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The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrody-
namic force balance in the Sun’s corona ejects a massive burst of particles and energy into the heliosphere.
Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on
a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium.
Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be
compared to solar observations and modeling. What is missing, however, is a validation that these idealized
analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In
this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on
long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of
experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the down-
ward toroidal field tension force. First, the laboratory force measurements show that, on average, the three
aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the
laboratory force measurement techniques developed here, which were recently used to identify a dynamic
toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The
verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is
negligible in these experiments. Next, the measured force terms are directly compared to their corresponding
analytical expressions. While the measured and analytical forces are found to be well correlated, the low-
aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and
increase the measured tension force with respect to analytical expectations. These two co-directed effects
combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such
considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the
solar corona.

I. INTRODUCTION

The arched, line-tied magnetic flux rope is a magne-
tohydrodynamic structure that plays a key role in so-
lar eruptive events such as solar flares and coronal mass
ejections.1,2 The prototypical flux rope is an arched tube
of helical magnetic field lines and confined plasma whose
footpoints are line-tied, or magnetically anchored, to the
solar surface.3–6 This footpoint line-tying breaks the flux
rope’s toroidal symmetry and changes both its equilib-
rium and its stability. Line-tied flux ropes are a central
component of the ‘storage-and-release’ paradigm for so-
lar eruptions. Under this paradigm, the flux rope first
stores magnetic energy in a quasi-statically evolving equi-
librium before suddenly and dynamically releasing the
stored energy during an eruption.7,8 Consequently, un-
derstanding the physics that governs both the equilib-
rium and the stability of line-tied flux ropes is a key to
predicting solar eruptions. In this paper, we introduce
a laboratory experiment that is specifically designed to
study storage-and-release phenomena in line-tied mag-
netic flux ropes.

a)Electronic mail: cmyers@pppl.gov

One physical mechanism that can trigger storage-and-
release eruptions is a loss-of-equilibrium, which occurs
when the vertical force balance of a quasi-statically evolv-
ing flux rope breaks down suddenly and irreversibly.
Originally formulated as a catastrophe mechanism,9 the
loss-of-equilibrium has more recently been studied in
the context of an ideal magnetohydrodynamic instabil-
ity called the torus instability.10–14 The basic idea is that
an upward perturbation of the flux rope will be unstable
if the downward restraining forces acting on the rope de-
cay more quickly with height than do the upward driving
forces. For the torus instability, the restraining forces are
assumed to be generated primarily by the interaction be-
tween the flux rope and an ambient ‘strapping’ magnetic
field. Thus, if this strapping field decays too quickly with
height, then its associated restoring force is too weak to
prevent the flux rope from erupting.10,15

The analytical loss-of-equilibrium criterion can be ex-
pressed concisely in terms of the vertical force per unit
length, F , acting on the apex of the arched flux rope (i.e.,
at the top of the loop):

∂F

∂z

∣∣∣∣
F=0

> 0, (1)

where z is the vertical coordinate. This condition says
that the equilibrium will be lost when the flux rope, upon
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being perturbed vertically upward from its equilibrium
(F = 0) position, feels a positive (upward) force that
reinforces the perturbation. The evaluation of the loss-
of-equilibrium condition requires knowledge of both the
equilibrium force balance and the response of the equi-
librium forces to a dynamic upward perturbation. These
two considerations can be separated as∑

i

Fi = 0 and
∑
i

∂Fi
∂z

> 0, (2)

where Fi are the individual force terms contributing to
the equilibrium. Thus, the key to understanding when a
loss-of-equilibrium will be triggered lies in understanding
the individual vertical force terms acting on the arched
magnetic flux rope.

In general, the magnetohydrodynamic forces acting on
a line-tied flux rope are comprised of both Lorentz (J×B)
and thermal pressure (∇p) contributions. Fortunately,
the conditions in the solar corona permit the elimina-
tion of the pressure gradient terms. More specifically,
the corona is inherently low-β such that the magnetic
pressure dominates the thermal pressure16 and only the
Lorentz forces need to be considered. Three key Lorentz
force terms are considered in this paper: (1) the upward
hoop force; (2) the downward strapping force; and (3)
the downward toroidal field tension force. The tradi-
tional approach to treating these forces is to derive ana-
lytical expressions that can be used to evaluate the loss-
of-equilibrium criterion in Eq. 1. The resulting stabil-
ity criterion is then compared to solar observations and
modeling in order to determine if a loss-of-equilibrium
could have caused a given solar eruptive event. What is
missing in this approach, however, is a validation of the
analytical force expressions that are used to derive the
loss-of-equilibrium criteria. Since these force expressions
require assumptions and simplifications in order to be an-
alytically tractable, there is no guarantee that they apply
to the non-ideal, line-tied, low-aspect-ratio conditions of
the solar corona. Thus, in this paper, we introduce a
new tool for validating the analytical force expressions:
the direct measurement of magnetohydrodynamic forces
in a laboratory magnetic flux rope experiment.

The laboratory experiments introduced here are line-
tied flux rope experiments wherein the arched flux
rope plasma evolves quasi-statically so that storage-and-
release phenomena can be studied in detail.17 As such,
these experiments are the first to provide comprehensive
measurements of the magnetohydrodynamic forces that
govern arched, line-tied flux ropes. This experimental
capability has already been used to identify a new flux
rope stability regime where a dynamic toroidal field ten-
sion force prevents otherwise torus-unstable flux ropes
from erupting.18 The present paper provides a full de-
scription of the experimental techniques that were devel-
oped to measure this toroidal field tension force. It also
expands the force analysis to include a broad study of
quasi-steady hoop, strapping, and tension forces across
an ensemble of line-tied flux rope equilibria. Finally, it

compares the experimentally measured forces directly to
the analytical force expressions that are used to derive
the torus instability criterion.10,13,19

The paper is organized as follows: First, Section II de-
scribes the various magnetic field, current density, and
flux rope force terms that are treated in this paper. An-
alytical force expressions are derived that include com-
pensations for the line-tied geometry of the the flux rope,
and the theoretical foundations for the torus and kink
magnetohydrodynamic instabilities are reviewed. Sec-
tion III introduces the laboratory flux rope experiments,
which are conducted in the Magnetic Reconnection Ex-
periment (MRX), and summarizes the key results that
motivate the detailed study of flux rope forces presented
here. Then, Section IV details the direct laboratory mea-
surements of the various flux rope forces. Finally, Sec-
tion V presents a comparison of experimentally measured
forces to analytical expressions. This serves to validate
some analytical force expressions and to highlight the
shortcomings of others. A summary and discussion are
presented in Section VI.

II. MAGNETIC FLUX ROPE FIELDS, FORCES, AND
INSTABILITIES

In order to study the equilibrium and stability of line-
tied magnetic flux ropes, it is necessary to identify the
key components of the magnetic field, B, and the elec-
tric current, J, that make up the flux rope configura-
tion. The various fields and currents interact to produce
Lorentz forces that contribute to the flux rope equilib-
rium and stability. In this section, we derive various an-
alytical Lorentz force expressions, some of which include
corrections for the line-tied shape of the flux rope. These
expressions are key to understanding the torus instability
as a loss-of-equilibrium mechanism. They will be directly
compared to the experimentally measured forces in Sec-
tion V. We begin by describing the specific magnetic field
and electric current decomposition used in this paper.

A. The magnetic field and electric current decomposition

As with any magnetized plasma, the magnetic fields
in a line-tied flux rope can be separated into vacuum
(external) and plasma (internal) components. The vac-
uum fields—also known as ‘potential’ fields—are those
that are generated by electric currents flowing outside of
the flux rope plasma. In the corona, the vacuum fields
are generated by external currents that flow across or
beneath the solar photosphere. In the laboratory, such
external currents instead flow in copper coils or in nearby
conducting structures. In either case, the vacuum mag-
netic fields can be divided into two key components: (1)
the guide field, Bg, which runs toroidally along the flux
rope arch; and (2) the strapping field, Bs, which runs
perpendicular to the flux rope arch (see Fig. 1). Each
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FIG. 1. Magnetic fields and currents in a line-tied magnetic
flux rope. The arched flux rope is line-tied to the dense pho-
tosphere at two footpoints separated by 2xf . Those fields
and currents associated with the poloidal magnetic field are
shown in red, while those associated with the toroidal mag-
netic field are shown in blue. The forces described in this
paper are evaluated at the flux rope apex, which is shaded in
gray. Adapted with permission from Astrophys. J. 338, 453
(1989) and J. Geophys. Res. Space 108, 1410 (2003). Copy-
right 1989 American Astronomical Society and 2003 Ameri-
can Geophysical Union.

of these vacuum field components provides a restoring
force that acts to confine the flux rope plasma in a quasi-
statically evolving equilibrium.

In contrast to the vacuum magnetic fields, the plasma-
generated fields are produced by currents flowing within
the body of the flux rope plasma. It is the energy stored
in these internal fields that drives the flux rope toward
instability. Here, we choose to decompose the internal
fields and currents into poloidal, P , and toroidal, T , com-
ponents (see Fig. 1 and Table I). First, the toroidal flux
rope current, JT , generates an internal poloidal magnetic
field, BPi. This internal poloidal field can be superposed
with the external strapping field to compute the total
poloidal field, BP = Bs + BPi. Likewise, the poloidal
flux rope current, JP , generates an internal toroidal field,
BTi, that can be superposed with Bg to compute the to-
tal toroidal field, BT = Bg +BTi. With the various flux
rope fields and currents in hand, we now derive expres-
sions for the forces that these field and currents generate.

B. Analytical expressions for the flux rope forces

The magnetic field and electric current components in-
troduced above interact to produce various J×B Lorentz
forces that act on the body of the flux rope. We are
interested, in particular, in the forces acting at the flux

Quantity Expression

Strapping field (vacuum) Bs —

Internal poloidal field (flux rope) BPi —

Guide field (vacuum) Bg —

Internal toroidal field (flux rope) BTi —

Total poloidal field BP Bs + BPi

Total toroidal field BT Bg + BTi

Toroidal current density JT ∇×BPi/µ0

Poloidal current density JP ∇×BTi/µ0

Hoop force density (upward) fh êz ·
(
JT ×BPi

)
Strapping force density (downward) fs êz ·

(
JT ×Bs

)
Tension force density (downward) ft êz ·

(
JP ×BT

)
TABLE I. Decomposition of the magnetic fields, electric cur-
rents, and Lorentz forces in a line-tied flux rope. This table
is reprinted with permission from Ref. 18.

rope apex (i.e., the top of the loop) because this is the
most likely trigger point for an eruption. Formally, the
total vertical force per unit length, Fz, acting at the flux
rope apex (z = zap) can be defined as

Fz(zap) =
1

R0 ∆T

∫ ∆T/2

−∆T/2

dT

∫ 2π

0

dθ

∫ a

0

dr
[
r hT (z) fz(r, θ)

]
,

(3)
where T is the toroidal coordinate, θ is the poloidal an-
gle, and r is the minor radial coordinate. The integration
is carried out over a wedge-shaped plasma volume with
a major radius-of-curvature of R0 and toroidal width
∆T . The poloidal boundary (i.e., the cross-section) of
the wedge is defined by the minor radius r = a(θ). The
utility of this formulation is that we can assume that
locally ∂/∂T ' 0 such that the above integral reduces to

Fz(zap) =
1

R0

∫ 2π

0

dθ

∫ a

0

dr
[
r hT (z) fz(r, θ)

]
. (4)

The quantity hT (z) in the integrand is the curvilinear
scale factor that accounts for the out-of-plane toroidal
curvature of the flux rope. In a Cartesian system, hT = 1,
and in a cylindrical system, hT = R, but in general hT
is a non-trivial function of the height along the vertical
axis.20 Finally, the quantity fz(r, θ) in the integrand is
the volumetric J×B force density. Since we are only
concerned in this paper with vertical (z-directed) forces,
it is cumbersome to retain the subscript z in the force
notation. We therefore adopt the convention that

f ≡ fz = êz · f and F ≡ Fz = êz · F, (5)

where the lowercase f represents a volumetric force den-
sity and the capital F represents a force per unit length.

