

MBE Growth of THz & LWIR QCLs

John Reno

THz QCL Example Structure

Many Interfaces

Repeat 163 times

Total Active Thickness ~10 μm

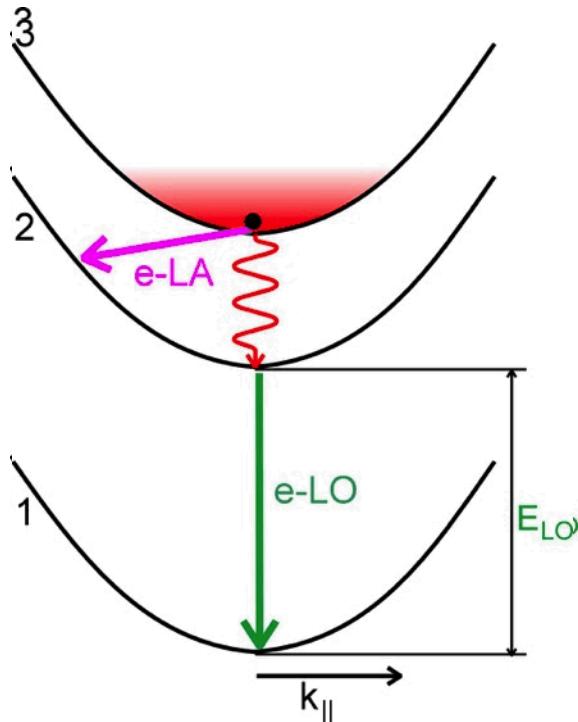
High Al Content

LTG (250 C) cap layer

Accurate Doping

No Doping

Thin Accurate Layers


GaAs	LTG (250 C) cap layer	35 A
GaAs	$5 \times 10^{19} \text{ cm}^{-3}$	100 A
GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	500 A
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	33.9 A (12 ML)
GaAs	$1.9 \times 10^{16} \text{ cm}^{-3}$	161.0 A (57 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	31.1 A (11 ML)
GaAs	undoped	96.1 A (34 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48.0 A (17 ML)
GaAs	undoped	53.7 A (19 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	11.3 A (4 ML)
GaAs	undoped	53.7 A (19 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	14.1 A (5 ML)
GaAs	undoped	45.2 A (16 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	11.3 A (4 ML)
GaAs	undoped	48.0 A (17 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	33.9 A (12 ML)
GaAs	$1.9 \times 10^{16} \text{ cm}^{-3}$	161.0 A (57 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	31.1 A (11 ML)
GaAs	undoped	96.1 A (34 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48.0 A (17 ML)
GaAs	$3 \times 10^{18} \text{ cm}^{-3}$	0.8 μm
$\text{Al}_{0.55}\text{Ga}_{0.45}\text{As}$	undoped	0.1 μm
S. I. GaAs substrate		

Terahertz intersubband scattering mechanisms

Population inversion:

$$\Delta N = \frac{J}{e} \tau_3 \left(1 - \frac{\tau_2}{\tau_{32}} \right)$$

must have $\tau_{32} > \tau_2$

$$\tau_{21} \approx 0.3 \text{ ps}$$

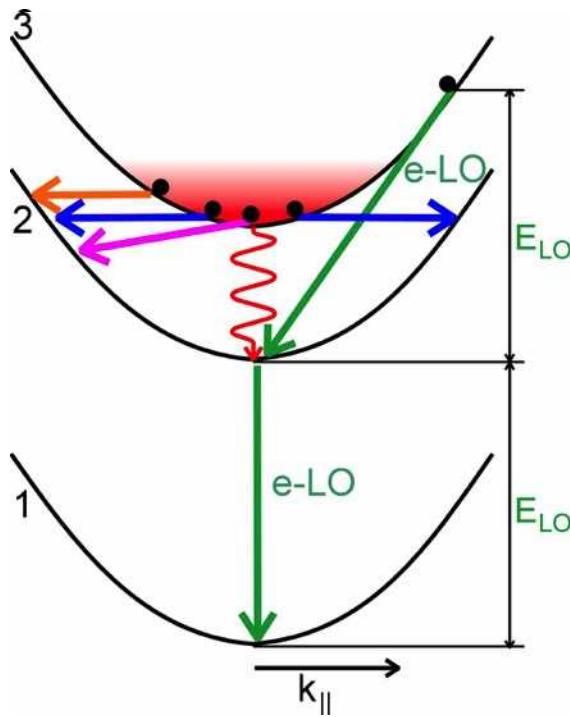
depopulation (e-LO)

$$\tau_{32,rad} \sim 10 \mu\text{s}$$

radiative lifetime

$$\tau_{e-LA} \sim 100 \text{ ps}$$

acoustic-phonon


~ Operating Temperature Dependent
=> Growth Does Not Affect, Only Design

Terahertz intersubband scattering mechanisms

Population inversion:

$$\Delta N = \frac{J}{e} \tau_3 \left(1 - \frac{\tau_2}{\tau_{32}} \right)$$

must have $\tau_{32} > \tau_2$

$$\tau_{21} \approx 0.3 \text{ ps}$$

depopulation (e-LO)

$$\tau_{32,rad} \sim 10 \mu\text{s}$$

radiative lifetime

$$\tau_{e-LA} \sim 100 \text{ ps}$$

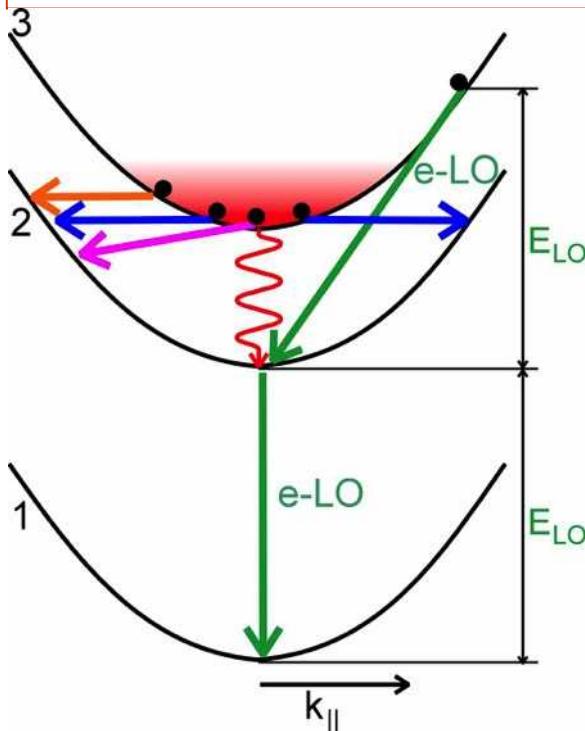
acoustic-phonon

$$\tau_{e-imp} \sim 7 - 20 \text{ ps}$$

impurity scattering

=> Need **VERY Low**
Background Impurities

Growth Conditions/Techniques


- Issue: Unintentional Background Impurities
- Solutions:
 - Do Not Open System (> a year)
 - Long Slow System Bake Out
 - Outgassing of All Cells & Heaters Prior to Use
 - All Unnecessary Filaments Off

