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Abstract

In this study, eye tracking metrics and visual saliency maps
were used to assess analysts’ interactions with synthetic aperture
radar (SAR) imagery. Participants with varying levels of
experience with SAR imagery completed a target detection task
while their eye movements and behavioral responses were
recorded. The resulting gaze maps were compared with maps of
bottom-up visual saliency and with maps of automatically detected
image features. The results showed striking differences between
professional SAR analysts and novices in terms of how their visual
search patterns related to the visual saliency of features in the
imagery. They also revealed patterns that reflect the utility of
various features in the images for the professional analysts. These
findings have implications for system design and for the design and
use of automatic feature classification algorithms.

Introduction

Human visual processing is guided by two parallel processes:
bottom-up and top-down visual attention, also known as stimulus-
driven and goal-oriented attention [1]. Bottom-up visual attention
is captured automatically by the physical properties of a stimulus
(e.g. contrast, color, motion) while top-down visual attention is
allocated voluntarily and is driven by the viewer’s goals and
expectations (e.g. what information the person is looking for and
past experience with where to find that information [2]). The
cognitive processing underlying visual search is thought to have
two main processes. In the first stage, which happens very rapidly
when a person first sees an image, the visual cortex of the brain
pre-attentively filters the stimulus, identifying the most visually
salient regions (the regions with high bottom-up salience). The
information obtained at this stage of processing is then used to
guide top-down visual attention, in which the viewer processes
information serially by moving his or her eyes from one region of
interest to another [3]. Regions with high bottom-up saliency may
or may not be relevant to the viewer’s task and goals, so there is a
constant interplay between the two neural systems that guide visual
attention and eye movements [4].

Since the brain is so highly attuned to processing visual
information, most human-computer interfaces rely heavily on the
capabilities of the human visual system. A great deal of effort is
devoted to finding ways to visualize information so that humans
can understand and make sense of it. This is particularly
challenging when the information is multidimensional, such as in
visualizations with a temporal component. Once a visualization has
been developed, assessing its utility for a human analyst can prove
to be even more challenging than developing the visualization
itself. Ideally, a visualization should draw the viewer’s attention to
the information that is most useful to the viewer’s task. In other
words, there should be overlap between the features that are
visually salient and those that are most important from a top-down,
goal-oriented perspective.

In this paper, we describe a study in which we assessed the
utility of images by comparing viewers’ eye movements to maps of
visual saliency and image features. The project focused on
Synthetic Aperture Radar (SAR) and Coherent Change Detection
(CCD) imagery. SAR is used in a variety of surveillance and
mapping applications and the radar data is converted into a two-
dimensional image (see Figure 1) for use by human analysts [5].

Figure 1. Syntetic Aperture Radar (SAR) image a baseball diamond.
Image courtesy of Sandia National Laboratories, Airborne ISR.

CCD images (Figure 2) are created by co-registering SAR images
of the same scene and measuring changes in coherence that can
reveal changes that have taken place in the scene over time [6].
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Figure 2. Coherent Change Detection (CCD) image h‘ibhlig71ting several
changes between images taken of the same scene at two different times.
Image courtesy of Sandia National Laboratories, Airborne ISR.



http://www.sandia.gov/radar/imagery/index.html#modes9
http://www.sandia.gov/radar/imagery/index.html#modes9

Applied Studies of Imagery Analytic

Workflows

The work described in this paper is part of an interdisciplinary
family of research activities, in which Sandia National
Laboratories researchers are examining how computational
technologies influence the performance of professional imagery
analysts. In this context, imagery analysis describes the perceptual
and cognitive work of evaluating features of interest captured in
two-dimensional images generated from remotely sensed data.

Visual inspection of imagery is an important component of
work in a wide range of domains, from medical diagnostics to
tactical military planning. However, the technologies used in
imagery analysis have changed dramatically over the past couple
of decades. Even as recently as the 1990s, “hardcopy” imagery
and light tables comprised the major tools of imagery analysts.
Importantly, the standards that express nominal thresholds for the
detectability of feature classes in image products are rooted in
psychophysical studies with imagery analysts using the hardcopy
tool suite [7].