The remaining task is to decompose the force density
into various physically meaningful terms. The specific
force decomposition used here considers three primary
force terms: (1) the hoop force, fh; (2) the strapping
force, fs; and (3) the toroidal field tension force, ft. In
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the coming subsections, we derive analytical expressions
for the force per unit length generated at the apex of a
line-tied flux rope by each of these Lorentz force terms.
The various flux rope magnetic field, electric current, and
Lorentz force terms are summarized in Table I.

1. The toroidally symmetric hoop force

The primary force that drives a line-tied flux rope
to expand is the hoop force. This force, which is only
present in a toroidally arched flux rope, is derived from
a curvature-induced asymmetry in the poloidal magnetic
field. In terms of J×B forces, the hoop force results
from the interaction between the toroidal flux rope cur-
rent density JT and the self-generated internal poloidal
magnetic field BPi. The asymmetry in BPi appears be-
cause the various toroidal current segments that make up
the rope produce a field that is stronger on the inboard
side of the rope than on the outboard side. Thus, be-
cause the hoop force is generated primarily by fields from
non-local sources, the geometry of the flux rope must be
accounted for in the calculation of the hoop force.

The canonical treatment of the hoop force considers a
large aspect ratio, circular current loop of major radius
R and minor radius a. In this configuration, the hoop
force is given by Shafranov 21 to be:

Fh =
µ0I

2
T

4πR

[
ln

(
8R

a

)
− 1 +

`i
2

]
, (6)

where IT is the total toroidal flux rope current and `i
is the normalized ‘internal inductance’ that character-
izes the distribution of toroidal current density within
the cross-section of the rope. This quantity is calculated
as `i ≡ 〈B2

P 〉/B2
Pa, where BPa ≡ µ0IT /2πa is the edge

poloidal field and the quantity 〈B2
P 〉 is the cross-section

average of B2
P . Typical values for the internal induc-

tance are `i = 0 for a surface current distribution and
`i = 0.5 for a uniform current distribution. Equation 6
can quickly be derived from energy considerations using
the expression for the self-inductance of a large aspect
ratio circular current loop21,22:

L ' µ0R

[
ln

(
8R

a

)
− 2 +

`i
2

]
≡ µ0R`. (7)

Here, we have defined the normalized inductance ` ≡
ln(8R/a)− 2 + `i/2. The self-inductance L is related to
the total magnetic energy of the system by Wm = 1

2LI
2
T ,

which, in turn, can be used to derive the hoop force per
unit length:

Fh =
1

2πR

∂Wm

∂R
=

I2
T

4πR

∂L
∂R

=
µ0I

2
T

4πR

(
`+ 1

)
. (8)

This axisymmetric hoop force expression has been widely
validated and implemented in the study of toroidally
symmetric plasma configurations such as tokamaks (see,

Sub-surface
current path

Flux rope
current path

x
y

z

zap

zsc
Rsc xf

φf

FIG. 2. Diagram of the magnetic axis profile for a line-tied
flux rope. The shifted-circle model4 is used for z > 0. The flux
rope current path is a partial circle with a vertical radius-of-
curvature Rsc and centroid height zsc that are set so that the
current path intersects the line-tied footpoints at x = ±xf
and reaches its apex at z = zap. In the case shown, the
shifted-circle current path is closed beneath the z = 0 plane
by a fixed semicircular current path. See the text for further
discussion of relevant sub-surface current paths.

e.g., Wesson 23 and Miyamoto 24). The line-tied flux
ropes studied here, however, are neither axisymmetric
nor large aspect ratio. We therefore now address the im-
pact of the non-axisymmetric geometry of a line-tied flux
rope on the hoop force.

2. The line-tied hoop force

When the flux rope is line-tied at two footpoints, the
toroidal symmetry assumed in the above hoop force cal-
culation is broken. This symmetry breaking has sev-
eral important consequences, which include a modified
toroidal current path, a modified toroidal curvature, and
a toroidally varying minor radius. While the toroidal cur-
vature and minor radius effects can be handled locally at
the apex of the flux rope, the modified toroidal current
path is a global effect that has profound consequences for
the hoop force.

To approximate the toroidal current path in a line-
tied flux rope, we introduce the ‘shifted-circle’ model of
Chen 4 (see Fig. 2). This model accounts for geomet-
ric features of the flux rope introduced by line-tying. In
particular, the shifted-circle model defines the x-z trajec-
tory of the flux rope magnetic axis in the region where
z > 0. It asserts that the magnetic axis is a shifted circle
that intersects the flux rope footpoints at x = ±xf and
reaches its apex at z = zap. The shifted circle’s verti-
cal radius-of-curvature, Rsc, and centroid height, zsc, are
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Circle LT/Circle

LT/Image LT/Fixed

FIG. 3. Sub-surface closures for the line-tied flux rope: (a)
axisymmetric flux rope for comparison to the various line-tied
cases; (b) shifted circle closure (as assumed by Chen 4); (c)
image current closure, which approximates the solar case; (d)
fixed current path closure, which approximates the laboratory
case. The colored arrows indicate the direction of the current
in each element of the current path.

therefore given by

Rsc =
z2
ap + x2

f

2zap
and zsc =

z2
ap − x2

f

2zap
. (9)

Note that these equations recover the circular profile of
a toroidally symmetric ring when zap = xf . For all zap,
the angle φf from the z-axis to the footpoint at xf is

φf =
π

2
+ sin−1

(
zsc
Rsc

)
, (10)

such that the flux rope length is given by Lsc = 2Rscφf .
While the shifted-circle model defines the flux rope

magnetic axis in the region where z > 0, it does not
specify the sub-surface current path in the region where
z < 0. There are several possible sub-surface current
paths, the details of which vary with the system under
consideration. Four sub-surface configurations of interest
are shown in the Fig. 3: (1) an axisymmetrically expand-
ing loop; (2) the shifted-circle closure, which is assumed
by Chen 4 and simply completes the z > 0 profile de-
scribed by Eq. 9; (3) the image current closure, which
assumes that the z = 0 plane is perfectly conducting such
that the sub-surface current path is an image loop; and
(4) the fixed current path closure, which is representative
of the MRX laboratory flux rope experiments where the
closure is completed by fixed copper cables. In the solar
corona, on the other hand, where the photosphere acts as
a highly conducting plane, the most relevant sub-surface
closure is the image current case.13,25
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FIG. 4. Line-tied corrections to the hoop force. The forces
are normalized to Fnorm ≡ µ0I

2
T /4πxf , and the color coding of

each hoop force profile is matched to the color coding in Fig.
3. Note that while the three line-tied (LT) profiles are similar
for zap/xf > 1, they differ substantially for zap/xf < 1 where
the details of the sub-surface closure become important.

With the shifted-circle model and the sub-surface con-
figurations in hand, the remaining step is to investigate
the impact of the line-tied toroidal current path on the
hoop force. This is achieved by inserting the shifted-circle
major radius R = Rsc(z) into the hoop force expression
in Eq. 6. Additional corrections are introduced by ac-
counting for the various sub-surface currents paths intro-
duced in Fig. 3. These corrections are numerically eval-
uated by computing the change in the internal poloidal
field, BPi, at the flux rope apex that results from replac-
ing the sub-surface shifted-circle current path with either
the ‘image’ current path or the ‘fixed’ current path. The
hoop force profiles that result from these various toroidal
profile corrections are shown in Fig. 4, where the hoop
force has been normalized to Fnorm ≡ µ0I

2
T /4πxf . In the

figure, we see that, in the region where zap/xf > 1, the
line-tied hoop forces (blue, green, red) behave similarly
and decay more slowly than the axisymmetric hoop force
(black). The behavior in the region where zap/xf < 1, on
the other hand, is highly dependent on the structure of
the current path that closes the loop beneath the z = 0
plane. In particular, the shifted-circle current path case
limits to zero, the image current path case to infinity,
and the fixed current path case to a finite value. As pre-
viously noted, the image profile is most applicable to the
solar corona and the fixed profile is most applicable to the
MRX experiments. The various sub-surface closures will
be compared directly to experimentally measured hoop
force data in Section V.

3. The poloidal field strapping force

The upwardly directed hoop force is opposed by the so-
called strapping force, which serves to hold down the flux
rope and prevent it from rising. In contrast to the hoop
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force, the strapping force is generated by the interaction
between the plasma current and an externally generated
poloidal magnetic field. In the solar case, this external
field is derived from the potential magnetic field arcade
within which the flux rope is embedded. In the labora-
tory case, this field is produced by purpose-built external
magnetic field coils. Many treatments of solar flux ropes
consider the strapping force to be the primary confining
force in the system.4,10,15 The volumetric strapping force
is given by fs = êz ·

(
JT ×Bs

)
. In general, this volumet-

ric strapping force density must be integrated according
to Eq. 3 to arrive at the strapping force per unit length,
Fs. In this case, however, we will approximate the flux
rope as a line current, which gives simply

Fs ' −ITBs0, (11)

where Bs0 is the strapping field evaluated at the flux rope
apex. Note that an explicit negative sign is included so
that IT and Bs0 are positive-definite. As we will see, this
simple form of the strapping force has surprising utility,
even in cases where the flux rope is not well approximated
as a thin line current.

4. The toroidal field tension force

Thus far, only forces from the poloidal magnetic field
have been considered. As we will show, however, forces
from the toroidal field are also important to the line-tied
flux rope equilibrium. The vertical force density pro-
duced by the toroidal field is, in general, given by

ft = êz · [JP ×BT ] where JP =
1

µ0
∇×BT . (12)

The magnetic field can once again be separated into ex-
ternal and internal components, which for the toroidal
field gives BT = Bg + BTi. This decomposition recasts
the above equations as

ft = −JP
(
Bg +BTi

)
. (13)

Unlike with the poloidal-field-generated force terms
where the internal and external contributions are sep-
arated into the hoop and strapping forces, we elect here
to retain a combined toroidal field tension force. Fur-
thermore, we do not separate the toroidal field pressure
and tension contributions such that the above equation
for the toroidal field tension force includes both contri-
butions. The next step is to analytically evaluate the
force per unit length acting on the flux rope due to the
toroidal field tension force in Eq. 13.

