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This report summarizes work over the course of a three-year project (2012-2015, with one year no-cost 
extension to 2016).  The full proposal detailed six tasks:  

Task 1: Population projection model 
Task 2: Household model 
Task 3: Spatial population model 
Task 4: Integrated model development 
Task 5: Population projections for Shared Socio-economic Pathways (SSPs) 
Task 6: Population exposure to climate extremes 

We report on all six tasks, provide details on papers that have appeared or been submitted as a result of 
this project, and list selected key presentations that have been made within the university community 
and at professional meetings. The team on this proposal includes PI Brian O’Neill as well as scientists 
Leiwen Jiang (Task 1, 2, 4 and 5) and Bryan Jones (Tasks 3, 4, 5 and 6), and graduate research assistants 
Galen Maclaurin (Task 3), Raphael Nawrotzki (Task 1), and Hamid Zoraghein (Tasks 2, and 4).  

 

Task 1: Population projection model 

The goal of this task is to develop a global model for projecting population by age, sex, and urban/rural 
status in 31 world regions.  This task has been completed, resulting in two publications on a required 
data product, with a first publication of the model (and code) currently in preparation (Jiang and 
Nawrotzki, in prep.). The model is novel relative to most existing projection models in that it explicitly 
distinguishes urban and rural populations and includes their separate age structures. Combining 
urban/rural residence and age structure can be important for both energy and land use projections as 
well as for vulnerability to climate impacts. 

To achieve these goals, key data were obtained on population, fertility, mortality, and migration 
necessary for producing the global population projection model. An important and novel component of 
the data was the construction of estimated international migration flows between our model regions, 
published in Nawrotzki and Jiang (2014, 2015). This work involved compiling the age and sex profiles of 
the number of migrants living in each region and using these data to estimate the age and sex profiles of 
migration flows between regions. These data were incorporated into the projection model, which 
allowed us to correctly account for variations in age and gender characteristics of migrants across 
different regions of the world. These variations can have significant effects on the population 
composition and growth rates in the main sending and receiving regions. 
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The model itself was coded in the R language, a freely available programming language in wide use in 
the research community, in order to facilitate use of the model by other research groups. The structure 
of the model improves on most existing population projection models not only by treating urban and 
rural populations separately, but also in two additional, significant ways: we have incorporated changes 
in the age and gender profile of both fertility and mortality as levels of these variables change over time. 
This is an important feature often left out of standard population models. Data indicate that as total 
fertility rates (TFRs) fall, the average age of childbearing first falls and then increases as TFR falls below 
about 2.0. We have included this dynamic by employing the Brass Relational Gompertz Model and the 
Zeng et al (2000) extension of the Brass Model, combined with data from the Human Fertility Database, 
to model the relationship between changes in TFR and changes in the median age and interquartile 
range of childbearing. Similarly, data also indicate that as life expectancies increase, the age profile of 
mortality changes as well. We employed the Brass Relation Model, combined with data from the Human 
Mortality Database and UN Population Division, to model the relationship between changes in life 
expectancy and changes in age specific mortality rates. These new model features significantly improve 
the projection of not only total population size, but more importantly the age composition of the 
population.  

The projection model was used to produce projections consistent with the population assumptions in 
the Shared Socioeconomic Pathways (SSPs; Jiang and Nawrotzki, in preparation). It can be run in two 
ways regarding urbanization assumptions. Either rural-urban migration rates can be supplied as 
assumptions and urbanization outcomes calculated, or the projected national percent urban can be 
supplied as a desired outcome and the model will solve for the required migration rates to produce such 
an outcome. The latter approach was taken in order to reproduce the SSP scenarios for population and 
national percent urban, for 31 regions. This projection adds a new dimension to the existing SSP 
information: the distribution of age- and gender-specific population by rural/urban residence. Figure 1 
illustrates this result, showing the urban and rural fractions of the population above age 65. Validation 
analysis against UN Population Prospects revisions and IIASA population projections indicates that the 
model performs well. Results show that there are striking differences in many regions between age 
structures of urban and rural population. For example, in the South Africa (ZAF) and Rest of Southern 
Africa (RSF) regions, around 70% or more of the rural population is above age 65 by the end of the 
century in SSP1, while the figure is about 45% in urban areas.    
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Figure 1. Projected proportion of the urban and rural populations above age 65 for 31 regions, 2100, for 
SSP1 and SSP3 (Jiang and Nawrotzki, in preparation). 