These days, however, computational or “softcopy” platforms
are the main tools of imagery analysis. In many government
workplaces, for example, light tables have disappeared as
organizations have wholeheartedly embraced desktop computing
systems and imagery analytic software. In a complementary
fashion, computers have facilitated the development of image
processing algorithms that can highlight or emphasize different
features in a scene; for example, by exploiting changes in
waveform characteristics to reveal ground changes in a scene-
something that CCD imagery does very well. In short, the entire
technological suite of imagery analysis has evolved dramatically
over the past twenty years, with a wide array of electronic
platforms and new image products available to support analytic
workflows.

The imagery analytic revolution has raised questions about
the functional equivalence of hardcopy vs. softcopy imagery for
human visual detection tasks. A related issue is assessing the
degree to which emerging image products might be used to support
particular analytic workflows or feature detection goals. Finally,
the rapid evolution of softcopy imagery also creates opportunities
to examine how people interact with various types of image
products as they are performing the visual cognitive work of
professional imagery analysis. Of particular importance is the
acquisition of perceptual skills, as people learn to “read” different
types of imagery. We are particularly interested in understanding
how imagery analysts learn to focus on the most valuable regions
of an image product in relation to top-down analytic goals; and
how these top down goals interact with bottom-up sensory and
perceptual events driven by qualities of a given image product.
Understanding these micro-processes is critical if we are to
understand how people interact with imagery to establish a
plausible narrative about the meaning of events captured in an
image - for example, the import of footprints and tire tracks
indicative of human activity in a rural area.

Current Research

The objective of this project was to identify which features in
SAR and CCD imagery drew the attention of experienced and
novice analysts during a visual search and decision making task.
Our aim was to inform system design by identifying differences in
search patterns between groups with varying levels of experience
and relating those patterns to features in the imagery and their
visual saliency.

SAR imagery is well-suited for this type of investigation for
several reasons. First, SAR and CCD images are superficially
similar to optical imagery, but extensive training is required for
analysts to learn to interpret SAR phenomenology correctly. This
creates unique advantages for studying the influence of experience
and top-down visual attention on visual search behavior.
Professional imagery analysts who work with SAR perform visual
search tasks using SAR and CCD images on a daily basis,
developing extensive expertise and efficient visual search and
decision making strategies. At the same time, there are many true
novices who have never seen SAR or CCD images, yet the
similarity between SAR imagery and optical images enables
novices to complete visual search tasks despite their lack of
domain-specific experience. Second, several feature detection
algorithms have been developed for SAR and CCD images. These
algorithms can identify specific terrain features and image regions
that are particularly useful (or not useful) to the visual search task.
This allows us to map the participants’ gaze patterns against image
features with high or low importance from the perspective of top-
down attention. Finally, prior research has shown that visual
salience maps designed for optical imagery, such as the tool
developed by Itti and Koch [8], are also applicable to SAR and
CCD images because of their scene-like properties [9]. This allows
us to contrast the participants’ gaze maps with maps of the bottom-
up visual salience of the images. All of these characteristics make
SAR a particularly useful domain for studying differences in visual
search between experienced and inexperienced viewers, and how
those differences relate to properties of the images.

In the study, we collected behavioral and eye tracking data
from three groups of participants with varying levels of experience
with SAR imagery, ranging from true novices to professional SAR
imagery analysts. The participants completed a visual search and
decision making task in which they were asked to search SAR and
CCD images for targets. The targets were specific types of changes
within the scenes. The gaze maps collected from the three groups
of participants were then contrasted with visual saliency maps and
with maps of automatically segmented terrain features. We also
conducted an exploratory analysis in which the gaze maps were
compared to a metric of change susceptibility within the scenes,
described in more detail below.

We hypothesized that in situations where the decision-
relevant information was not the most visually salient information,
novice viewers would be more likely to get distracted. In contrast,
experienced analysts are likely to have developed strategies to
discount salient but irrelevant visual features. We predicted that the
experienced analysts would focus on the most task-relevant regions
of the images, regardless of their visual salience. Comparing the
performance and eye movements of groups with varying levels of
experience allowed us to investigate the influence of top-down
visual attention on task performance and to explore the interplay
between expertise and image utility.