Terahertz intersubband scattering mechanisms

Population inversion:

$$\Delta N = \frac{J}{e} \tau_3 \left(1 - \frac{\tau_2}{\tau_{32}} \right)$$

must have $\tau_{32} > \tau_2$

$\tau_{21} \approx 0.3 \text{ ps}$ depopulation (e-LO)

$\tau_{32,rad} \sim 10 \mu\text{s}$ radiative lifetime

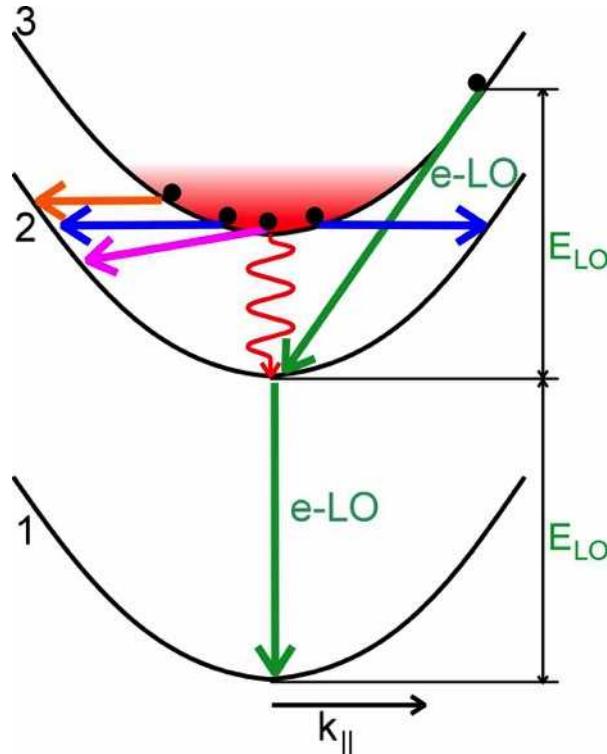
$\tau_{e-LA} \sim 100 \text{ ps}$ acoustic-phonon

$\tau_{e-imp} \sim 7 - 20 \text{ ps}$ impurity scattering

$\tau_{e-int} \sim 10 \text{ ps } ???$ interface roughness

=> Need VERY Smooth
Interfaces

Growth Conditions/Techniques


- Issue: Interface Quality
- Problems: High Al Content, Many Thin Layers
- Solutions:
 - Pauses in Lower Contact Layer
 - Growth Temperature 630-635°
 - High Rotation Rates 20-30 rpm
 - High Al Shutter Speed

Terahertz intersubband scattering mechanisms

Population inversion:

$$\Delta N = \frac{J}{e} \tau_3 \left(1 - \frac{\tau_2}{\tau_{32}} \right)$$

must have $\tau_{32} > \tau_2$

$\tau_{\gamma_1} \approx 0.3$ ps depopulation (e-LO)

$$\tau_{32,rad} \sim 10\mu\text{s} \quad \text{radiative lifetime}$$

$$\tau_{e-IA} \sim 100 \text{ ps} \quad \text{acoustic-phonon}$$

$\tau_{e-imp} \sim 7 - 20 \text{ ps}$ impurity scattering

$\tau_{e\text{-int}} \sim 10 \text{ ps} ???$ interface roughness

$\tau_{e-e} \sim 5-50 \text{ ps}$? electron-electron

=> Need No Additional Doping

=> Need Accurate Doping Control

Growth Conditions/Techniques

- Issue: Doping Accuracy (<5%)
- Solutions:
 - Precalibrate Si Cell at Values Desired
 - Allow Sufficient Time for Stabilization