Note: AUS - Australia,  BRZ - Brazil,  CHN - China,  IND - India,  IDN - Indonesia,  JPN - Japan,  KOR - Korea,  MEX - 
Mexico,  NZL - New Zealand,  RUS - Russia,  ZAF - South Africa,  TUR - Turkey,  USA - USA,  EAF - Eastern Africa,  MAF 
- Middle Africa,  NAF - Northern Africa,  WAF - Western Africa,  CRB - Caribbean,  NEU - Northern Europe,  SEU - 
Southern Europe,  WEU - Western Europe,  RNM - Canada and Rest of N. America,  REA – Rest of Eastern Asia,  
RON - R. Oceania,  RSF - R. Southern Africa,  RCM - R. Central America,  RSE - R. South-Eastern Asia,  RSC - R. South-
Central Asia,  RWS - R. Western Asia,  REU - R. Eastern Europe,  RSM - R. South America.   

Task 2: Household model  

The goal of this task is to improve our existing extended headship rate model by obtaining and using 
additional household survey data to improve our regional coverage.  The original dataset included 
household headship rates for rural-urban areas of 30 countries, and an additional 25 countries without 
urban-rural distinction, derived from the IPUMS data. This task was completed and resulted in extending 
our coverage from 55 to 80 countries. In addition, we updated the data for 6 of the previously existing 
countries in our database. We purchased (or obtained for free) national household survey data from 22 
countries (China, Korea, Iraq, South Africa, Tanzania, Malawi, Nigeria, Ethiopia, Ghana, Kenya, Albania, 
Serbia, Tajikistan, Guatemala, Panama, Papua New Guinea, Philippines, Indonesia, Vietnam, Nepal, 
Pakistan, and Russia), and we are in the process of acquiring a dataset from Malaysia,.   

Using the obtained datasets, we derived and improved extended headship rates and applied them in the 
household model to project household changes in rural and urban areas of global regions for all five 
SSPs (see Figure 2; Jiang and Zoraghein, in preparation). As shown in the figure, there is the potential for 
wide variation in household living arrangements; for example, the number of elderly people living alone 
in urban areas (an at-risk population for climate hazards) can vary by a factor of about 3 across SSPs. -
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We also studied the relationships between changes in age- and gender-specific headship rates and 
general demographic events (total fertility rates and life expectancy at birth). These relationships could 
inform future work that would improve our static headship rate model by allowing for changes in 
headship rates over time as fertility and life expectancy change.  

 

Figure 2. Projected number of elderly population (aged 60+) living alone in the rural and urban areas of 
global regions, in 2100, under different SSPs; from Jiang and Zoraghein, in preparation. Note: LAC-Latin 
America and the Caribbean, SSA-Sub Saharan Africa, TC-Transitional Economies, ODC-other developing countries, 
OIC-other industrialized countries  

Task 3: Spatial Population Model 

The primary goal of Task 3 is to extend our existing spatial population model from a single country (the 
US) to the world, primarily by developing new historical spatial population datasets in countries beyond 
the US to allow the model to be calibrated for other world regions.  

This task was achieved through two parallel tracks (use of the model to produce new global projections, 
and publications based on them, is discussed in Task 5). First, we took a fast-track strategy in which we 
used existing global datasets that, while they cover a shorter historical period, have comprehensive 
global coverage that can support production of global projections relatively quickly. Second, we started 
a refined strategy that produced a new set of more detailed historical gridded data covering a longer 
time period (and more consistent over time) for a representative sample of countries across different 
world regions, levels of development, and socio-economic characteristics that affect patterns of spatial 
population change. This second set of data will eventually be used to improve projections based on the 
fast-track data. 