The toroidal field tension force in the large aspect ratio
limit

One of the key conclusions of this paper is that re-
straining forces from the toroidal magnetic field play a

Strong JP
Strong BT

Weak JP
Weak BT

Strong Ft

Weak Ft

FIG. 5. A helical coil demonstrates the nature of the toroidal
field tension force. The increased poloidal current density JP
on the inboard side of the coil produces a contraction force
(JP ×BT ) that is stronger than the corresponding expansion
force on the outboard side of the coil. This asymmetry results
in a net contraction force on the flux rope.

key role in the laboratory line-tied flux rope force bal-
ance. These restraining forces can be understood heuris-
tically by considering a torus-shaped coil with helical
windings (see Fig. 5). The toroidal curvature of the coil
makes the density of windings (per unit length) higher
on the inboard side of the coil than on the outboard side.
If the toroidal magnetic field is also stronger on the in-
board side than on the outboard side, which is typically
the case, then the downward force on the inboard side
(JP × BT ) will be stronger than the corresponding up-
ward force on the outboard side, thereby producing a net
downward (restraining) force.

In order to formulate this effect mathematically, we
note that the poloidal current density in the arched rope
will fall off as 1/R. Ampère’s Law indicates that the
resulting toroidal will also fall off as 1/R. Thus we can
write

JP → −
(
R0

R

)
JP (r) sin θ and BT →

R0

R
BT (r). (14)

The next step is to integrate ft = −JPBT over the apex
wedge of the flux rope according to Eq. 4:

Ft =
1

R0

∫ 2π

0

dθ

∫ a

0

dr

[
r R

(
R0

R
JP sin θ

)(
R0

R
BT

)]
.

(15)
Here we have assumed a curvilinear scale factor of hT =
R. Canceling factors and making the large aspect ratio
assumption that r � R0, the above equation reduces to

Ft =
1

R0

∫ 2π

0

dθ

∫ a

0

dr

[
r
(
R0 sin θ− r sin2 θ

)
JPBT

]
. (16)
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The integral over θ eliminates the sin θ term, leaving

Ft = − π

R0

∫ a

0

dr r2 JP (r)BT (r). (17)

From Ampére’s Law, JP = −∂BT /∂r such that

Ft = − π

R0

∫ a

0

dr

[
rB2

T −
1

2

∂

∂r

(
r2B2

T

)]
, (18)

which reduces to

Ft = −1

2

πa2

µ0R0

[
〈B2

T 〉 −B2
g0

]
, (19)

where 〈B2
T 〉 is the cross-section-averaged square of the to-

tal toroidal field, and we have assumed that the toroidal
field at the edge of the rope (r = a) is simply the external
guide field, Bg0. From this result, we see that a paramag-
netic internal toroidal field will increase 〈B2

T 〉 relative to
B2
g0 and therefore produce a downward restraining force

on the rope. Furthermore, though no assumption was
made during this derivation that Ft would be a tension
force, the final result takes exactly the form of a tension
term with Ft ∼ B2

T /R. For convenience, we can rewrite
the above equation as

Ft = −1

2

(
µ0I

2
T

4πRsc

)[ 〈B2
T 〉 −B2

g0

B2
Pa

]
, (20)

where BPa ≡ µ0IT /2πa is the edge poloidal field. What
remains to be constrained is the amplitude of the para-
magnetic toroidal field that causes 〈B2

T 〉 to exceed B2
g0

in Eq. 20 and therefore generates a downward toroidal
field tension force.

The plasma-generated paramagnetic toroidal field

The physical mechanism that lies at the heart of the
toroidal field force is the paramagnetic toroidal field, BTi,
that is generated by the plasma in the core of the line-
tied flux rope. Without this internal toroidal field and its
corresponding poloidal currents, the toroidal field forces
described in Eq. 13 would vanish. The origin of the
plasma-produced paramagnetic field can be understood
heuristically through simple minor radius force balance
arguments. The toroidal current flowing in the flux rope
generates a minor radius pinch force that must be bal-
anced by either thermal or magnetic field pressure. In
a zero-β system, the only available source for this back
pressure is the toroidal magnetic field. The presence of
a vacuum toroidal field alone is not sufficient because
the vacuum field is current-free. Instead, in the pro-
cess of relaxing to a force-free state, poloidal currents
are induced in the plasma that generate a paramagnetic
toroidal field in the core of the rope. It is these para-
magnetic toroidal fields that interact with the vacuum
toroidal field to oppose the minor radius pinch force pro-
duced by the toroidal plasma current.

In order to quantitatively analyze the paramagnetic
toroidal field, we now use a 1D linear screw pinch model
to derive an expression for BTi. This 1D flux rope model
assumes that the rope is an infinite cylinder with minor
radius a carrying a ‘toroidal’ current IT along a uniform
external guide field Bg = Bg0. The only variation in
this 1D model is along the minor radial coordinate, r.
In order for a zero-β linear screw pinch to be force-free,
the magnetic forces directed along this minor radius must
cancel:

0 = JT ×BP + JP ×BT

= −JTBP + JPBT .
(21)

Here, the first term represents the pinch effect from
the toroidal current and the second term represents the
back pressure from the plasma-generated paramagnetic
toroidal field. Ampére’s law can be used to eliminate
currents in favor of fields, giving

JTBP =
1

µ0

(
∂BP
∂r

+
BP
r

)
BP , (22)

JPBT =
1

µ0

(
− ∂BT

∂r

)
BT . (23)

Equating the two, multiplying through by 2r2, and re-
casting the derivatives gives

2rB2
T −

∂

∂r

(
r2B2

T

)
=

∂

∂r

(
r2B2

P

)
, (24)

which can be integrated over the cross-section of the flux
rope to get

〈B2
T 〉 −B2

g0 = B2
Pa. (25)

Here we have again assumed that the toroidal field at the
edge of the flux rope is the guide field, Bg0. This simple
relationship allows us to write the paramagnetic toroidal
field, BTi, in terms of the ‘known’ parameters Bg0 and
BPa. Substituting BT = Bg0 + BTi into Eq. 25 and
solving for 〈BTi〉 gives

〈BTi〉 = γ−1
(√

B2
g0 + γB2

Pa −Bg0
)
, (26)

where γ ≡ 〈B2
Ti〉/〈BTi〉2 is a parameter of order unity

that varies with the internal radial profile of BTi(r). In
Section V, Eq. 26 will be compared directly with exper-
imental measurements in order to test the assumptions
made in this derivation of BTi.

Connection to the hoop force

A final interesting result can be obtained by combining
Eqs. 20 and 25:

Ft ' −
1

2

(
µ0I

2
T

4πR0

)
. (27)



8

Force Source Term Analytical Expression

Poloidal field hoop force (upward) fh = +JTBPi Fh(z) = +
µ0I

2
T

4πRsc

[
ln

(
8Rsc

a

)
− 1 +

`i
2

]
+ corr.

Poloidal field strapping force (downward) fs = −JTBs Fs(z) = −ITBs0

Toroidal field tension force (downward) ft = −JPBT Ft(z) = −1

2

(
µ0I

2
T

4πRsc

)[
〈B2

T 〉 −B2
g0

B2
Pa

]
' −1

2

(
µ0I

2
T

4πRsc

)

TABLE II. Summary of source terms and analytical expressions for the forces acting on the flux rope apex. The hoop force
expression comes from combining Eq. 6 with the shifted-circle radius in Eq. 9. The hoop force corrections are the sub-surface
current path corrections introduced in Section II B 2. The strapping force expression comes from Eq. 11, while the two tension
force expressions come from Eqs. 20 and 27, respectively.

This expression is both independent of Bg and directly
compatible with the hoop force expression in Eq. 6.
Thus, the analytical expression for the tension force can
be thought of as an offset to the hoop force:

Fh + Ft = +
µ0I

2
T

4πR0

[
ln

(
8R

a

)
− 3

2
+
`i
2

]
, (28)

where the −1/2 from the tension force is folded into the
−3/2 in this expression. We see here that the tension
effect is minimal in the large aspect ratio limit where the
ln(8R/a) term dominates. In the low aspect ratio limit
that is applicable here, on the other hand, the −3/2 vs.
−1 term can be quite important.

Over the course of this subsection, analytical expres-
sions have been derived for the hoop, strapping, and
toroidal field forces that are expected to contribute to
the equilibrium force balance at the flux rope apex. The
results of these derivations are summarized in Table II.
This three part decomposition of apex forces is by no
means unique. We believe, however, that this particular
decomposition provides the best opportunity to under-
stand the physics that govern line-tied flux rope equilib-
ria.

C. The torus and kink instabilities

As described in the introduction, one of the primary
motivations for studying the forces acting on a line-
tied flux rope is to understand the onset criterion for
loss-of-equilibrium-driven solar eruptions. The loss-of-
equilibrium has recently been formulated in terms of an
ideal magnetohydrodynamic instability called the torus
instability.10–14,25–27 The basic idea of the torus insta-
blity is that an outward perturbation of the flux rope will
be unstable if the overlying strapping field decays suffi-
ciently quickly with height above the photosphere. The
instability occurs because the restoring forces provided
by the strapping field are too weak to prevent further
expansion.

In the standard torus instability derivation,10 which
was originally carried out for laboratory fusion devices,15

the key instability criterion is based on the vacuum field
decay index, n:

n(z) ≡ − z

|Bvac|
∂|Bvac|
∂z

>
3

2
, (29)

where Bvac is the vacuum magnetic field and z is the
height above the photosphere. This n > 3/2 instabil-
ity criterion is derived in the large aspect ratio limit by
equating the hoop and strapping force expressions from
Eqs. 6 and 11, respectively. One must also assume that
the toroidal current evolution is governed by poloidal flux
conservation.10,15,17 The n > 3/2 instability criterion is
a remarkably concise result given the complexity of the
system. That being said, the assumptions of infinite as-
pect ratio and toroidal symmetry substantially impact
the final result. Olmedo and Zhang,19 for instance, have
considered the impact of line-tying on the torus instabil-
ity, much as we have considered its impact on the hoop
force in Section II B 2. Their findings await validation.

A second magnetohydrodynamic instability to which
line-tied magnetic flux ropes are susceptible is the
current-driven external kink instability. Originally
treated by Kruskal and Schwarzschild 28 and Shafra-
nov 29 in the context of laboratory fusion devices, the
kink has long been studied as a candidate solar erup-
tion mechanism.30–37 It is a global instability that arises
when the magnetic field lines at the edge of the flux rope
are sufficiently twisted such that they resonate with he-
lical n ≥ 1 perturbations to the rope (here n is the ax-
ial/toroidal mode number). This leads to the so-called
Kruskal-Shafranov instability criterion, which is tradi-
tionally written in terms of the edge safety factor qa:

qa ≡
2π

ιa
=

2πa

L

BTa
BPa

< 1. (30)

Here, ιa is the rotational transform, which measures the
field line twist along the length of the flux rope. Specif-
ically, ιa represents the number of poloidal radians tra-
versed by a field line as it runs from one end of the flux
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rope to other.38 The other quantities in Eq. 30 are as fol-
lows: a is the flux rope minor radius, L is the flux rope
length, BTa is the edge toroidal field, and BPa ≡ IT /2πa
is the edge poloidal field. Note that increasing toroidal
field and minor radius are stabilizing, while increasing
poloidal field and length are destabilizing.