Eye Tracking Study

Method

Participants

Twenty-four participants completed a target detection task
using SAR images while their eye movements were recorded at 60
Hz using the FaceLab 5 Standard system and EyeWorks software.
Eight of the participants were professional SAR analysts who
conduct visual search tasks using SAR imagery on a daily basis.
Eight were non-analysts who work with SAR images regularly,



typically on a weekly basis. They had extensive knowledge of the
domain, but do not typically engage in visual search tasks using the
imagery. Most of the participants in this group were radar
engineers who design and test SAR systems. We refer to this group
as the “experienced non-analysts.”” The remaining eight
participants were novices with no prior exposure to SAR imagery.
All participants gave their written informed consent before
participating in the study.
Materials

Participants completed a target detection task using 20 pairs
of images. Each pair consisted of a SAR image and a CCD image
of the same scene. The CCD image was created by co-registering
SAR images of the same scene over time and measuring changes
in coherence that can reveal temporal changes [6]. Essentially, the
SAR image provided viewers with contextual information about
the scene and the CCD image provided viewers with information
about the presence or absence of targets in the scene.

Half of the 20 image pairs contained a target and half did not.
The targets were the same types of targets that the professional
SAR analysts look for in their daily work. The experienced non-
analysts were also familiar with the nature of the targets and view
them frequently, although not in the context of a visual search task.
The novices were not familiar with the domain, so they were
shown examples of targets before beginning the experiment. They
received instructions about what to look for to determine whether
or not a target was present in the scene.

Procedure

The participants completed a battery of general cognitive and
visual search tasks in addition to the target detection task using
SAR imagery [10] asked to stare at a fixation cross in the center of
the computer screen. The cross remained on the screen for one
second, and then one of the image pairs appeared on the screen.
The SAR image was shown to the left of the fixation cross and the
CCD image of the same scene was shown to the right of the
fixation cross.

Participants were instructed to search the images for targets
and to use a 1-4 scale to record their assessment of whether or not
each scene contained a target. A response of “1” indicated that they
were sure that there was not a target in the scene. A response of
“2” indicated that they thought there was no target, but they were
unsure. A response of “3” indicated that they thought there was a
target present, but were unsure. A response of “4” indicated that
they were sure that there was a target present. The SAR and CCD
images remained on the screen until the participants responded or
until 45 seconds had elapsed. The participants did not receive
feedback about their answers until after the experiment was

completed.

Results

Behavioral Results

The behavioral results showed that the professional imagery
analysts were able to detect the targets more accurately than the
novices and faster than both the novices and the experienced non-
analysts. The analysts responded correctly to 74.4% of the trials,
on average, with an average reaction time of 9.5 seconds. The
experienced non-analysts responded correctly to 70.0% of the trials
with an average reaction time of 14.5 seconds. The novice
participants responded correctly to 56.9% of the trials with an
average reaction time of 22.4 seconds.

One-way ANOVAs showed that the groups differed
significantly in both their average accuracy (F(2,21) = 4.62, p <
0.03) and their average reaction times (/(2,21) =11.98, p <0.001).

Post-hoc t-tests showed that the analysts had significantly higher
accuracy (#(14) = 2.95, p <0.01) and faster reaction times (#(14) =
4.34, p < 0.001) than the novices. The experienced non-analysts
also had significantly higher accuracy (#(14) = 2.14, p < 0.03) and
reaction times (#(14) = 2.57, p < 0.02) than the novices. The
accuracy of the analysts and experienced non-analysts did not
differ significantly (#(14) = 0.73), but the analysts had significantly
faster reaction times (#(14) =2.93, p <0.01).
Eye Tracking Results

Two participants, one from the novice group and one from the
experienced group, were excluded from the eye tracking data
analysis due to noisy data. A region of interest (ROI) was
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Experienced non-analysts

MNovices

Figure 3. Gaze maps for each of the three groups of participants with the ROl
indicated in red.



demarcated around each target that contained the target itself plus a
buffer intended to represent a person’s useful field of view
(approximately 90 pixels on each side of the target).