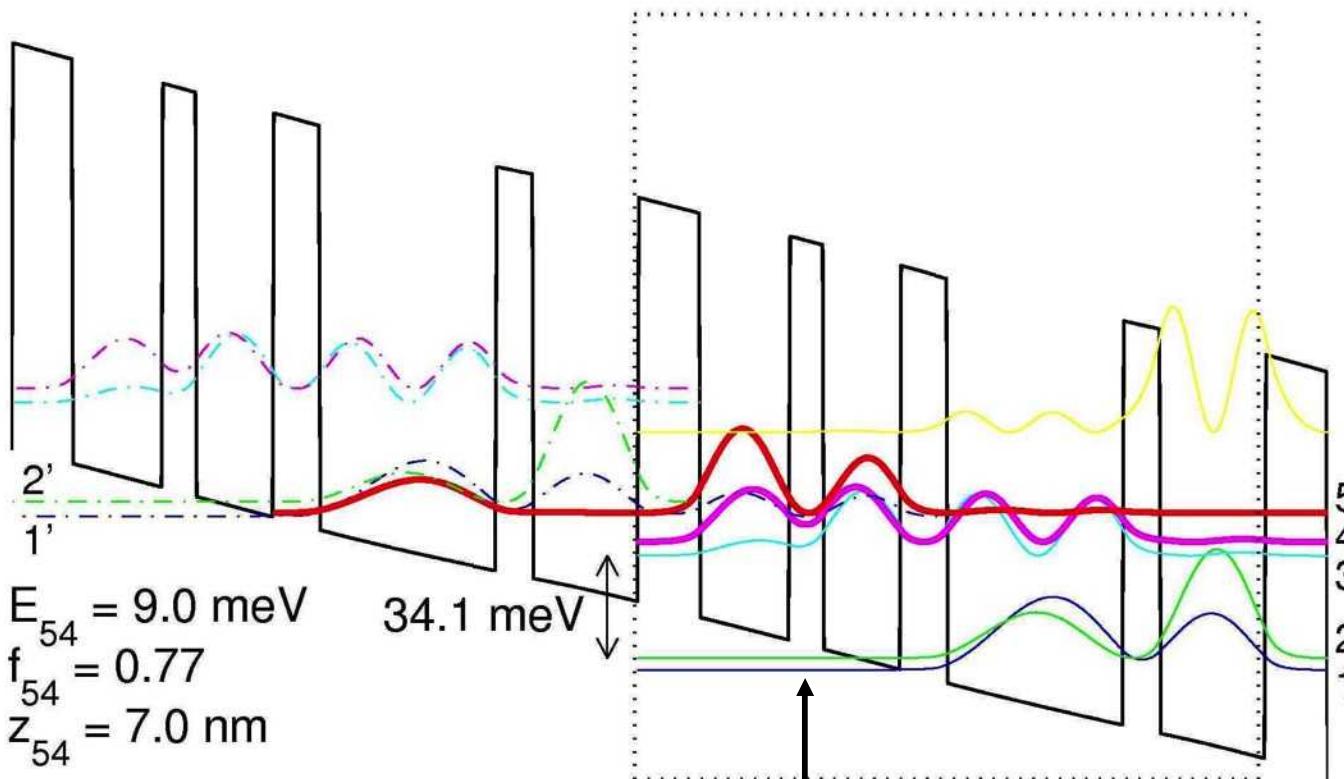
THz QCL Example Structure

Many Interfaces

Repeat 163 times

Total Active Thickness ~10 μm

High Al Content


Thin Accurate Layers

No Doping

Accurate Doping

GaAs	LTG (250 C) cap layer	35 A
GaAs	$5 \times 10^{19} \text{ cm}^{-3}$	100 A
GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	500 A
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	33.9 A (12 ML)
GaAs	$1.9 \times 10^{16} \text{ cm}^{-3}$	161.0 A (57 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	31.1 A (11 ML)
GaAs	undoped	96.1 A (34 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48.0 A (17 ML)
GaAs	undoped	53.7 A (19 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	11.3 A (4 ML)
GaAs	undoped	53.7 A (19 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	14.1 A (5 ML)
GaAs	undoped	45.2 A (16 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	11.3 A (4 ML)
GaAs	undoped	48.0 A (17 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	33.9 A (12 ML)
GaAs	$1.9 \times 10^{16} \text{ cm}^{-3}$	161.0 A (57 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	31.1 A (11 ML)
GaAs	undoped	96.1 A (34 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48.0 A (17 ML)
GaAs	$3 \times 10^{18} \text{ cm}^{-3}$	0.8 μm
$\text{Al}_{0.55}\text{Ga}_{0.45}\text{As}$	undoped	0.1 μm
S. I. GaAs substrate		

Significance of Layer Thickness

11 ML (3.1 nm) Determines $\hbar\omega$

Changed by 2 ML shifted wavelength
from $100\mu\text{m}$ to $141\mu\text{m}$

Growth Conditions/Techniques

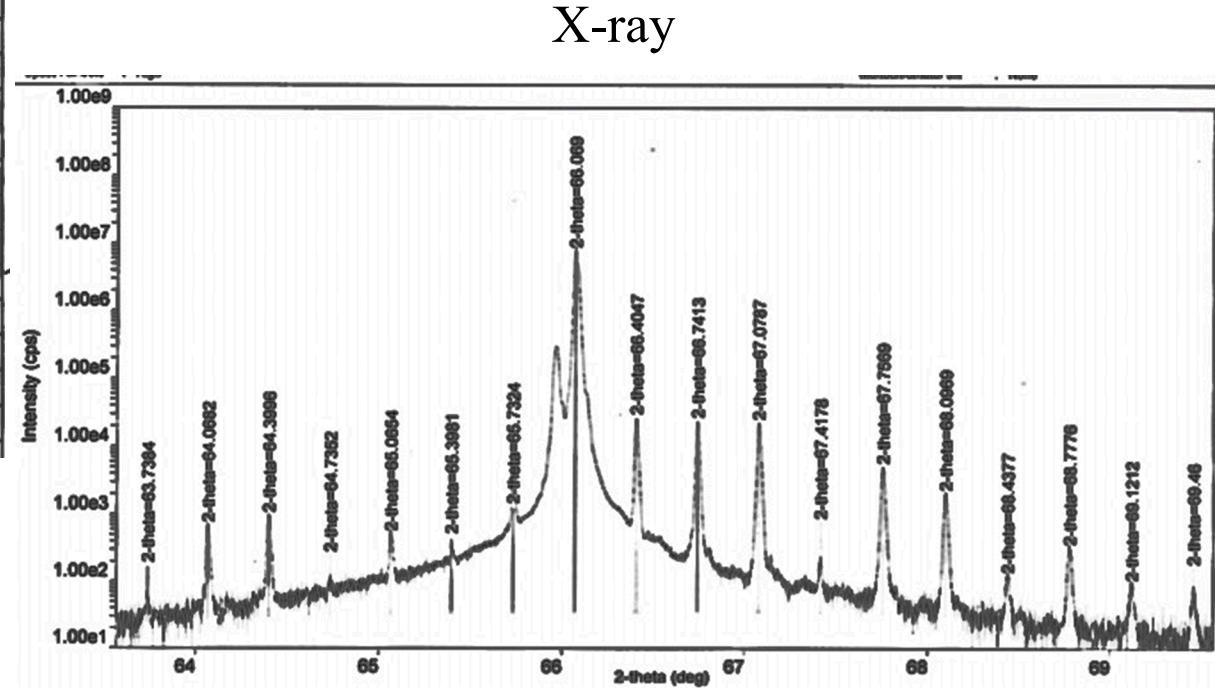
- Issue: Thickness Consistency/Stability (<1%)
- Problems: Many Thin Layers
Long Growth Time (~16 hrs)
- Solutions:
 - Allow Sufficient Time for Cells to Stabilize
 - Determine Cell Stability (0.3-5% / μ m)
 - Ramp Cell Ga Cell During Growth (0.1-0.2° /hr)
 - PID Values Carefully Tuned