Development of the fast-track data required compiling gridded population data from existing sources 
(Gridded Population of the World (GPW) version 3) for 1990 and 2000, classifying population as urban or 
rural, and ensuring consistency with aggregate county-level urbanization data from the UN. This task 
was achieved (see description of data in Jones & O’Neill, 2016) and included overcoming a key problem 
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with available data: while population data for 1990 and 2000 are independent, the urban extent used in 
both these years is identical and based on data from 1995 (from the Global Rural Urban Mapping 
Project, GRUMP; CIESIN, 2005). Because our projection methodology uses urban extent data to 
distinguish urban and rural populations, these data produced spatial distributions of urban population 
that differed very little between 1990 and 2000. As a consequence, calibrating our model to observed 
change between 1990 and 2000 led to parameter estimates that produced very concentrated urban 
development as opposed to dispersion or sprawl.  To address this problem, we constructed a new global 
set of urban extents that correspond to 1990 and 2000 by first calculating the country-specific urban 
population density using the urban extent data for 1995, then calculating the urban extent that would 
be required in 1990 and 2000 to replicate 1995 urban population density.  The result is a country-
specific scaling factor which we use to systematically shrink (going back to 1990) and grow (out to 2000) 
the GRUMP urban extents. Use of this data to produce projections is described in Task 5. 

We also made substantial progress toward our refined strategy by developing improved sets of gridded 
population data for Brazil and India.  We have now completed gridded distributions of the 1991, 2001, 
and 2011 Brazilian population, and the 1991 and 2001 Indian population.  We also began additional 
refinements to our methodology to further improve estimates of urban extent (i.e., urban land cover), 
and work is also underway on producing historical gridded distributions for China.  

The key methodological refinements to the gridding process that we made in this project include the use 
of additional high resolution inputs (including point-based data for smaller urban and rural settlements), 
an improved methodology for constructing dynamic urban extents to aid in the classification of 
population as urban or rural, and the development of a detailed algorithm for systematically merging 
census-based urban and rural population counts with spatial data to produce high resolution gridded 
urban and rural population counts.  Figure 3 compares our new dataset for the 1991 population in the 
Sao Paulo-Curitiba region of Brazil to the data from the Gridded Population of the World (GPW), a 
widely used current data product. Note the larger number of small urban nodes and more detailed rural 
distribution in the NCAR data, a function of using improved spatial inputs (e.g., additional settlement 
points and urban extents) and aggregate urban/rural census-based population counts. These 
refinements are critical to producing plausible projections of changes in future urban and rural 
populations. 
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Figure 3.  Gridded distribution of the population in the Sao Paulo – Curitiba region of Brazil; (a) 1990 – 
GPW and (b) 1991 – NCAR. 
 

Task 4: Integrated model development 

The goal of this task is to ensure that the different components of the Community Demographic Model 
(CDM) can function as a single integrated tool written in an open source programming language. Much 
of this task was completed. All components of the model have been rewritten either in the R or Python 
languages (Jiang et al., in preparation). The multiregional population/urbanization projection model 
(Task 1), our national-level urbanization model (developed outside this project), and the household 
projection model (Task 2) have been rewritten in R, tested, and will be posted online as part of the 
publicly available CDM. For the spatial downscaling model, we have chosen to convert this model, which 
was operating largely within a GIS framework, into Python. This choice was made because Python is 
more compatible with GIS systems, which are likely to be employed by many users interested in 
obtaining and working with our spatial projections, and also because it is more convenient for 
integration with an urban land cover model we are also developing (in a separate project) in Python. 
Python, like R, is an open source language and easily integrated with R, so we can still achieve our goals 
of a unified tool for making internally consistent demographic projections, and for making code publicly 
available in a language that is freely available to all users. 

Task 5: Population projections for Shared Socio-economic Pathways (SSPs) 

The goal of Task 5 is to expand on our recently completed spatial population projections for the US to 
produce global projections.  We have completed this task by producing and publishing (Jones & O’Neill, 
2016) a new set of global spatial population scenarios consistent with the national-level population and 
urbanization projections from the newly developed Shared Socio-economic Pathways (SSPs).     