The time to first fixation in the ROI was calculated for each
trial in which a target was present. The average time to the first
fixation in the ROI was 5.3 seconds for novices, 3.0 seconds for
experienced non-analysts, and 2.1 seconds for analysts. The
difference between groups was significant (£(2,19) = 9.21, p <
0.01). Post-hoc t-tests showed that the experienced non-analysts
and the analysts were both significantly faster than the novices
(7(12) = 2.41, p < 0.02 and #(13) = 4.36, p < 0.001, respectively).
However, the experienced non-analysts and the analysts did not
differ significantly from one another (#(13) = 1.53, p = 0.08).

For each trial, we calculated the percentage of total fixations
that occurred within the ROIL. On average, 17.4% of the novice’s
fixations were in the ROI, compared to 25.3% for the experienced
non-analysts and 38.9% for the analysts. The difference between
groups was significant (£(2, 19) = 8.08, p < 0.01). Post-hoc t-test
showed that the experienced non-analysts had a significantly
higher percentage of fixations in the ROI than the novices (#(12) =
247, p < 0.02) and the analysts had a significantly higher
percentage of fixations in the ROI than the experienced non-
analysts (#(13) =2.13, p < 0.03).

Discussion

Working within their domain of expertise, the SAR imagery
analysts and experienced non-analysts were both more accurate in
their responses than the novices, who had not viewed SAR
imagery before taking part in the experiment. In addition to their
high accuracy, the analysts were faster than experienced non-
analysts and novices, both in terms of overall task reaction time
and in terms of the time to first fixation in the ROI. The analysts
were highly efficient in their ability to identify the ROL typically
fixating in the ROI within two seconds of stimulus onset. They
devoted a higher proportion of fixations to the ROI than either of
the other groups.

The efficiency of the analysts indicates that their visual search
performance is driven by top-down visual processing. The analysts
were able to rapidly triage the information in the imagery, zeroing
in on the task-relevant information in the ROIs. In the analyses
described below, we contrasted the gaze maps of the analysts and
novices with other information about the content of the scenes,
including bottom-up visual salience and automatically detected
terrain features. These analyses allowed us to further tease apart
the contributions of bottom-up and top-down visual processing to
the participants’ visual search performance.

Comparison of Gaze Maps to Saliency Maps

In order to compare the visual search patterns of the
participant groups to visual properties of the imagery, gaze maps
were created for each stimulus using each group’s tracking data.
Following the approach of Wooding [11], the gaze maps were
constructed by pooling the raw eye tracker samples over all
subjects in each group (i.e. analysts, experienced non-analysts and
novices) and accumulating a two dimensional Gaussian function at
each point. The standard deviation of the Gaussian function was
defined to equal a two degree field of view (90 pixels) at the
average viewing distance.

Visual saliency maps for each stimulus where created using
the Itti and Koch model [12] as implemented in Harel’s Graph
Based Visual Saliency Toolbox [13]. The Itti and Koch model
decomposes images into three feature sets that are based on

processes in the human visual cortex: color, orientation and
intensity. These feature sets are constructed at multiple scales
using Gaussian pyramids. Areas of the image with the greatest
differences in features across scales are assigned larger saliency
values while areas with smaller differences in features across
scales are assigned lower saliency values. In this study,
participants were viewing two images placed side by side on the
screen. Because the two image products have different mean
intensity levels, we calculated the saliency maps separately for
each image product to avoid saliency artifacts at the image product
boundary.

Salience Map

Gaze Map

Figure 4. The top panel shows the salience map for one of the CCD stimuli
used in the study and the bottom panel shows the analysts’ gaze map for the
same stimulus.