Growth Conditions/Techniques

- Issue: Thickness Accuracy (<1%)
- Problems: Thin Layers, Shutter Transients
- Solutions:
 - Ga & Al RHEED Oscillations Daily
 - Numerous measurements taken to 4 sig figs
 - Average
 - Measure Period by X-ray
 - Determine Correction Factor (~1%)

Growth Conditions/Techniques

- Issue: Al Concentration Accuracy (<0.2%)
- Solutions:
 - Ga & Al RHEED Oscillations Daily
 - Numerous measurements taken to 4 sig figs
 - Average
 - Calculate Concentration
 - Adjust Cell Temp if Concentration Not ± 0.0005 of Target


Growth Conditions/Techniques

- Issue: Thickness & Composition Accuracy
- Problems: RHEED Oscillations Are NOT Accurate
- Solutions:
 - Determine RHEED Correction Factor for Every Cell
 - Use RHEED to measure growth rate
 - Grow sequentially on same day 2 MQWs
 - GaAs/AlGaAs
 - AlAs/AlGaAs
 - Measure Periods by X-ray
 - Determine Correction Factors (~0.1%)

Single Band THz QCL Growth Accuracy

250C	→	GaAs	LTG (250C) cap layer	35 Å
		GaAs	$5 \times 10^{19} \text{ cm}^{-3}$	100 Å
		GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	500 Å
		Al _{0.35} Ga _{0.65} As	undoped	27 Å
		GaAs	undoped	60 Å
		GaAs	$6.30 \times 10^{18} \text{ cm}^{-3}$	48 Å
		GaAs	undoped	60 Å
		Al _{0.35} Ga _{0.65} As	undoped	34 Å
Repeat 313 times	↑	GaAs	undoped	84 Å
		Al _{0.35} Ga _{0.65} As	undoped	27 Å
		GaAs	undoped	60 Å
		GaAs	$6.30 \times 10^{18} \text{ cm}^{-3}$	48 Å
		GaAs	undoped	60 Å
		Al _{0.35} Ga _{0.65} As	undoped	34 Å
	↓	GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	0.1 μm
		Al _{0.35} Ga _{0.65} As	undoped	0.4 μm

Structure

Period

X-ray: 312.7 \AA

Request: 313.0 \AA

$\Rightarrow 0.09\% \text{ Low}$

Note Evenly Spaced Peaks

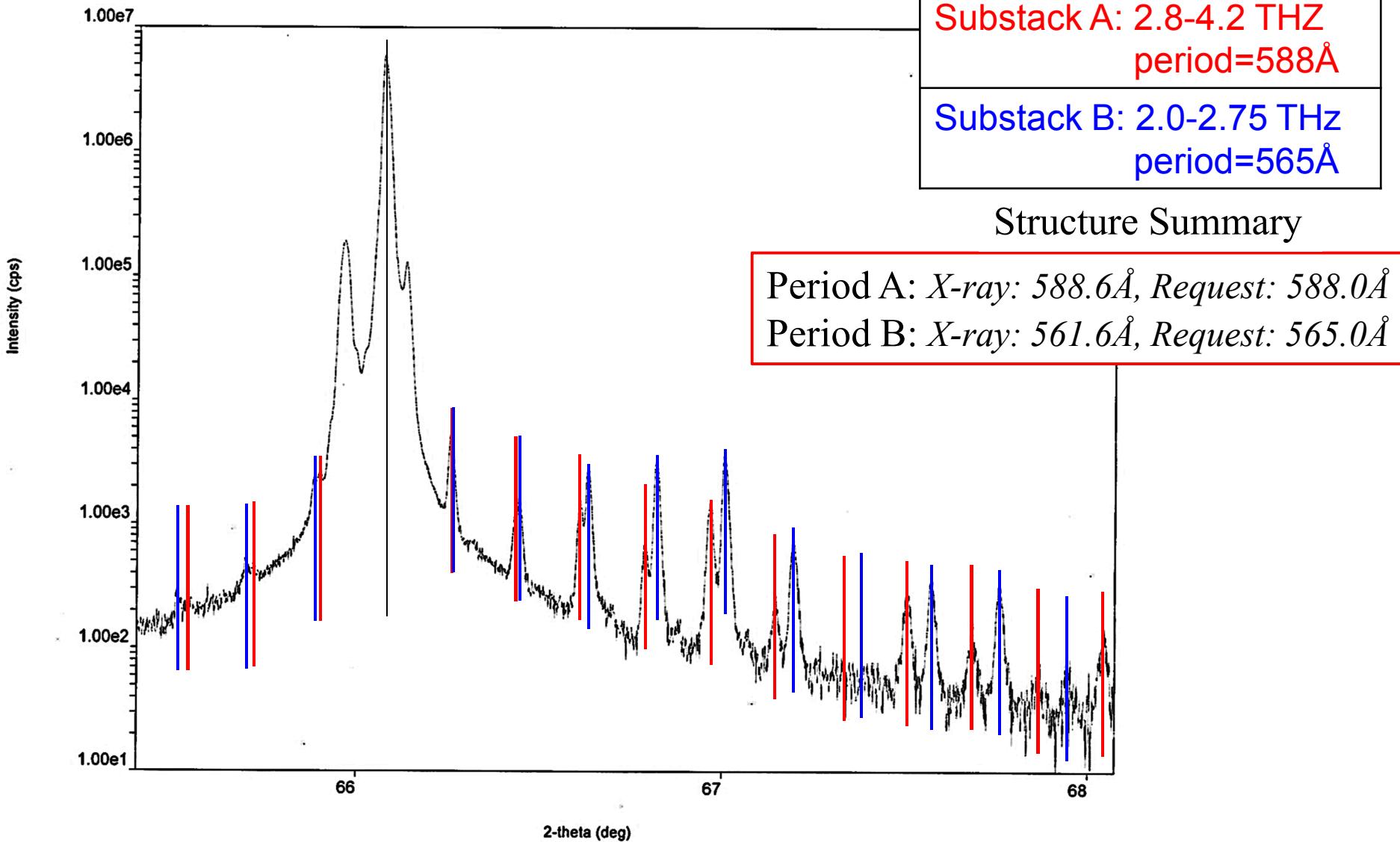
Sandia
National
Laboratories

Two Band THz QCL Growth Accuracy

250°C →	GaAs	LTG (250°C) cap layer	35 Å
	GaAs	$5 \times 10^{19} \text{ cm}^{-3}$	100 Å
	GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	
	Al _{0.15} Ga _{0.85} As	undoped	
	GaAs	$3.3 \times 10^{16} \text{ cm}^{-3}$	
	Al _{0.15} Ga _{0.85} As	undoped	
	GaAs	undoped	
	Al _{0.15} Ga _{0.85} As	undoped	
	Al _{0.15} Ga _{0.85} As	undoped	
Repeat 88 times	Substack B		
Repeat 85 times	Substack A		
	GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	
	Al _{0.55} Ga _{0.45} As	undoped	
	n+ or undoped GaAs		