The instability criteria in Eqs. 29 and 30 indicate that
the field decay index, n, and the edge safety factor, qa,
are two key instability control parameters. As such, these
two parameters define a two-dimensional n vs. qa insta-
bility parameter space over which flux rope eruptivity
can be studied. The laboratory experiments described in
this paper were specifically designed to explore this in-
stability parameter space in detail. Thus, while the kink
instability has previously been studied in both linear39–41

and arched42 flux rope experiments, the experiments re-
ported here are the first to study the torus instability and
its relationship to the kink.

III. LABORATORY FLUX ROPE EXPERIMENTS IN
THE MAGNETIC RECONNECTION EXPERIMENT

The laboratory experiments presented in this paper
are conducted in the Magnetic Reconnection Experiment
(MRX) at Princeton Plasma Physics Laboratory.43 For
these experiments, a novel apparatus was designed and
constructed to function as an insert to the MRX vacuum
chamber. It produces both the vacuum (potential) mag-
netic field in which the flux rope is embedded and the
flux rope plasma itself. One of the most important fea-
tures of this experiment is its separation of timescales,
which emulates the conditions of the solar corona. This
separation of timescales (dynamic � driving � dissipa-
tion) is a key tenet of the storage-and-release eruption
paradigm described in Section I. In our experiments,
the dynamic timescale of the plasma (the Alfvén transit
time, τA) is τA ' 3 µs, while the driving timescale, τD,
over which the plasma current is injected is τD ' 75–
300 µs, and the dissipation timescale (the resistive decay
time, τR) is τR & 500 µs such that τA � τD � τR. As
such, the line-tied flux ropes produced in MRX persist in
a quasi-statically evolving equilibrium for many Alfvén
transit times. It should be noted that laboratory experi-
ments have been carried out in other devices to study the
dynamics of a magnetized plasma arc.44,45 These exper-
iments had only limited magnetic diagnostics, however,
and it was unclear that the arcs were long-lived compared
to the Alfvén time. A more recent experiment that uses
laser-produced plasmas at the footpoints of a stable arc to
drive an eruption46 is essentially testing a mass injection
model for eruption onset. Neither of these experimental
approaches achieves the separation of timescales required
to study the storage-and-release behavior that we seek in
the MRX flux rope experiments.

A. Experimental setup

Magnetic flux ropes are formed in MRX by generat-
ing an arc discharge along arched field lines connecting
two upward-facing electrodes (see Fig. 6a). In order
to enforce the requisite magnetic field line-tying at the
flux rope footpoints, the electrodes are constructed from
highly conducting metals such as copper that lock in the
vacuum magnetic field for the duration of the discharge.
The plasma region in these experiments (z > 0) is physi-
cally separated from the potential field coil region (z < 0)
by an insulating glass substrate. Prior to initiating the
discharge, a static vacuum (potential) magnetic field is
generated by driving current in four independently con-
trolled magnetic field coil sets (orange and blue in Fig.
6a). These coil sets are directly analogous to the sub-
surface currents that produce sunspots and their associ-
ated potential fields in the corona. By tuning the currents
in the various coils, vacuum field configurations with a
wide range of solar-relevant parameters can be produced.

Once the vacuum magnetic field has been generated, a
small amount of neutral gas (5–20 mTorr) is injected both
at the vessel wall and in the center of the cathode (i.e.,
the footpoint that is negatively biased). The gas injection
at the cathode is key for breaking down the plasma at
reasonable fill pressures. Typically, hydrogen or helium
is used due to their low mass and corresponding high de-
gree of magnetization. In order to initiate the discharge,
a capacitor bank is connected across the electrodes, and
the plasma breaks down along the magnetic field lines
that intersect the electrodes. The current in the flux rope
rises quasi-statically as the energy stored in the capaci-
tor bank is converted into magnetic energy that twists up
the flux rope. A typical flux rope discharge in MRX lasts
for approximately a millisecond. This timescale is set by
the combined inductance and capacitance of the series
capacitor bank and plasma arc circuit. The peak plasma
current ranges from 10–25 kA, depending on the voltage
applied to the driving capacitor bank. This amount of
current is sufficient to produce non-potential magnetic
fields of 300–500 G. Fields of this strength substantially
modify the applied vacuum field configuration, thereby
forming non-potential equilibria and, under certain con-
ditions, driving eruptive instabilities that are directly rel-
evant to events in the solar corona.

In order to study the torus and kink instabilities in
these experiments, it is imperative that we are able to
independently tune both the strength and the gradient
of the externally applied guide and strapping fields. The
selection of the desired vacuum field parameters (Bg, Bs,
n, etc.) is accomplished by selecting the individual cur-
rents that are driven in the four sets of vacuum magnetic
field coils shown in Fig. 6a. To demonstrate the tech-
nique that is used for tuning a given field component,
we focus in Fig. 6b/c on the strapping field coils. In
this example, the prevailing strapping field is provided
by the in-vessel strapping coils. The currents in these
two rectangular coils are configured so that the strap-
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FIG. 6. Experimental setup for studying arched, line-tied magnetic flux ropes in the Magnetic Reconnection Experiment
(MRX). (a) A plasma arc (pink) is maintained between two copper electrodes connected to a capacitor bank. The plasma arc
is formed within a vacuum (potential) magnetic field configuration that is generated by four independently controlled magnetic
field coil sets (orange and blue). Two of the coil sets produce a guide magnetic field along the flux rope arch, while the other two
produce a strapping field orthogonal to the flux rope arch. These various field contributions combine to produce an obliquely
aligned vacuum field arcade (red) in which the flux rope is embedded. Reproduced with permission from Nature 528, 526
(2015). Copyright 2015 Nature Publishing Group. (b) Demonstration of how the two strapping field coil sets are used to tune
the field decay index in the experiment. In this numerically calculated example, the in-vessel strapping coils provide +260 G
of strapping field at z ' 10 cm, while the ex-vessel coils provide a spatially uniform offset of +20, −20, or −60 G. Note that
the vessel wall is located at zw ' 68 cm. (c) The corresponding field decay index profiles for the three strapping field profiles
shown in (b). In this way, the height of the n = 3/2 point can be systematically varied.

ping field lines arch up out of one coil and back down
into the other. In order to tune the decay index of the
strapping field, a small amount of current is driven in the
large ex-vessel Helmholtz strapping coils. This produces
a spatially uniform offset to the strapping field that either
enhances or cancels a portion of the prevailing field from
the in-vessel strapping coils. In Fig. 6b, sample strapping
field profiles are shown with +260 G of forward field and
three different reverse field values (+20 G, −20 G, and
−60 G). We see that even though the reverse field values
constitute only a perturbation to the forward field, they
substantially alter the strapping field decay index profile
(Fig. 6c). This magnetic field superposition technique,
which was verified with hall probe measurements (not
shown), is used to tune both the guide and the strapping
fields in the experiment.

B. Plasma parameters

While a laboratory experiment cannot directly simu-
late the enormous scales of the solar atmosphere, we can
establish the similarity of the relative values of a number
of important parameters. The first task is to identify the
parameters achieved in the laboratory, which are sum-
marized in Table III. Here, the magnetic field strength,

B, is directly measured, the neutral density, nn, is es-
timated from the fill pressure, and the plasma density,
ne, and temperature, Te, are estimated from Langmuir
probe measurements. The Alfvén velocity, vA, follows
from the magnetic field and density values, and the var-
ious timescales have already been discussed.

For a line-tied plasma to be in the MHD regime, the
following two conditions must be met: (1) the ion gyro-
radius, ρi, must be much smaller than the flux rope
cross-sectional radius, a; and (2) the electron-ion mean
free path, λei, must be much shorter than the plasma
length, L. As is well known, both of these conditions
are met for a typical solar flux rope. In Table IV, we
show that these conditions are also satisfied for our lab-
oratory flux ropes. Additionally, the Lundquist number,
S ≡ µ0LvA/η, where L is the characteristic system size
and η is the electrical resistivity of the plasma, should
be much larger than unity. In the experiment, S ∼ 100–
500, indicating that the magnetic field is largely frozen
in to the plasma. This parameter is important for sim-
ulating solar flux ropes, where S ranges from 104 in the
chromosphere to 1012 in the corona.

An additional experimental consideration is the effect
of neutral particles that are not ionized during the dis-
charge. Given the fill pressures used and the approxi-
mate plasma densities achieved, the electron-ion mean
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Laboratory Parameter Symbol Value Units

Magnetic field strength B 300–500 G

Neutral density (approx.) nn ∼ 5×1014 cm−3

Electron density (approx.) ne 0.5–1×1014 cm−3

Electron temperature (approx.) Te 3–5 eV

Flux rope scale length L 0.5 m

Alfvén velocity vA 65–150 km/s

Alfvén transit time τA 3–8 µs

Footpoint driving time τD ∼ 150 µs

Resistive diffusion time (Spitzer) τR 0.8–2 ms

TABLE III. Plasma parameters in the MRX flux rope ex-
periments. This table is reprinted with permission from Ref.
18.

Dimensionless Parameter Symbol Solar Laboratory

Driving / Alfvén time τD/τA 100–104 20–50

Driving / resistive time τD/τR 10−7 ∼ 0.1

Ion gyroradius / minor radius ρi/a 10−6 0.05

MFP / plasma length λei/L 10−2 10−3–10−2

Lundquist number S 104–1012 100–500

Ionization fraction ne/nn 50–100% 10–20%

Plasma beta β ∼ 1% 2–20%

TABLE IV. Dimensionless parameter comparison between the
MRX flux rope experiments and the solar corona. Here, MFP
is the electron mean free path, λei. This table is reprinted
with permission from Ref. 18.

free path, λei . 1 cm, is at least an order of magni-
tude shorter than the electron-neutral mean free path,
λen & 10 cm. This means that, despite the presence of
background neutrals, the ionized plasma dominates the
experimental dynamics. Furthermore, the role of neu-
trals can be tested experimentally by increasing the fill
pressure and quantifying how the observed phenomena
are affected. Minimal changes were observed over more
than an order of magnitude in fill pressure.

C. Diagnostics

The MRX flux rope plasmas are primarily diagnosed
with two key systems: (1) fast visible light cameras that
image the plasma from multiple angles; and (2) an in situ
magnetic probe array that measures the internal mag-
netic structure of the plasma. Images from the fast cam-
eras, which are used to qualitatively assess the plasma
performance, can be seen in Refs. 17 and 18. The re-
sults presented in this paper are derived instead from
the high-coverage magnetic probe array. Such magnetic
probe arrays are routinely deployed in MRX to acquire
magnetic field data over a two-dimensional cross-section
of the plasma. The probes are constructed from minia-
ture (∼ 2 mm) magnetic pickup coils with ∼ 100 turns
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FIG. 7. The in situ magnetic probe array used to diagnose
the internal magnetic structure of the plasma. (a) Schematic
and representative data acquired with the probe array aligned
in the toroidal (x-z) cross-section of the flux rope. In this
case, the vectors represent the in-plane toroidal magnetic
field produced by the plasma, BTi ≈ Bxiêx + Bziêz, while
the color represents the total out-of-plane poloidal magnetic
field, BP = êy · B. This out-of-plane field reverses sign at
the magnetic axis of the flux rope. (b) Schematic and repre-
sentative data acquired with the probe array aligned in the
poloidal (y-z) cross-section of the flux rope. In this case, the
vectors represent the in-plane total poloidal field, BP , while
the color presents the out-of-plane toroidal field produced by
the plasma, BTi = êx ·Bi. BTi is always paramagnetic with
respect to the background guide field, Bg. Reproduced with
permission from Nature 528, 526 (2015). Copyright 2015 Na-
ture Publishing Group.

each. The pickup coils are mounted in orthogonal triplets
to measure all three components of the vector magnetic
field at each location. These triplets are distributed at
4 cm intervals inside long, thin glass tubes (7 mm OD)

that serve as the plasma-facing components. The raw Ḃ
signals are processed through custom integrator circuits
before being sent to 2.5 MHz high-speed digitizers.