Results

For each of the 10 stimuli in the eye tracking study that
contained a target, we calculated the percentage of the overall
visual salience that fell within the ROI around the target. Then, for
each group of participants, we calculated the percentage of gaze
observations that fell within the ROI for that stimulus. For all of
the target-containing stimuli, an average of 17% of the total visual
salience fell within the ROIs. For the professional analysts, an



average of 57% of the gaze observations fell within the ROls,
consistent with the behavioral finding that the analysts were very
efficient in identifying the ROIs. The experienced non-analysts and
novices had lower percentages of gaze observations in the ROlIs,
with 42% for the experienced non-analysts and 27% for the
novices.

Correlations were calculated between the percentage of visual
salience in the ROI and the percentage of gaze observations in the
ROI for each stimulus within each group of participants. The
results showed that the correlation was significant for the novices
(> = 0.71, p < 0.01) and for the experienced non-analysts (r* =
0.52, p = 0.01). However, for the professional analysts, there was
not a significant correlation between the percentage of salience in
the ROIs and the percentage of gaze observations in the ROIs (1* =
0.02).
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Figure 5.The percentage of gaze in the ROl versus the percentage of salience
in the ROI for each patrticipant group for every stimulus that contained a
target.

As discussed above, we hypothesized that professional
analysts would rely on their past experience and on top-down
visual attention to focus on the most task-relevant information,
regardless of whether or not it was salient from a bottom-up
perspective. The results of the eye tracking study and our
comparisons between the gaze maps and salience maps supported
this hypothesis. To further explore the relationships between
terrain features, visual salience, and visual search, we compared
the participants’ gaze maps to automatically generated maps of
image features. We chose to investigate two specific types of
terrain features: SAR shadows and regions categorized as
supporting change detection through a method called Index for
Surface Coherence (ISC). These analyses and the preliminary
results are described in the sections below.

Comparison of Gaze Maps and Terrain
Features

SAR imagery has unique properties that support a variety of
methods for automatic feature detection. For example, specific
terrain features can be detected and labeled by automated image
processing algorithms such as superpixel segmentation and
classification [14, 15]. Superpixel segmentation groups pixels by
capturing image redundancy [16, 17]. A new method known as
ISC extends this capability by identifying image regions in which

the terrain features are more or less conducive to change detection
[18].

We chose to focus our analyses on two types of automatically
detected terrain features. First, we contrasted the gaze maps with
maps of SAR shadows. The shadows in SAR images have
relatively low value in target detection tasks, but have high visual
salience. We predicted that experienced analysts would ignore
shadow regions while novices would be more likely to be
distracted by their high visual salience. Second, in an exploratory
analysis, we contrasted the gaze maps with ISC maps representing
regions of the images that were most supportive of change
detection. We predicted that the analysts would devote more
attention to the regions that were most likely to support change
detection, particularly since they were being asked to complete a
target detection task in which the targets were changes to the
scene. In contrast, we predicted that novices would not have the
experience needed to determine which regions were most valuable
to completing the task, making them less sensitive to this metric.

Modulating Salience Maps Using Terrain Features

In order to test the analysts’ and novices’ ability to ignore the
highly salient but low value shadows, we calculated the overlap
between the participants’ gaze maps and the salience maps with
and without the shadows. First, algorithms were used to segment
[14] the stimuli used in the eye tracking study into superpixels and
to classify [15] the shadow superpixels.

100 200 300 400 . 500 600

100 200 300 400 . 500 600

Figure 6. The top panel shows a superpixel segmentation of a scene and the
bottom panel shows superpixels classified as shadow regions in red.



Next, modified salience maps were created in which the
superpixels identified as shadow regions were masked out, as
shown in Figure 7.

100 200 300 400 500 600

Figure 7. The top panel shows the visual salience map created from the SAR
image in Figure 6. The bottom panel shows the masking of the superpixels
classified as shadow regions.

The gaze maps were compared to the original and masked
saliency maps using the linear correlation coefficient (CC) metric.
CC has been used in prior studies to measure performance of
saliency estimation algorithms by comparing saliency maps to
human gaze maps [19]. CC is a measure of the strength of a linear
relationship between a gaze map (G) and a saliency map (S)

cov(G,S)
0G0s

CcCc(G,S) = (1)

When CC is close to +1, there is almost a perfectly linear
relationship between the human gaze map and the predicted
saliency map.