Structure

Substack A: (FL172C-M12, 2.8-4.2 THz)


GaAs	undoped	95 Å (33.5 ML)
Al _{0.15} Ga _{0.85} As	undoped	17 Å (6 ML)
GaAs	undoped	78 Å (27.5 ML)
Al _{0.15} Ga _{0.85} As	undoped	37 Å (13 ML)
GaAs	$1.25 \times 10^{16} \text{ cm}^{-3}$	184 Å (65 ML)
Al _{0.15} Ga _{0.85} As	undoped	27 Å (9.5 ML)
GaAs	undoped	105 Å (37 ML)
Al _{0.15} Ga _{0.85} As	undoped	45 Å (16 ML)
Total:	$3.9 \times 10^{15} \text{ cm}^{-3}$ average	588 Å (207.5 ML)

Substack B: (FL175M-M3, 2.0-2.75 THz)

GaAs	undoped	82 Å (29 ML)
Al _{0.15} Ga _{0.85} As	undoped	31 Å (11 ML)
GaAs	undoped	68 Å (24 ML)
Al _{0.15} Ga _{0.85} As	undoped	42 Å (15 ML)
GaAs	$3.3 \times 10^{16} \text{ cm}^{-3}$	161 Å (57 ML)
Al _{0.15} Ga _{0.85} As	undoped	37 Å (13 ML)
GaAs	undoped	93 Å (33 ML)
Al _{0.15} Ga _{0.85} As	undoped	51 Å (18 ML)
Total:	$9.4 \times 10^{15} \text{ cm}^{-3}$ average	565 Å (200 ML)

Two Band THz QCL Growth Accuracy

Three Band THz QCL Growth Accuracy

250-C →	GaAs	LTG (250-C) cap layer	35 Å
	GaAs	$5 \times 10^{19} \text{ cm}^{-3}$	100 Å
	GaAs	$5 \times 10^{18} \text{ cm}^{-3}$	500 Å
	GaAs	undoped	88 Å (31 ML)
	$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48 Å (17 ML)
	GaAs	undoped	59 Å (21 ML)
	GaAs	$1.2 \times 10^{17} \text{ cm}^{-3}$ <i>2.4e17</i>	48 Å (17 ML)
	GaAs	undoped	59 Å (21 ML)
	$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	57 Å (20 ML)

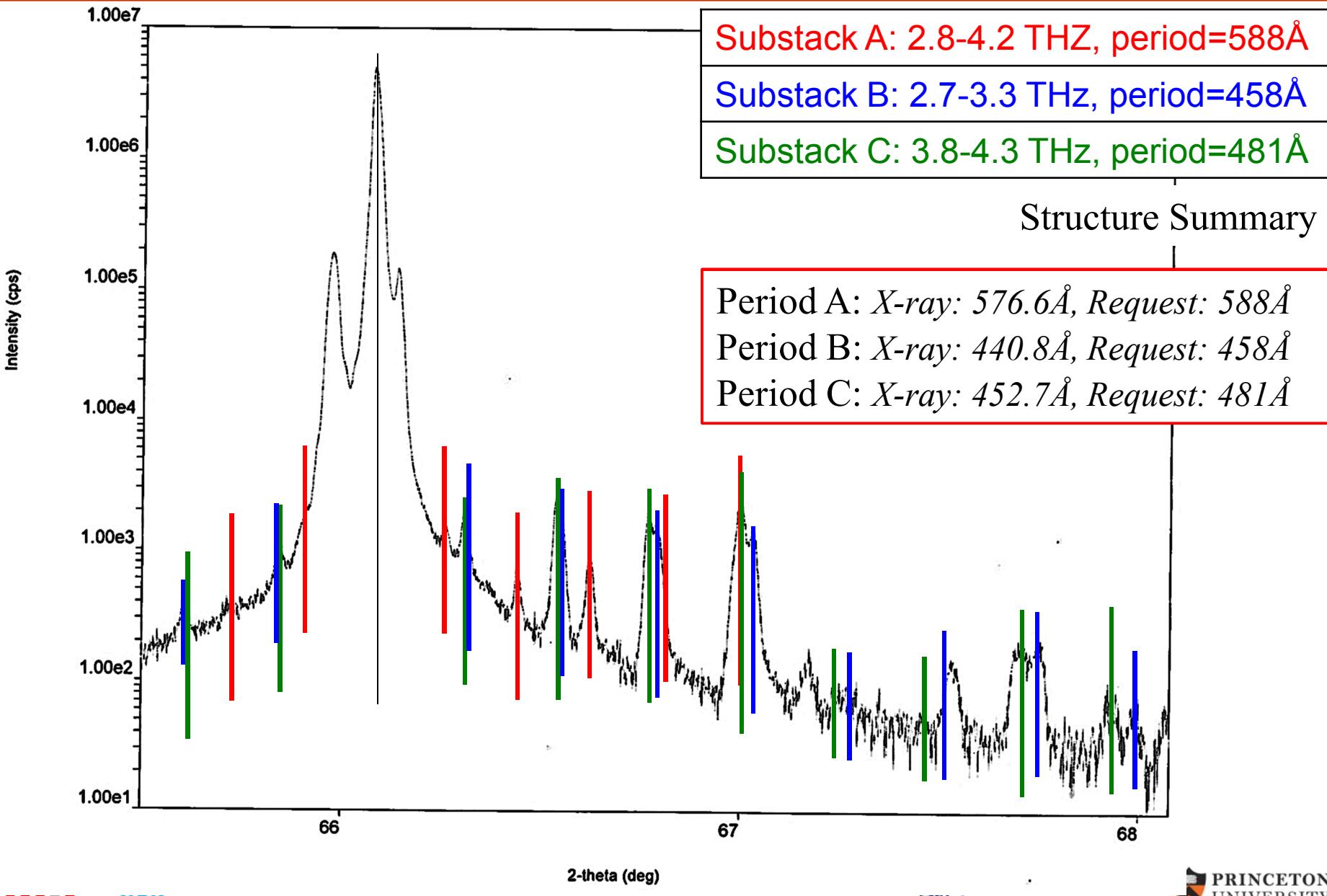
n+ or undoped GaAs substrate

Structure

Substack A: (FL172C-M12, 2.8-4.2 THz)