For the flux rope experiments presented here, a new
two-dimensional magnetic probe array was constructed
to have unprecedented areal coverage (24 cm × 64 cm)
and a fine spatial resolution of 4 cm (see Fig. 7). As
such, more than 300 pickup coils provide in situ vector
magnetic field data at more than 100 locations within the
plasma. A key feature is that the probe array can be ro-



12

tated arbitrarily about the z-axis between discharges (see
Fig. 7). This means that the cross-section of the probe
array can be aligned at any orientation with respect to
the flux rope. The two orientations featured here are the
toroidal and poloidal cross-sections of the flux rope (see
Figs. 7a and 7b, respectively).

The vector/color plots on the right hand side of Fig.
7 show a single-time snapshot of the magnetic field
within the flux rope. In each case, the vectors represent
the in-plane field, while the colors represent the out-of-
plane field. For the poloidal field components, the total
poloidal field, BP = Bs + BPi, is displayed. For the
toroidal field components, on the other hand, the vac-
uum fields are omitted in order to emphasize the struc-
ture of the plasma-generated toroidal fields, BTi. One
key measurement that can be extracted from these mag-
netic field data is the vertical position of the flux rope
magnetic axis. This position is defined as the location
where the poloidal magnetic field reverses sign. For the
examples in Fig. 7, the measured magnetic axis position
is shown as a solid black line in Fig. 7a and a black dot
in Fig. 7b. This capability will be used in the next sec-
tion to analyze the flux rope height under a variety of
experimental conditions.

A second key feature of the magnetic field data is the
direct measurement of the internal toroidal field, BTi.
The magnetic field data show that BTi has the follow-
ing properties: (1) BTi is bundled in the core of the flux
rope; and (2) BTi is paramagnetic, or co-directed, with
respect to the vacuum toroidal guide field, Bg. These
properties are demonstrated most clearly in Fig. 8, which
shows magnetic measurements of BTi from two sample
flux rope discharges. In each case, the guide field, which
is not shown, arches from right to left. Correspondingly,
the measured BTi vectors also arch from right to left,
confirming that the plasma-produced BTi is paramag-
netic. Furthermore, the color, which shows BTi ≡ |BTi|
demonstrates that the BTi is bunched in the core of the
flux rope. Note that the BTi in one sample discharge is
substantially more intense than in the other. The dif-
ference is that the strength of Bg is different in the two
cases, with the strong Bg case corresponding to weak BTi
and vice-versa. This inverse relationship between Bg and
BTi at fixed BPa is consistent with Eq. 26.

D. Key results on the torus and kink instabilities

The final step is to summarize the key results on flux
rope eruptivity that provide the motivation to study the
flux rope forces in detail. These results were originally
reported in Ref. 18, where the torus versus kink (n vs.
qa) instability parameter space was explored using the
MRX flux rope experiments. Four different instability
regimes are identified, with one of them—the so-called
failed torus regime—constituting a new discovery. The
conclusion, as summarized below, is that a previously un-
known dynamic enhancement of the toroidal field tension
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FIG. 8. Two sample magnetic measurements of the plasma-
produced internal toroidal field, BTi (vectors and color). In
each case, the BTi vectors arch from right to left, which makes
them paramagnetic, or co-directed, with the applied vacuum
guide field, Bg (not shown). Additionally, the magnitude of
BTi (color), is largest near the magnetic axis (the black line).
The magnitude of BTi is weaker in the case on the left than
in the case on the right. The difference between the two is
the strength of the applied guide field, which is strong in the
left hand case and weak in the right hand case.

force can prevent torus-unstable flux ropes from erupt-
ing. This measured dynamic enhancement of the tension
force is attributed to non-ideal magnetic self-organization
events in the flux rope plasma.18

Flux rope eruptivity is best quantified by studying the
height-time evolution of the flux rope’s magnetic axis.
Fortunately, as described in the previous subsection, the
magnetic measurements from the probe array can be used
to track the apex height of the flux rope, zap(t), as a func-
tion of time. Four sample height-time traces are shown
in Fig. 9. In particular, each subpanel in Fig. 9b shows
zap(t) as a black line, as well as with the poloidal mag-
netic field measured along the central probe in the mag-
netic probe array, By(t, z), which is shown in color. In
each plot, the magnetic axis position is the location where
the poloidal field reverses sign.

The four sample discharges shown in Fig. 9b are chosen
because they represent the four stability regimes identi-
fied in the MRX flux rope experiments.18 These stabil-
ity regimes, which are labeled as stable, eruptive, failed
kink, and failed torus, are delineated by different values
of the torus and kink instability control parameters, n
and qa (see Section II C). These two control parameters
are scanned independently by modifying the strength and
and spatial variation of the applied vacuum field configu-
ration as described in Section III A. We note here that it
would also be possible to control qa by varying the plasma
current, but in practice the plasma current is held fixed
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FIG. 9. Temporal evolution of the flux rope apex height,
zap(t), in four different stability regimes. (a) Mean plasma
current waveform (green) and its standard deviation (the
lighter green band). Each discharge has the same nominal
plasma current. (b) Flux rope apex height waveforms (black
lines) along with the poloidal field measurements, By(t, z),
from which the apex height is measured. (c) Table of key
parameter values for these four discharges. Reproduced with
permission from Nature 528, 526 (2015). Copyright 2015 Na-
ture Publishing Group.

(see Fig. 9a) due to experimental considerations. For the
four sample discharges in Fig. 9, the achieved values of
the instability control parameters n and qa are listed in
the table in Fig. 9c. These scalar values are determined
by evaluating Eqs. 29 and 30 for the flux rope parame-
ters achieved in a given discharge. In particular, n and
qa are evaluated at the maximum of the temporally fil-
tered apex height, 〈zap(t)〉, which is shown in red in each
subpanel of Fig. 9b. Additional details of the evaluation
of n and qa can be found in Ref. 18.

The four different sample discharges in Fig. 9b be-
have qualitatively different from each other. The mag-
netic axis in the stable discharge remains steady through-
out the lifetime of the plasma, while the eruptive dis-
charge rapidly and repeatedly erupts toward the wall of
the chamber, which is located at the top of each plot
(at z/xf ' 3.8). The two ‘failed’ regimes, which will
be discussed shortly, show intermediate behavior with
small-scale spatial oscillations but no catastrophic erup-
tions. In order to quantify these disparate behaviors, we
introduce a metric called the normalized instability am-
plitude, 〈δz〉/xf . Here, the instability amplitude, 〈δz〉, is
defined as the maximum of the envelope of the dynamic
spatial oscillations about the equilibrium position of the
flux rope, 〈zap(t)〉. The quantity 〈δz〉 is then normalized
to half of the footpoint separation distance, 2xf , such
that a flux rope with 〈δz〉/xf ∼ 1 oscillates vertically on
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Copyright 2015 Nature Publishing Group.

the scale of the footpoint major radius. Values less than
0.5 are clearly stable, while values above unity are clearly
eruptive. Later in this paper, 〈δz〉/xf = 0.8 is used to
delineate non-erupting flux ropes from those that erupt.
The specific values of 〈δz〉/xf for the four cases in Fig.
9b are listed in Fig. 9c, showing that the normalized in-
stability amplitude provides a quantitative assessment of
the qualitatively disparate behaviors in Fig. 9b.

The remaining task is to examine how the instability
amplitude varies over the broader n vs. qa instability pa-
rameter space. In Fig. 10, the results of more than 800
flux rope discharges are combined into a single scatter-
plot of flux rope eruptivity. Each data point is the mean
of 2–5 plasma discharges taken under identical experi-
mental conditions. The four stability regimes identified
in Fig. 9 are observed across the instability parameter
space in Fig. 10. As expected, the stable regime in the
bottom right is stable to both the kink and the torus
instabilities, while the eruptive regime in the top left is
unstable to both. The failed kink regime in the bottom
left is kink unstable but torus stable, and it does not
produce eruptions. This result, which is consistent with
numerical simulations of line-tied flux ropes,36 confirms
that the onset of the kink instability does not necessarily
lead to an eruption.

The failed torus regime in the top right of Fig. 10,
on the other hand, constitutes an entirely new discovery.
Here, torus unstable flux ropes fail to erupt. Detailed
measurements of the flux rope forces presented in Ref.
18 show that the toroidal field tension force is dynam-
ically enhanced in this regime, thereby preventing flux
rope eruptions. One of the purposes of this paper is to
fully develop and validate the force measurement tech-
niques that are used to identify the dynamically enhanced
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toroidal field tension force in Ref. 18. Additional analysis
of the evolution of the poloidal and toroidal fluxes shows
that the dynamically enhanced tension force is a result of
magnetic self-organization events that conserve magnetic
helicity within the flux rope.18

We note that observed torus and kink instability
thresholds of n ∼ 0.8 and qa ∼ 0.8 (shown in gray in
Fig. 10) differ from the theoretically predicted values
of n = 3/2 and qa = 1. The reduced kink threshold
is consistent with numerical simulations of line-tied flux
ropes.31–37 The reduced torus threshold is perhaps more
interesting. It calls into question whether the analyti-
cal force models that are used to derive the n = 3/2
torus threshold are representative of the flux rope forces
in the line-tied, low-aspect-ratio conditions of the lab-
oratory and coronal flux ropes. This interesting result
motivates the detailed study of flux rope forces that fol-
lows. Unlike in Ref. 18, the focus here is on the measure-
ment of quasi-steady (equilibrium) forces that feed into
loss-of-equilibrium calculations of flux rope stability.

IV. LABORATORY MEASUREMENTS OF
MAGNETOHYDRODYNAMIC FORCES

In this section, we use the internal magnetic field data
acquired from the MRX line-tied flux rope experiments to
directly measure the J×B force terms acting on the flux
rope plasma. These measurements provide the necessary
information to both evaluate the flux rope equilibrium
force balance and validate (or invalidate) the analytical
force expressions derived in Section II. We begin by de-
scribing in detail the laboratory force measurement pro-
cedure that has been developed for the MRX flux rope
experiments. The goal of the flux rope force analysis,
which is carried out on data acquired with the probe ar-
ray aligned in the poloidal (y-z) plane of the flux rope
(see Fig. 7), is to measure the integrated force per unit
length, F (zap), acting on the flux rope apex (see Fig.
1). The formal expression for the integration of F (zap)
is given in Eq. 4. In order to use this formulation to di-
rectly measure the flux rope forces from the experiment,
we must determine several key quantities including the
toroidal scale factor, hT (z), and the in-plane boundary
of the flux rope, r = a(θ).

