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Hole Spins in GaAs

Electron Spin as a Qubit:

Hole Spins in Quantum Dots:

• Coherent manipulation of electron spins shown 
in quantum dot in high-mobility GaAs/AlGaAs 
heterostructure (Petta et al., Science 2005)

0.5 m

e- e-

• However, coherence time T2* ~ 10 ns due to 
background nuclear spins.

• Hole spins in GaAs have reduced coupling to nuclear 
spins as compared to electrons
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Hole Spin Coherence  (T2*)

• Nuclear spin – hole spin 
interaction is anisotropic

• Coherence time T2* for B is 
somewhat better than for 
electrons, possibly much better 
for Bǁ

• With dynamical decoupling 
pulses, T2 will presumably be 
longer than current state of the art 
for electrons in GaAs (T2 ~ 200 
S).

Theoretical estimates from Loss group, PRB 2008:
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Spin-Orbit Interaction

Delft group, Nature 2010.

• Second advantage for using 
hole spins:  spin-orbit 
interaction can be used to 
manipulate spin with electric 
fields

• Example:  In plane ac E-field 
on resonance with Zeeman 
splitting can create ns  pulses 
with ~ mV across dot

• Possible disadvantage:  spin-
orbit coupling can decrease T1.  
However, still expect T1 > T2.

Example: coherent manipulation 
of single spin using spin-orbit 
interaction and electric fields,  
InAs electron spin-orbit qubit.
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Why GaAs?

Simulation of electron density in a semiconductor 
quantum dot with 3 x 1011 cm-2 randomly distributed 
charges, a) 30 nm away from 2D layer, b) 10 nm.  
Borselli et al., APL, 2011

• Beneficial for creating 
nanostructures where transport 
is not impeded by defects.

• Example: unintentional dots can 
form due to nearby charged 
defects 

• Modulation-doped GaAs/AlGaAs 
heterostructures hold record for 
low temperature 2D mobility, 
both for electrons and holes.  
Mfp ~ 100 m!

• Pioneering experiments in 
coherent single spin 
manipulation done in GaAs

modulation-doped GaAs/AlGaAs heterostructure
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Previous work on hole QD in GaAs

Gates formed with AFM 
oxidation lithography

Ensslin group, 2005

Hamilton group, 2010• P-type quantum dots in GaAs formed with 
surface depletion gates previously plagued 
by instability problems

• Few-hole limit had not yet been achieved

Undoped structure with single 
layer of gates (wet etch)
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Undoped Heterostructures

• Charge movement in doping layer or 
between doping layer and 2D layer 
leads to charge noise?

• Doping layer can be eliminated using 
enhancement mode device.

• Challenge is maintaining good 
mobility despite surface states and 
preventing gate leakage to channel.
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Facilities and Capabilities Used

• This work leverages Sandia’s unique, world-class capabilities in MBE 
growth of GaAs/AlGaAs heterostructures.  We also use Sandia 
nanofabrication facilities (CINT), and low-temperature measurement 
systems.

• Few groups worldwide have the capability for MBE growth 
GaAs/AlGaAs heterostructures for high mobility 2D systems.

• MBE of high mobility 
III-V heterostructures
(John Reno)

• Integration Lab, Center for 
Integrated Nanotechnologies 
(CINT)



9 Feb. 10, 2015

Hole Nanostructure Fabrication

• Start with GaAs/AlGaAs 
heterostructure capable of 
forming 2D hole layer 
(heterojunction or quantum well)

• Surface cleans and AuBe Ohmic 
contact formation

• Electron beam lithography and 
TiAu gate lift-off

• Atomic layer deposition of Al2O3

• Global Al accumulation gate 
deposition and lift-off

SEM of partially 
processed device
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Undoped 2D Hole Layer (Device Field Region)

• Accumulation density vs. VTG 

matches expected layer 
thicknesses for r = 11.5, 7.2 
for AlGaAs and Al2O3

• Mobility > 1x105 cm2/Vs, 
mfp > 1 m for p > 2x1011 cm-2
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• Fabricated quantum dot devices on shallow 2D 
hole wafers and characterized at T = 350 mK.

• Able to form single quantum dot.  Observed 
Coulomb blockade in 2 out of 2 devices tested.

• Conductance is stable over time with no 
noticeable hysteresis.

500 nm

Hole Quantum Dot and Coulomb Blockade

T = 350 mK
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Charge Noise
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Double Quantum Dot and Charge Sensing

• Can use CP gate to form 
double quantum dot

• Charge sensing can be used 
to measure DQD occupation 
beyond region with transport 
through dot. 500 nm

1 m



14 Feb. 10, 2015

Tuning and Emptying of DQD

• Can use CP gate to tune 
interdot coupling

• DQD occupation can be 
determined for few-hole 
occupation (down to empty 
dot) using charge sensing

500 nm
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New Gate Geometries and Shallow 
Heterostructures

• Goal:  Pauli spin blockade in DQD at few-hole occupation.  Requires transport 
through dot when dot is nearly empty →  reduce distance between two dots 
and between dots and leads.

• Shrink and modify gate geometry.   

• Shallow 2D layers.  Minimum feature size in 2D layer is set by distance to 
gates.  Reduced 2D layer depth to 50 nm (2x reduction).  Mobility > 105

cm2/Vs for p > 1x1011 cm-2. 

500 nm

T = 4 K

d = 50 nm
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Charge Sensor QPC and Ballistic Transport

• Plateaux near multiples of 
2e2/h indicates ballistic 
transport → low disorder

• Feature below 2e2/h likely due 
to “0.7 structure”

500 nm

LQPC

Iqpc
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Transport and Charge Sensing at (1,1) – (0,2)

• New gate design allows transport 
through double dot in few-hole 
regime

• Large interdot coupling now appears 
possible in few-hole regime.
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Pauli Spin Blockade?
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Publications, Collaborations

• “Few Hole Double Quantum Dot in 
an Undoped GaAs/AlGaAs 
Heterostructure”, Appl. Phys. Lett. 
104 (2014) (cover article)

• External collaboration developed 
with Andrew Sachrajda and co-
workers at the National Research 
Council Canada. Investigate 
physics of single hole spins  in 
magnetic field + dilution refrigerator 
with RF lines. 
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• Initial results reasonable 
when compared to bulk 2D 
values from literature

Initial NRC Measurements on p-type DQD device

Heavy-hole g-factor and anisotropy

• Reminiscent of data for nanowire DQDs 
in systems with spin-orbit coupling 
(InAs Ge-Si core-shell wires)

• NRC offering theory support

DQD magnetospectroscopy
at (1,1) – (0,2) transition
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Future Directions

Long-term goals (collaboration with NRC 
Canada, RF measurements in dilution fridge):

• Manipulation of spin degree of freedom 
using spin-orbit interaction

• Experiments to measure spin lifetime and 
coherence time

• Investigate interactions between hole spins 
(Pauli blockade, …)

Ex:  Spin-dependent tunneling and T1

measurement for e- QD in GaAs 
Elzerman et al., Nature, 2004

New quantum dot designs 
for NRC collaboration