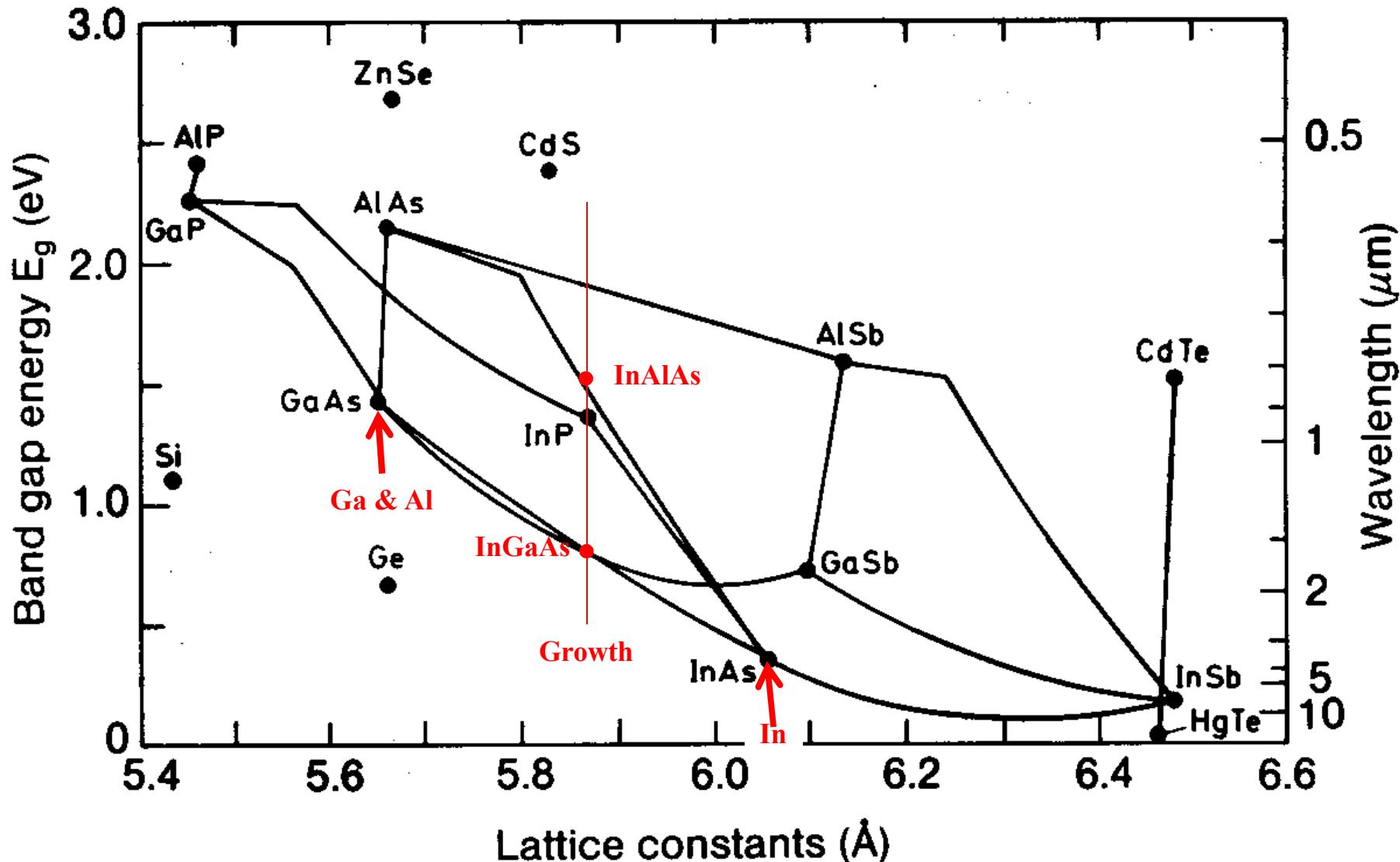
GaAs	undoped	95 Å (33.5 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	17 Å (6 ML)
GaAs	undoped	78 Å (27.5 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	37 Å (13 ML)
GaAs	$1.4 \times 10^{16} \text{ cm}^{-3}$	184 Å (65 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	27 Å (9.5 ML)
GaAs	undoped	105 Å (37 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	45 Å (16 ML)
Total:	$4.4 \times 10^{15} \text{ cm}^{-3}$ average	588 Å (207.5 ML)

Substack B: (OWI218G-M6, 2.7-3.3 THz)


GaAs	undoped	85 Å (30 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	34 Å (12 ML)
GaAs	undoped	85 Å (30 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	21 Å (7.5 ML)
delta-dope	$3 \times 10^{10} \text{ cm}^{-2}$	
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	21 Å (7.5 ML)
GaAs	undoped	164 Å (58 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48 Å (17 ML)
Total:	$6.6 \times 10^{15} \text{ cm}^{-3}$ average	458 Å (162 ML)

Substack C: (OWI210H-M4, 3.8-4.3 THz)

GaAs	undoped	85 Å (30 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	37 Å (13 ML)
GaAs	undoped	88 Å (31 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	48 Å (17 ML)
GaAs	undoped	59 Å (21 ML)
GaAs	$2.4 \times 10^{17} \text{ cm}^{-3}$	48 Å (17 ML)
GaAs	undoped	59 Å (21 ML)
$\text{Al}_{0.15}\text{Ga}_{0.85}\text{As}$	undoped	57 Å (20 ML)
Total:	$2.4 \times 10^{16} \text{ cm}^{-3}$ average	481 Å (170 ML)