Identifying the toroidal scale factor, hT (z), is an in-
volved process wherein magnetic field data from various
configurations are used to measure the toroidal curva-
ture of the flux rope. The details of this procedure are
described in Appendix A. In short, an ensemble of flux
rope discharges is used to determine an average toroidal
scale factor that can be applied to many flux rope dis-
charges with similar experimental conditions (e.g., they
have the same footpoint separation distance, 2xf ). In
cases where a directly measured toroidal curvature is not
available, the line-tied curvature from the shifted-circle
model (Eq. 9) is used instead.

With the toroidal scale factor in hand, the next task
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FIG. 11. Magnetic field and current density profiles from a
sample non-erupting discharge. On the left is the in-plane
poloidal field BP and the out-of-plane toroidal current JT .
On the right is the in-plane poloidal current JP and the out-
of-plane internal toroidal BTi. The blue contours on the left
are contours of the flux function ψ(y, z). The red contour
encloses 90% of the toroidal current flowing in the rope and
therefore defines the flux rope boundary.

is to gather all components of the magnetic field, B, and
the current density, J, that are needed to compute the
various force density terms, fi. All three components of
the magnetic field are directly measured by the magnetic
field probe array. From these magnetic field measure-
ments, the various components of the current density can
be computed as

JP =
1

µ0

[
1

hT

∂ (hTBTi)

∂z

]
êy −

1

µ0

[
∂BTi
∂y

]
êz,

JT =
1

µ0

[
∂Bzi
∂y
− ∂Byi

∂z

]
.

(31)

These current densities, along with their corresponding
magnetic fields, are plotted for a sample time slice in Fig.
11. The sample discharge from which this time slice is
drawn is non-erupting with 〈δz〉/xf < 0.8 (see Fig. 10)
such that the flux rope plasma persists in a quasi-static
equilibrium throughout its evolution. In the left panel
of Fig. 11, the poloidal magnetic field, BP , is plotted
in vectors with the toroidal current, JT , in color. In the
right panel, the poloidal current density, JP , is plotted
in vectors with the plasma toroidal field, BTi, in color.
At this juncture, we now possess all of the raw quantities
that are required to compute the magnetic force density,
f(y, z) = êz · (J × B). The remaining task is to define
the minor radius, a(θ), that sets the in-plane limits on
the volumetric integration of the force densities.

In order to define the in-plane boundary of the flux
rope, we define a local poloidal flux function, ψ(y, z),
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that is directly related to the toroidal vector potential
AT via ψ(y, z) = hT (z)AT (y, z). It can be computed by
integrating along any integration path C = Cy + Cz as

ψ(y, z) = −
∫
Cy

dy hTBz +

∫
Cz

dz hTBy. (32)

In practice the integration path is chosen to run vertically
along the center probe of the array and then left and right
at each z value. This ensures that residual integration er-
rors are minimized. The flux function determined from
Eq. 32 is only unique if the in-plane poloidal magnetic
field measured by the probes is divergence free. Unfor-
tunately, small measurement errors can introduce a non-
zero divergence into the measured fields. As such, the
in-plane fields are processed using a ‘divergence cleaning’
technique that removes any magnetic field divergence in-
troduced by measurement errors. The procedure for the
diverge cleaning technique is described in detail in Ap-
pendix B. Sample contours of the integrated flux function
as determined from divergence-cleaned fields are shown
in blue in the left panel of Fig. 11.

What remains is to use ψ(y, z) to formally define the
boundary of the flux rope (i.e., its minor radius). Defin-
ing the boundary of the flux rope in the y-z plane is an
important task for two reasons: (1) this boundary sets
the limits of integration in the force per unit length cal-
culations; and (2) several of the analytical models devel-
oped in Section II B rely on the apex minor radius, aap,
as an input. In this paper, we define the boundary of
the flux rope as the poloidal flux contour that encloses
90% of the measured toroidal current. The value of the
flux function at this boundary location is ψ = ψedge. In
practice, the exact percentage of enclosed current does
not substantially modify the force measurement results.
The contour that encloses 90% of the toroidal current for
the flux rope measurements in Fig. 11 is shown in red.

One important issue that becomes clear from Fig. 11
is that the probe array does not capture the entire cross-
section of the flux rope. While there are several op-
tions for addressing this shortcoming, we choose here
to take the simplest approach of scaling all of the in-
tegrated quantities by the ratio of the total current pass-
ing through the electrodes to the total current measured
within the cross-section of the probe array. This mea-
sured current scaling gives a reasonable estimate of how
much of the current and other integrated quantities (such
as forces) are acting outside of the probe array. For the
discharge under consideration, this scale factor does not
exceed ∼ 1.3 during the main phase of the discharge.

Before presenting the force balance results, it is in-
structive to examine how the key parameters at the edge
of the flux rope evolve as a function of time. In Fig. 12a,
the apex height evolution of the same discharge from Fig.
11 is shown for reference. In Fig. 12b, measurements of
the minor radius show that, once the equilibrium sets up
at its peak height, the apex minor radius, aap, is much
larger than the footpoint radius. This footpoint-to-apex
expansion is a key feature of the low-aspect-ratio, line-
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FIG. 12. Time-resolved quantities evaluated at ψ = ψedge

at each time point during the discharge. (a) Apex height
evolution, zap(t). (b) Expansion of the apex minor radius,
aap, during the main phase of the discharge. Note that the
aspect ratio is less than 1.5. (c) Measured normalized internal
inductance, `i. Values above 0.5 indicate a somewhat peaked
current profile. (d) Calculated (via Eq. 26) and measured
average paramagnetic toroidal field in the rope cross-section.
Parameters such as zap, aap, and `i are key for evaluating the
analytical expressions derived in Section II B.

tied flux rope. Figure 12c shows the measured values
of the normalized internal inductance, `i ≡ 〈B2

P 〉/B2
Pa,

which hovers just below unity for most of the discharge.
Finally, in Fig. 12d, we see that the measured 〈BTi〉
matches well with the analytical expression from Eq. 26
throughout the discharge. This is a strong indication
of the effectiveness of the 1D force-free model for the
paramagnetic toroidal field that was developed in Sec-
tion II B 4. The validity of this analytical expression is
examined in more detail in Section V. Most importantly,
Fig. 12 demonstrates that the methods developed in this
section permit the direct measurement of key parameters
such as zap, aap, and `i that are required to evaluate the
analytical expressions developed in Section II B.

The above analysis techniques provide all of the nec-
essary information to use Eq. 4 to measure the various
forces per unit length acting on the flux rope apex. In
particular, we can now directly integrate each J×B term
in Table II to examine the various contributions to the
force-free equilibrium. The results of these laboratory
force measurements for two sample discharges are shown
in Fig. 13. Here, the experimental measurements are
plotted as solid patches of color, while the corresponding
analytical models are plotted as solid lines of the same
color. The positive and negative forces are added one on
top of the other, and the net force, which is the sum of all
of the measured force terms, is shown in black. All of the
forces are normalized to Fnorm ≡ µ0I

2
T /4πxf . The small

value of the net force when compared to the individual
force terms indicates that a quasi-force-free equilibrium
is, in fact, achieved in these experiments. This is one
of the key conclusions of this paper: that a force-free
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FIG. 13. Two examples of experimentally measured forces at
the flux rope apex. The measured forces are represented by
the solid colored patches, while their corresponding analytical
predictions are represented by the same-colored lines. The net
force measured in the experiment is shown in black, indicating
that quasi-force-free equilibrium is achieved.

equilibrium is measured by considering only the hoop,
strapping, and tension Lorentz force terms. This con-
clusion, which validates the low-β assumption in these
experiments, will be substantiated with a database-wide
comparison of measured forces in Section V.

Upon examining the various force terms shown in Fig.
13, we see that, as expected, the hoop force pushes up-
ward while the strapping and toroidal tension forces pull
downward. When comparing to the analytical expecta-
tions, the strapping force is very well predicted in both
cases. The hoop force, on the other hand, is weaker in
both cases than is predicted analytically. Finally, the
toroidal field tension force matches well in one case, but
is stronger than predicted in the other. As we show in
the Section V, these trends continue across a database of
several hundred shots: the strapping force is accurately
predicted, while the tension and hoop forces are more
susceptible to variations in the experimental parameters.

V. DATABASE-WIDE COMPARISON OF
LABORATORY AND ANALYTICAL FORCES

In this section, we apply the force measurement tech-
niques developed in Section IV to a database of flux rope
plasmas that spans a wide range of experimental condi-
tions. The central goal is to validate the various ana-
lytical force models developed in Section II B. The flux
rope database considered here is a subset of the∼ 800 dis-
charge database that is used to analyze the torus vs. kink
instability parameter space in Fig. 10. Since the present
objective is to quantify the quasi-steady forces acting on
each flux rope plasma, only non-erupting discharges with
〈δz〉/xf < 0.8 are considered. This condition reduces
the database by half. The further requirement that the
magnetic probe array be aligned in the y-z plane in or-
der to measure the flux rope forces leaves the final force
database with ∼ 200 viable discharges. The non-erupting
flux rope plasmas in the force database span three of the
four quadrants of the torus vs. kink instability parameter
space in Fig. 10 and therefore provide a broad sampling
of flux rope parameters.

To analyze the measured and predicted forces across
the force database, the various time-resolved force wave-
forms in Fig. 13 must be reduced to a single value per
force term per discharge. This is accomplished here by
averaging over the peak 5% of the discharge as defined by
the toroidal current injected at the electrodes (see Fig.
9). For the two sample discharges in Fig. 13, this consti-
tutes an average over ∼ 20 µs in the vicinity of t = 275
µs. Note that each force waveform is filtered prior to av-
eraging to eliminate transient deviations from the mean.

Figure 14 summarizes the database-wide force analysis.
Here, the measured values for each force term are plot-
ted against their corresponding analytical predictions,
which are summarized in Table II. The goodness-of-fit
between the measured forces and the analytical predic-
tions is quantified here in terms of a residual of the form

Res. ≡

√√√√ 1

N

N∑
j

(
Fmeas,j − Fcalc,j

Fnorm

)2

, (33)

where the sum is over all values of a given force term
and the forces are normalized to Fnorm ≡ µ0I

2
T /4πxf .

The residuals for the hoop, strapping, and tension force
terms are listed in the figure legend.

It is clear that the preliminary trends from the time-
resolved force analysis in Fig. 13 continue across the
broader force analysis database. First, while the mea-
sured hoop force correlates positively with the analytical
model, it consistently underperforms its prediction. Sec-
ond, the strapping force is very well predicted by its an-
alytical model. In some sense this is not surprising given
that, unlike the hoop and tension forces, the strapping
force does not depend on the arched geometry of the flux
rope. Finally, the toroidal field tension force also posi-
tively correlates with its analytical model, though it of-
ten exceeds the analytical prediction in magnitude. The
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FIG. 14. Measured versus predicted forces across the equilib-
rium parameter space. The forces are normalized to Fnorm ≡
µ0I

2
T /4πxf . The strapping force is well-predicted, while the

hoop force is consistently weaker than predicted and the ten-
sion force is often stronger than predicted. The measured net
force is nearly zero, indicating that a force-free equilibrium is
measured across the database.

non-ideal trends in the hoop and tension forces will be
examined more thoroughly later in this section.

