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Notes on the ExactPack Implementation of the DSD Explosive Arc Solver
Ann Kaul, XCP-5

The DSD explosivearc problemrequiresthe solution of the level set equation
¢t + Dnlvd)l =0
where D,, isthe detonation velocity in the shock-normal direction given by
Dy =D¢;—ak
and k is the curvature of ¢.

The complete problemis defined in eithera planar configuration and consists of a semi-annulus of HE located in
n<r<mn, —g <I< g, with a free boundary at the innerradius and a fixed orconfined boundary at the outer

radius. The calculationis done inr9-space.

Development of the Level Set Equation
The level setfunctionisassumed to be of the form

¢=f0t)-9
and the burn frontisassumedto be located at ¢p = 0. Takingthe appropriate derivatives, we obtain
be = ft

- 1—)
V¢=frl—;1

Vgl =TT G2

and

rfor +T2(£)3 + 2f,
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The level set equation canthen be written as

o= =2 T G 4 S AU

r 1+ (rf)?

Initial and Boundary Conditions

The HE is ignited by a point detonator located at (—x 4,—y4), Where
_ n + %)
Ya = 2

The HE burnsin a counterclockwise direction around the annulus. The initial condition specifies the location of
the burn frontatt = O asitreachesthe edgesoftheannulusatd = — g:

(x +x3)%+ Y+ ya)? =142,
where 7, isthe radius of the detonationatt = 0:
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and
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Because 9 = f(r,t), the 9-location of the initializing wave front must be calculated for each r-location of the
grid. This pointis located at the intersection of the detonation circle given aboveand the circle centered at the
originwith radiusr:

x?+y%=r2
Aftersome algebra, the intersection pointisfoundto be

_ —b—+Vb%*—4ac
y= 2a ’
where
a=4(xq*+ya%),
b =4yq(r*+xq%+yq* —14%),
c=(?24+x42+y4% —14%)%—4r2x,2,
and

The desired angle isthen found by

The boundary condition atthe innerboundaryis specified as

nfr (1, t) = cot(wyg)
where wgisthe sonicangle of the HE at a free surface. The boundary condition at the outer boundary satisfies
the DSD edge angle condition along the confinement material:

7 fr-(ry,t) = — cot(w,).
If the boundary is a fixed or symmetry boundary, w, = ;—T
Discretization of the Level Set Equation
Let the subscript denote the x-location of agrid point:
= iAr, o0<i<nr
and the superscript denote the time step. The following discretizations are used in the solver:
fn+1 f;
') =
fol = —
[l — fita
n Ji+1  Ji-1
FO =750
f (r'n) — flr-ll-l — zﬁn + f?il
rr\Yq (AT')Z

Thisleads to the following discretization of the level set functionin the slab case:

_T<fl+1 S AL o (Ha ) 2 (i)
ri (fl+1 file )

it LT P 8
At T 201

In orderfor a discretization to be useful, it must be convergent. The usual way to show convergence is to show
that a scheme is both consistent (the difference between the discretization schemeand the corresponding PDE



approaches0as At and Ar approach 0) and stable (the solution remains bounded in some sense). In addition,
the problem mustbe well-posed. The following sections address the consistency and stability of the proposed
discretization.

Consistency of the Discretization
To prove consistency, we expand the function values at othernodes usingaTaylorseriesaboutx} such as

fh =+ Atfe+ 5 (At)zftt

fity = f* + Orf, + E(Ar)zﬁ"r +2 () o+

and

L= Arft5 (Ar) o —— (Ar)3frw

It can then be shown that

n+1
Ji = il i +%Atftt+ 0((a6)?)
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Substitutingtheseinto the discretization schemegives the following equation which must be compared to the
original PDE:

fot30tfie +0((A0?)
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Because the PDE is nonlinear, to finish the consistency argument, both this form of the discretization and the
original PDE must be expandedin Taylorseries, aswell. We use the following expansions:

\/1+x2—1+1x2—1x +ix + -
2 8 16
and
1
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The PDE becomes
D
fom =145 RS )+ | S lrfer + 720+ 201 ()4 () =]

The discretization becomes
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The difference (discretization—PDE) is
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Assuming that all of the derivatives are smooth across the domain, itis easy to see thatthe consistency
conditionis metby this discretization. This also shows that the discretization should be close tofirst-order
accurate intime and second-order accurate in space.