Two Band THz QCL Growth Accuracy

MOCVD
Grown
Clads

LWIR Example Structure

MOCVD	InP	$7.0 \times 10^{18} \text{ cm}^{-3}$	8500 Å
	InP	$2.0 \times 10^{16} \text{ cm}^{-3}$	40000 Å
Repeat 76 times ($\lambda=9.4 \mu\text{m}$) <i>Total 33364 Å 3.34 μm</i>	In _{0.52} Al _{0.48} As	undoped	40 Å
	In _{0.53} Ga _{0.47} As	undoped	19 Å
	In _{0.52} Al _{0.48} As	undoped	8 Å
	In _{0.53} Ga _{0.47} As	undoped	56 Å
	In _{0.52} Al _{0.48} As	undoped	10 Å
	In _{0.53} Ga _{0.47} As	undoped	51 Å
	In _{0.52} Al _{0.48} As	undoped	11 Å
	In _{0.53} Ga _{0.47} As	undoped	42 Å
	In _{0.52} Al _{0.48} As	undoped	13 Å
	In _{0.53} Ga _{0.47} As	undoped	32 Å
	In _{0.52} Al _{0.48} As	undoped	15 Å
	In _{0.53} Ga _{0.47} As	undoped	32 Å
	In _{0.52} Al _{0.48} As	undoped	20 Å
	In _{0.53} Ga _{0.47} As	$2.13 \times 10^{17} \text{ cm}^{-3}$	31 Å
	In _{0.52} Al _{0.48} As	$2.13 \times 10^{17} \text{ cm}^{-3}$	29 Å
	In _{0.53} Ga _{0.47} As	undoped	30 Å
		InP	n-InP substrate, $(1-2) \times 10^{17} \text{ cm}^{-3}$

Growth Conditions/Techniques

- Issue: In Growth Rate
- Problems: RHEED Oscillations Are NOT Accurate
- Solutions:
 - Rough In RHEED Correction
 - Grow ~50% InGaAs on GaAs
 - X-ray to Determine Composition
 - Peak Broad due to Dislocation
 - Use Composition to Determine Actual In Rate
 - Determine Rough In Concentration

Growth Conditions/Techniques

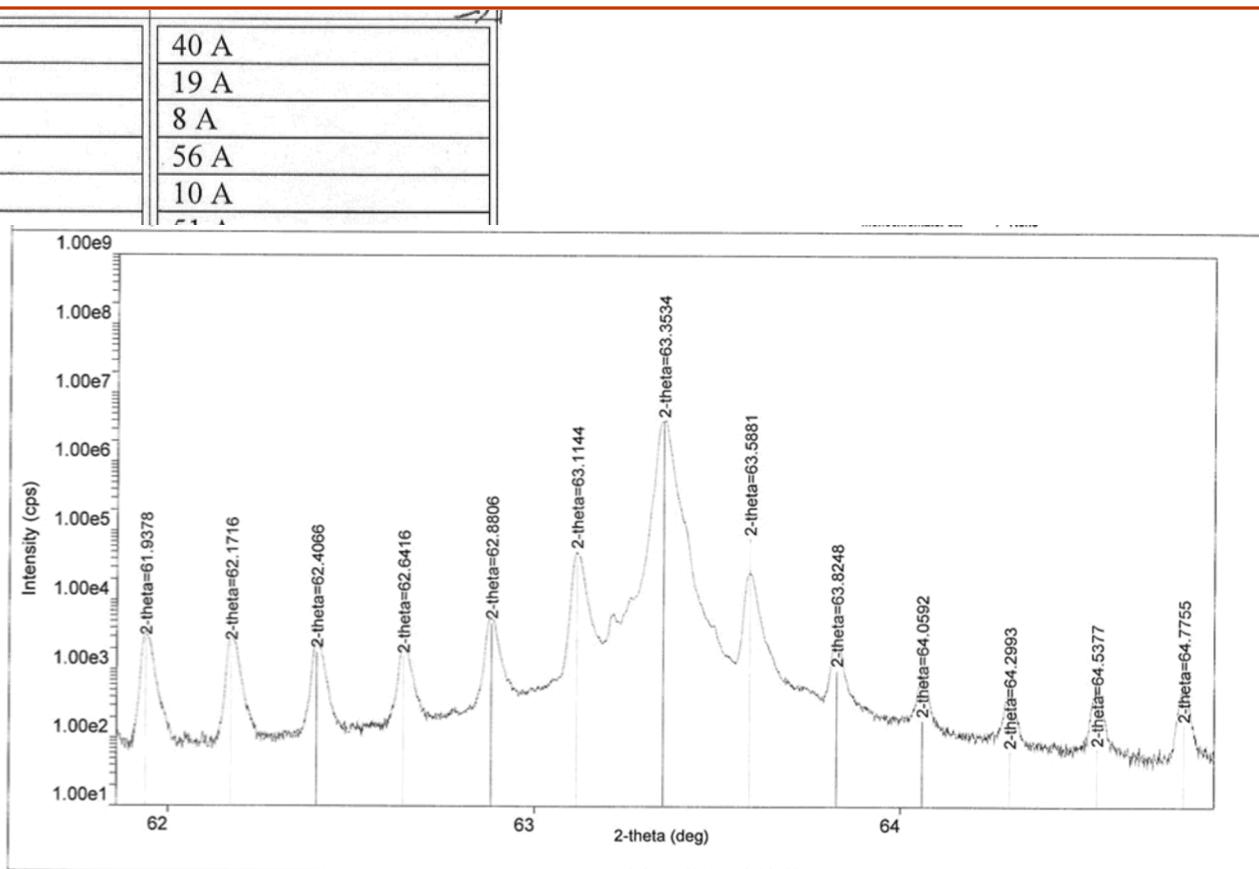
- Issue: Lattice Match
- Solutions:
 - Using Corrected Ga(Al) & In RHEED
 - Grow InGa(Al)As on InP with Best Guess Composition
 - Measure Mismatch by X-ray
 - Determine Better Composition Guess
 - Repeat

Growth Conditions/Techniques

- Issue: Layer Thickness Accuracy
- Problems: RHEED Oscillations Are NOT Accurate
- Solutions:
 - Using RHEED Correction Factor for Ga, Al, & In Cells
 - Set to Lattice Matched Compositions
 - Grow sequentially on same day TWO InGaAs/InAlAs MQWs with Different InGaAs Thicknesses
 - Measure Periods by X-ray
 - Determine Alloy Growth Rate Corrections