Possibly the most important conclusion from Fig. 14
is that, when all three force terms are summed and aver-
aged over the database, the net force is very nearly zero.
To demonstrate this, the mean net force is plotted with
error bars as the single black dot in Fig. 14. The fact
that the measured net force is zero indicates that a force-
free equilibrium is achieved among the hoop, strapping,
and tension Lorentz force terms. This validates both
the force measurement techniques developed here and the
low-β assumption that is applied to these experiments.18

While the measured net force is zero, the predicted net
force is substantially positive, indicating that the analyt-
ical force models expect the equilibrium to be a higher
altitude than is realized in the experiment. This mis-
match between the measured and predicted equilibrium
heights is expected to have implications for the loss-of-
equilibrium/torus instability criterion that are calculated
based on these analytical models. Given the length of this
manuscript, we defer such analysis to future work.

The database-wide underperformance of the hoop force
in Fig. 14 warrants further investigation. In particular,
it is instructive to assess the impact of the various line-
tying considerations that were introduced in Section II B.
As such, Fig. 15 shows the measured hoop forces versus
the analytical predictions derived from the four different
hoop force models in Fig. 3. In the circular and line-tied
image cases (Figs. 15a and 15c), the higher-magnitude

data points diverge substantially to the right, implying
that the analytical prediction is too large. These higher
magnitude data points correspond to lower-lying ropes,
which for the circular case means a small major radius.
For the image case, on the other hand, this means a close
proximity between the physical loop and its image loop.
Both conditions result in large predicted hoop forces that
do not match well with the experiment.

The line-tied circle case (Fig. 15b) has the opposite
problem where the higher-magnitude cases pull to the
left. In this case, the low-lying ropes are far from their
shifted-circle return loop. Only in the line-tied fixed case
do the higher-magnitude points fall in line with the lower-
magnitude points. While the residual values of 0.486 do
not discern between the line-tied circle and line-tied fixed
cases, we conclude based on the slope of the data that
the line-tied fixed case, which matches the experimental
configuration, performs the best. It is important to note
that in each of these cases, induced currents in the stain-
less steel wall of the vacuum vessel also modify the hoop
force. Since the vessel currents oppose the flux rope cur-
rent, they reduce the measured hoop force. This effect,
which is treated in detail in Ref. 17, is included in all four
subpanels in Fig. 15 so as not to bias the results.

The central conclusions of this extended hoop force
analysis are twofold. First, Fig. 15 shows that the line-
tied nature of the flux rope and the details of its sub-
surface closure are key to accurately predicting the hoop
force over a wide range of parameters. Second, even with
the line-tied profile and correct sub-surface closure, the
hoop force consistently underperforms the analytical pre-
diction. We attribute this latter effect to low-aspect-ratio
and line-tying effects that act to rearrange the internal
profiles of the flux rope in ways that are not accounted
for in the large-aspect-ratio analytical model (Eq. 6).
Given the stringent assumptions of the large-aspect-ratio
model, it is not surprising that low-aspect-ratio, line-tied
ropes would behave differently than predicted. In fact,
it may be more surprising that the median difference be-
tween the measured and predicted forces is just 30%.

Given that the strapping force agrees well with its an-
alytical model, we move on to analyze the toroidal field
tension force in more detail. The conclusion from Fig. 14
is that the tension force is well-predicted in some cases,
but that it can substantially exceed its predicted magni-
tude in others. It is important to note that the present
tension force results should be considered independently
of those in Ref. 18. In that case, the focus is on tran-
sient enhancements of the tension force that are gener-
ated in certain parameter regimes by dynamic magnetic
self-organization events. The present analysis, on the
other hand, considers only time-averaged, quasi-steady
forces in an effort to better understand the flux rope equi-
libria. As such, the transient tension forces that are the
focus of Ref. 18 average out in the present analysis.

The toroidal field tension force derivation in Section
II B 4 makes it clear that predicting the cross-section-
averaged paramagnetic toroidal field 〈BTi〉 is key to pre-
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FIG. 15. Comparison of measured versus analytically predicted hoop forces as derived from the four different flux rope models
in Fig. 3. The measured data points are the same in each subpanel such that only the predicted data points change. The
goodness-of-fit residuals (Eq. 33) are list in the bottom right of each subpanel. The higher-magnitude cases diverge to the
right in (a) and (c) and to the left in (b) due to the different subsurface closures. The line-tied fixed closure in (d), which most
closely matches the experimental configuration, is the case that is used in Fig. 14.

dicting the toroidal field tension force (Eq. 20). Accord-
ing to the analytical expression in Eq. 26, this quantity
should depend only on the applied guide field Bg0 and the
edge poloidal field BPa. Figure 16 compares the exper-
imentally measured paramagnetic field to the analytical
prediction from Eq. 26. The figure shows that, in spite
of the wide variation in the experimental parameters, the
paramagnetic field is quite well predicted analytically. It
is impressive that the analytical expression performs so
well given that it is derived from a simple 1D model of a
linear screw pinch. The good agreement between the ex-
perimental measurements and the analytical prediction
further confirms that these flux rope plasmas are low-β.

A final conclusion regarding the tension force is that,
as can be seen in Fig. 14, the tension force is a substantial
contributor to the flux rope equilibrium force balance. Its
measured strength in many cases is commensurate with
the measured strength of the strapping force. This con-
clusion is important given that the tension force is often
ignored in the analytical treatment of solar flux ropes.

One example is the traditional torus instability deriva-
tion, which considers only hoop and strapping forces.10,15

As a final note, the tension force measurements reported
in this paper include both magnetic tension and magnetic
pressure contributions. While the tension term generally
dominates, the pressure term can be non-negligible. This
distinction is analyzed further in Appendix C.

VI. SUMMARY AND DISCUSSION

In this paper, the quasi-steady equilibrium forces act-
ing on low-aspect-ratio, line-tied magnetic flux ropes are
studied in detail using a well-diagnosed laboratory flux
rope experiment. The goal of this study is to inform
loss-of-equilibrium solar eruption models that rely on an
understanding of such forces to analyze and predict flux
rope eruptions in the Sun’s corona. Three flux rope force
terms are considered in detail: the hoop, strapping, and
tension forces. First, analytical models are developed for
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FIG. 16. Comparison of measured 〈BTi〉 values with the an-
alytical prediction from Eq. 26. The measured values each
represent a single discharge from the force analysis database
in Fig. 14. Though there is some scatter in the data, the
analytical prediction from Eq. 26 holds quite well across the
parameter space.

each force term in Section II and the experimental setup
is described in Section III. Then, in Section IV, a labo-
ratory force measurement procedure is developed based
on spatially resolved magnetic measurements from within
the flux rope plasma. Using this force measurement pro-
cedure, we find that a force-free equilibrium is measured
across a flux rope database of nearly 200 discharges (Sec-
tion V). This finding provides two key conclusions: (1)
it validates the laboratory force measurement procedure,
which is used extensively here and in Ref. 18; and (2) it
validates the low-β assumption that is applied to these
experiments given that a force-free equilibrium is mea-
sured among three purely magnetic force terms.

With the force measurements in hand, we performed
detailed comparisons of the various measured force terms
to their corresponding analytical predictions. This leads
to several conclusions about line-tied flux rope equilibria:

1. While the hoop force does act to drive the flux rope
upward, its magnitude is systematically smaller
than predicted, even after correcting for the par-
tial toroidal shape of the line-tied rope. This dif-
ference is attributed to low-aspect-ratio and line-
tying effects not accounted for in the traditional
large-aspect ratio analytical models.

2. Assessing the hoop force requires a proper account-
ing of the partial toroidal shape of the line-tied rope
and of the shape of the return path beneath the flux
rope footpoints.

3. The strapping force, on the other hand, behaves
as expected, increasing with the product of plasma
current and strapping field.

4. The toroidal field tension force contributes substan-
tially to the laboratory flux rope equilibra. It can
often be larger in magnitude than is predicted an-
alytically. This observation is also attributed to
low-aspect-ratio and line-tying effects, but further
analysis, likely computational, is required to under-
stand the relative impact of these effects.

We emphasize once again that the toroidal field tension
forces studied in this paper are quasi-static forces that
contribute to the flux rope equilibrium force balance.
These quasi-static forces differ fundamentally from the
dynamic tension forces that are reported in Ref. 18. An
exploration of the relationship between these two tension
forces is left for future work.

The conclusions of this paper represent an enhanced
understanding of the Lorentz forces that act on line-tied
flux ropes. In particular, the combination of a weaker-
than-expected hoop force and stronger-than-expected
toroidal field tension force results in lower altitude flux
rope equilibria than are predicted analytically. This de-
viation from the analytical predictions is expected to im-
pact the expected loss-of-equilibrium criteria for analo-
gous flux ropes in the solar corona.

Several opportunities remain for further analysis of the
laboratory data. In particular, the observed n ∼ 0.8
torus instability criterion is quite intriguing. With the
enhanced understanding of the equilibrium forces pro-
vided by this paper, this reduced loss-of-equilibrium
threshold should be investigated in the context of the
partial torus instability of Olmedo and Zhang.19 Exper-
imental factors such as the series inductance of the ca-
pacitor bank are expected to contribute to this reduced
instability criterion, but the effects of line-tying are fun-
damental to both the laboratory experiments and the
solar corona. The impact on the hoop force as shown in
Fig. 4 should be considered. Furthermore, the question
of how much of the reduced threshold is due to low as-
pect ratio and line-tying effects should be explored. This
may ultimately help to pin down the torus instability
threshold in line-tied systems.

The differences between the analytical predictions and
laboratory measurements presented in this paper high-
light the need to further understand how idealized an-
alytical predictions are modified in the highly three-
dimensional, line-tied conditions of the solar corona. In
our view, computational analysis of the laboratory flux
ropes studied here and of analogous systems in the so-
lar corona represents the best chance to strengthen the
connection between our laboratory results and observa-
tions of solar flux ropes. At a minimum, the results pre-
sented in this paper pose several sharp questions that
can serve as a launching point for a numerical simula-
tion effort: Can the same equilibrium effects of a weak-
ened hoop force and a heightened tension force be re-
covered numerically? Are these effects a consequence of
low aspect ratio and/or line-tying as we postulate here?
How do these considerations modify the expected loss-
of-equilibrium criterion? Answering such questions, and
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determining how these results can be applied to flux ropes
in the Sun’s corona, is an important step on the path to-
ward understanding and ultimately predicting solar erup-
tive events.
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Appendix A: Flux rope toroidal curvature measurements

As described in Section IV, the direct measurement
of the magnetohydrodynamic forces at the apex of the
flux rope requires a measurement of the out-of-plane
(toroidal) curvature, κT . Due to the line-tied nature of
the flux ropes studied here, κT is, in general, a non-trivial
function of z. From vector calculus arguments,20 κT (z)
is related to the curvilinear scale factor hT (z) via

κT ≡
1

Rc
=

1

hT

∂hT
∂z

, (A1)

where Rc is the toroidal radius-of-curvature. This equa-
tion can be inverted to get

hT = exp

{∫
dz κT (z) + C0

}
, (A2)

where the integration constant C0 is chosen so that
hT (zap) = Rc(zap). This ensures that the coordinate
T represents the angular toroidal displacement along the
magnetic axis of the flux rope. From the above relation-
ship, we see that a measurement of κT (z) is required in
order to compute hT (z) and carry out the force balance
analysis. We now demonstrate the procedure for mea-
suring κT (z) in the MRX flux rope discharges.