A subset of the eye tracking data (three analysts and three
novices) was used to test the effects of masking shadows out of the
salience maps. For the analysts, masking the shadow regions
improved CC agreement between saliency and gaze maps by a
factor of 3.3 times. For the novices, masking the shadow regions
reduced CC agreement by only 0.95 times.

These results provide further evidence to support our finding
that professional analysts successfully relied on top-down visual
attention, largely ignoring regions that were not relevant to the
target detection task even if they were highly visually salient. The
approach developed here could be applied for any other terrain
features, allowing system designers to conduct a detailed analysis
of how much experienced and novice users rely on each feature
when completing a particular task. This could be a powerful
method for assessing image quality by testing the relative
contributions of each image feature to both the visual salience of
the scene and to the users’ task performance.

Comparing Gaze Maps to the Index of Surface
Coherence

As discussed above, CCD images provide a method for
observing changes in a scene that would otherwise be undetectable
to the human eye [20]. By using multiple SAR collects, the
magnitude and phase difference between each collect can be
utilized to detect changes in a SAR image. However, the method
used to calculate this change product is agnostic to the underlying
terrain on which the calculation is made. Some features (such as
walls) are stationary and not susceptible to change, appearing as
areas that cohere perfectly in the CCD images. Other features, such
as vegetation, have low coherence due to their random geometries
and continuously show up as changes in the CCD product. Both
types of features can be distracting to an analyst or algorithm
looking for changes of interest (i.e. areas of low coherence in the
scene that typically have high coherence). Discerning changes of
interest in natural scenes requires training for human analysts and a
better understanding of the underlying terrain for algorithms.

A new method to address this issue creates maps of the Index
of Surface Coherence (ISC) for SAR images. These maps can be
used to mask a CCD product and eliminate the areas that do not
support detection of changes of interest. To create these maps, a
long-term observation of an area is utilized to acquire the
underlying nature of the terrain. With many observations of the
same area over a period of time, a stack of images can be created.
By registering all of the images and taking the median of each
pixel in the stack, a stable representation of the area is observed.
Using a median radar cross section (RCS) and median CCD
product, the terrain in the area can be classified according to its
coherence properties. The median RCS (MRCS) and median CCDs
(MCCD) images are segmented into superpixels using the SLIC
superpixel segmentation, which allows a user to define how
compact the superpixel appears and the number of superpixels in
the image. This allows a user to create a nearly uniform grid of
pixel groups [14, 17]. A truly uniform segmentation would
provide pixel groups and reduce the computing complexity, but the
pixels in those groups would be visually and statistically very
dissimilar.

After the median MRCS and median MCCD images are
segmented, a training process is used in which terrain types that
support change detection are identified and a subset of superpixels
capturing each terrain type is chosen. In this study, approximately
20 superpixels consisting of 500 pixels for each terrain type were
selected. For each data type, a distribution curve is generated for
both the MRCS and MCCD products. The distribution curve is
generated by fitting common distribution types (Gamma, Beta,
Log-Normal, Exponential, and Gaussian) to the each data type’s
scaled histogram data. The distribution type, distribution
parameters, and scaling are saved to represent each terrain type.



With the training finished, new images can be evaluated by
segmenting the image into superpixels and comparing each
superpixel in the image to the previously trained data. For each
superpixel in the image, its pixels are scaled and fit with the
distribution according to each terrain types training data. The
distribution curve of the superpixel is then compared to the terrain
type’s distribution curve using Kullback-Leibler (KL) Divergence
to get a similarity score. Using probabilistic fusion [21, 22], the
KL scores of the MRCS and MCCD images are translated into p-
scores which can then be added despite the KL scores being
statistically different. These added scores can then be used to form
a heat map to indicate where an image is most likely to support
change detection.

We conducted a proof-of-concept analysis in which an ISC
map of one of the CCD images from the eye tracking study was
compared to participants’ gaze maps. To compare the image p-
scores to the human gaze maps, we first created a set of 20
thresholded images (P) using the original p-score image and
thresholding each pixel for thresholds 1,2,3,...20. We then
calculated the CC metric for each thresholded image, P;, compared
to the gaze map from either the IAs or the novices.