Single Band LWIR QCL Growth Accuracy

Repeat
76
times
($\lambda=9.4 \mu\text{m}$)


Total
33364 R
3.34 Km

n-InP substrate, (1-2)

Structure

Period

*X-ray: 438.6 Å
Request: 439 Å
=> 0.09% Low*

Note: Evenly Spaced Peaks

Five Band LWIR QCL

Substack A: ($\lambda=7.3 \mu\text{m}$)

In _{0.52} Al _{0.48} As	undoped	40 A
In _{0.53} Ga _{0.47} As	undoped	15 A
In _{0.52} Al _{0.48} As	undoped	10 A
In _{0.53} Ga _{0.47} As	undoped	48 A
In _{0.52} Al _{0.48} As	undoped	12 A
In _{0.53} Ga _{0.47} As	undoped	47 A
In _{0.52} Al _{0.48} As	undoped	13 A
In _{0.53} Ga _{0.47} As	undoped	42 A
In _{0.52} Al _{0.48} As	undoped	15 A
In _{0.53} Ga _{0.47} As	undoped	32 A
In _{0.52} Al _{0.48} As	undoped	17 A
In _{0.53} Ga _{0.47} As	undoped	30 A
In _{0.52} Al _{0.48} As	undoped	18 A
In _{0.53} Ga _{0.47} As	undoped	28 A
In _{0.52} Al _{0.48} As	undoped	23 A
In _{0.53} Ga _{0.47} As	undoped	26 A
In _{0.52} Al _{0.48} As	undoped	2.53 $\times 10^{17} \text{ cm}^{-3}$
In _{0.53} Ga _{0.47} As	undoped	34 A
In _{0.52} Al _{0.48} As	undoped	undoped
In _{0.53} Ga _{0.47} As	undoped	24 A

8500 Å
Substack B: ($\lambda=8.5 \mu\text{m}$)

In _{0.52} Al _{0.48} As	undoped	40 Å
In _{0.53} Ga _{0.47} As	undoped	18 Å
In _{0.52} Al _{0.48} As	undoped	8 Å
In _{0.53} Ga _{0.47} As	undoped	53 Å
In _{0.52} Al _{0.48} As	undoped	10 Å
In _{0.53} Ga _{0.47} As	undoped	48 Å
In _{0.52} Al _{0.48} As	undoped	11 Å
In _{0.53} Ga _{0.47} As	undoped	2.53 $\times 10^{17} \text{ cm}^{-3}$
In _{0.52} Al _{0.48} As	undoped	14 Å
In _{0.53} Ga _{0.47} As	undoped	undoped
In _{0.52} Al _{0.48} As	undoped	36 Å
In _{0.53} Ga _{0.47} As	undoped	17 Å
In _{0.52} Al _{0.48} As	undoped	33 Å
In _{0.53} Ga _{0.47} As	undoped	24 Å
In _{0.52} Al _{0.48} As	undoped	31 Å
In _{0.53} Ga _{0.47} As	undoped	34 Å
In _{0.52} Al _{0.48} As	undoped	29 Å
In _{0.53} Ga _{0.47} As	undoped	37 Å
In _{0.52} Al _{0.48} As	undoped	17 Å
In _{0.53} Ga _{0.47} As	2.21 $\times 10^{17} \text{ cm}^{-3}$	34 Å
In _{0.52} Al _{0.48} As	2.21 $\times 10^{17} \text{ cm}^{-3}$	24 Å
In _{0.53} Ga _{0.47} As	undoped	32 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	40 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	19 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	8 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	56 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	10 Å
In _{0.52} Al _{0.48} As	0.48 Ås	undoped
In _{0.53} Ga _{0.47} As	0.47 Ås	51 Å

Substack C: ($\lambda=9.4 \mu\text{m}$)

Substack E ($\lambda=11.5 \mu\text{m}$):

In _{0.52} Al _{0.48} As	undoped	38 Å	0.48 Ås	undoped	11 Å
In _{0.53} Ga _{0.47} As	undoped	21 Å	0.47 Ås	undoped	42 Å
In _{0.52} Al _{0.48} As	undoped	5 Å	0.48 Ås	undoped	13 Å
In _{0.53} Ga _{0.47} As	undoped	60 Å	0.47 Ås	undoped	32 Å
In _{0.52} Al _{0.48} As	undoped	6 Å	0.48 Ås	undoped	15 Å
In _{0.53} Ga _{0.47} As	undoped	55 Å	0.47 Ås	undoped	32 Å
In _{0.52} Al _{0.48} As	undoped	7 Å	0.48 Ås	undoped	20 Å
In _{0.53} Ga _{0.47} As	undoped	45 Å	0.47 Ås	2.13 $\times 10^{17} \text{ cm}^{-3}$	31 Å
In _{0.52} Al _{0.48} As	undoped	10 Å	0.48 Ås	2.13 $\times 10^{17} \text{ cm}^{-3}$	29 Å
In _{0.53} Ga _{0.47} As	undoped	39 Å	0.47 Ås	undoped	30 Å
In _{0.52} Al _{0.48} As	undoped	11 Å			
In _{0.53} Ga _{0.47} As	undoped	38 Å			
In _{0.52} Al _{0.48} As	undoped	17 Å			
In _{0.53} Ga _{0.47} As	2.21 $\times 10^{17} \text{ cm}^{-3}$	37 Å			
In _{0.52} Al _{0.48} As	2.21 $\times 10^{17} \text{ cm}^{-3}$	24 Å			
In _{0.53} Ga _{0.47} As	undoped	35 Å			

Should
Be
Fun!

Laboratories

QCL Growth Summary

- MBE growth conditions must be tuned for the specific device structure.
- RHEED is a reproducible technique and can be corrected to also be quite accurate.
- X-ray diffraction is a powerful technique and can be used to enable MBE growth with high precision.
- Growth and doping calibrations need to be done as close to the actual device growth conditions as possible.
- One, two, and three band THz QCLs have been grown with good match between design and X-ray.
- One band LWIR QCLs have been grown lattice-matched with good match between design and X-ray.

