝑛𝑛 − 𝑓𝑓𝑚𝑚−1𝑛𝑛

2∆𝑟𝑟
�
2

+
𝛼𝛼
𝑟𝑟𝑚𝑚

𝑟𝑟𝑚𝑚 �
𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 2𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑓𝑓𝑚𝑚−1

𝑛𝑛

(∆𝑟𝑟)2 �+ 𝑟𝑟𝑚𝑚2�𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 𝑓𝑓𝑚𝑚−1

𝑛𝑛

2∆𝑟𝑟 �
3

+ 2 �𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 𝑓𝑓𝑚𝑚−1

𝑛𝑛

2∆𝑟𝑟 �

1 + �𝑟𝑟𝑚𝑚
𝑓𝑓𝑚𝑚+1𝑛𝑛 − 𝑓𝑓𝑚𝑚−1𝑛𝑛

2∆𝑟𝑟 �
2  

and again apply a Taylor series expansion. Keeping only the linear terms, we obtain 



𝑓𝑓𝑚𝑚𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑛𝑛

∆𝑡𝑡 = −
𝐷𝐷𝐶𝐶𝐶𝐶
𝑟𝑟𝑚𝑚

+
𝛼𝛼
𝑟𝑟𝑚𝑚
�𝑟𝑟𝑚𝑚 �

𝑓𝑓𝑚𝑚+1𝑛𝑛 − 2𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑓𝑓𝑚𝑚−1
𝑛𝑛

(∆𝑟𝑟)2 �+ 2�
𝑓𝑓𝑚𝑚+1𝑛𝑛 − 𝑓𝑓𝑚𝑚−1𝑛𝑛

2∆𝑟𝑟
�� 

which we use to estimate the stability of the nonlinear discretization. The constant term is ignored in the 
analysis as it does not affect the amplification factor. Plugging in the above complex-valued function, we obtain 

𝑔𝑔𝑛𝑛+1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

∆𝑡𝑡 = 𝛼𝛼
𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚+1)𝜗𝜗− 2𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚−1)𝜗𝜗

(∆𝑟𝑟)2 +
𝛼𝛼
𝑟𝑟𝑚𝑚
𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚+1)𝜗𝜗− 𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚−1)𝜗𝜗

∆𝑟𝑟  

Factoring out the common factor, this becomes 
𝑔𝑔− 1
∆𝑡𝑡 = 𝛼𝛼

𝑒𝑒𝑖𝑖𝑖𝑖 − 2 + 𝑒𝑒−𝑖𝑖𝑖𝑖
(∆𝑟𝑟)2 +

𝛼𝛼
𝑟𝑟𝑚𝑚
𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖

∆𝑟𝑟  

or, equivalently, 

𝑔𝑔 = 1− 4
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2 sin2 �
𝜗𝜗
2
�+ 2𝑖𝑖

𝛼𝛼∆𝑡𝑡
𝑟𝑟∆𝑟𝑟

sin𝜗𝜗  

which must satisfy the condition |𝑔𝑔(𝜗𝜗)| ≤ 1. With some algebra and trigonometric identities, it can be shown 
that 

|𝑔𝑔(𝜗𝜗)| = �1 − 4
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2sin2 �
𝜗𝜗
2
��

2
+ 4�

𝛼𝛼∆𝑡𝑡
𝑟𝑟∆𝑟𝑟

�
2

sin2 𝜗𝜗

= 1 + 8
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2�2
𝛼𝛼∆𝑡𝑡
𝑟𝑟2

− 1� sin2 �
𝜗𝜗
2
� + 16 �

𝛼𝛼∆𝑡𝑡
∆𝑟𝑟

�
2
� 1

(∆𝑟𝑟)2−
1
𝑟𝑟2
�sin4 �

𝜗𝜗
2
�. 

Using the assumption that 𝑟𝑟 ≫ ∆𝑟𝑟, so that 1
𝑟𝑟
≪ 1

∆𝑟𝑟
, the terms with 𝑟𝑟 in the denominator can be dropped to 

obtain 

|𝑔𝑔(𝜗𝜗)| ≈ 1− 8
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2sin2 �
𝜗𝜗
2
� + 16 �

𝛼𝛼∆𝑡𝑡
(∆𝑟𝑟)2�

2
sin4 �

𝜗𝜗
2
� = �1− 4

𝛼𝛼∆𝑡𝑡
(∆𝑟𝑟)2 sin2 �

𝜗𝜗
2
��

2
. 