CC(PL-,S') _ cov(Pl-,Sj)

9p;Ts;
Where i = 1,2,...20; j = I(analysts), 2(novices) 2)

At the lower thresholds, the maps show only regions that
never change, while at higher thresholds the maps show regions
with increasing susceptibility to change. This analysis showed that
the CC metric peaked for novices at a p-score threshold of 2 while
peaking for experts at a p-score threshold of 7. Although
exploratory, these results indicate that the gaze maps of the novices
were relatively insensitive to the likelihood that a particular region
would support change detection. They devoted their attention to
terrain features that did not provide much support for change
detection and therefore had low p-scores in the ISC map. In
contrast, the analysts devoted more attention to regions that had
higher p-scores and were likely to support change detection.

Discussion

The results of this experiment revealed distinct differences
between the visual search patterns of the participants in the three
experience groups. Professional SAR imagery analysts were faster
and more accurate in finding targets in a visual search task using
SAR and CCD images. The results of the eye tracking study
showed that the analysts were rapidly able to identify the ROI in
the scenes containing targets and spent a significantly higher
proportion of their time inspecting the ROI than the other groups
of participants. The viewers with less experience, including
knowledgeable non-analysts and true novices, spent more time
viewing other regions of the images, which had a negative impact
on their speed and accuracy.

To explore the relationships between the participants’ gaze
maps and the visual features of the imagery, we compared the gaze
maps to bottom-up salience maps and to maps of image features
that were either irrelevant (shadows) or relevant (regions
supporting change detection) to the task. While the gaze maps of
the novices and knowledgeable non-analysts were correlated with
the bottom-up saliency of the images, the gaze maps of the
professional analysts showed no such correlation. These results
indicate that the less experienced groups were at least somewhat

distracted by visual features that had high visual salience but little
relevance to the task. In contrast, the analysts focused their
attention on task-relevant features, whether they were highly
visually salient or not. In other words, the analysts’ visual search
processes appear to be driven primarily by top-down, goal-directed
visual attention, while the less experienced participants were
influenced more by bottom-up visual salience.

The comparisons of the participants’ gaze maps to
automatically detected image features also supported this
interpretation of the eye tracking data. We chose SAR shadows as
an example of a visual feature that was highly salient but had little
relevance to the task. When superpixels from shadow regions were
masked out of the visual salience maps, the match between the
salience maps and the analysts’ gaze maps improved substantially.
When the same masking was done for the novices, the match
between the salience maps and gaze maps was reduced. The
comparison between the gaze maps and the ISC maps had a similar
result. The highest match between the novices’ gaze maps and the
ISC maps was at a very low threshold, where the ISC map showed
areas with little susceptibility to change. These areas are not very
informative in a change detection task, but novice participants
spent quite a bit of time looking at them. The analysts ignored
those regions, focusing their attention on regions that were
supportive of change detection and were therefore task-relevant.

The results of this study revealed information about what
types of SAR and CCD image features are used by people with
different levels of experience. By studying the professional
analysts’ approach to the visual search task and identifying the
features and regions that they focus on, we were able to identify
which features are most relevant to their real-world visual search
tasks. This information can be used to inform system design and
the design of new image products and image processing algorithms
to support the analysts in their daily work. By comparing the
professional analysts to knowledgeable non-analysts and novices,
we were also able to identify image features that might be
distracting to less experienced viewers. This information can
inform the training of new analysts. It can also help to validate new
image processing algorithms. For example, the comparison
between the participants’ gaze maps and the ISC maps provided
valuable feedback about the success of the ISC method in
identifying regions that are relevant to the end users of the
imagery. The threshold cutoffs identified by the gaze map
comparisons can be used when deploying the algorithm to help
analysts filter out potential false alarms.

The methods developed for this study could be applied in
other domains to assess image quality in terms of how well the
images support the end user’s top-down goals. By approaching the
problem from the perspective of human cognition, we were able to
learn a great deal about the features of the images that did or did
not support the end users’ cognitive needs.
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