The MRX force measurements can only be carried out
in flux rope discharges where the magnetic probe is array
aligned in the y-z (poloidal) cross-section of the flux rope
(see Fig. 7). This is because the integrals over r and
θ in Eq. 4 require full poloidal resolution. As we will
see, however, measuring the toroidal curvature requires
that the probes be aligned instead in the x-z (toroidal)
cross-section. Thus, the force measurement procedure
developed here uses a multi-discharge approach where
curvature measurements from x-z-aligned discharges are
used to evaluate the forces in y-z-aligned discharges.

The general expression for the curvature of a magnetic
field line is given by

κ = (b · ∇)b, (A3)

where b ≡ B/B is the magnetic field unit vector. In
Cartesian (x, y, z) coordinates, this expression expands
to nine terms (three for each of the three vector compo-
nents). Here, we are interested in the z-directed (vertical)
curvature, which is given by

êz · (b · ∇)b = bx
∂bz
∂x

+ by
∂bz
∂y

+ bz
∂bz
∂z

(A4)

As we will see, bz∂zbz is small when evaluated at the flux
rope apex (on the z axis). This leaves the first two terms
as the dominant components of the vertical curvature.

To demonstrate the evaluation of Eq. A4, we examine
magnetic probe data from two nearly identical stable dis-
charges, one with the probe array in the x-z plane and the
other with the probe array in the y-z plane (see Fig. 17).
These magnetic field data are the vector measurements,
B(0, 0, z), acquired along the z-axis by the central probe
in the magnetic probe array. The specific measurements
in Fig. 17a are taken from the two discharges shown in
Fig. 7. Here, Bx is the local toroidal field (Bg + BTi),
while By is the local poloidal field (Bs+BPi). The agree-
ment between the the data from the two discharges is
excellent, thereby confirming their similarity. It should
be noted, however, that the z locations of the plasma
fields in the x-z discharge were scaled by ∼ 1.1 in order
to match the height of the flux rope in the y-z discharge.

With the magnetic field data in hand, we now evalu-
ate the various curvature terms in Eq. A4. The evalu-
ation is carried out about the center probe in the array
with the numerical derivative data being sourced from
the probes to the left and right of the center probe. The
results for the discharges under consideration are shown
in Fig. 17b. The bx∂xbz term comes from the x-z dis-
charge, the by∂ybz term from the y-z discharge, and the
bz∂zbz term from both discharges. As expected, this fi-
nal term is small compared to the other two. We see that
the remaining terms represent the major radius (toroidal)
curvature and the minor radius (poloidal) curvature, re-
spectively. Since we are interested in the major radius
curvature, we focus on the bx∂xbz term and define

κT ≡ −bx
∂bz
∂x

(A5)

Thus, the toroidal curvature profile κT (z) can be directly
measured from probe data acquired in the x-z plane and
used in the analysis of data acquired in the y-z plane.

The curvature analysis procedure developed here can
now be applied to the range of x-z-aligned discharges
in the MRX flux rope database. Of the 800+ shots in
the database, only ∼ 200 of them were acquired with
the probe array in the x-z configuration. Furthermore,
only half of the 200 x-z-aligned discharges are ‘non-
erupting’ as established by the 〈δz〉/xf < 0.8 definition
used throughout this paper (see Sections III D and V).
This leaves a set of ∼ 100 x-z-aligned discharges from
which to develop an understanding of the toroidal curva-
ture of the laboratory flux ropes.
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FIG. 17. Experimentally measured terms of the vertical flux
rope curvature (Eq. A4). Solid lines are from the x-z probe
alignment, while dashed lines are from the y-z probe align-
ment. Note that the dominant vertical curvature compo-
nents in the right panel are the toroidal curvature (blue) and
poloidal curvature (dashed green).

Ideally, each y-z-aligned discharge would have a cor-
responding x-z aligned discharge from which to extract
curvature information. In practice, not enough data is
available to facilitate this one-to-one mapping. Instead,
the simplest approach with the available x-z aligned dis-
charges is to aggregate the curvature measurements from
all available discharges to generate ensemble-averaged
curvature and curvilinear scale factor profiles. To do this,
the curvature profiles for each discharge are first averaged
over 150 µs in the middle of the discharge. Then, all of
the time-averaged profiles are combined via a weighted
average to produce the ensemble-averaged curvature pro-
files shown in Fig. 18.

In Fig. 18a, the ensemble-averaged curvature profile
is shown along with a model ‘line-tied’ curvature profile
derived from the shifted-circle flux rope model described
by Eq. 9. The aggregate apex height of the flux rope
is also shown. Fig, 18b shows the normalized curvilinear

scale factor, ĥT ≡ hT /Rc(zap), that results from apply-
ing Eq. A2 to the measured curvature profile in Fig. 18a.
The measured scale factor profile shows that the actual
apex wedge integration volume is notably wider under-
neath the rope (z < zap) and narrower above the rope
(z > zap) than is predicted by the line-tied model.

A final wrinkle is that a subset of the discharges used
in the flux rope force study in Sections IV and V are not
well-described by the aggregate curvature profile in Fig.
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FIG. 18. Aggregate experimentally measured toroidal curva-
ture and scale factor profiles for the MRX flux rope database.
On average, the measured hT profile makes for a wider inte-
gration volume under the rope and a narrower volume above
the rope when compared to the shifted-circle.

18. This is because these discharges were taken with a
smaller footpoint separation distance (xf = 15 cm versus
xf = 18 cm) than all of the discharges that contribute
to Fig. 18. Unfortunately, no x-z discharges were taken
in the xf = 15 cm configuration. As such, the line-tied
curvature model is used as the curvature profile for the
xf = 15 cm discharges.

Appendix B: Divergence cleaning of the in-plane magnetic
field data

A crucial aspect of the force analysis presented in this
paper is the ability to define a local poloidal flux function
(see Eq. 32). In order for the flux function to be unique,
however, the measured magnetic fields must be diver-
gence free (∇·B = 0). This can become a problem when
experimental noise and measurement errors inject resid-
ual divergence into the measurements. Fortunately, we
can take advantage of the assumed local toroidal symme-
try of the flux rope to implement a ‘divergence cleaning’
procedure that removes any residual divergence from the
in-plane components of the y-z magnetic field data. In
particular, given the toroidal scale factor hT (see above)
and the assumption that ∂/∂T ' 0, the divergence of the
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FIG. 19. Sample results from the divergence cleaning of in-
plane magnetic field data. Left: Raw poloidal field vectors
and their divergence (color). Right: Difference between the
raw and cleaned poloidal field data (vectors) and the diver-
gence of the cleaned data (color). Both quantities on the right
are amplified by a factor of five (×5).

magnetic field is given by

∇ ·B =
∂By
∂y

+
1

hT

∂ (hTBz)

∂z
, (B1)

which depends only on the in-plane field components By
and Bz and their in-plane derivatives. The divergence
cleaning procedure implemented here uses an iterative
technique to diffuse away the divergence47:

Bn+1 = Bn + (δr)2∇[∇ ·Bn] (B2)

BN = B0 + (δr)2
N−1∑
n=0

∇[∇ ·Bn], (B3)

where n is the iteration index and δr is a characteristic
diffusion length scale. The convergence of the iteration
is faster for larger δr, but numerical stability ultimately
limits its magnitude. An interesting feature of this diver-
gence cleaning method is that the resulting field BN will
give the exact same toroidal current density as the initial
field B0. This is because J = ∇×B/µ0 and ∇×∇g = 0
for all scalar functions g. Thus, since the added diver-
gence cleaning terms are all gradients of a scalar, they do
not modify the measured current density. Simply stated,
this technique finds the in-plane magnetic field that is
both divergence free and corresponds to the originally
measured toroidal current density.

In practice, the divergence cleaning technique imple-
mented here is very effective, if somewhat computation-
ally intensive. Each time point requires tens of iterations
to converge, but the results are excellent (see Fig. 19).
In the left panel of this figure, the vectors show the raw

poloidal magnetic field measurements BP , while the col-
ors show their computed divergence. In the right panel,
the vectors instead show the difference between the raw
and cleaned data ∆BP , while the color shows the diver-
gence of the cleaned fields. Note that both the vectors
and the colors in the right panel are amplified by a factor
of five (×5) in order to appear as something other than
zero. The plots show that the divergence is reduced by at
least an order of magnitude and that the overall modifi-
cation to the interpolated magnetic field data is less than
10%. In fact, for the case shown, the average change in
the field magnitude is

〈
|∆BP |/|BP |

〉
∼ 7%.

Appendix C: Additional tension force analysis

A remaining concern with the tension force analysis in
Section V is how to reconcile the good agreement between
the measured and predicted paramagnetic toroidal field
in Fig. 16 with the modest agreement between the mea-
sured and predicted toroidal field tension force in Fig.
14. Recall from Section II B 4 that two related analytical
models were developed for the tension force: Eqs. 20 and
27. The latter expression is used as the analytical tension
force model in Fig. 14 since it is this model that is as-
sumed in the canonical torus instability derivations.10,15

In order to understand the comparison between the two
tension force models, however, we now plot the measured
tension force data against each of the two models (see
Figs. 20a and 20b, respectively). The stiffness of Eq. 27,
which assumes that 〈B2

T 〉−B2
g0 ' B2

Pa, is evident in Fig.
20a. More scatter is observed in Fig. 20b, on the other
hand, which uses the experimentally measured values of
〈B2

T 〉 − B2
g0. Based on the residuals, it is not clear that

either of the models captures the tension force behavior.
Further insight can be gained by recognizing that the

source term for the toroidal field tension force, ft =
−JPBT , is actually comprised of a magnetic tension term
and a magnetic pressure term:

fTt = −
(
BTi
µ0R

)
BT (C1)

fTp = −
(

1

µ0

∂BTi
∂R

)
BT (C2)

The contributions from each of these two terms are ex-
plicitly separated in Fig. 20c. In this case, the tension
term shows much better agreement with the model. The
pressure term can be negligible in some cases but im-
portant in others. It turns out that the cases where the
magnetic pressure term is large are those that around
low-lying and bound closely to the surface. We again
postulate that these effects are due to a reconfiguration
of the internal flux rope profiles due to low-aspect-ratio
and line-tying effects that are not captured by the sim-
plistic analytical models developed in Section II B. Fur-
ther analysis, likely computational, is required to bet-
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ter understand the relationship between the toroidal field
tension and pressure terms in various flux rope equilibria.
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