Stability of the Discretization
Stability analysisis based on Fourieranalysis. However, the integrals can be replaced withasimplerand
equivalent procedure where we define the discretized value atanode to be the complex-valued function

fm = gneimﬁ
where g isthe amplification factor, which gives the amount that the amplitude of each frequency in the solution
ismultiplied by in each time step. For stability, we need to show that |g(¥)| < 1.
We returnto the original discretization

2
n+1 fm _ _E 14 |~ frrrll+1 _fn711—1
At Tm, ™ 2Ar
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and againapply a Taylor series expansion. Keeping only the linearterms, we obtain



L — fm _ _b_l_ﬁ , frer = 2fm + fnoa 42 fre1 — fmea
At Tm  Tm\ (Ar)? 2Ar
which we use to estimate the stability of the nonlinear discretization. The constanttermisignoredin the

analysisasit does not affect the amplification factor. Plugging in the above complex-valued function, we obtain
gn+1eim19 _gneimﬁ gnei(m+1)19 _ zgneimﬁ + gnei(m—l)ﬁ a gnei(m+1)z9 _ gnei(m—l)z‘)
— +_

At -« (Ar)2 Tm Ar
Factoring out the common factor, thisbecomes
g—1 el _ 2 4 o0 o iV _ =iV
7Y A
or, equivalently,
_ alAt (0 CalAt
g=1- 4(Ar)zsm (E) + Zlmsmﬁ

which must satisfy the condition |g(9)| < 1. With some algebraand trigonometricidentities, it can be shown

that
2
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Usingthe assumptionthatr > Ar, so that; < o the termswithr in the denominatorcan be droppedto

obtain
abt (9 abt \* 9\ abt . (9\)’
lg@®)| ~1-8 a2z (§> + 16 (W> sin <§) = (1 - 4(Ar)2 sin <E)> _
Thus
114280 G2 (ﬁ) <1
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0< alt sin? (i> <l
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Since sin? (ﬁ) < 1, the stability condition becomes
alAt <1
(Ar)? ~ 2
or
At < (ar)®
2a

Typically, the time stepis chosen to be some fraction of this condition, especially in the case of a nonlinear
equation. I have chosen to use 80% of this time step, eventhough the calculations appeared to be stable at the
full time step. The stability condition is often called the CFL (Courant-Friedrichs-Lewy) condition.

Boundary Conditions



Because the DSD solutionis almost entirely dependent onthe boundary conditions, itis necessarytouse a
mathematically defensible treatment of them. There are many choices of discretizations toimplement the
boundary conditions forthis problem:
nfr-(r, t) = cot(wy),
12 fr (12, t) = — cot(w,).
Previous versions of codes to solve this problem used ghost nodes and a discretization to match the overall
scheme given above:
prit = gt =2 cottw),

2Ax
n+1 _ fn+1
N+ T N1 T cot(we).

While thisis mathematically consistent with the first derivative, it causes problems with the second derivative
and curvature because itdoes not move the boundary node to where ittruly belongs. As aresult, very large
curvatures are calculated at this boundary and the discretization scheme isnolongerstable. Inthe previous
codes, both maximum and minimum limits were placed on the curvature to control its effect on the calculation.
Since the curvature at the boundaryis the very thing that is supposed to drive the solution, itis hard tojustify
usingthese limits from a mathematical perspective.

It makes mathematical and physical senseto use a one-sided schemethat places the boundary node where it
needsto be to satisfy the boundary condition:

Ax
fbn+1 — fin+1 _ - cot(ws),
1

Ax
n+1l _ gn+1
N = fn-1 —ECOt(wc).

While this choice is onlyfirst-orderin space, it does not affect the stability of the scheme and the boundary
curvature can now directly drive the solution on the adjacent nodes.

Conclusion

It has beenshown above thatthe discretization scheme implemented in the ExactPack solverforthe DSD
Explosive Arcequationis consistent with the Explosive Arc PDE. In addition, a stability analysis has provided a
CFL condition fora stable time step. Together, consistency and stability implyconvergence of the scheme, which
isexpectedtobe close tofirst-orderintime and second-orderin space. Itis understood that the nonlinearity of
the underlying PDE will affect this rate somewhat.

In the solverlimplementedin ExactPack, | used the one-sided boundary condition described above at the outer
boundary. Inaddition, | used 80% of the time step calculated in the stability analysis above. By making these two
changes, | was able to implement asolverthat calculates the solution without any arbitrary limits placed on the
values of the curvature at the boundary. Thus, the calculationis driven directly by the conditions at the
boundary as formulated inthe DSDtheory. The chosen scheme is completely coherentand defensiblefroma
mathematical standpoint.