GPW 1990 NCAR 1991
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These scenarios were based on the fast-track global population data developed in Task 3. Using those 
data, we estimated urban and rural model parameters for representative countries for each world 
region, applied a geospatial mask to limit habitable land, and then used the model to produce 100-year 
scenarios for each SSP (Figure 4). SSP-based scenarios were differentiated from each other by choosing 
model parameter estimates that were representative of the spatial patterns of change implied by the 
qualitative narratives corresponding to each of the SSPs for each world region. That is, for regions in 
which a particular SSP specified sprawling development, we chose parameters estimated from countries 
and historical time periods in which such development took place. This allowed us the flexibility to 
represent different patterns of development in different scenarios but to remain grounded in historical 
experience.    

 

 

Figure 4. Global spatial population distribution for SSP1 (top) and SSP3 (bottom) from the new spatial 
model (Jones & O’Neill, 2016). 

Task 6: Population exposure to climate extremes 

The goal of this task is to apply global spatial projections/scenarios developed in Task 5 to estimate 
exposure to climate extremes. We achieved this task by first piloting the approach with a study we 
published (Jones et al., 2015) on the US, using spatial population projections for the United States (Jones 
and O’Neill, 2013) and projected heat waves from the North American Regional Climate Change 
Assessment Program (NARCCAP). Second, we have recently completed a global exposure analysis (Jones 
et al., in prepration) that combines our global spatial population projections with global projections of 
heat extremes from the CESM model. 

In the US analysis, we used eleven NARCCAP climate projections, each of which was created by a unique 
combination of a general circulation model (GCM) and regional climate model (RCM).  In this work we 
considered exposure to extreme heat, which we defined as a daily high temperature above 35°C.  We 
calculate exposure to extreme heat by multiplying the projected population in each grid cell by the 
corresponding projected annual number of days above 35°C from the NARCCAP data.  To control for 
inter-annual and decadal variability, we average climate (and population) outcomes over 30-year 
periods; to control for bias in the climate models, we bias correct all model results using a quantile 
mapping approach. We compare future outcomes for 2040-2070 to recent outcomes for 1970-2000.   
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A spatially explicit distribution of the change in exposure to extreme heat was calculated for each of the 
eleven GCM-RCM combinations, and from these results we calculated an ensemble mean.  Figure 5 
illustrates the spatial distribution of the mean change in days above 35°C, population change, and 
change in exposure.  We find from this analysis that aggregate exposure to extreme heat increases over 
this period by a factor of 4 to 6. This change in exposure varies geographically, and is driven by both 
climate change and population change. 

 

 

Figure 5. Projected change in (a) days above 35°C, (b) population, NCAR A2-Scenario, and (c) exposure. 
From Jones et al., 2015. 

 
In the global analysis, we combined our global projections for SSPs 3 and 5 with initial condition 
ensembles of CESM projections of heat waves for RCPs 8.5 and 4.5. The ensemble approach to the 
climate modeling allowed us to account for natural variability, which could make any particular year or 
decade warmer or cooler than the long-term trend. Results showed that exposure to heatwaves 
increased substantially in both RCPs (Figure 6), and that mitigation climate change to the level in the 
lower forcing RCP4.5 scenario can have substantial benefits, with a global reduction in exposure of over 
50% in RCP4.5 scenarios relative to RCP8.5, regardless of SSP. The population scenario also matters, with 
a slower population growth pathway (SSP5) leading to roughly 30% less exposure relative to SPP3 in 
both the RCP4.5 and RCP8.5 scenarios.  At the regional level results vary in terms of relative reduction in 
exposure, but in almost all cases the RCP remains more influential than the SSP.  We also find that 
uncertainty in outcomes is dominated by inter-annual variability in heat extremes (relative to variability 
across initial condition ensemble members) and that, for some regions, this variability is large enough 
that a reduction in annual exposure is not guaranteed in each individual year by following the lower 
forcing pathway.   

a. b. c.
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Figure 6. Population exposure to heat waves in billion person-days, for current conditions as well as for 
RCPs 8.5 and 4.5, assuming population follows projections in either SSP3 or SSP5. Globally aggregated 
results (left panel) and results aggregated for North America (right panel). From Jones et al., in 
preparation. 
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