Thus 

−1 ≤ 1− 4
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2sin2 �
𝜗𝜗
2
� ≤ 1. 

 

0 ≤
𝛼𝛼∆𝑡𝑡

(∆𝑟𝑟)2 sin2 �
𝜗𝜗
2
� ≤

1
2

. 

Since sin2 �𝜗𝜗
2
� ≤ 1, the stability condition becomes 

𝛼𝛼∆𝑡𝑡
(∆𝑟𝑟)2 ≤

1
2

 

or 

∆𝑡𝑡 ≤
(∆𝑟𝑟)2

2𝛼𝛼  

Typically, the time step is chosen to be some fraction of this condition, especially in the case of a nonlinear 
equation. I have chosen to use 80% of this time step, even though the calculations appeared to be stable at the 
full time step. The stability condition is often called the CFL (Courant-Friedrichs-Lewy) condition. 
 
Boundary Conditions 



Because the DSD solution is almost entirely dependent on the boundary conditions, it is necessary to use a 
mathematically defensible treatment of them. There are many choices of discretizations to implement the 
boundary conditions for this problem: 

𝑟𝑟1𝑓𝑓𝑟𝑟(𝑟𝑟1 , 𝑡𝑡) = cot(𝜔𝜔𝑠𝑠), 
𝑟𝑟2𝑓𝑓𝑟𝑟(𝑟𝑟2, 𝑡𝑡) = − cot(𝜔𝜔𝑐𝑐). 

Previous versions of codes to solve this problem used ghost nodes and a discretization to match the overall 
scheme given above: 

𝑓𝑓−1𝑛𝑛+1 = 𝑓𝑓1𝑛𝑛+1 −
2∆𝑥𝑥
𝑟𝑟1

cot(𝜔𝜔𝑠𝑠), 

𝑓𝑓𝑁𝑁+1𝑛𝑛+1 = 𝑓𝑓𝑁𝑁−1𝑛𝑛+1 −
2∆𝑥𝑥
𝑟𝑟2

cot(𝜔𝜔𝑐𝑐). 

While this is mathematically consistent with the first derivative, it causes problems with the second derivative 
and curvature because it does not move the boundary node to where it truly belongs. As a result, very large 
curvatures are calculated at this boundary and the discretization scheme is no longer stable. In the previous 
codes, both maximum and minimum limits were placed on the curvature to control its effect on the calculation. 
Since the curvature at the boundary is the very thing that is supposed to drive the solution, it is hard to justify 
using these limits from a mathematical perspective. 
 
It makes mathematical and physical sense to use a one-sided scheme that places the boundary node where it 
needs to be to satisfy the boundary condition: 

𝑓𝑓0𝑛𝑛+1 = 𝑓𝑓1𝑛𝑛+1 −
∆𝑥𝑥
𝑟𝑟1

cot(𝜔𝜔𝑠𝑠), 

𝑓𝑓𝑁𝑁𝑛𝑛+1 = 𝑓𝑓𝑁𝑁−1𝑛𝑛+1 −
∆𝑥𝑥
𝑟𝑟2

cot(𝜔𝜔𝑐𝑐). 

While this choice is only first-order in space, it does not affect the stability of the scheme and the boundary 
curvature can now directly drive the solution on the adjacent nodes. 
 
Conclusion 
It has been shown above that the discretization scheme implemented in the ExactPack solver for the DSD 
Explosive Arc equation is consistent with the Explosive Arc PDE. In addition, a stability analysis has provided a 
CFL condition for a stable time step. Together, consistency and stability imply convergence of the scheme, which 
is expected to be close to first-order in time and second-order in space. It is understood that the nonlinearity of 
the underlying PDE will affect this rate somewhat. 
 
In the solver I implemented in ExactPack, I used the one-sided boundary condition described above at the outer 
boundary. In addition, I used 80% of the time step calculated in the stability analysis above. By making these two 
changes, I was able to implement a solver that calculates the solution without any arbitrary limits placed on the 
values of the curvature at the boundary. Thus, the calculation is driven directly by the conditions at the 
boundary as formulated in the DSD theory. The chosen scheme is completely coherent and defensible from a 
mathematical standpoint. 
 


